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1.0  Introduction

 

This paper describes the S

 

PIKE

 

 system, a general framework for scheduling which has 
been developed by the Space Telescope Science Institute for NASA’s Hubble Space Tele-
scope (HST). Efficient use of astronomical observatories is very important to the scientific 
community: the demand for research-grade telescopes far exceeds the supply. The need for 
efficient scheduling is especially keen for space-based facilities due to their very high cost, 
limited numbers, and unique scientific potential. The S

 

PIKE

 

 scheduler was developed for 
Hubble Space Telescope but was designed for generality and flexibility: it has since been 
adapted for several other astronomical scheduling problems, as well as to problems unre-
lated to astronomy. While the general approach taken in S

 

PIKE

 

 was motivated by the para-
digm of scheduling as constraint-directed search (e.g. Fox 1987, Smith et al. 1986, Fox et 
al. 1989), S

 

PIKE

 

 incorporates novel approaches to both the quantitative representation and 
propagation of hard constraints and “soft” preferences, and to the use of scheduling search 
strategies based on multistart stochastic repair.

In the following we first provide a brief overview of the HST scheduling problem, then we 
discuss the theoretical and conceptual foundations of S

 

PIKE

 

: Section 2.0 describes the 
S

 

PIKE

 

 representation of constraints as “suitability functions”, Section 3.0 casts the HST 
problem as a constraint satisfaction problem (CSP), and Section 4.0 describes the multi-
start stochastic repair search strategy that is currently the primary scheduling search tech-
nique in S

 

PIKE

 

. In Section 5.0 we discuss the HST science ground system as a whole and 
the role played therein by S

 

PIKE

 

. Section 6.0 describes our operational experience and 
some of the lessons learned from the past two years of HST operations. Section 7.0 pro-
vides a brief overview of the adaptation of S

 

PIKE

 

 to other space- and ground-based obser-
vatories.

 

*
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1.1  HST Scheduling

 

Launched in April 1990, the HST has provided important new capabilities for astronomi-
cal research due to its unsurpassed combination of wavelength coverage and angular reso-
lution. Despite a manufacturing flaw in the primary mirror, HST is actively engaged in a 
full research program that has produced a large number of exciting results. HST will be 
serviced by the Space Shuttle in late 1993 to compensate for the mirror’s figure and to 
replace the main camera with a second-generation instrument. These changes will bring 
the optical quality of the telescope up to original expectations.

The HST scheduling problem ranks among the largest and most complex scheduling prob-
lems faced on a continuing basis: some 10,000 to 30,000 observations are scheduled per 
year and each is subject to a large number of operational and scientific constraints. Propos-
ers can specify a variety of constraints on exposures in order to express scientific goals: 
these include relative timing requirements such as precedence, minimum and maximum 
time separations, ordering, interruptibility and repetition. Some observations must be exe-
cuted within a certain absolute time interval. Proposers may constrain the orientation of an 
instrument’s aperture relative to the target or require an observation to be made while the 
HST is in the Earth’s shadow. In order to provide flexibility, proposers can mark exposures 
as “conditional” or “select”: “conditional” exposures are contingent upon the results 
obtained from another exposure in the observing program, or, in some cases, upon the 
results obtained from ground-based observations. These exposures are not scheduled until 
the proposer has notified the STScI that the condition has been satisfied. The “select” 
capability allows the proposer to identify alternative sets of exposures from which one or 
more will be picked for execution. As with “conditional” exposures, exposures contained 
in “select” sets will be placed on a timeline only after the proposer informs the STScI of a 
decision.

The HST spacecraft and its associated ground system components introduce a number of 
scheduling constraints as well. The observatory is in a low earth orbit (590 km) with the 
result that the Earth typically blocks the line of sight to a target for slightly less than half 
of each 95 minute orbit. Targets within a few degrees of the orbital poles are not occulted 
by the Earth and are suitable for uninterrupted observations. Due to precession of the orbit, 
the orbital poles move around the sky with a 56 day period, with the result that a target is 
available for extended observation for no more than about 3 days in each precessional 
period. When passing over South Atlantic Ocean, the HST encounters a portion of the 
Earth’s radiation belt (called the South Atlantic Anomaly, or SAA) during which instru-
ment operations must be suspended. Sources of bright light such as the Sun, Moon and 
illuminated Earth must be avoided. Thermal and power restrictions limit how the telescope 
can be oriented, in order to keep adequate sunlight on the solar panels and off the surfaces 
which radiate heat.

The primary resource constraint for HST scheduling is the amount of observing time 
available. Other resources which must not be exceeded include the amount of data which 
can be processed by the communications and ground systems, onboard tape recorder stor-
age, and onboard command computer storage.
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Although the HST operates largely in a preplanned mode (with schedules fixed about two 
months in advance of execution), disruptions to the schedule occur for a variety of reasons. 
The most welcome disruptions are so-called “targets of opportunity”, which are rare, 
important astronomical events requiring immediate attention (e.g. a supernova). Other 
schedule disruptions result from spacecraft anomalies, loss of communications contacts, 
and changes in observing programs.

Figure 1 illustrates schematically the range of constraint timescales for HST. The interac-
tion of so many constraints on varying timescales makes it impossible to identify any one 
dominant scheduling factor. Many of the constraints are periodic with different periods 
and phases. As a consequence there are generally several opportunities during a year to 
make a particular observation and a prime goal of HST scheduling is to make an optimal 
choice among these opportunities for as many observations as possible. This effort is com-
plicated by the fact that the majority of the requested exposures have timing, grouping, 
repetition, or ordering constraints that couple very strongly with the time-dependent con-
straints of Figure 1. More extensive discussions of the HST scheduling problem may be 
found in Miller et al. (1987, 1988) and Johnston (1988a, 1989b, 1990).

FIGURE 1. The range of timescales for HST scheduling constraints, covering more than six 
orders of magnitude.
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2.0  Representation and Combination of Constraints and 
Preferences

 

Constraints convey two types of information to the scheduler:

 

Feasibility constraints

 

 specify conditions or times when activities may or may not 
be scheduled. We interchangeably use the terms “strict” or “hard” constraint for 
this type, as they may not be violated under normal circumstances. A mechanism 
for relaxing (that is, violating) strict constraints is discussed in Section 3.0. A few 
examples in the HST scheduling context are:

 

–

 

provide a minimum of two months between an observation and a repeat observa-
tion on the same target

 

–

 

never schedule an observation when the Sun is within 50

 

°

 

 of the target

 

–

 

don’t roll the spacecraft more than 30

 

°

 

 from its nominal orientation

 

Preference constraints

 

 specify quality judgments on scheduling conditions which 
are preferred but not required. These may be based on based on objective or sub-
jective factors. In HST scheduling, for example, it is desirable to schedule at times 
which:

 

–

 

minimize scattered light from the bright limb of the Earth

 

–

 

maximize the chance of successfully acquiring guide stars

 

–

 

place an observation as close to nominal roll as possible

It is important that both feasibility and preference information be considered simulta-
neously during schedule construction. Ignoring feasibility constraints can obviously lead 
to unimplementable schedules, but disregarding preference constraints (in order to sim-
plify the problem) can lead to unacceptably suboptimal schedules. For this reason the con-
cept of suitability functions (Section 2.1) was developed by merging ideas from two well-
studied frameworks, namely constraint satisfaction problems (CSPs) for expressing and 
manipulating feasibility constraints, and evidential reasoning techniques as a means to 
combine preference constraints.

Consider scheduling some activity , given that other activities  are already scheduled 
at times . A human scheduler would assess the opportunities for scheduling  at various 
times by considering the effects of the activities  on  via the constraints. Constraints 
can take a variety of forms, but can be generally be cast into statements of the following 
type:

Given that activities  are scheduled at times 
, the degree of preference for scheduling activity  at 

time  due to constraint  is 

The degrees of preference can be assigned over some numerical range based on a judg-
ment of the importance of the constraint, with larger values of  corresponding to 
greater preference.  can represent both deterministic constraints and intrinsically 

Ai A j
t j Ai

A j Ai

A1 … Ai 1– Ai 1+ … AN, , , , ,
t1 … ti 1– ti 1+ … tN, , , , , Ai

t Cα Wiα t1 … ti 1– ti=t ti 1+ … tN, , , , , ,( ) Wiα t t j i≠;( )≡
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unpredictable constraints, e.g.  can also be formulated in terms of (a function of) the 
probability that some desirable condition will hold.

 

2.1  Combination of Preferences: Suitability Functions

 

In general there will be a number of constraints acting on a task, so it is necessary to com-
bine the degrees of preference  from all applicable constraints. This combination pro-
cess is formally similar to that employed in a number of rule-based expert systems which 
assess evidence for and against various conclusions (e.g. Shortliffe 1976, Hart et al. 1978). 
While this approach to uncertainty reasoning is known to have its limitations — In partic-
ular, the knowledge base should form a tree so that no evidence is counted twice via alter-
native paths of reasoning (Pearl 1988) — it is adequate for many scheduling problems and 
has the advantage of being computationally tractable.

However, the techniques used in rule-based systems for evaluating evidence for or against 

 

discrete

 

 conclusions cannot be applied directly to scheduling, since a 

 

continuum 

 

of sched-
uling conclusions must be considered (e.g., schedule  at  and  at , etc.). What is 
required instead is a continuum version of uncertainty reasoning, formulated in a way 
which efficiently expresses the variety of constraints that typically appear in these prob-
lems and which retains information about choices that affect schedule optimality. Central 
to this formulation is a way to combine evidence from two or more independent con-
straints .

Two conditions for the combination of evidence are reasonable: the combination function 
for  should be a continuous, monotonically increasing function of its arguments, and it 
should be associative, i.e. it should not matter in what order the evidence is considered. 
With these assumptions, the preferences  together with the combination operator form 
an Abelian group isomorphic to the additive group of real numbers on , a result 
which has been independently discovered by a number of researchers (e.g., Cox 1946; 
Good 1960, 1968; Hájek 1985, Cheng and Kashyap 1988). Thus with no loss of generality 
we take the  to be real-valued functions that combine simply by addition.

It is common in scheduling problems to have constraints that specify times when an activ-
ity is 

 

not

 

 permitted to be scheduled. These are particularly important since they allow the 
scheduler to eliminate blocks of time from further consideration. In terms of the prefer-
ences, these times should have highly unfavorable values, e.g. , where 

 is sufficiently large to indicate 

 

overwhelming

 

 evidence against scheduling activity 
 at time . We can transform the additive  into a multiplicative form  by defin-

ing:

 

(EQ 1)

 

Except where , the use of the exponential function makes the 

 

additive

 

 
combination of the weights  equivalent to the 

 

multiplicative

 

 combination of . When 
, multiplicative combination provides precisely the desired behavior, i.e. if 

Wiα

Wiα

Ai ti A j t j

Wiα Wiβ …, ,{ }

Wiα

Wiα
∞– ∞,( )

Wiα

Wiα t t j i≠;( ) w0–=
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Ai t Wiα Biα

Biα t t j i≠;( ) exp Wiα t t j i≠;( )[ ]= Wiα t t j i≠;( ) w0–>
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there is overwhelming evidence against scheduling  at  from any source, then no 
amount of evidence from other sources can counteract this. We have found that the multi-
plicative formulation is particularly convenient for representing practical constraints 
defined by scheduling experts. In the HST domain we have further adopted the convention 
that a value  represents the absence of evidence either for or against a 
scheduling decision. In practice, the  are defined by analysis of the constraints and 
preferences in consultation with telescope scheduling experts.

It is computationally infeasible to work with the full N-dimensional form of the 
 in any practical scheduling problem. The approach adopted in SPIKE consists 

of projecting the  into functions of one time variable only:

(EQ 2)

where the maximum operator ranges only over times  where activities  are permitted 
to be scheduled (based on the current state of the schedule, i.e. accounting both for times 
excluded by constraints and for times excluded by decision of the scheduler).  is 
zero only when, due solely to the constraint , no possible choices for scheduling activ-
ity  will permit  to be scheduled at time ; otherwise its value is the best (most pref-
erable) value of  that can be obtained by scheduling  at , given any other possible 
schedule of the other activities. The former property of  ensures that no times are 
excluded prematurely unless provably in violation of a strict constraint. The latter provides 
an important indicator of optimal scheduling choices to the scheduling agent by always 
indicating the best that can be achieved, regardless of future scheduling decisions. (It is 
conceivable that a function other than maximum, e.g. some averaging function or even 
minimum, could be useful in some scheduling problems.) We call  the suitability 
function for activity  due to constraint . The total suitability function for an activity 

 is the product of the suitability functions from each of its constraints, multiplied by a 
restriction operator  indicating any scheduling decisions made so far in constructing 
the schedule  for excluded times, 1 otherwise):

(EQ 3)

 if activity  is excluded from being scheduled at time , either because a strict 
constraint would be violated or because of prior scheduling decisions. These equations 
implicitly determine the suitability function for an activity and are solved by an iteration 
procedure corresponding to the propagation of constraints.

The suitability function concept can be illustrated by a simple example: consider a prefer-
ence constraint of the form: 

“Schedule  as soon as possible after the end of , but starting no sooner than  
minutes afterwards and ending no later than  minutes afterwards.”

We can represent this by choosing  where  is a function indicating 
the judgment (objective or subjective) of how much better or worse it is to delay schedul-
ing  after . Given the suitability function  of  it is straightforward to construct 

Ai t

Wiα 0= Biα⇔ 1=
Biα

Biα t t j i≠;( )
Biα
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 due to this constraint as illustrated in Figure 2. Panel (a) shows what the  
could look like for a plausible choice of . Panel (b) shows what the suitability function 

 might be at some stage in the scheduling: in this case there are two disjoint candidate 
intervals where  could be scheduled. The last panel (c) shows the resulting suitability 

 for task .

Suitability functions provide a simple but effective framework for capturing metric-time 
scheduling constraints, both strict and preference. All of the conventional binary temporal 
interval relationships (before, after, during, etc.: see Allen 1983) are easily represented by 
appropriate suitability functions, along with a large class of far more general temporal 
couplings (Shapiro 1980). Like Rit’s (1986) formulation of “constrained occurrences” for 
binary interval constraints, suitability functions can represent and propagate disjunctions; 
more generally, however, they also handle constraints of higher order than binary, and can 
incorporate preferences as well. The combination of preferences is analogous to other sim-
ilar constraint evaluation methods (e.g. Fox and Smith 1984, Smith et al. 1986), but differs 
in that the combination of evidence for or against a scheduling decision is required to be 

S jα t( ) B jα t ti;( )
ϕ

Si t( )
Ai

S jα t( ) A j

FIGURE 2. Illustration of suitability functions for the case of a binary preference constraint: 
(a) preference expressing that a task  should be scheduled as soon as possible after  minutes 
from the completion of another task  (of duration ) and in no case later than  minutes; 
(b) hypothetical suitability of  at some stage in the scheduling process; (c) the resulting 
suitability of . The intervals where each function is non-zero are indicated by bars under the 
time axes in (b) and (c).
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monotonic and associative. It is also worth noting that, while there is a resemblance 
between suitabilty functions and the propagated preferences of Sadeh and Fox (1988), the 
latter method is based on a probabilistic model of start time distributions. Such a probabi-
listic characterization of the results of scheduling as an input to the scheduling agent dif-
fers from the suitability function perspective, which maintains a distinction between the 
likelihood of different decisions by the scheduler and the characterization of preferences 
vs. time. However, this does not rule out the use of similar models that attempt to estimate 
resource demand and contention (e.g. Sadeh 1991): these can play a useful role as suitabil-
ity components that reflect resource or capacity limits.

2.2  Consistency Methods

Consistency methods have long been known to improve search efficiency for discrete 
CSPs (see, e.g., Dechter 1986, Dechter and Pearl 1988, Dechter and Meiri 1989 and refer-
ences therein) and have proven to be useful in SPIKE as well. Consistency techniques make 
explicit the information that is implicit in the constraints. We have found the following 
techniques to be useful in speeding scheduling search:

Node-consistency refers to the removal from consideration of domain values 
which cannot be part of any solution, where this determination is made based on 
unary constraints. In our formulation this is explicitly represented in the suitability 
functions.

Arc-consistency refers to removing values from the domains of variables to satisfy 
binary constraints. This technique is best illustrated by example: suppose  is 
constrained to follow  with a minimum end-to-start separation of , that both 
activities have unit durations and are restricted to be scheduled in the interval 

. Then the interval  is excluded for , and the interval 
 is excluded for . To introduce arc-consistency into the net-

work, we restrict activities to fall within the overall scheduling interval , 
and then propagate constraints (Equation 3).

Path-consistency refers to the inference of additional (binary) constraints based 
on those explicitly stated. Again an example makes the principle obvious. Suppose 

 must precede  which must in turn precede : by explicitly representing the 
constraint “  precedes ” we can immediately represent the implication of a 
decision on scheduling  which would otherwise require a further decision about 

. For simple precedence, the additional constraints inferred by path consistency 
are just those derived from the transitive closure of the precedence relationship. 
However, for more general binary constraints which depend on time differences 
only (e.g. “group  within 24 hours”), it is possible to generalize this 
calculation and derive much more informative constraints (Johnston and Adorf 
1992). 

We have found a substantial benefit in pre-computing and storing for later access the 
results of node-, arc-, and path-consistency. We have also found that explicit representa-
tion of inferred constraints makes the conflict-count repair heuristics (Section 4.2) more 

A j
Ai ∆t

tA tB,[ ] tB ∆t– 1– tB,[ ] Ai
tA tA ∆t 1+ +,[ ] A j

tA tB,[ ]

Ai A j Ak
Ai Ak

Ai
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effective. However, in other scheduling domains, the significant pre-processing computa-
tional cost must be traded against the potential speed-up during search. To help control 
this, the constraint propagation code used in SPIKE includes a “time-out” capability which 
can be used to limit the amount of computation devoted to path-consistency.

2.3  Computational Aspects

The implementation of suitability functions on digital hardware requires that continuous 
suitabilities be discretized, either in time, value, or both. In SPIKE we have avoided any 
fundamental discretization in time for two important reasons: (a) it introduces an artificial 
time granularity into the problem, and (b) many important constraints yield suitability 
functions which have long intervals of constant value and would therefore be inefficiently 
represented by a large number of identical values for many discrete time points. Instead, 
we adopted the discretization of suitability function values which allows suitability func-
tions to be represented as piecewise constant functions (PCFs). These can be conveniently 
and compactly be expressed as a list of times and values, e.g.  where 
the suitability has a value of  from  up to , then a value of , etc. Suitability values 
are not restricted to a fixed set. Arbitrary values are allowed and are only required to be 
constant over appropriate intervals (which can be different for different constraints). In 
this way, the basic constraint representation mechanism places no arbitrary restriction on 
the timescale or suitability value that can be represented.

The choice of PCFs has other advantages as well. They are closed under all of the common 
operations required for manipulation of suitability functions such as multiplication or 
maximum (in contrast to other representations such as piecewise linear functions). The 
cost of storing and combining PCFs is proportional to the number of intervals with distinct 
values, not to the size of the scheduling interval. 

Although the PCF representation of suitabilities does not require discretization of suitabil-
ity values, in practice this may be useful as small differences in suitability (e.g. a few per-
cent) may not be significant and “collapsing” these differences in suitability can decrease 
the storage required for the suitability function and increase the speed of constraint propa-
gation.

3.0  HST Scheduling as a Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of as set of variables, each with a domain 
of discrete values, and a set of constraints which limits the allowed values for each variable 
based on the assigned values of other variables. The problem is to assign a consistent set of 
values for all variables such that there are no constraint violations. To cast a scheduling 
problem into the form of a CSP, we identify each activity to be scheduled with a variable, 
and we partition the scheduling time range for each activity into intervals which are identi-
fied with the domain of the corresponding variable. A CSP as usually stated considers only 
strict constraints and ignores preferences: we place the further condition on the problem 
that the preferences should be maximized in the solution state. CSPs on discrete domains 

t1  s 1  t 2  s 2 … t n   s n ( )
s1 t1 t2 s2
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arise in a variety of applications and methods for solving them have been widely studied: 
for a recent survey see Kumar (1992) and references therein.

S

 

PIKE

 

 incorporates a general “toolkit” for representing and manipulating constraint satis-
faction problems, which we will briefly describe in this section. This toolkit is used in the 
S

 

PIKE

 

 scheduling search algorithm, which will be discussed in Section 4.0.

 

3.1  The S

 

PIKE

 

 CSP toolkit

 

The S

 

PIKE

 

 CSP toolkit is implemented as a set of object classes and associated methods, 
the most important of which are the abstract classes for:

 

•

 

CSP

 

, representing the collection of variables, constraints, etc. required to represent a 
particular type of constraint satisfaction problem, and 

 

•

 

variable

 

, representing variables, their assigned values, conflicts, preferences, etc.

These two classes must be specialized for each particular kind of CSP implemented.

The state information maintained by CSP and variable instances can be manipulated with 
an extensive library of methods. These provide capabilities which have proven extremely 
useful in a practical scheduling environment. Each variable instance maintains constraint 
conflicts and preferences data for each of its domain values, as well as the variable’s cur-
rent assigned value. 

Some of the more important capabilities provided by the CSP toolkit include:

 

•

 

inconsistent assignments:

 

 at any point, variables are permitted to have assigned values 
which are inconsistent with other assigned values. This is important for two reasons: it 
allows information about constraint linkages among activities to be exploited during 
scheduling search (Section 4.0), and it allows for search through a relaxed version of 
the problem. This is an especially important feature when there is no solution to the 
CSP as originally posed, and the best one can hope is to solve a relaxed problem where 
some constraints are violated (cf. Freuder 1989).

 

•

 

locked and ignored variables:

 

 a variable can be forced to have a specified assigned 
value, then be ignored thereafter, or can be ignored without an assigned value. This 
allows the scheduler to partition the activities to schedule into an “active” set and “inac-
tive” set — either with or without assigned values — and thus easily control the focus 
of the search process. Ignored variables are motivated by scheduling problems (like 
HST’s) where there are conditional activities. These start out as ignored until some trig-
gering condition is true, e.g. the commitment of some other observation, or notification 
from the proposer to schedule the observation.

• removal and restoration of domain values: Any domain value for a variable can be 
excluded from the problem, then restored at any time. This makes it possible to easily 
search for solutions that contain only high-preference values, or to dynamically exclude 
scheduling times for reasons external to the formal constraint specification.
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• constraint weights: constraints can have any desired weight value, which is the 
amount the conflict count is incremented for each violation. The greater the weight, the 
more important the constraint. For HST, temporal constraints have higher weight than 
resource constraints.

• constraint caching: the toolkit provides a mechanism for caching the impacts of the 
current set of assigned values. This has two major benefits: it allows the system to 
quickly retract any current assigned value, and it allows for an “explanation” of the 
conflicts on any particular domain value (since the cache records the conflict source 
constraint as well as the relevant domain values and conflict weights). The cache mech-
anism can be turned on or off as appropriate, based on the trade-off between time to 
compute constraint violations versus the space to record them.

• assignment history and snapshots: the toolkit provides an assignment history mecha-
nism, with facilities to mark the current state and back up to any marker. There are also 
facilities for saving the current set of assigned values in various forms, then re-applying 
them to the problem. The history mechanism can be turned off if desired, to improve 
runtime performance.

• capacity constraints: in addition to temporal constraints between variables, the toolkit 
implements a general class of capacity (or resource) constraints. The mapping of 
domain values to capacity “bins” is completely customizable and may be many-to-one 
or one-to-many. 

3.2  Time sampling

As noted above, the scheduling interval for an activity is discretized as part of the transla-
tion into the CSP variable domain. It is therefore necessary to consider how to discretize 
the representation of time (unless there exists some natural time discretization in terms of 
which the constraints can be defined). As a general rule, the sampling interval must be less 
than the timescale for significant changes in the scheduling constraints. If this condition is 
satisfied, then one has to decide upon a suitable sampling procedure defining how to treat 
those strict constraints that would prevent the scheduling of an activity over some, but not 
all, of a given interval. The basic choice is whether to exclude the entire interval or not:

(a) if the entire interval is excluded, then there is a risk that feasible solutions may be 
missed; 

(b) if the interval is not excluded, then the scheduler may find what appears to be a fea-
sible configuration, but which turns out not to be feasible when the timing is examined 
in detail.

In HST scheduling we generally chose option (b) for the initial implementation and moved 
toward option (a) for specific constraints as experience was gained with operations. The 
choice must be determined for each problem type based on the characteristics of the con-
straints and the difficulty of dealing with the consequences. In some problems there will 
be a natural time unit in terms of which constraints are defined, so that no sampling error 
will occur. A further discussion of sampling and discretization is given in Johnston and 
Adorf (1992).
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4.0  Scheduling Search in SPIKE

SPIKE treats schedule construction as a constrained optimization problem and uses a heu-
ristic repair-based scheduling search technique called multistart stochastic repair. This 
technique consists of the following steps:

1. Trial assignment: make a trial assignment (“initial guess”) of activities to times, based 
on heuristics to be discussed further below. Such a schedule will generally have tempo-
ral or other constraint violations, as well as resource capacity overloads;

2. Repair: apply heuristic repair techniques to try to eliminate constraint violations, until 
either a pre-established level of effort has been expended or there are no conflicts left;

3. Deconflict: eliminate conflicts by removing any activities with constraint violations, or 
by relaxing constraints, until a feasible schedule remains.

The heuristics employed in SPIKE are stochastic, so there is benefit in repeating the three 
steps above as often as there is time. The general strategy is to select the best of many 
runs, possibly trying different initial guess and repair heuristics. However, the SPIKE algo-
rithm has desirable “anytime” characteristics (cf. Zweben et al. 1990): at any point in the 
processing after the initial guess has been constructed, a feasible schedule can be produced 
simply by removing any remaining activities with constraint violations, as described fur-
ther below. 

Two additional factors play a major role in SPIKE’s search process:

optimization: the trial assignment and repair heuristics pay careful attention to suit-
ability function values and attempt to optimize the total suitability of the resulting 
schedule, and

oversubscription: in general, it is known that more HST observations are intended to 
be in the pool to schedule than can actually fit into the timeline, so there can be no solu-
tion with all activities scheduled. Thus the deconflict step assumes a high degree of 
importance, since it defines the relaxed problem that is being solved.

4.1  Trial Assignment Heuristics

The choice of a good trial assignment can be important for repair-based methods, and to 
this end we have conducted extensive experiments on different combinations of variable 
and value selection heuristics to identify the most powerful combinations. Over a thousand 
combinations of heuristics were tried by making multiple runs on sample scheduling prob-
lems. Several heuristics were identified on this basis: one of the most successful selects 
most-constrained activities to assign first, where the number of min-conflicts times is used 
as the measure of degree of constraint. Min-conflict times are then assigned, with ties bro-
ken by maximum preference derived from suitability functions, or by earliest time. Several 
other heuristics are also employed in some settings, considering e.g. the number of tempo-
rally related activities, task priority, maximum suitability (preference), whether related 
tasks have assigned values, etc. The number of temporally related activities was found to 
be particularly effective on the 60 CSP scheduling problems defined by Sadeh (1991) and 
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discussed further by Muscettola (1992) and Johnston and Minton (1993). It is worth not-
ing that the SPIKE trial assignment heuristics are quite simple and are based on easy-to-
calculate measures of degree of constraint and constraint connectivity. This is in contrast 
to the much more elaborate analyses which characterize the approaches taken e.g. by 
Sadeh and Fox (1988), Sadeh (1991), Sycara et al. (1991), and Muscettola (1992). Further 
research into the cost-effectiveness of lookahead is clearly warranted.

4.2  Repair Heuristics

The repair heuristics used by SPIKE are based on a successful neural network architecture 
developed for SPIKE (Johnston and Adorf 1989, 1992, Adorf and Johnston 1990) and later 
refined into a simple symbolic form (Minton et al. 1990, 1992; Johnston and Minton 1993) 
which has since superseded the neural network. The SPIKE repair heuristics make highly 
effective use of conflict count information, i.e. the number of constraint violations on 
scheduled activities or on potential schedule times. Min-conflicts time selection is one 
such repair heuristic, in which activities are moved to times when the number of conflicts 
is minimized. Both theoretical analysis and numerical experiments have shown that min-
conflicts can be very effective in repairing reasonable trial assignments. We have found 
that further improvement can come from the use of a max-conflicts activity selection heu-
ristic, which selects activities for repair which have the largest number of conflicts on their 
current assigned time. (This heuristic is also important when constraints have different 
weights: it then tends to select for repair those activities which violate the most important 
constraints, i.e. those with the largest weights.) 

Both hill climbing and backtracking repair procedures have been tried, but hill climbing 
has been shown to be the most cost-effective on problems attempted to date. Typically 
only a relatively small number of repair steps is allowed, e.g.  where  is the number 
of activities to schedule and  is usually 2 but is kept in the range 1-5. This helps deal with 
the problems of “cycles” which can afflict hill-climbing procedures, where the repair pro-
cess repeatedly attempts to place the same set of activities at mutually inconsistent times. 
While cycles are sometimes observed and there has been some work done to identify and 
avoid them, they have turned out not to be a significant problem in practice.

4.3  Deconflict

SPIKE currently uses a rather simple technique to remove conflicting activities from an 
oversubscribed schedule: activities to be removed are selected based on lower priority, 
higher numbers of constraint conflicts, and lower preference time assignments. If there 
remain gaps when all conflicting activities have been deleted, then a simple best-first pass 
through the remaining unscheduled activities is used to fill them. This final phase of 
“schedule deconflicting” has been little studied and is an area which could benefit from 
further effort.

kN N
k
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4.4  Schedule Quality Measures

There are several important measures of schedule quality employed, including the number 
of observations on the schedule, the total observing time scheduled, and the summed 
degree of preference of the scheduled observations. Although some applications of SPIKE 
use minimum makespan or related measures, these have not important for HST schedul-
ing: the time boundaries of the schedule are essentially fixed, and the goal is to maximize 
the quantity and quality of the observations scheduled within them.

One particularly interesting measure plays a role when the activities to be scheduled have 
durations  that vary as a function of time: in this case the total gap time in the schedule 
serves as one component of a quality measure, since it indicates how much time could 
potentially be used if there were appropriate activities available. Note that, in this case, the 
total summed activity duration scheduled can be highly misleading — it is possible to con-
struct a very inefficient schedule which rates highly by this measure simply by placing 
activities at times when they are very inefficient (i.e. ) but tend to fill up the 
schedule. So the appropriate quality measure is the non-intuitive sum of total minimum 
activity duration, plus the total gap time.

4.5  Rescheduling

SPIKE provides support for rescheduling in variety of ways. Two worth mentioning in par-
ticular are provided by the CSP toolkit (Section 3.0): task locking and conflict-cause anal-
ysis. Tasks or sets of tasks can be locked in place on the schedule, and will thereafter not 
be considered during search or repair (unless, of course, the user unlocks them). These 
tasks represent fixed points on the schedule. Conflict-cause analysis permits the user to 
force a task onto the schedule, then display what constraints are violated and by which 
other tasks. The conflicting tasks can be unassigned if desired, either individually or as a 
group, and returned to the pool of unscheduled tasks. This helps with the most common 
rescheduling case, where a specific activity (e.g. a target of opportunity) must be placed on 
the schedule, thereby disrupting at least some tasks which are already scheduled. A limited 
study of minimal-change rescheduling has been conducted (Sponsler and Johnston 1990), 
but much more work remains to be done in this area. Most of the other SPIKE support for 
rescheduling makes use of facilities provided in the user interface which allow the sched-
uler to freely manipulate the timeline (Section 5.3).

5.0  SPIKE and HST Science Scheduling

The framework described in the preceding sections has been integrated into an observatory 
science planning and scheduling system for the Hubble Space Telescope. SPIKE has been 
used since 1988, first in pre-launch readiness tests and then in science operations since 
HST launch in 1990. Figure 3 shows the high-level scheduling flow for the HST ground 
system which is described in this section and is covered in more detail in Miller (1989), 
Adorf (1990), and Miller and Johnston (1991).

d t( )

d t( ) dmin»
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• Proposal Preparation: An astronomer who plans to use HST must create an observing 
proposal which specifies the observations to be made. This proposal is the primary 
input to the planning and scheduling process. The Remote Proposal Submission System 
(RPSS) and Proposal Entry Processor (PEP) handle observing proposals, including 
electronic submission by astronomers (Section 5.1).

• Planning: The Transformation (Trans) expert system converts the proposal from a 
high-level specification into detailed task descriptions for scheduling (Section 5.2).

• Long-term Scheduling: Since the HST scheduling problem covers such a wide range 
of timescales and tens of thousands of tasks, a two-tiered approach to scheduling was 
adopted. A long-term plan (Section 5.3) spans approximately one year and allocates 
tasks (as defined by Transformation) to specific weeks or parts of a week. From the 
long-term plan, week-long segments are extracted for short-term scheduling. Long-
range scheduling is done with the SPIKE system, which was developed at the STScI.

• Short-term Scheduling: Short-term scheduling (Section 5.4) with the Science Plan-
ning and Scheduling System (SPSS) performs the final sequencing of groups of obser-
vations within a week, generates the detailed command list, and transmits the results as 
the Science Mission Specification (SMS) to the HST Payload Operations Control Cen-
ter. SPSS was originally developed by TRW and now maintained by the STScI.

long-range 
scheduling

SMS

RPSS

PEP

Trans

Proposal

Internet

Remote 
Proposal 
Submission 
System

Proposal 
Entry 
Processor Spike

SPSS

short-range 
scheduling

Planning and Pre-Scheduling Scheduling

Convert to SPSS format

to POCC: 
detailed 
command 
schedule 
for HST

FIGURE 3. The processing flow for HST scheduling. Proposals are received electronically 
over the Internet and processed through a proposal database. The “Transformation” system 
converts the astronomer’s observing plan into a set of tasks to schedule. SPIKE does the long-
range scheduling, then passes off 1-week segments to SPSS for short-term scheduling and 
instrument command request generation. The main output product, the Science Mission 
Specification (SMS) is a detailed time-tagged command list for the HST’s onboard computers.
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Section 5.5 considers some of the implementation issues that were faced during develop-
ment of the integrated HST ground system.

5.1  Proposal Preparation

The selection of successful proposers for HST is based on a relatively simple (“Phase I”) 
description of the scientific intent of the program and the observatory resources required to 
accomplish it. Once the observations are approved by a peer review process, each proposer 
must prepare a detailed (“Phase II”) definition of exactly what exposures must be taken. 
Since the HST and its ground system are very complex, and the astronomer does not have 
real-time control over the telescope, essentially all observations are scheduled and taken 
by the staff of the Space Telescope Science Institute (STScI) in Baltimore.

The Phase II proposal contains information on the astronomical objects, individual expo-
sures, instrument parameters, and the relationships (i.e. constraints) among exposures: 
Table 1 lists the kinds of constraints that proposers may specify, in the syntax that they 
actually use. Proposals are submitted electronically in an ASCII file, through the Remote 
Proposal Submission System (RPSS). The RPSS software validates the contents of a pro-
posal file and can detect a wide range of problems, including typographical errors (e.g. a 
misspelled filter name), values out of range (e.g. a target declination exceeding 90°), and 
missing or inconsistent information (e.g. an exposure referencing an undefined target). A 
dedicated RPSS computer is available to the astronomical community over the Internet 
and the Space Physics Astrophysics Network (SPAN). The RPSS software has been dis-
tributed to approximately 100 astronomical institutions around the world, and is run by 
most proposers at their home institutions before they send their proposals to STScI.

STScI designed RPSS and the HST proposal language with the following goals in mind:

• Oriented towards the astronomical community — easy to understand, and concise and 
logical in the amount and sequence of data requested, 

• Able to accommodate both simple and sophisticated observations from novice or expe-
rienced HST users, and 

• Formulated in declarative terms, i.e. the astronomer can specify what data should be 
collected without becoming needlessly encumbered by instrument, telescope and 
ground system particulars.

RPSS was the first system of its kind for a major scientific installation — it has been in use 
since February 1986. The ability to locally validate and electronically submit a proposal is 
an extremely valuable tool, both for proposers and for STScI. Proposers can detect and 
correct a large class of errors and are assured that typographical errors are not introduced 
by data entry personnel. The STScI can process proposals more rapidly and avoid the costs 
of manual data entry. A further discussion of the STScI proposal handling software can be 
found in Jackson et al. (1988) and Adorf (1990).
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TABLE 1. The syntax of constraint specifications used by HST observers to define 
scheduling constraints on their exposures. Any number of the these “special 
scheduling requirements” may be applied to exposure “lines”, referring to their origin 
on paper forms. Keywords may be abbreviated to the form shown in uppercase letters 
(e.g. “ACQUISITION” can be abbreviated as “ACQ”). A line-list is a list of exposure 
line numbers, e.g. “1-5,10,12,15-20”. Square brackets indicate optional syntactic 
elements, and the “/line-list” shorthand applies the specified constraint to all listed 
lines. Most of the phases provide an English-like description of the constraint, all of 
which must be properly handled by the HST scheduling software.

HST Observing Proposals: Scheduling Constraint Syntax 

EARLY ACQuisition FOR line-list
ONBOARD ACQuisition FOR line-list
INTeractive ACQuisition FOR line-list
GUIDing TOLerance angle [/line-list]
ORIENTation angle +/- angle [/line-list]
ORIENTation angle +/- angle FROM line [/line-list]
ORIENTation angle +/- angle FROM NOMINAL [/line-list]
POSition TARGet x-val, y-val [/line-list]
SAME ORIENTation FOR line-list AS line
SAME POSition FOR line-list AS line
CALIBration FOR line-list [NO SLEW]
SPATIAL SCAN [/line-list]
TARGet OF OPPortunity [/line-list]
CRITical OBServation [/line-list]
RT ANALYSIS [FOR line-list]
REQuires UPLINK [/line-list]
AFTER date|line [BY time [+/- range]]
AT date +/- range
BEFORE date|line [BY time [+/- range]]
DARK TIME [/line-list]
DECision TIME time
GROUP line-list WITHIN time
GROUP line-list NO GAP
GROUP line-list NON-INTerruptible
NON-INTerruptible [/line-list]
PERIOD time +/- error
PHASE phase +/- range [OF REF line]
REQuires DATA FROM line-list [/line-list]
REQuires UPDATE [/line-list]
SEQuential line-list
SEQuential line-list NO GAP
SEQuential line-list WITHIN time
SEQuential line-list NON-INT
ZERO-PHASE date +/- error
REPEAT line-list EVERY time +/- range for number MORE TIMES
CONDitional [ON line-list] IF condition-text [/line-list]
SELECT number OF line-list OR line-list ...
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5.2  Transformation

Given the high-level, astronomically-oriented description of the observations found in the 
Phase II proposal, the next step is essentially one of planning. It is the role of the Transfor-
mation system to convert the declarative proposal from the astronomer into a set of aggre-
gated exposures and constraints called scheduling units (SUs), with all of the details 
required to enable the execution of the exposures on the spacecraft.

Transformation performs several planning tasks, including: determining the order to exe-
cute observations (when not explicitly specified by the proposer), breaking exposures into 
pieces to better match target visibility conditions, grouping observations to minimize over-
head operations, choosing specific implementation scenarios, supplying values of instru-
mental settings which were defaulted by the proposer. Transformation also detects certain 
errors which may be present in the proposal including: conflicting timing requirements 
among exposures, loops in precedence constraints, and inconsistencies in instrument 
parameter settings. Transformation makes use of suitability function framework 
(Section 2.1) and the SPIKE temporal constraint mechanism to collect and propagate tem-
poral constraints and to achieve path consistency (Section 2.2).

The input to Transformation is a file generated from the Proposal Entry Processor (PEP) 
database which is essentially a parsed version of the astronomer’s Phase II proposal. 
Transformation produces output files which specify the structure of the scheduling units 
and the nature of any constraints that act on them. These files then become the inputs to 
SPIKE and SPSS.

Transformation was initially conceived and implemented as a rulebased expert system 
implemented in OPS5 (Rosenthal et al. 1986) but was re-implemented in Common Lisp 
when the complexity of the rulebased system grew too great (Gerb 1991a). It remains an 
expert system in that it models a large body of expertise developed by the astronomers 
who operate the HST scheduling systems.

5.3  Long-Term Scheduling

Long-term scheduling begins with a set of observing proposals from Transformation, 
specified as a set of scheduling units (SUs) and their constraints. An initial pre-processing 
step calculates absolute time-dependent constraints related to orbit-by-orbit target visibil-
ity, and the implications of special orientation requirements; the results of these compute-
intensive calculations are cached in disk files.

Using SPIKE, SUs can be committed to time intervals either manually or with the auto-
matic (CSP) scheduler (Section 4.0). A graphical user interface (e.g. Figure 4) is available 
to view and manipulate the schedule, or to run the automatic scheduler. Scheduling deci-
sions (when final) are recorded in a database, then reported to files and transmitted to 
SPSS. Once SPSS has completed short-term sequencing, SPIKE software analyzes the cal-
endar to determine what observations were scheduled and what factors could affect the 
future schedule (e.g. timing, special orientations, or contingent SUs). SPIKE also analyzes 
a report from the data archive to verify that the data was received and processed. Observa-
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tions which are not scheduled by SPSS, which are lost in transmission, or which are 
marked as poor quality, are considered candidates for rescheduling.

SPIKE provides a number of tools to support the scheduling process, including high-reso-
lution PostScript plots of observing constraints and interactive X-window tools for analy-
sis of complex spacecraft orientation constraints and for viewing the component exposures 
and constraints from individual proposals. The latter can be analyzed in detail, which is 
particularly important when it is necessary to examine the effects of individual constraints 
on potential scheduling decisions. This facility has also proven to be very useful for 
uncovering and fixing problems with proposals.

SPIKE’s central position in the HST scheduling process has led us to develop an integrated 
tracking system called ASSIST to monitor and report the status of all observations in the 
scheduling pipeline. Prior to the development of ASSIST, users of the various systems 
(PEP, Transformation, SPSS, etc.) each maintained separate tracking systems. Since pro-
posals consist of many observations which are executed at different times, finding the sta-
tus of a proposal required substantial work. ASSIST provides a central repository for data 
from the various stages of scheduling, including proposal preparation, long-range schedul-
ing, short-range scheduling, and archiving.

Certain combinations of HST instruments can operate in tandem, and for some astronomi-
cal targets such “parallel” observations can yield very interesting data. SPIKE’s Parallel 
Observation Matching System (POMS) analyzes the weekly schedule and finds appropri-
ate matches from a pool of parallel proposals. POMS is an expert system which includes a 
sophisticated knowledge base and matching strategies for identifying and ranking the 
quality of matches (Lucks 1992). Multiple ranked candidate parallel matches are sent to 
SPSS, along with each weekly schedule.

5.4  Short-term Scheduling

Short-term scheduling operates within a week at a time, working from a list of SUs from 
the long-term plan and generating a week-long sequence of activities called a calendar. 
After the activity sequence is defined, high-level spacecraft instructions are attached to the 
calendar activities. The output of the process is a Science Mission Specification (SMS) 
and can be thought of as the “assembly language” which controls the HST. The STScI 
delivers the SMS to the Payload Operations Control Center (POCC) at NASA’s Goddard 
Spaceflight Center, where it is checked for errors and constraint violations which would 
affect the health or safety of the HST and its instruments. Based on the SMS, the POCC 
prepares the binary command loads for the two onboard computers which control the 
observatory. The POCC also takes requests for Tracking and Data Relay Satellite (TDRS) 
links from the SMS and passes them on to the TDRS Network Control Center. Some 
requests will not be granted due to higher priority users (e.g. Shuttle or other satellites). 
The POCC notifies the STScI of this and the timeline is modified, usually by making use 
of one of the onboard tape recorders to hold data for later playback, but occasionally by 
rescheduling the observation.
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Execution of the observations is monitored by both the STScI and the POCC (by monitor-
ing real-time transmissions or by playback of recorded science and engineering teleme-
try). The STScI analyzes the data to ensure that scheduled observations were completed 
successfully. It then calibrates the data and delivers it to the proposer for scientific analy-
sis. Since HST observations are an important astronomical resource, an archive of all HST 
data is maintained. The proposer is normally granted exclusive access to the data for a pro-
prietary period (usually 1 year), after which the data becomes available to the scientific 
community at large.

5.5  Implementation

SPIKE is an operational application of artificial intelligence technology and in this section 
we consider some of the implementation issues. The development of SPIKE started in early 
1987 using Texas Instruments Explorer Lisp machines. The SPIKE graphical user interface 
was implemented in KEE CommonWindows (Intellicorp), but the remainder of the system 
used only Common Lisp and the Flavors object system. At HST launch, STScI had a com-
plement of 8 microExplorers and Explorers used for SPIKE operation, development and 
testing.

Since 1987 there has been a great deal of evolution in Lisp hardware and software. We 
have continued to modify SPIKE to keep pace with these changes. All of the Flavors code 
has been converted to the Common Lisp Object System (CLOS). Between late 1990 and 
mid-1992 we transitioned from Explorers to Sun SparcStations as the primary operations 
and development platform: there are currently a total of 22 SparcStation 2s used for Trans-
formation and SPIKE. The Lisp used on the SparcStations is Allegro Common Lisp from 
Franz, Inc., which supports a version of CommonWindows based on X-windows. Thus the 
user interface continued to operate on the SparcStations as it did on the Explorers (and 
allowed us to operate for some time with a mix of Explorers and SparcStations). After sub-
stantial investigation of alternative window systems, we recently reimplemented the user 
interface tools using the Common Lisp Interface Manager (CLIM). Updating SPIKE for 
new Lisp language features has not been difficult, and there are currently no plans to con-
vert any of the system to C or C++.

A common feature of PEP, Transformation and SPIKE development was that each system 
had to be developed in a short time (about 6 months for the initial system, with substantial 
extensions continuing over several years) and with a small staff (2-3 people initially). It 
was also impossible to specify in advance a complete set of requirements for these systems 
since many important factors were unknown. These considerations led to the use of a rapid 
prototyping software development methodology instead of a more classical “waterfall” 
approach (requirements definition, design, implementation and test). A tool-oriented 
approach was also encouraged, i.e. the development of general software routines which 
could be used for other applications later in development.

The most significant advantage of rapid prototyping to the HST was that it allowed PEP, 
Transformation and SPIKE to be implemented in time to support testing and operations — 
in an environment with changing requirements there is no choice but to use an adaptive 
software development methodology. Perhaps the most serious complication of this 
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approach is that once the prototype is used operationally, it becomes increasingly difficult 
to make large changes to it. (In an ideal rapid prototyping situation, a prototype can be dis-
carded after evaluation). Once operational, it is necessary to ensure that each version of 
the system is upwardly compatible with the previous version. A corollary to this is that 
pressure on the users to do operational work can prevent them from further participation in 
the software development process, e.g. critiquing initial requirements and evaluating pro-
totype software. This can lead to a divergence between the needs of the users and the prod-
ucts of the developers, which must be carefully guarded against. We have found two 
techniques are useful to keep developers in touch with the needs of users. One is for devel-
opers to perform full-scale end-to-end tests with real data to uncover problems and bottle-
necks. (This is in advance of any testing which may be performed by an test group 
affiliated with a software configuration management effort.) The other is to allow develop-
ers to apprentice in the user group (typically for a month or so) in order to gain firsthand 
knowledge of the operational environment and requirements.

The incorporation of realistic test data proved to be quite important. Due to delays in the 
launch of HST, we had several hundred observing proposals which were constantly used 
to test prototype systems and to make development decisions. Had such extensive data not 
been available, the creation of a substantial body of simulated test data would have been 
required.

It is interesting to note that some of the most useful software tools were developed as 
quick-response reactions: a user would informally ask for a tool to handle some problem 
which was previously unrecognized or thought to be of low priority, and one of the soft-
ware developers would then provide the tool in a very short time. For example, a number 
of functions used to fine-tune the long-range plan were developed in this way. One such 
function identified for a particular week candidate activities scheduled in later weeks 
which could be moved earlier to compensate for activities which had to be removed from 
the schedule at the last minute. Also, the ability to store and restore scheduling commit-
ments in files was first implemented informally and was subsequently used to track sched-
uling decisions until SPIKE’s ASSIST database tracking system was completed. A number 
of useful graphical displays and plots were also developed in this manner, all of which 
highlights the importance of good communications between developers and users, and a 
certain flexibility in the development schedule to permit timely response to user requests.

While following a non-classical development methodology, we nonetheless paid careful 
attention to such classic risk management factors as configuration control and testing. 
Developers use code management tools (i.e. Unix rcs) to prevent uncoordinated changes. 
Building, testing and installing the software is automated with software tools to the great-
est extent possible to help detect problems before delivery to the users and to minimize the 
chance for human errors — indeed, Transformation even incorporates a separate expert 
system to perform its own testing (Gerb 1991b). Procedures and tools to deliver software 
changes on a very short timescale (days to hours) are also essential.
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6.0  Operational Experience

HST science operations is divided into “cycles” in which proposals are solicited from the 
astronomical community, selected, scheduled and executed. In the long term, cycles will 
consist of about 1 year of HST observing. Early HST operations consisted of two special 
phases: “Orbital Verification” (OV), which assessed the basic capabilities of the telescope 
and instruments, and “Cycle 0” observations, which contain a mix of Science Verification 
(SV) and Guaranteed Time Observer (GTO) observations. OV ended in November 1990, 
and Cycle 0 ended in June 1991. The Cycle 1 observing era mixed GTO observations with 
the “General Observer” (GO) proposals from the astronomical community at large. 
Cycle 1 ended in July 1992, and is being followed by the Cycle 2 observations, etc.

The SPIKE system was first used to support HST scheduling for Cycle 0. The timeline for 
SV observations was established by NASA. The STScI used SPIKE to verify this timeline 
and to schedule GTO observations during weeks when time was available. Scheduling of 
these proposals in Cycle 0 used SPIKE in an interactive mode: planners would display indi-
vidual proposals on timeline displays and choose times of high suitability for observa-
tions. Various automatic scheduling tools were sometimes used in conjunction with 
making manual commitments. Scheduling of early Cycle 1 proposals has also been largely 
interactive with little use of the high-level, automated schedulers. The main value of SPIKE 
in this mode was the identification of problems with proposals and the assignment of 
observations to feasible, but not necessarily optimal, weeks.

When used on actual GTO and GO proposals, Transformation and SPIKE reported large 
numbers of diagnostic messages. Initially, many problems were due to an incomplete 
understanding of how to best present complex observations to SPSS. The frequency of 
problems allowed us to effectively prioritize work in determining requirements and imple-
menting the code. A significant number of problems uncovered by SPIKE and Transforma-
tion were due to an inadvertent specification by the proposer of inconsistent requirements 
in the proposal. Although the PEP system performs syntactic checking on proposal infor-
mation, Transformation and SPIKE are the first systems that can detect problems related to 
planning and scheduling. (In particular, accurate instrument overhead times and orbital 
viewing conditions are calculated by Transformation and these can reveal problems with 
the proposal.) We are currently investigating how to incorporate such checks in PEP and 
RPSS. Not only will this provide proposers with immediate feedback on certain classes of 
problems, but it will also reduce the delays in the scheduling process due to late proposal 
modifications.

We originally anticipated that long term schedules covering 6-12 months duration would 
be maintained beginning with Cycle 0. However true long-term planning began late in 
Cycle 1 with schedules of approximately 3 months duration and year-long schedules were 
first generated operationally beginning with Cycle 2. This was not due to any inherent lim-
itation in the software (test schedules of a year duration had been generated well before 
launch). It was primarily due to a much larger than anticipated rate of change of proposals. 
Prior to launch, ≤ 10% of the proposals were expected to change after submission, 
whereas the actual rate is nearly 100%. Many proposals have been revised several times. A 
substantial portion of this can be attributed to the spherical aberration of the HST mirror 
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and other unexpected behaviors of the instruments and spacecraft. Another factor is that 
the HST and major elements of the ground system are designed for fully pre-planned 
observations with little capability to inject changes late in the scheduling process. A 
change to a proposal can therefore often require a repeat of the entire scheduling process, 
wasting much if not all of the earlier work. Tracking multiple revisions of proposals and 
their scheduling and execution status also requires substantial effort. Our recommendation 
to developers of future systems with requirements similar to HST would be to build in the 
expectation of change from the outset and to carefully examine factors in the design which 
are sensitive to a high rate of change. We realize that such flexibility will increase the ini-
tial cost of a system, but it can significantly reduce the lifecycle maintenance and opera-
tional costs. A further discussion of the HST experience can be found in Miller and 
Johnston (1991).

7.0  Application of SPIKE to Other Astronomical Scheduling 
Problems

SPIKE has been adapted to schedule a variety of astronomical scheduling problems (see 
Table 2). Of these, two are in or near flight operations (in addition to HST), while several 
others are in the prototype or planning phases. The experience of customizing SPIKE for 
other types of problems has been actively sought during SPIKE development: each case 
provided feedback on the approach, and led to improvements from one version to the next.

The adaptation of SPIKE for these problems demonstrates the flexibility of the SPIKE 
scheduling framework. As indicated above, SPIKE was designed so that new tasks and con-
straints can be defined without changing the basic framework. For ASTRO-D (Isobe et al. 
1993) and XTE (Morgan 1992), SPIKE is operated in a hierarchical manner, with long-
term scheduling first allocating observations to weeks much as they are for the HST prob-
lem (and with similar types of long-term constraints and preferences). Then each week is 
scheduled in detail, subject to the detailed minute-by-minute constraints of low earth orbit 
operation. The major changes required to implement short-term scheduling were:

1. A new type of task that can have variable duration depending on when it is scheduled, 
and which can be interrupted and resumed when targets are occulted by the Earth or the 
satellite is in the radiation belt (i.e. task preemption).

2. New classes of short-term scheduling constraints which more precisely model target 
occultation, star tracker occultation, ground station passes, entry into high radiation 
regions, maneuver and setup times between targets, etc.

3. An interface between different hierarchical levels, by which a long-term schedule con-
strains times for short-term scheduling and conversely.

4. A post-processor which examines short-term schedules for opportunities to extend task 
durations and thus utilize any remaining small gaps in the schedule to increase effi-
ciency.

All of the general constraint combination and propagation mechanisms (Section 2.0), and 
the CSP toolkit (Section 3.0) and scheduling search techniques (Section 4.0), apply 
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directly to both long-term and short-term scheduling. Figure 4 shows the SPIKE CLIM 
user interface displaying an ASTRO-D long-term schedule. Figure 5 shows a portion of 
the high-resolution PostScript plot output for a SPIKE short-term schedule for ASTRO-D. 
Only one day of a 7-day schedule is shown. Note that several observations are broken to fit 
around earth blockages or radiation belt passages and so are taken in multiple segments.

Most of the effort required to apply SPIKE to the new problems was limited to the specific 
domain modelling necessary, which typically involves computation related to the geome-
try of the satellite, Sun, target, and Earth. These problems can be expected to differ from 
one satellite to another, and it is not surprising that different models are required. Some of 
the modelling includes state constraints, although SPIKE does not perform explicit plan-
ning (cf. Muscettola et al. 1992).

EUVE is unusual in that it makes long (2-3 day) observations, in contrast to HST and 
ASTRO-D which typically make numerous short (15-40 minute) observations. As a conse-
quence, EUVE is schedulable over year-long intervals without breaking the schedule into 
hierarchical levels. One of the more interesting results from a comparison of search algo-
rithms for scheduling EUVE was that the SPIKE repair-based methods gained an extra 20 

TABLE 2. Adaptations of SPIKE to various astronomical scheduling problems

Mission Status, scheduling mode, and location

HST Hubble Space Telescope. Spike operational since Oct 89, HST launch 
Apr 90. Used for HST long-term scheduling at Space Telescope Science 
Institute, Baltimore.

EUVE Extreme Ultraviolet Explorer. Spike operational since Apr 91, EUVE launch in 
Jun 92. Used for one-year scheduling of pointed observations. Run by Center 
for Extreme Ultraviolet Astrophysics, Univ. Calif., Berkeley.

ASTRO-D Operational since Nov 92, flight operations will begin following launch in 
Feb 93. Spike will be used for long-term and short-term scheduling. Joint 
Japan/US X-ray telescope mission run from the Institute of Space and Astro-
nautical Sciences in Japan (Isobe et al. 1993)

XTE X-ray Timing Explorer. Planned for use following launch in 1994. Spike would 
schedule both long-term and short-term. XTE will be run from the GSFC XTE 
Science Operations Center (Morgan 1992).

AXAF Advanced X-Ray Astronomy Facility. Prototype developed 1990 as part of 
successful science operations center proposal. Under consideration for both 
science and mission scheduling.

ROSAT Roentgen Satellite. Prototype developed 1992 for feasibility evaluation for 
operational X-ray satellite. Dual long-term/short-term scheduling mode. Ger-
man Space Operations Center, Munich.

IUE International Ultraviolet Explorer. Prototype developed 1988 for evaluation of 
Spike framework. Scheduling mode was 6-months of European half-shifts, 
optimized for target coverage (Johnston 1988b).

Ground-
based

Prototypes developed in 1988–1992 to demonstrate feasibility. Dual mode: 
long-term scheduling for night allocation, short-term scheduling for exposure 
scheduling within a night. Telescopes included ESO (European Southern 
Observatory) and CFHT (Canada-France-Hawaii Telescope), as well as 
hypothetical Automatic Photometric Telescope (APT). Feasibility of coordi-
nated ground- and space-based scheduling has also been demonstrated 
(Johnston 1988c).
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FIGURE 4. ASTRO-D long-term schedule generated with Spike: a view of the CLIM user interface on 
a six month schedule. The different panes provide visibility into the list of available observations 
(upper left), frequently-used commands (upper right), and provide a graphical view of the a single 
observation, including preferences (i.e. suitability function values), current assigned value, observing 
efficiency, constraint conflicts, and total resource utilization (lower pane), all displayed here over about 
a 5-month period. Many of the objects on the screen are CLIM “presentations” and are thus mousable 
by the user.
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Spike STScI (short-term scheduling) 07-Dec-1992 12:48:27.0, p. 1

 56 tasks, 46 assigned, 0 assigned with conflicts exp time: 3.959d, overhead 0.110d, efficiency: 56.55%
 mean preference: 50.61 mean conflicts: 0.00  summed preference: 2328 summed conflicts: 0
 scheduled duration 5.30 days, min duration 4.98 days, gaps 1.70 days
70-OPH  RA: 270.750 (18h 03m 0.0s) Dec: 2.517 (2d 31m 1s)  Exp. time 2000 sec  Priority: 2 

Start:  26Feb92 00h00m  (0), dur:  0.02d, exp time 2100s (req 2000s), effic  1.00, #confl:0, pref:82.00 pref/max: 0.90

0.0
0.5
1.0
1.5

2100s OH: 789s

NGC931-NUM2  RA: 36.325 (2h 25m 18.0s) Dec: 31.083 (31d 04m 59s)  Exp. time 2000 sec  Priority: 1 
Start:  26Feb92 00h50m  (10), dur:  0.05d, exp time 1500s (req 2000s), effic  0.33, #confl:0, pref:18.00 pref/max: 0.18

0.0
0.5
1.0
1.5

1736s OH: 90s

UX-ARI  RA: 45.000 (3h 00m 0.0s) Dec: 20.000 (20d 00m 0s)  Exp. time 6000 sec  Priority: 1 
Start:  26Feb92 02h30m  (30), dur:  0.08d, exp time 4200s (req 6000s), effic  0.58, #confl:0, pref:35.00 pref/max: 0.92

0.0
0.5
1.0
1.5

6196s OH: 892s

NGC6624-NUM2  RA: 275.116 (18h 20m 27.8s) Dec: -30.388 (-30d 23m 17s)  Exp. time 2000 sec  Priority: 2 
Start:  26Feb92 04h50m  (58), dur:  0.02d, exp time 2100s (req 2000s), effic  1.00, #confl:0, pref:81.00 pref/max: 0.81

0.0
0.5
1.0
1.5

2060s OH: 870s

HR-1099-NUM4  RA: 53.555 (3h 34m 13.2s) Dec: 0.424 (0d 25m 26s)  Exp. time 7000 sec  Priority: 1 
Start:  26Feb92 05h55m  (71), dur:  0.13d, exp time 5100s (req 7000s), effic  0.45, #confl:0, pref:22.00 pref/max: 0.59

0.0
0.5
1.0
1.5

7058s OH: 882s

1746-37-NGC6441  RA: 266.702 (17h 46m 48.5s) Dec: -37.038 (-37d 02m 17s)  Exp. time 3000 sec  Priority: 1 
Start:  26Feb92 09h35m  (115), dur:  0.02d, exp time 2100s (req 3000s), effic  1.00, #confl:0, pref:70.00 pref/max: 0.97

0.0
0.5
1.0
1.5

3446s OH: 33s

LILLER-1  RA: 262.529 (17h 30m 7.0s) Dec: -33.356 (-33d 21m 22s)  Exp. time 2000 sec  Priority: 3 
Start:  26Feb92 11h05m  (133), dur:  0.02d, exp time 2100s (req 2000s), effic  1.00, #confl:0, pref:90.00 pref/max: 0.90

0.0
0.5
1.0
1.5

2194s OH: 74s

1820-30-NUM3  RA: 275.000 (18h 19m 60.0s) Dec: -30.000 (-30d 00m 0s)  Exp. time 14000 sec  Priority: 3 
Start:  26Feb92 11h45m  (141), dur:  0.21d, exp time 9900s (req 14000s), effic  0.54, #confl:0, pref:33.00 pref/max: 0.89

0.0
0.5
1.0
1.5

11379s OH: 162s

GX339-4-NUM2  RA: 254.758 (16h 59m 1.9s) Dec: -48.719 (-48d 43m 8s)  Exp. time 9000 sec  Priority: 3 
Start:  26Feb92 17h25m  (209), dur:  0.10d, exp time 6300s (req 9000s), effic  0.70, #confl:0, pref:43.00 pref/max: 0.70

0.0
0.5
1.0
1.5

7068s OH: 129s

TERZAN-1  RA: 263.146 (17h 32m 35.0s) Dec: -30.438 (-30d 26m 17s)  Exp. time 2000 sec  Priority: 3 
Start:  26Feb92 20h45m  (249), dur:  0.02d, exp time 2100s (req 2000s), effic  1.00, #confl:0, pref:91.00 pref/max: 0.91

0.0
0.5
1.0
1.5

2120s OH: 36s

1755-33  RA: 268.750 (17h 55m 0.0s) Dec: -33.000 (-33d 00m 0s)  Exp. time 6000 sec  Priority: 2 
Start:  26Feb92 21h25m  (257), dur:  0.08d, exp time 4200s (req 6000s), effic  0.64, #confl:0, pref:43.00 pref/max: 0.98

0.0
0.5
1.0
1.5

4751s OH: 75s

36-OPH  RA: 258.075 (17h 12m 18.0s) Dec: -26.517 (-26d 31m 1s)  Exp. time 2000 sec  Priority: 2 
Start:  27Feb92 00h00m  (288), dur:  0.02d, exp time 2100s (req 2000s), effic  1.00, #confl:0, pref:90.00 pref/max: 0.90

0.0
0.5
1.0
1.5

3197s OH: 54s

00h 06h 12h 18h 00h
92.057
 2/26

92.058
 2/27

FIGURE 5. An example of Spike output on short-term scheduling of astronomical observations. 
Shown is a 24-hour portion of a 7-day schedule. The start-time suitability for each exposure is plotted 
as the upper graph, with interruptions due to target blockage by the earth and by satellite passage 
through high-radiation regions. The available exposure intervals are shown below as open bars, which 
are filled in to indicate the actual scheduled times. Some of the observations can be fit within one orbit; 
others must be interrupted and thus span several orbits.
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days of observing time in a year, when compared to the best incremental scheduling 
approach. 

8.0  Summary

The SPIKE scheduling system has supported NASA’s Hubble Space Telescope since 
launch and is integrated with a large and complex spacecraft ground system. The concept 
of suitability functions used in SPIKE makes it possible to efficiently represent the many 
factors which are important in real-world scheduling decisions. A powerful multistart sto-
chastic repair technique is used to generate schedules. SPIKE’s flexibility has been demon-
strated by adapting it for several other spacecraft missions and ground-based observatories 
and by integrating long- and short-term scheduling at different levels of abstraction in the 
same constraint representation and search framework.
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