

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 1

S

PIKE

: Intelligent Scheduling of
Hubble Space Telescope Observations

Mark D. Johnston and Glenn E. Miller
Space Telescope Science Institute

*

3700 San Martin Dr.
Baltimore, MD 21218

1.0 Introduction

This paper describes the S

PIKE

 system, a general framework for scheduling which has
been developed by the Space Telescope Science Institute for NASA’s Hubble Space Tele-
scope (HST). Efficient use of astronomical observatories is very important to the scientific
community: the demand for research-grade telescopes far exceeds the supply. The need for
efficient scheduling is especially keen for space-based facilities due to their very high cost,
limited numbers, and unique scientific potential. The S

PIKE

 scheduler was developed for
Hubble Space Telescope but was designed for generality and flexibility: it has since been
adapted for several other astronomical scheduling problems, as well as to problems unre-
lated to astronomy. While the general approach taken in S

PIKE

 was motivated by the para-
digm of scheduling as constraint-directed search (e.g. Fox 1987, Smith et al. 1986, Fox et
al. 1989), S

PIKE

 incorporates novel approaches to both the quantitative representation and
propagation of hard constraints and “soft” preferences, and to the use of scheduling search
strategies based on multistart stochastic repair.

In the following we first provide a brief overview of the HST scheduling problem, then we
discuss the theoretical and conceptual foundations of S

PIKE

: Section 2.0 describes the
S

PIKE

 representation of constraints as “suitability functions”, Section 3.0 casts the HST
problem as a constraint satisfaction problem (CSP), and Section 4.0 describes the multi-
start stochastic repair search strategy that is currently the primary scheduling search tech-
nique in S

PIKE

. In Section 5.0 we discuss the HST science ground system as a whole and
the role played therein by S

PIKE

. Section 6.0 describes our operational experience and
some of the lessons learned from the past two years of HST operations. Section 7.0 pro-
vides a brief overview of the adaptation of S

PIKE

 to other space- and ground-based obser-
vatories.

*

Operated by the Association of Universities for Research in Astronomy for the National Aeronautics and
Space Administration

Copyright © 1992 by Mark Johnston and Glenn Miller

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 2

1.1 HST Scheduling

Launched in April 1990, the HST has provided important new capabilities for astronomi-
cal research due to its unsurpassed combination of wavelength coverage and angular reso-
lution. Despite a manufacturing flaw in the primary mirror, HST is actively engaged in a
full research program that has produced a large number of exciting results. HST will be
serviced by the Space Shuttle in late 1993 to compensate for the mirror’s figure and to
replace the main camera with a second-generation instrument. These changes will bring
the optical quality of the telescope up to original expectations.

The HST scheduling problem ranks among the largest and most complex scheduling prob-
lems faced on a continuing basis: some 10,000 to 30,000 observations are scheduled per
year and each is subject to a large number of operational and scientific constraints. Propos-
ers can specify a variety of constraints on exposures in order to express scientific goals:
these include relative timing requirements such as precedence, minimum and maximum
time separations, ordering, interruptibility and repetition. Some observations must be exe-
cuted within a certain absolute time interval. Proposers may constrain the orientation of an
instrument’s aperture relative to the target or require an observation to be made while the
HST is in the Earth’s shadow. In order to provide flexibility, proposers can mark exposures
as “conditional” or “select”: “conditional” exposures are contingent upon the results
obtained from another exposure in the observing program, or, in some cases, upon the
results obtained from ground-based observations. These exposures are not scheduled until
the proposer has notified the STScI that the condition has been satisfied. The “select”
capability allows the proposer to identify alternative sets of exposures from which one or
more will be picked for execution. As with “conditional” exposures, exposures contained
in “select” sets will be placed on a timeline only after the proposer informs the STScI of a
decision.

The HST spacecraft and its associated ground system components introduce a number of
scheduling constraints as well. The observatory is in a low earth orbit (590 km) with the
result that the Earth typically blocks the line of sight to a target for slightly less than half
of each 95 minute orbit. Targets within a few degrees of the orbital poles are not occulted
by the Earth and are suitable for uninterrupted observations. Due to precession of the orbit,
the orbital poles move around the sky with a 56 day period, with the result that a target is
available for extended observation for no more than about 3 days in each precessional
period. When passing over South Atlantic Ocean, the HST encounters a portion of the
Earth’s radiation belt (called the South Atlantic Anomaly, or SAA) during which instru-
ment operations must be suspended. Sources of bright light such as the Sun, Moon and
illuminated Earth must be avoided. Thermal and power restrictions limit how the telescope
can be oriented, in order to keep adequate sunlight on the solar panels and off the surfaces
which radiate heat.

The primary resource constraint for HST scheduling is the amount of observing time
available. Other resources which must not be exceeded include the amount of data which
can be processed by the communications and ground systems, onboard tape recorder stor-
age, and onboard command computer storage.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 3

Although the HST operates largely in a preplanned mode (with schedules fixed about two
months in advance of execution), disruptions to the schedule occur for a variety of reasons.
The most welcome disruptions are so-called “targets of opportunity”, which are rare,
important astronomical events requiring immediate attention (e.g. a supernova). Other
schedule disruptions result from spacecraft anomalies, loss of communications contacts,
and changes in observing programs.

Figure 1 illustrates schematically the range of constraint timescales for HST. The interac-
tion of so many constraints on varying timescales makes it impossible to identify any one
dominant scheduling factor. Many of the constraints are periodic with different periods
and phases. As a consequence there are generally several opportunities during a year to
make a particular observation and a prime goal of HST scheduling is to make an optimal
choice among these opportunities for as many observations as possible. This effort is com-
plicated by the fact that the majority of the requested exposures have timing, grouping,
repetition, or ordering constraints that couple very strongly with the time-dependent con-
straints of Figure 1. More extensive discussions of the HST scheduling problem may be
found in Miller et al. (1987, 1988) and Johnston (1988a, 1989b, 1990).

FIGURE 1. The range of timescales for HST scheduling constraints, covering more than six
orders of magnitude.

1 min 10 100 1,000 10,000 100,000 1,000,000

1 hour 1 day 1 month 1 year

TIMESCALE (minutes)

Spacecraft & instrument setup/changeover times
TDRS communications windows

Orbital constraints: occultation, earth shadow, etc.

Orientation (roll)

TDRS scheduling

Moon
Nodal
Regression

Sun

relative time constraints on activities

intrinsic timescales of astrophysical phenomena

South Atlantic Anomaly (SAA)

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 4

2.0 Representation and Combination of Constraints and
Preferences

Constraints convey two types of information to the scheduler:

Feasibility constraints

 specify conditions or times when activities may or may not
be scheduled. We interchangeably use the terms “strict” or “hard” constraint for
this type, as they may not be violated under normal circumstances. A mechanism
for relaxing (that is, violating) strict constraints is discussed in Section 3.0. A few
examples in the HST scheduling context are:

–

provide a minimum of two months between an observation and a repeat observa-
tion on the same target

–

never schedule an observation when the Sun is within 50

°

 of the target

–

don’t roll the spacecraft more than 30

°

 from its nominal orientation

Preference constraints

 specify quality judgments on scheduling conditions which
are preferred but not required. These may be based on based on objective or sub-
jective factors. In HST scheduling, for example, it is desirable to schedule at times
which:

–

minimize scattered light from the bright limb of the Earth

–

maximize the chance of successfully acquiring guide stars

–

place an observation as close to nominal roll as possible

It is important that both feasibility and preference information be considered simulta-
neously during schedule construction. Ignoring feasibility constraints can obviously lead
to unimplementable schedules, but disregarding preference constraints (in order to sim-
plify the problem) can lead to unacceptably suboptimal schedules. For this reason the con-
cept of suitability functions (Section 2.1) was developed by merging ideas from two well-
studied frameworks, namely constraint satisfaction problems (CSPs) for expressing and
manipulating feasibility constraints, and evidential reasoning techniques as a means to
combine preference constraints.

Consider scheduling some activity , given that other activities are already scheduled
at times . A human scheduler would assess the opportunities for scheduling at various
times by considering the effects of the activities on via the constraints. Constraints
can take a variety of forms, but can be generally be cast into statements of the following
type:

Given that activities are scheduled at times
, the degree of preference for scheduling activity at

time due to constraint is

The degrees of preference can be assigned over some numerical range based on a judg-
ment of the importance of the constraint, with larger values of corresponding to
greater preference. can represent both deterministic constraints and intrinsically

Ai A j
t j Ai

A j Ai

A1 … Ai 1– Ai 1+ … AN, , , , ,
t1 … ti 1– ti 1+ … tN, , , , , Ai

t Cα Wiα t1 … ti 1– ti=t ti 1+ … tN, , , , , ,() Wiα t t j i≠;()≡

Wiα
Wiα

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 5

unpredictable constraints, e.g. can also be formulated in terms of (a function of) the
probability that some desirable condition will hold.

2.1 Combination of Preferences: Suitability Functions

In general there will be a number of constraints acting on a task, so it is necessary to com-
bine the degrees of preference from all applicable constraints. This combination pro-
cess is formally similar to that employed in a number of rule-based expert systems which
assess evidence for and against various conclusions (e.g. Shortliffe 1976, Hart et al. 1978).
While this approach to uncertainty reasoning is known to have its limitations — In partic-
ular, the knowledge base should form a tree so that no evidence is counted twice via alter-
native paths of reasoning (Pearl 1988) — it is adequate for many scheduling problems and
has the advantage of being computationally tractable.

However, the techniques used in rule-based systems for evaluating evidence for or against

discrete

 conclusions cannot be applied directly to scheduling, since a

continuum

of sched-
uling conclusions must be considered (e.g., schedule at and at , etc.). What is
required instead is a continuum version of uncertainty reasoning, formulated in a way
which efficiently expresses the variety of constraints that typically appear in these prob-
lems and which retains information about choices that affect schedule optimality. Central
to this formulation is a way to combine evidence from two or more independent con-
straints .

Two conditions for the combination of evidence are reasonable: the combination function
for should be a continuous, monotonically increasing function of its arguments, and it
should be associative, i.e. it should not matter in what order the evidence is considered.
With these assumptions, the preferences together with the combination operator form
an Abelian group isomorphic to the additive group of real numbers on , a result
which has been independently discovered by a number of researchers (e.g., Cox 1946;
Good 1960, 1968; Hájek 1985, Cheng and Kashyap 1988). Thus with no loss of generality
we take the to be real-valued functions that combine simply by addition.

It is common in scheduling problems to have constraints that specify times when an activ-
ity is

not

 permitted to be scheduled. These are particularly important since they allow the
scheduler to eliminate blocks of time from further consideration. In terms of the prefer-
ences, these times should have highly unfavorable values, e.g. , where

 is sufficiently large to indicate

overwhelming

 evidence against scheduling activity
 at time . We can transform the additive into a multiplicative form by defin-

ing:

(EQ 1)

Except where , the use of the exponential function makes the

additive

combination of the weights equivalent to the

multiplicative

 combination of . When
, multiplicative combination provides precisely the desired behavior, i.e. if

Wiα

Wiα

Ai ti A j t j

Wiα Wiβ …, ,{ }

Wiα

Wiα
∞– ∞,()

Wiα

Wiα t t j i≠;() w0–=
w0 0>
Ai t Wiα Biα

Biα t t j i≠;() exp Wiα t t j i≠;()[]= Wiα t t j i≠;() w0–>

0= Wiα t t j i≠;() w0–≤

Biα t t j i≠;() 0=
Wiα Biα

Biα t t j i≠;() 0=

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 6

there is overwhelming evidence against scheduling at from any source, then no
amount of evidence from other sources can counteract this. We have found that the multi-
plicative formulation is particularly convenient for representing practical constraints
defined by scheduling experts. In the HST domain we have further adopted the convention
that a value represents the absence of evidence either for or against a
scheduling decision. In practice, the are defined by analysis of the constraints and
preferences in consultation with telescope scheduling experts.

It is computationally infeasible to work with the full N-dimensional form of the
 in any practical scheduling problem. The approach adopted in SPIKE consists

of projecting the into functions of one time variable only:

(EQ 2)

where the maximum operator ranges only over times where activities are permitted
to be scheduled (based on the current state of the schedule, i.e. accounting both for times
excluded by constraints and for times excluded by decision of the scheduler). is
zero only when, due solely to the constraint , no possible choices for scheduling activ-
ity will permit to be scheduled at time ; otherwise its value is the best (most pref-
erable) value of that can be obtained by scheduling at , given any other possible
schedule of the other activities. The former property of ensures that no times are
excluded prematurely unless provably in violation of a strict constraint. The latter provides
an important indicator of optimal scheduling choices to the scheduling agent by always
indicating the best that can be achieved, regardless of future scheduling decisions. (It is
conceivable that a function other than maximum, e.g. some averaging function or even
minimum, could be useful in some scheduling problems.) We call the suitability
function for activity due to constraint . The total suitability function for an activity

 is the product of the suitability functions from each of its constraints, multiplied by a
restriction operator indicating any scheduling decisions made so far in constructing
the schedule for excluded times, 1 otherwise):

(EQ 3)

 if activity is excluded from being scheduled at time , either because a strict
constraint would be violated or because of prior scheduling decisions. These equations
implicitly determine the suitability function for an activity and are solved by an iteration
procedure corresponding to the propagation of constraints.

The suitability function concept can be illustrated by a simple example: consider a prefer-
ence constraint of the form:

“Schedule as soon as possible after the end of , but starting no sooner than
minutes afterwards and ending no later than minutes afterwards.”

We can represent this by choosing where is a function indicating
the judgment (objective or subjective) of how much better or worse it is to delay schedul-
ing after . Given the suitability function of it is straightforward to construct

Ai t

Wiα 0= Biα⇔ 1=
Biα

Biα t t j i≠;()
Biα

Siα t() max Biα t t j i≠;() t j i≠{ }=

t j A j

Siα t()
Cα

A j i≠ Ai t
Biα A j t j

Siα t()

Siα t()
Ai Cα

Si t()
Ri t()

Ri t() 0≡

Si t() Ri t() Siα t()
α
∏=

Si t() 0= Ai t

A j Ai x
x y+

B jα t ti;() ϕ t ti–()= ϕ

A j Ai Si t() Ai

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 7

 due to this constraint as illustrated in Figure 2. Panel (a) shows what the
could look like for a plausible choice of . Panel (b) shows what the suitability function

 might be at some stage in the scheduling: in this case there are two disjoint candidate
intervals where could be scheduled. The last panel (c) shows the resulting suitability

 for task .

Suitability functions provide a simple but effective framework for capturing metric-time
scheduling constraints, both strict and preference. All of the conventional binary temporal
interval relationships (before, after, during, etc.: see Allen 1983) are easily represented by
appropriate suitability functions, along with a large class of far more general temporal
couplings (Shapiro 1980). Like Rit’s (1986) formulation of “constrained occurrences” for
binary interval constraints, suitability functions can represent and propagate disjunctions;
more generally, however, they also handle constraints of higher order than binary, and can
incorporate preferences as well. The combination of preferences is analogous to other sim-
ilar constraint evaluation methods (e.g. Fox and Smith 1984, Smith et al. 1986), but differs
in that the combination of evidence for or against a scheduling decision is required to be

S jα t() B jα t ti;()
ϕ

Si t()
Ai

S jα t() A j

FIGURE 2. Illustration of suitability functions for the case of a binary preference constraint:
(a) preference expressing that a task should be scheduled as soon as possible after minutes
from the completion of another task (of duration) and in no case later than minutes;
(b) hypothetical suitability of at some stage in the scheduling process; (c) the resulting
suitability of . The intervals where each function is non-zero are indicated by bars under the
time axes in (b) and (c).

A j x
Ai di x y+

Ai
A j

(a) Bjα(t;ti)

ti

di x y

(b) Si(t)

(c) Sjα(t)

ϕ(t)

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 8

monotonic and associative. It is also worth noting that, while there is a resemblance
between suitabilty functions and the propagated preferences of Sadeh and Fox (1988), the
latter method is based on a probabilistic model of start time distributions. Such a probabi-
listic characterization of the results of scheduling as an input to the scheduling agent dif-
fers from the suitability function perspective, which maintains a distinction between the
likelihood of different decisions by the scheduler and the characterization of preferences
vs. time. However, this does not rule out the use of similar models that attempt to estimate
resource demand and contention (e.g. Sadeh 1991): these can play a useful role as suitabil-
ity components that reflect resource or capacity limits.

2.2 Consistency Methods

Consistency methods have long been known to improve search efficiency for discrete
CSPs (see, e.g., Dechter 1986, Dechter and Pearl 1988, Dechter and Meiri 1989 and refer-
ences therein) and have proven to be useful in SPIKE as well. Consistency techniques make
explicit the information that is implicit in the constraints. We have found the following
techniques to be useful in speeding scheduling search:

Node-consistency refers to the removal from consideration of domain values
which cannot be part of any solution, where this determination is made based on
unary constraints. In our formulation this is explicitly represented in the suitability
functions.

Arc-consistency refers to removing values from the domains of variables to satisfy
binary constraints. This technique is best illustrated by example: suppose is
constrained to follow with a minimum end-to-start separation of , that both
activities have unit durations and are restricted to be scheduled in the interval

. Then the interval is excluded for , and the interval
 is excluded for . To introduce arc-consistency into the net-

work, we restrict activities to fall within the overall scheduling interval ,
and then propagate constraints (Equation 3).

Path-consistency refers to the inference of additional (binary) constraints based
on those explicitly stated. Again an example makes the principle obvious. Suppose

 must precede which must in turn precede : by explicitly representing the
constraint “ precedes ” we can immediately represent the implication of a
decision on scheduling which would otherwise require a further decision about

. For simple precedence, the additional constraints inferred by path consistency
are just those derived from the transitive closure of the precedence relationship.
However, for more general binary constraints which depend on time differences
only (e.g. “group within 24 hours”), it is possible to generalize this
calculation and derive much more informative constraints (Johnston and Adorf
1992).

We have found a substantial benefit in pre-computing and storing for later access the
results of node-, arc-, and path-consistency. We have also found that explicit representa-
tion of inferred constraints makes the conflict-count repair heuristics (Section 4.2) more

A j
Ai ∆t

tA tB,[] tB ∆t– 1– tB,[] Ai
tA tA ∆t 1+ +,[] A j

tA tB,[]

Ai A j Ak
Ai Ak

Ai
A j

A1A2A3{ }

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 9

effective. However, in other scheduling domains, the significant pre-processing computa-
tional cost must be traded against the potential speed-up during search. To help control
this, the constraint propagation code used in SPIKE includes a “time-out” capability which
can be used to limit the amount of computation devoted to path-consistency.

2.3 Computational Aspects

The implementation of suitability functions on digital hardware requires that continuous
suitabilities be discretized, either in time, value, or both. In SPIKE we have avoided any
fundamental discretization in time for two important reasons: (a) it introduces an artificial
time granularity into the problem, and (b) many important constraints yield suitability
functions which have long intervals of constant value and would therefore be inefficiently
represented by a large number of identical values for many discrete time points. Instead,
we adopted the discretization of suitability function values which allows suitability func-
tions to be represented as piecewise constant functions (PCFs). These can be conveniently
and compactly be expressed as a list of times and values, e.g. where
the suitability has a value of from up to , then a value of , etc. Suitability values
are not restricted to a fixed set. Arbitrary values are allowed and are only required to be
constant over appropriate intervals (which can be different for different constraints). In
this way, the basic constraint representation mechanism places no arbitrary restriction on
the timescale or suitability value that can be represented.

The choice of PCFs has other advantages as well. They are closed under all of the common
operations required for manipulation of suitability functions such as multiplication or
maximum (in contrast to other representations such as piecewise linear functions). The
cost of storing and combining PCFs is proportional to the number of intervals with distinct
values, not to the size of the scheduling interval.

Although the PCF representation of suitabilities does not require discretization of suitabil-
ity values, in practice this may be useful as small differences in suitability (e.g. a few per-
cent) may not be significant and “collapsing” these differences in suitability can decrease
the storage required for the suitability function and increase the speed of constraint propa-
gation.

3.0 HST Scheduling as a Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of as set of variables, each with a domain
of discrete values, and a set of constraints which limits the allowed values for each variable
based on the assigned values of other variables. The problem is to assign a consistent set of
values for all variables such that there are no constraint violations. To cast a scheduling
problem into the form of a CSP, we identify each activity to be scheduled with a variable,
and we partition the scheduling time range for each activity into intervals which are identi-
fied with the domain of the corresponding variable. A CSP as usually stated considers only
strict constraints and ignores preferences: we place the further condition on the problem
that the preferences should be maximized in the solution state. CSPs on discrete domains

t1 s 1 t 2 s 2 … t n s n ()
s1 t1 t2 s2

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 10

arise in a variety of applications and methods for solving them have been widely studied:
for a recent survey see Kumar (1992) and references therein.

S

PIKE

 incorporates a general “toolkit” for representing and manipulating constraint satis-
faction problems, which we will briefly describe in this section. This toolkit is used in the
S

PIKE

 scheduling search algorithm, which will be discussed in Section 4.0.

3.1 The S

PIKE

 CSP toolkit

The S

PIKE

 CSP toolkit is implemented as a set of object classes and associated methods,
the most important of which are the abstract classes for:

•

CSP

, representing the collection of variables, constraints, etc. required to represent a
particular type of constraint satisfaction problem, and

•

variable

, representing variables, their assigned values, conflicts, preferences, etc.

These two classes must be specialized for each particular kind of CSP implemented.

The state information maintained by CSP and variable instances can be manipulated with
an extensive library of methods. These provide capabilities which have proven extremely
useful in a practical scheduling environment. Each variable instance maintains constraint
conflicts and preferences data for each of its domain values, as well as the variable’s cur-
rent assigned value.

Some of the more important capabilities provided by the CSP toolkit include:

•

inconsistent assignments:

 at any point, variables are permitted to have assigned values
which are inconsistent with other assigned values. This is important for two reasons: it
allows information about constraint linkages among activities to be exploited during
scheduling search (Section 4.0), and it allows for search through a relaxed version of
the problem. This is an especially important feature when there is no solution to the
CSP as originally posed, and the best one can hope is to solve a relaxed problem where
some constraints are violated (cf. Freuder 1989).

•

locked and ignored variables:

 a variable can be forced to have a specified assigned
value, then be ignored thereafter, or can be ignored without an assigned value. This
allows the scheduler to partition the activities to schedule into an “active” set and “inac-
tive” set — either with or without assigned values — and thus easily control the focus
of the search process. Ignored variables are motivated by scheduling problems (like
HST’s) where there are conditional activities. These start out as ignored until some trig-
gering condition is true, e.g. the commitment of some other observation, or notification
from the proposer to schedule the observation.

• removal and restoration of domain values: Any domain value for a variable can be
excluded from the problem, then restored at any time. This makes it possible to easily
search for solutions that contain only high-preference values, or to dynamically exclude
scheduling times for reasons external to the formal constraint specification.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 11

• constraint weights: constraints can have any desired weight value, which is the
amount the conflict count is incremented for each violation. The greater the weight, the
more important the constraint. For HST, temporal constraints have higher weight than
resource constraints.

• constraint caching: the toolkit provides a mechanism for caching the impacts of the
current set of assigned values. This has two major benefits: it allows the system to
quickly retract any current assigned value, and it allows for an “explanation” of the
conflicts on any particular domain value (since the cache records the conflict source
constraint as well as the relevant domain values and conflict weights). The cache mech-
anism can be turned on or off as appropriate, based on the trade-off between time to
compute constraint violations versus the space to record them.

• assignment history and snapshots: the toolkit provides an assignment history mecha-
nism, with facilities to mark the current state and back up to any marker. There are also
facilities for saving the current set of assigned values in various forms, then re-applying
them to the problem. The history mechanism can be turned off if desired, to improve
runtime performance.

• capacity constraints: in addition to temporal constraints between variables, the toolkit
implements a general class of capacity (or resource) constraints. The mapping of
domain values to capacity “bins” is completely customizable and may be many-to-one
or one-to-many.

3.2 Time sampling

As noted above, the scheduling interval for an activity is discretized as part of the transla-
tion into the CSP variable domain. It is therefore necessary to consider how to discretize
the representation of time (unless there exists some natural time discretization in terms of
which the constraints can be defined). As a general rule, the sampling interval must be less
than the timescale for significant changes in the scheduling constraints. If this condition is
satisfied, then one has to decide upon a suitable sampling procedure defining how to treat
those strict constraints that would prevent the scheduling of an activity over some, but not
all, of a given interval. The basic choice is whether to exclude the entire interval or not:

(a) if the entire interval is excluded, then there is a risk that feasible solutions may be
missed;

(b) if the interval is not excluded, then the scheduler may find what appears to be a fea-
sible configuration, but which turns out not to be feasible when the timing is examined
in detail.

In HST scheduling we generally chose option (b) for the initial implementation and moved
toward option (a) for specific constraints as experience was gained with operations. The
choice must be determined for each problem type based on the characteristics of the con-
straints and the difficulty of dealing with the consequences. In some problems there will
be a natural time unit in terms of which constraints are defined, so that no sampling error
will occur. A further discussion of sampling and discretization is given in Johnston and
Adorf (1992).

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 12

4.0 Scheduling Search in SPIKE

SPIKE treats schedule construction as a constrained optimization problem and uses a heu-
ristic repair-based scheduling search technique called multistart stochastic repair. This
technique consists of the following steps:

1. Trial assignment: make a trial assignment (“initial guess”) of activities to times, based
on heuristics to be discussed further below. Such a schedule will generally have tempo-
ral or other constraint violations, as well as resource capacity overloads;

2. Repair: apply heuristic repair techniques to try to eliminate constraint violations, until
either a pre-established level of effort has been expended or there are no conflicts left;

3. Deconflict: eliminate conflicts by removing any activities with constraint violations, or
by relaxing constraints, until a feasible schedule remains.

The heuristics employed in SPIKE are stochastic, so there is benefit in repeating the three
steps above as often as there is time. The general strategy is to select the best of many
runs, possibly trying different initial guess and repair heuristics. However, the SPIKE algo-
rithm has desirable “anytime” characteristics (cf. Zweben et al. 1990): at any point in the
processing after the initial guess has been constructed, a feasible schedule can be produced
simply by removing any remaining activities with constraint violations, as described fur-
ther below.

Two additional factors play a major role in SPIKE’s search process:

optimization: the trial assignment and repair heuristics pay careful attention to suit-
ability function values and attempt to optimize the total suitability of the resulting
schedule, and

oversubscription: in general, it is known that more HST observations are intended to
be in the pool to schedule than can actually fit into the timeline, so there can be no solu-
tion with all activities scheduled. Thus the deconflict step assumes a high degree of
importance, since it defines the relaxed problem that is being solved.

4.1 Trial Assignment Heuristics

The choice of a good trial assignment can be important for repair-based methods, and to
this end we have conducted extensive experiments on different combinations of variable
and value selection heuristics to identify the most powerful combinations. Over a thousand
combinations of heuristics were tried by making multiple runs on sample scheduling prob-
lems. Several heuristics were identified on this basis: one of the most successful selects
most-constrained activities to assign first, where the number of min-conflicts times is used
as the measure of degree of constraint. Min-conflict times are then assigned, with ties bro-
ken by maximum preference derived from suitability functions, or by earliest time. Several
other heuristics are also employed in some settings, considering e.g. the number of tempo-
rally related activities, task priority, maximum suitability (preference), whether related
tasks have assigned values, etc. The number of temporally related activities was found to
be particularly effective on the 60 CSP scheduling problems defined by Sadeh (1991) and

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 13

discussed further by Muscettola (1992) and Johnston and Minton (1993). It is worth not-
ing that the SPIKE trial assignment heuristics are quite simple and are based on easy-to-
calculate measures of degree of constraint and constraint connectivity. This is in contrast
to the much more elaborate analyses which characterize the approaches taken e.g. by
Sadeh and Fox (1988), Sadeh (1991), Sycara et al. (1991), and Muscettola (1992). Further
research into the cost-effectiveness of lookahead is clearly warranted.

4.2 Repair Heuristics

The repair heuristics used by SPIKE are based on a successful neural network architecture
developed for SPIKE (Johnston and Adorf 1989, 1992, Adorf and Johnston 1990) and later
refined into a simple symbolic form (Minton et al. 1990, 1992; Johnston and Minton 1993)
which has since superseded the neural network. The SPIKE repair heuristics make highly
effective use of conflict count information, i.e. the number of constraint violations on
scheduled activities or on potential schedule times. Min-conflicts time selection is one
such repair heuristic, in which activities are moved to times when the number of conflicts
is minimized. Both theoretical analysis and numerical experiments have shown that min-
conflicts can be very effective in repairing reasonable trial assignments. We have found
that further improvement can come from the use of a max-conflicts activity selection heu-
ristic, which selects activities for repair which have the largest number of conflicts on their
current assigned time. (This heuristic is also important when constraints have different
weights: it then tends to select for repair those activities which violate the most important
constraints, i.e. those with the largest weights.)

Both hill climbing and backtracking repair procedures have been tried, but hill climbing
has been shown to be the most cost-effective on problems attempted to date. Typically
only a relatively small number of repair steps is allowed, e.g. where is the number
of activities to schedule and is usually 2 but is kept in the range 1-5. This helps deal with
the problems of “cycles” which can afflict hill-climbing procedures, where the repair pro-
cess repeatedly attempts to place the same set of activities at mutually inconsistent times.
While cycles are sometimes observed and there has been some work done to identify and
avoid them, they have turned out not to be a significant problem in practice.

4.3 Deconflict

SPIKE currently uses a rather simple technique to remove conflicting activities from an
oversubscribed schedule: activities to be removed are selected based on lower priority,
higher numbers of constraint conflicts, and lower preference time assignments. If there
remain gaps when all conflicting activities have been deleted, then a simple best-first pass
through the remaining unscheduled activities is used to fill them. This final phase of
“schedule deconflicting” has been little studied and is an area which could benefit from
further effort.

kN N
k

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 14

4.4 Schedule Quality Measures

There are several important measures of schedule quality employed, including the number
of observations on the schedule, the total observing time scheduled, and the summed
degree of preference of the scheduled observations. Although some applications of SPIKE
use minimum makespan or related measures, these have not important for HST schedul-
ing: the time boundaries of the schedule are essentially fixed, and the goal is to maximize
the quantity and quality of the observations scheduled within them.

One particularly interesting measure plays a role when the activities to be scheduled have
durations that vary as a function of time: in this case the total gap time in the schedule
serves as one component of a quality measure, since it indicates how much time could
potentially be used if there were appropriate activities available. Note that, in this case, the
total summed activity duration scheduled can be highly misleading — it is possible to con-
struct a very inefficient schedule which rates highly by this measure simply by placing
activities at times when they are very inefficient (i.e.) but tend to fill up the
schedule. So the appropriate quality measure is the non-intuitive sum of total minimum
activity duration, plus the total gap time.

4.5 Rescheduling

SPIKE provides support for rescheduling in variety of ways. Two worth mentioning in par-
ticular are provided by the CSP toolkit (Section 3.0): task locking and conflict-cause anal-
ysis. Tasks or sets of tasks can be locked in place on the schedule, and will thereafter not
be considered during search or repair (unless, of course, the user unlocks them). These
tasks represent fixed points on the schedule. Conflict-cause analysis permits the user to
force a task onto the schedule, then display what constraints are violated and by which
other tasks. The conflicting tasks can be unassigned if desired, either individually or as a
group, and returned to the pool of unscheduled tasks. This helps with the most common
rescheduling case, where a specific activity (e.g. a target of opportunity) must be placed on
the schedule, thereby disrupting at least some tasks which are already scheduled. A limited
study of minimal-change rescheduling has been conducted (Sponsler and Johnston 1990),
but much more work remains to be done in this area. Most of the other SPIKE support for
rescheduling makes use of facilities provided in the user interface which allow the sched-
uler to freely manipulate the timeline (Section 5.3).

5.0 SPIKE and HST Science Scheduling

The framework described in the preceding sections has been integrated into an observatory
science planning and scheduling system for the Hubble Space Telescope. SPIKE has been
used since 1988, first in pre-launch readiness tests and then in science operations since
HST launch in 1990. Figure 3 shows the high-level scheduling flow for the HST ground
system which is described in this section and is covered in more detail in Miller (1989),
Adorf (1990), and Miller and Johnston (1991).

d t()

d t() dmin»

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 15

• Proposal Preparation: An astronomer who plans to use HST must create an observing
proposal which specifies the observations to be made. This proposal is the primary
input to the planning and scheduling process. The Remote Proposal Submission System
(RPSS) and Proposal Entry Processor (PEP) handle observing proposals, including
electronic submission by astronomers (Section 5.1).

• Planning: The Transformation (Trans) expert system converts the proposal from a
high-level specification into detailed task descriptions for scheduling (Section 5.2).

• Long-term Scheduling: Since the HST scheduling problem covers such a wide range
of timescales and tens of thousands of tasks, a two-tiered approach to scheduling was
adopted. A long-term plan (Section 5.3) spans approximately one year and allocates
tasks (as defined by Transformation) to specific weeks or parts of a week. From the
long-term plan, week-long segments are extracted for short-term scheduling. Long-
range scheduling is done with the SPIKE system, which was developed at the STScI.

• Short-term Scheduling: Short-term scheduling (Section 5.4) with the Science Plan-
ning and Scheduling System (SPSS) performs the final sequencing of groups of obser-
vations within a week, generates the detailed command list, and transmits the results as
the Science Mission Specification (SMS) to the HST Payload Operations Control Cen-
ter. SPSS was originally developed by TRW and now maintained by the STScI.

long-range
scheduling

SMS

RPSS

PEP

Trans

Proposal

Internet

Remote
Proposal
Submission
System

Proposal
Entry
Processor Spike

SPSS

short-range
scheduling

Planning and Pre-Scheduling Scheduling

Convert to SPSS format

to POCC:
detailed
command
schedule
for HST

FIGURE 3. The processing flow for HST scheduling. Proposals are received electronically
over the Internet and processed through a proposal database. The “Transformation” system
converts the astronomer’s observing plan into a set of tasks to schedule. SPIKE does the long-
range scheduling, then passes off 1-week segments to SPSS for short-term scheduling and
instrument command request generation. The main output product, the Science Mission
Specification (SMS) is a detailed time-tagged command list for the HST’s onboard computers.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 16

Section 5.5 considers some of the implementation issues that were faced during develop-
ment of the integrated HST ground system.

5.1 Proposal Preparation

The selection of successful proposers for HST is based on a relatively simple (“Phase I”)
description of the scientific intent of the program and the observatory resources required to
accomplish it. Once the observations are approved by a peer review process, each proposer
must prepare a detailed (“Phase II”) definition of exactly what exposures must be taken.
Since the HST and its ground system are very complex, and the astronomer does not have
real-time control over the telescope, essentially all observations are scheduled and taken
by the staff of the Space Telescope Science Institute (STScI) in Baltimore.

The Phase II proposal contains information on the astronomical objects, individual expo-
sures, instrument parameters, and the relationships (i.e. constraints) among exposures:
Table 1 lists the kinds of constraints that proposers may specify, in the syntax that they
actually use. Proposals are submitted electronically in an ASCII file, through the Remote
Proposal Submission System (RPSS). The RPSS software validates the contents of a pro-
posal file and can detect a wide range of problems, including typographical errors (e.g. a
misspelled filter name), values out of range (e.g. a target declination exceeding 90°), and
missing or inconsistent information (e.g. an exposure referencing an undefined target). A
dedicated RPSS computer is available to the astronomical community over the Internet
and the Space Physics Astrophysics Network (SPAN). The RPSS software has been dis-
tributed to approximately 100 astronomical institutions around the world, and is run by
most proposers at their home institutions before they send their proposals to STScI.

STScI designed RPSS and the HST proposal language with the following goals in mind:

• Oriented towards the astronomical community — easy to understand, and concise and
logical in the amount and sequence of data requested,

• Able to accommodate both simple and sophisticated observations from novice or expe-
rienced HST users, and

• Formulated in declarative terms, i.e. the astronomer can specify what data should be
collected without becoming needlessly encumbered by instrument, telescope and
ground system particulars.

RPSS was the first system of its kind for a major scientific installation — it has been in use
since February 1986. The ability to locally validate and electronically submit a proposal is
an extremely valuable tool, both for proposers and for STScI. Proposers can detect and
correct a large class of errors and are assured that typographical errors are not introduced
by data entry personnel. The STScI can process proposals more rapidly and avoid the costs
of manual data entry. A further discussion of the STScI proposal handling software can be
found in Jackson et al. (1988) and Adorf (1990).

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 17

TABLE 1. The syntax of constraint specifications used by HST observers to define
scheduling constraints on their exposures. Any number of the these “special
scheduling requirements” may be applied to exposure “lines”, referring to their origin
on paper forms. Keywords may be abbreviated to the form shown in uppercase letters
(e.g. “ACQUISITION” can be abbreviated as “ACQ”). A line-list is a list of exposure
line numbers, e.g. “1-5,10,12,15-20”. Square brackets indicate optional syntactic
elements, and the “/line-list” shorthand applies the specified constraint to all listed
lines. Most of the phases provide an English-like description of the constraint, all of
which must be properly handled by the HST scheduling software.

HST Observing Proposals: Scheduling Constraint Syntax

EARLY ACQuisition FOR line-list
ONBOARD ACQuisition FOR line-list
INTeractive ACQuisition FOR line-list
GUIDing TOLerance angle [/line-list]
ORIENTation angle +/- angle [/line-list]
ORIENTation angle +/- angle FROM line [/line-list]
ORIENTation angle +/- angle FROM NOMINAL [/line-list]
POSition TARGet x-val, y-val [/line-list]
SAME ORIENTation FOR line-list AS line
SAME POSition FOR line-list AS line
CALIBration FOR line-list [NO SLEW]
SPATIAL SCAN [/line-list]
TARGet OF OPPortunity [/line-list]
CRITical OBServation [/line-list]
RT ANALYSIS [FOR line-list]
REQuires UPLINK [/line-list]
AFTER date|line [BY time [+/- range]]
AT date +/- range
BEFORE date|line [BY time [+/- range]]
DARK TIME [/line-list]
DECision TIME time
GROUP line-list WITHIN time
GROUP line-list NO GAP
GROUP line-list NON-INTerruptible
NON-INTerruptible [/line-list]
PERIOD time +/- error
PHASE phase +/- range [OF REF line]
REQuires DATA FROM line-list [/line-list]
REQuires UPDATE [/line-list]
SEQuential line-list
SEQuential line-list NO GAP
SEQuential line-list WITHIN time
SEQuential line-list NON-INT
ZERO-PHASE date +/- error
REPEAT line-list EVERY time +/- range for number MORE TIMES
CONDitional [ON line-list] IF condition-text [/line-list]
SELECT number OF line-list OR line-list ...

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 18

5.2 Transformation

Given the high-level, astronomically-oriented description of the observations found in the
Phase II proposal, the next step is essentially one of planning. It is the role of the Transfor-
mation system to convert the declarative proposal from the astronomer into a set of aggre-
gated exposures and constraints called scheduling units (SUs), with all of the details
required to enable the execution of the exposures on the spacecraft.

Transformation performs several planning tasks, including: determining the order to exe-
cute observations (when not explicitly specified by the proposer), breaking exposures into
pieces to better match target visibility conditions, grouping observations to minimize over-
head operations, choosing specific implementation scenarios, supplying values of instru-
mental settings which were defaulted by the proposer. Transformation also detects certain
errors which may be present in the proposal including: conflicting timing requirements
among exposures, loops in precedence constraints, and inconsistencies in instrument
parameter settings. Transformation makes use of suitability function framework
(Section 2.1) and the SPIKE temporal constraint mechanism to collect and propagate tem-
poral constraints and to achieve path consistency (Section 2.2).

The input to Transformation is a file generated from the Proposal Entry Processor (PEP)
database which is essentially a parsed version of the astronomer’s Phase II proposal.
Transformation produces output files which specify the structure of the scheduling units
and the nature of any constraints that act on them. These files then become the inputs to
SPIKE and SPSS.

Transformation was initially conceived and implemented as a rulebased expert system
implemented in OPS5 (Rosenthal et al. 1986) but was re-implemented in Common Lisp
when the complexity of the rulebased system grew too great (Gerb 1991a). It remains an
expert system in that it models a large body of expertise developed by the astronomers
who operate the HST scheduling systems.

5.3 Long-Term Scheduling

Long-term scheduling begins with a set of observing proposals from Transformation,
specified as a set of scheduling units (SUs) and their constraints. An initial pre-processing
step calculates absolute time-dependent constraints related to orbit-by-orbit target visibil-
ity, and the implications of special orientation requirements; the results of these compute-
intensive calculations are cached in disk files.

Using SPIKE, SUs can be committed to time intervals either manually or with the auto-
matic (CSP) scheduler (Section 4.0). A graphical user interface (e.g. Figure 4) is available
to view and manipulate the schedule, or to run the automatic scheduler. Scheduling deci-
sions (when final) are recorded in a database, then reported to files and transmitted to
SPSS. Once SPSS has completed short-term sequencing, SPIKE software analyzes the cal-
endar to determine what observations were scheduled and what factors could affect the
future schedule (e.g. timing, special orientations, or contingent SUs). SPIKE also analyzes
a report from the data archive to verify that the data was received and processed. Observa-

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 19

tions which are not scheduled by SPSS, which are lost in transmission, or which are
marked as poor quality, are considered candidates for rescheduling.

SPIKE provides a number of tools to support the scheduling process, including high-reso-
lution PostScript plots of observing constraints and interactive X-window tools for analy-
sis of complex spacecraft orientation constraints and for viewing the component exposures
and constraints from individual proposals. The latter can be analyzed in detail, which is
particularly important when it is necessary to examine the effects of individual constraints
on potential scheduling decisions. This facility has also proven to be very useful for
uncovering and fixing problems with proposals.

SPIKE’s central position in the HST scheduling process has led us to develop an integrated
tracking system called ASSIST to monitor and report the status of all observations in the
scheduling pipeline. Prior to the development of ASSIST, users of the various systems
(PEP, Transformation, SPSS, etc.) each maintained separate tracking systems. Since pro-
posals consist of many observations which are executed at different times, finding the sta-
tus of a proposal required substantial work. ASSIST provides a central repository for data
from the various stages of scheduling, including proposal preparation, long-range schedul-
ing, short-range scheduling, and archiving.

Certain combinations of HST instruments can operate in tandem, and for some astronomi-
cal targets such “parallel” observations can yield very interesting data. SPIKE’s Parallel
Observation Matching System (POMS) analyzes the weekly schedule and finds appropri-
ate matches from a pool of parallel proposals. POMS is an expert system which includes a
sophisticated knowledge base and matching strategies for identifying and ranking the
quality of matches (Lucks 1992). Multiple ranked candidate parallel matches are sent to
SPSS, along with each weekly schedule.

5.4 Short-term Scheduling

Short-term scheduling operates within a week at a time, working from a list of SUs from
the long-term plan and generating a week-long sequence of activities called a calendar.
After the activity sequence is defined, high-level spacecraft instructions are attached to the
calendar activities. The output of the process is a Science Mission Specification (SMS)
and can be thought of as the “assembly language” which controls the HST. The STScI
delivers the SMS to the Payload Operations Control Center (POCC) at NASA’s Goddard
Spaceflight Center, where it is checked for errors and constraint violations which would
affect the health or safety of the HST and its instruments. Based on the SMS, the POCC
prepares the binary command loads for the two onboard computers which control the
observatory. The POCC also takes requests for Tracking and Data Relay Satellite (TDRS)
links from the SMS and passes them on to the TDRS Network Control Center. Some
requests will not be granted due to higher priority users (e.g. Shuttle or other satellites).
The POCC notifies the STScI of this and the timeline is modified, usually by making use
of one of the onboard tape recorders to hold data for later playback, but occasionally by
rescheduling the observation.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 20

Execution of the observations is monitored by both the STScI and the POCC (by monitor-
ing real-time transmissions or by playback of recorded science and engineering teleme-
try). The STScI analyzes the data to ensure that scheduled observations were completed
successfully. It then calibrates the data and delivers it to the proposer for scientific analy-
sis. Since HST observations are an important astronomical resource, an archive of all HST
data is maintained. The proposer is normally granted exclusive access to the data for a pro-
prietary period (usually 1 year), after which the data becomes available to the scientific
community at large.

5.5 Implementation

SPIKE is an operational application of artificial intelligence technology and in this section
we consider some of the implementation issues. The development of SPIKE started in early
1987 using Texas Instruments Explorer Lisp machines. The SPIKE graphical user interface
was implemented in KEE CommonWindows (Intellicorp), but the remainder of the system
used only Common Lisp and the Flavors object system. At HST launch, STScI had a com-
plement of 8 microExplorers and Explorers used for SPIKE operation, development and
testing.

Since 1987 there has been a great deal of evolution in Lisp hardware and software. We
have continued to modify SPIKE to keep pace with these changes. All of the Flavors code
has been converted to the Common Lisp Object System (CLOS). Between late 1990 and
mid-1992 we transitioned from Explorers to Sun SparcStations as the primary operations
and development platform: there are currently a total of 22 SparcStation 2s used for Trans-
formation and SPIKE. The Lisp used on the SparcStations is Allegro Common Lisp from
Franz, Inc., which supports a version of CommonWindows based on X-windows. Thus the
user interface continued to operate on the SparcStations as it did on the Explorers (and
allowed us to operate for some time with a mix of Explorers and SparcStations). After sub-
stantial investigation of alternative window systems, we recently reimplemented the user
interface tools using the Common Lisp Interface Manager (CLIM). Updating SPIKE for
new Lisp language features has not been difficult, and there are currently no plans to con-
vert any of the system to C or C++.

A common feature of PEP, Transformation and SPIKE development was that each system
had to be developed in a short time (about 6 months for the initial system, with substantial
extensions continuing over several years) and with a small staff (2-3 people initially). It
was also impossible to specify in advance a complete set of requirements for these systems
since many important factors were unknown. These considerations led to the use of a rapid
prototyping software development methodology instead of a more classical “waterfall”
approach (requirements definition, design, implementation and test). A tool-oriented
approach was also encouraged, i.e. the development of general software routines which
could be used for other applications later in development.

The most significant advantage of rapid prototyping to the HST was that it allowed PEP,
Transformation and SPIKE to be implemented in time to support testing and operations —
in an environment with changing requirements there is no choice but to use an adaptive
software development methodology. Perhaps the most serious complication of this

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 21

approach is that once the prototype is used operationally, it becomes increasingly difficult
to make large changes to it. (In an ideal rapid prototyping situation, a prototype can be dis-
carded after evaluation). Once operational, it is necessary to ensure that each version of
the system is upwardly compatible with the previous version. A corollary to this is that
pressure on the users to do operational work can prevent them from further participation in
the software development process, e.g. critiquing initial requirements and evaluating pro-
totype software. This can lead to a divergence between the needs of the users and the prod-
ucts of the developers, which must be carefully guarded against. We have found two
techniques are useful to keep developers in touch with the needs of users. One is for devel-
opers to perform full-scale end-to-end tests with real data to uncover problems and bottle-
necks. (This is in advance of any testing which may be performed by an test group
affiliated with a software configuration management effort.) The other is to allow develop-
ers to apprentice in the user group (typically for a month or so) in order to gain firsthand
knowledge of the operational environment and requirements.

The incorporation of realistic test data proved to be quite important. Due to delays in the
launch of HST, we had several hundred observing proposals which were constantly used
to test prototype systems and to make development decisions. Had such extensive data not
been available, the creation of a substantial body of simulated test data would have been
required.

It is interesting to note that some of the most useful software tools were developed as
quick-response reactions: a user would informally ask for a tool to handle some problem
which was previously unrecognized or thought to be of low priority, and one of the soft-
ware developers would then provide the tool in a very short time. For example, a number
of functions used to fine-tune the long-range plan were developed in this way. One such
function identified for a particular week candidate activities scheduled in later weeks
which could be moved earlier to compensate for activities which had to be removed from
the schedule at the last minute. Also, the ability to store and restore scheduling commit-
ments in files was first implemented informally and was subsequently used to track sched-
uling decisions until SPIKE’s ASSIST database tracking system was completed. A number
of useful graphical displays and plots were also developed in this manner, all of which
highlights the importance of good communications between developers and users, and a
certain flexibility in the development schedule to permit timely response to user requests.

While following a non-classical development methodology, we nonetheless paid careful
attention to such classic risk management factors as configuration control and testing.
Developers use code management tools (i.e. Unix rcs) to prevent uncoordinated changes.
Building, testing and installing the software is automated with software tools to the great-
est extent possible to help detect problems before delivery to the users and to minimize the
chance for human errors — indeed, Transformation even incorporates a separate expert
system to perform its own testing (Gerb 1991b). Procedures and tools to deliver software
changes on a very short timescale (days to hours) are also essential.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 22

6.0 Operational Experience

HST science operations is divided into “cycles” in which proposals are solicited from the
astronomical community, selected, scheduled and executed. In the long term, cycles will
consist of about 1 year of HST observing. Early HST operations consisted of two special
phases: “Orbital Verification” (OV), which assessed the basic capabilities of the telescope
and instruments, and “Cycle 0” observations, which contain a mix of Science Verification
(SV) and Guaranteed Time Observer (GTO) observations. OV ended in November 1990,
and Cycle 0 ended in June 1991. The Cycle 1 observing era mixed GTO observations with
the “General Observer” (GO) proposals from the astronomical community at large.
Cycle 1 ended in July 1992, and is being followed by the Cycle 2 observations, etc.

The SPIKE system was first used to support HST scheduling for Cycle 0. The timeline for
SV observations was established by NASA. The STScI used SPIKE to verify this timeline
and to schedule GTO observations during weeks when time was available. Scheduling of
these proposals in Cycle 0 used SPIKE in an interactive mode: planners would display indi-
vidual proposals on timeline displays and choose times of high suitability for observa-
tions. Various automatic scheduling tools were sometimes used in conjunction with
making manual commitments. Scheduling of early Cycle 1 proposals has also been largely
interactive with little use of the high-level, automated schedulers. The main value of SPIKE
in this mode was the identification of problems with proposals and the assignment of
observations to feasible, but not necessarily optimal, weeks.

When used on actual GTO and GO proposals, Transformation and SPIKE reported large
numbers of diagnostic messages. Initially, many problems were due to an incomplete
understanding of how to best present complex observations to SPSS. The frequency of
problems allowed us to effectively prioritize work in determining requirements and imple-
menting the code. A significant number of problems uncovered by SPIKE and Transforma-
tion were due to an inadvertent specification by the proposer of inconsistent requirements
in the proposal. Although the PEP system performs syntactic checking on proposal infor-
mation, Transformation and SPIKE are the first systems that can detect problems related to
planning and scheduling. (In particular, accurate instrument overhead times and orbital
viewing conditions are calculated by Transformation and these can reveal problems with
the proposal.) We are currently investigating how to incorporate such checks in PEP and
RPSS. Not only will this provide proposers with immediate feedback on certain classes of
problems, but it will also reduce the delays in the scheduling process due to late proposal
modifications.

We originally anticipated that long term schedules covering 6-12 months duration would
be maintained beginning with Cycle 0. However true long-term planning began late in
Cycle 1 with schedules of approximately 3 months duration and year-long schedules were
first generated operationally beginning with Cycle 2. This was not due to any inherent lim-
itation in the software (test schedules of a year duration had been generated well before
launch). It was primarily due to a much larger than anticipated rate of change of proposals.
Prior to launch, ≤ 10% of the proposals were expected to change after submission,
whereas the actual rate is nearly 100%. Many proposals have been revised several times. A
substantial portion of this can be attributed to the spherical aberration of the HST mirror

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 23

and other unexpected behaviors of the instruments and spacecraft. Another factor is that
the HST and major elements of the ground system are designed for fully pre-planned
observations with little capability to inject changes late in the scheduling process. A
change to a proposal can therefore often require a repeat of the entire scheduling process,
wasting much if not all of the earlier work. Tracking multiple revisions of proposals and
their scheduling and execution status also requires substantial effort. Our recommendation
to developers of future systems with requirements similar to HST would be to build in the
expectation of change from the outset and to carefully examine factors in the design which
are sensitive to a high rate of change. We realize that such flexibility will increase the ini-
tial cost of a system, but it can significantly reduce the lifecycle maintenance and opera-
tional costs. A further discussion of the HST experience can be found in Miller and
Johnston (1991).

7.0 Application of SPIKE to Other Astronomical Scheduling
Problems

SPIKE has been adapted to schedule a variety of astronomical scheduling problems (see
Table 2). Of these, two are in or near flight operations (in addition to HST), while several
others are in the prototype or planning phases. The experience of customizing SPIKE for
other types of problems has been actively sought during SPIKE development: each case
provided feedback on the approach, and led to improvements from one version to the next.

The adaptation of SPIKE for these problems demonstrates the flexibility of the SPIKE
scheduling framework. As indicated above, SPIKE was designed so that new tasks and con-
straints can be defined without changing the basic framework. For ASTRO-D (Isobe et al.
1993) and XTE (Morgan 1992), SPIKE is operated in a hierarchical manner, with long-
term scheduling first allocating observations to weeks much as they are for the HST prob-
lem (and with similar types of long-term constraints and preferences). Then each week is
scheduled in detail, subject to the detailed minute-by-minute constraints of low earth orbit
operation. The major changes required to implement short-term scheduling were:

1. A new type of task that can have variable duration depending on when it is scheduled,
and which can be interrupted and resumed when targets are occulted by the Earth or the
satellite is in the radiation belt (i.e. task preemption).

2. New classes of short-term scheduling constraints which more precisely model target
occultation, star tracker occultation, ground station passes, entry into high radiation
regions, maneuver and setup times between targets, etc.

3. An interface between different hierarchical levels, by which a long-term schedule con-
strains times for short-term scheduling and conversely.

4. A post-processor which examines short-term schedules for opportunities to extend task
durations and thus utilize any remaining small gaps in the schedule to increase effi-
ciency.

All of the general constraint combination and propagation mechanisms (Section 2.0), and
the CSP toolkit (Section 3.0) and scheduling search techniques (Section 4.0), apply

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 24

directly to both long-term and short-term scheduling. Figure 4 shows the SPIKE CLIM
user interface displaying an ASTRO-D long-term schedule. Figure 5 shows a portion of
the high-resolution PostScript plot output for a SPIKE short-term schedule for ASTRO-D.
Only one day of a 7-day schedule is shown. Note that several observations are broken to fit
around earth blockages or radiation belt passages and so are taken in multiple segments.

Most of the effort required to apply SPIKE to the new problems was limited to the specific
domain modelling necessary, which typically involves computation related to the geome-
try of the satellite, Sun, target, and Earth. These problems can be expected to differ from
one satellite to another, and it is not surprising that different models are required. Some of
the modelling includes state constraints, although SPIKE does not perform explicit plan-
ning (cf. Muscettola et al. 1992).

EUVE is unusual in that it makes long (2-3 day) observations, in contrast to HST and
ASTRO-D which typically make numerous short (15-40 minute) observations. As a conse-
quence, EUVE is schedulable over year-long intervals without breaking the schedule into
hierarchical levels. One of the more interesting results from a comparison of search algo-
rithms for scheduling EUVE was that the SPIKE repair-based methods gained an extra 20

TABLE 2. Adaptations of SPIKE to various astronomical scheduling problems

Mission Status, scheduling mode, and location

HST Hubble Space Telescope. Spike operational since Oct 89, HST launch
Apr 90. Used for HST long-term scheduling at Space Telescope Science
Institute, Baltimore.

EUVE Extreme Ultraviolet Explorer. Spike operational since Apr 91, EUVE launch in
Jun 92. Used for one-year scheduling of pointed observations. Run by Center
for Extreme Ultraviolet Astrophysics, Univ. Calif., Berkeley.

ASTRO-D Operational since Nov 92, flight operations will begin following launch in
Feb 93. Spike will be used for long-term and short-term scheduling. Joint
Japan/US X-ray telescope mission run from the Institute of Space and Astro-
nautical Sciences in Japan (Isobe et al. 1993)

XTE X-ray Timing Explorer. Planned for use following launch in 1994. Spike would
schedule both long-term and short-term. XTE will be run from the GSFC XTE
Science Operations Center (Morgan 1992).

AXAF Advanced X-Ray Astronomy Facility. Prototype developed 1990 as part of
successful science operations center proposal. Under consideration for both
science and mission scheduling.

ROSAT Roentgen Satellite. Prototype developed 1992 for feasibility evaluation for
operational X-ray satellite. Dual long-term/short-term scheduling mode. Ger-
man Space Operations Center, Munich.

IUE International Ultraviolet Explorer. Prototype developed 1988 for evaluation of
Spike framework. Scheduling mode was 6-months of European half-shifts,
optimized for target coverage (Johnston 1988b).

Ground-
based

Prototypes developed in 1988–1992 to demonstrate feasibility. Dual mode:
long-term scheduling for night allocation, short-term scheduling for exposure
scheduling within a night. Telescopes included ESO (European Southern
Observatory) and CFHT (Canada-France-Hawaii Telescope), as well as
hypothetical Automatic Photometric Telescope (APT). Feasibility of coordi-
nated ground- and space-based scheduling has also been demonstrated
(Johnston 1988c).

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 25

FIGURE 4. ASTRO-D long-term schedule generated with Spike: a view of the CLIM user interface on
a six month schedule. The different panes provide visibility into the list of available observations
(upper left), frequently-used commands (upper right), and provide a graphical view of the a single
observation, including preferences (i.e. suitability function values), current assigned value, observing
efficiency, constraint conflicts, and total resource utilization (lower pane), all displayed here over about
a 5-month period. Many of the objects on the screen are CLIM “presentations” and are thus mousable
by the user.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 26

Spike STScI (short-term scheduling) 07-Dec-1992 12:48:27.0, p. 1

 56 tasks, 46 assigned, 0 assigned with conflicts exp time: 3.959d, overhead 0.110d, efficiency: 56.55%
 mean preference: 50.61 mean conflicts: 0.00 summed preference: 2328 summed conflicts: 0
 scheduled duration 5.30 days, min duration 4.98 days, gaps 1.70 days
70-OPH RA: 270.750 (18h 03m 0.0s) Dec: 2.517 (2d 31m 1s) Exp. time 2000 sec Priority: 2

Start: 26Feb92 00h00m (0), dur: 0.02d, exp time 2100s (req 2000s), effic 1.00, #confl:0, pref:82.00 pref/max: 0.90

0.0
0.5
1.0
1.5

2100s OH: 789s

NGC931-NUM2 RA: 36.325 (2h 25m 18.0s) Dec: 31.083 (31d 04m 59s) Exp. time 2000 sec Priority: 1
Start: 26Feb92 00h50m (10), dur: 0.05d, exp time 1500s (req 2000s), effic 0.33, #confl:0, pref:18.00 pref/max: 0.18

0.0
0.5
1.0
1.5

1736s OH: 90s

UX-ARI RA: 45.000 (3h 00m 0.0s) Dec: 20.000 (20d 00m 0s) Exp. time 6000 sec Priority: 1
Start: 26Feb92 02h30m (30), dur: 0.08d, exp time 4200s (req 6000s), effic 0.58, #confl:0, pref:35.00 pref/max: 0.92

0.0
0.5
1.0
1.5

6196s OH: 892s

NGC6624-NUM2 RA: 275.116 (18h 20m 27.8s) Dec: -30.388 (-30d 23m 17s) Exp. time 2000 sec Priority: 2
Start: 26Feb92 04h50m (58), dur: 0.02d, exp time 2100s (req 2000s), effic 1.00, #confl:0, pref:81.00 pref/max: 0.81

0.0
0.5
1.0
1.5

2060s OH: 870s

HR-1099-NUM4 RA: 53.555 (3h 34m 13.2s) Dec: 0.424 (0d 25m 26s) Exp. time 7000 sec Priority: 1
Start: 26Feb92 05h55m (71), dur: 0.13d, exp time 5100s (req 7000s), effic 0.45, #confl:0, pref:22.00 pref/max: 0.59

0.0
0.5
1.0
1.5

7058s OH: 882s

1746-37-NGC6441 RA: 266.702 (17h 46m 48.5s) Dec: -37.038 (-37d 02m 17s) Exp. time 3000 sec Priority: 1
Start: 26Feb92 09h35m (115), dur: 0.02d, exp time 2100s (req 3000s), effic 1.00, #confl:0, pref:70.00 pref/max: 0.97

0.0
0.5
1.0
1.5

3446s OH: 33s

LILLER-1 RA: 262.529 (17h 30m 7.0s) Dec: -33.356 (-33d 21m 22s) Exp. time 2000 sec Priority: 3
Start: 26Feb92 11h05m (133), dur: 0.02d, exp time 2100s (req 2000s), effic 1.00, #confl:0, pref:90.00 pref/max: 0.90

0.0
0.5
1.0
1.5

2194s OH: 74s

1820-30-NUM3 RA: 275.000 (18h 19m 60.0s) Dec: -30.000 (-30d 00m 0s) Exp. time 14000 sec Priority: 3
Start: 26Feb92 11h45m (141), dur: 0.21d, exp time 9900s (req 14000s), effic 0.54, #confl:0, pref:33.00 pref/max: 0.89

0.0
0.5
1.0
1.5

11379s OH: 162s

GX339-4-NUM2 RA: 254.758 (16h 59m 1.9s) Dec: -48.719 (-48d 43m 8s) Exp. time 9000 sec Priority: 3
Start: 26Feb92 17h25m (209), dur: 0.10d, exp time 6300s (req 9000s), effic 0.70, #confl:0, pref:43.00 pref/max: 0.70

0.0
0.5
1.0
1.5

7068s OH: 129s

TERZAN-1 RA: 263.146 (17h 32m 35.0s) Dec: -30.438 (-30d 26m 17s) Exp. time 2000 sec Priority: 3
Start: 26Feb92 20h45m (249), dur: 0.02d, exp time 2100s (req 2000s), effic 1.00, #confl:0, pref:91.00 pref/max: 0.91

0.0
0.5
1.0
1.5

2120s OH: 36s

1755-33 RA: 268.750 (17h 55m 0.0s) Dec: -33.000 (-33d 00m 0s) Exp. time 6000 sec Priority: 2
Start: 26Feb92 21h25m (257), dur: 0.08d, exp time 4200s (req 6000s), effic 0.64, #confl:0, pref:43.00 pref/max: 0.98

0.0
0.5
1.0
1.5

4751s OH: 75s

36-OPH RA: 258.075 (17h 12m 18.0s) Dec: -26.517 (-26d 31m 1s) Exp. time 2000 sec Priority: 2
Start: 27Feb92 00h00m (288), dur: 0.02d, exp time 2100s (req 2000s), effic 1.00, #confl:0, pref:90.00 pref/max: 0.90

0.0
0.5
1.0
1.5

3197s OH: 54s

00h 06h 12h 18h 00h
92.057
 2/26

92.058
 2/27

FIGURE 5. An example of Spike output on short-term scheduling of astronomical observations.
Shown is a 24-hour portion of a 7-day schedule. The start-time suitability for each exposure is plotted
as the upper graph, with interruptions due to target blockage by the earth and by satellite passage
through high-radiation regions. The available exposure intervals are shown below as open bars, which
are filled in to indicate the actual scheduled times. Some of the observations can be fit within one orbit;
others must be interrupted and thus span several orbits.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 27

days of observing time in a year, when compared to the best incremental scheduling
approach.

8.0 Summary

The SPIKE scheduling system has supported NASA’s Hubble Space Telescope since
launch and is integrated with a large and complex spacecraft ground system. The concept
of suitability functions used in SPIKE makes it possible to efficiently represent the many
factors which are important in real-world scheduling decisions. A powerful multistart sto-
chastic repair technique is used to generate schedules. SPIKE’s flexibility has been demon-
strated by adapting it for several other spacecraft missions and ground-based observatories
and by integrating long- and short-term scheduling at different levels of abstraction in the
same constraint representation and search framework.

References
Adorf, H.-M., 1990, “The Processing of HST Observing Programs”, Space Telescope European

Coordinating Facility Newsletter 13, 12—15.

Adorf, H.-M., and Johnston, M. 1990, “A Discrete Stochastic ‘Neural Network’ Algorithm for Constraint
Satisfaction Problems”, Proceedings of the International Joint Conference on Neural Networks,
(Piscataway, NJ: IEEE), Vol III, 917—924.

Allen, J. F. 1983. “Maintaining Knowledge About Temporal Intervals.” Commun. Assoc. Comput. Machin.
26: 832—843.

Cheng, Y., Kashyap, R.L. 1988. “An Axiomatic Approach for Combining Evidence from a Variety of
Sources.” Journal of Intelligent and Robotic Systems 1: 17—33.

Cox, R. T. 1946. “Probability, Frequency and Reasonable Expectation.” American J. Phys. 14: 1—13.

Dechter, R. 1986. “Learning while searching in constraint satisfaction problems.” Fifth National Conf.
Artificial Intelligence (AAAI 86), Philadelphia, Pennsylvania, 178—183.

Dechter, R. and Meiri, I. 1989. “Experimental evaluation of preprocessing techniques in constraint
satisfaction problems.” Proceedings of the Eleventh International Joint Conf. on Artificial Intelligence,
Detroit, Michigan (Morgan Kaufmann), 271—277.

Dechter, R. and Pearl, J. 1988. “Network-Based Heuristics for Constraint Satisfaction Problems.” Artificial
Intelligence 34: 1—38.

Fox, M. 1987. Constraint-Directed Search: A Case Study of Job Shop Scheduling. (Morgan Kaufmann: San
Mateo, CA).

Fox, M. and Smith, S. 1984. “ISIS: A Knowledge-Based System for Factory Scheduling.” Expert Sys. 1: 45.

Fox, M., Sadeh, N. and Baykan, C. 1989. “Constrained Heuristic Search.” Proc. 11th International Joint
Conf. on Artificial Intelligence, Detroit, MI 309—315.

Freuder, E. 1989. “Partial Constraint Satisfaction.” Proc. 11th International Joint Conf. on Artificial
Intelligence, Detroit, MI 278—283.

Gerb, A. 1991a. “Transformation Reborn: A New Generation Expert System for Planning HST Operations”,
Proceedings of the 1991 Goddard Conference on Space Applications of Artificial Intelligence, NASA
CP 3110, 283-295.

Gerb, A. 1991b. “The ‘Looker’: Using an Expert System to Test an Expert System.” Proc. 1991 World
Congress on Expert Systems, Orlando, Florida (Pergamon), 1005—1012.

Good, I. J. 1960. “Weight of Evidence, Corroboration, Explanatory Power, Information and the Utility of
Experiments” J. Royal Statist. Soc. 22: 319—331.

Good, I. J. 1968. “Corrigendum: Weight of Evidence, Corroboration, Explanatory Power, ...” J. Royal
Statist. Soc. 30: 203—203.

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 28

Hájek, P. 1985. “Combining functions for certainty degrees in consulting systems.” Int. J. Man-Machine
Studies 22: 59—76.

Hart, P., Duda, P. and Einaudi, M. 1978. “PROSPECTOR — a Computer-Based Consultation System for
Mineral Exploration.” Math. Geol. 10: 589.

Isobe, T., Johnston, M. D., Morgan, E. and Clark, G. 1993. “The Application of SPIKE to ASTRO-D
Mission Planning.” Proc. 2nd Astron. Data Analysis Software and Systems (ADASS), Boston, MA (in
press).

Jackson, R., Johnston, M., Miller, G., Lindenmayer, K., Monger, P., Vick, S., Lerner, R. and Richon, J.,
1988, “The Proposal Entry Processor: Telescience Applications for Hubble Space Telescope
Operations”, Proceedings of the 1988 Goddard Conference on Space Applications of Artificial
Intelligence, NASA CP 3009, 197—212.

Johnston, M. 1988a. “Automated Telescope Scheduling.” in Coordination of Observational Projects in
Astronomy, ed. C. Jaschek and C. Sterken (Cambridge Univ. Press: Cambridge), 219—226.

Johnston, M. 1988b. “Artificial Intelligence Approaches to Spacecraft Scheduling.” Proc. ESA Workshop on
Artificial Intelligence Applications for Space Projects, ESTEC (Noordwijk, Holland) 5—9.

Johnston, M. 1988c. “Automated Observation Scheduling for the VLT.” Proc. ESO Conf. on Very Large
Telescopes and their Instrumentation, ESO (Garching, Germany) 1273—1282.

Johnston, M. 1989a. “Reasoning with Scheduling Constraints and Preferences.” Space Telescope Science
Institute SPIKE Tech. Report 1989-2.

Johnston, M. 1989b. “Knowledge-Based Telescope Scheduling.” in Knowledge-Based Systems in
Astronomy, ed. A. Heck and F. Murtagh (Springer-Verlag: Heidelberg), 33—49.

Johnston, M. 1990. “SPIKE: AI Scheduling for NASA’s Hubble Space Telescope.” Proc. 6th IEEE Conf. on
AI Applications, Santa Barbara, CA 184—190.

Johnston, M. D. and H.-M. Adorf 1989. “Learning in Stochastic Neural Networks for Constraint Satisfaction
Problems.” NASA Conf. on Space Telerobotics, 31 Jan — 2 Feb 1989, Pasadena, CA.

Johnston, M., and Adorf, H.-M. 1992, “Scheduling with Neural Networks — The Case of Hubble Space
Telescope”, Computers and Operations Research 19, 209—240.

Johnston, M., and Minton, S. 1993: “Analyzing a Heuristic Strategy for Constraint-Satisfaction and
Scheduling.” Current volume.

Kumar, V. 1992. “Algorithms for Constraint Satisfaction Problems: A Survey.” Artificial Intelligence
Magazine 13: 32—44.

Lucks, M. 1992. “Detecting Opportunities for Parallel Observations on the Hubble Space Telescope.”
Goddard Conference on Space Applications of Artificial Intelligence, Goddard Space Flight Center,
Greenbelt, Maryland.

Miller, G., Rosenthal, D., Cohen, W. and Johnston, M. 1987. “Expert Systems Tools for Hubble Space
Telescope Observation Scheduling.” Telematics and Informatics 4: 301—311.

Miller, G., Johnston, M., Vick, S., Sponsler, J. and Lindenmayer, K. 1988. “Knowledge-Based Tools for
Hubble Space Telescope Planning and Scheduling: Constraints and Strategies.” Telematics and
Informatics 5: 197—212.

Miller, G., 1989, "Artificial Intelligence Applications for Hubble Space Telescope Operations", in
Knowledge Based Systems in Astronomy, ed. F. Murtagh and A. Heck, (Berlin: Springer Verlag), 5—32

Miller, G. and Johnston, M., 1991, “A Case Study of Hubble Space Telescope Proposal Processing, Planning
and Long-Range Scheduling”, Proc. Conf. Computing in Aerospace 8 (AIAA), 1—13.

Minton, S., Johnston, M., Philips, A. and Laird, P., 1990, “Solving Large-Scale Constraint Satisfaction and
Scheduling Problems Using a Heuristic Repair Method”, Proceedings of the Eighth National
Conference on Artificial Intelligence, (Menlo Park, CA: AAAI Press), 17-24.

Minton, S., Johnston, M., Philips, A. and Laird, P. 1992. “Minimizing Conflicts: A Heuristic Repair Method
for Constraint Satisfaction and Scheduling.” Artificial Intelligence ?: ?

Morgan, E. 1992. “Evaluation of SPIKE for XTE.” MIT Center for Space Research Tech. Report

Muscettola, N. 1992. “Scheduling by Iterative Partition of Bottleneck Conflicts.” Carnegie Mellon
University Tech. Report CMU-RI-TR-92-05.

Muscettola, N., Smith, S. F., Cesta, A. and D’Aloisi, D. 1992. “Coordinating Space Telescope Operations in
an Integrated Planning and Scheduling Architecture.” IEEE Control Systems Magazine 12(2).

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. (Morgan
Kaufmann: San Mateo, CA).

Final Draft (#3): SPIKE (Johnston & Miller) 1/14/93 29

Rit, J. F. 1986. “Propagating Temporal Constraints for Scheduling.” Proc. 5th National Conf. on Artificial
Intelligence, 383—386.

Rosenthal, D., Monger, P., Miller, G. and Johnston, M. 1986. “An Expert System for the Ground Support of
Hubble Space Telescope.” Proc. 1986 Goddard Conf. on Space Applications of Artificial Intelligence,
Goddard Space Flight Center, Greenbelt, Maryland

Sadeh, N. 1991. “Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling.” CMU Tech.
Report CMU-CS-91-102.

Sadeh, N. and Fox, M. 1988. “Preference Propagation in Temporal/Capacity Constraint Graphs.” Carnegie
Mellon University Tech. Report CMU-RI-TR-89-2.

Shapiro, R. D. 1980. “Scheduling coupled tasks.” Nav. Res. Logist. Q. 27: 489—479.

Shortliffe, E. 1976. Computer-Based Medical Consultation: MYCIN. (American Elsevier: New York).

Smith, S., Fox, M. and Ow, P. S. 1986. “Constructing and Maintaining Detailed Production Plans:
Investigations into the Development of Knowledge-Based Factory Scheduling Systems.” Artificial
Intelligence Magazine 7(4): 45—61.

Sponsler, J., and Johnston, M., 1990, “An Approach to Rescheduling Activities Based on Determination of
Priority and Disruptivity”, Telematics and Informatics 7, 243-253.

Sycara, K., Roth, S., Sadeh, N. and Fox, M. 1991. “Resource Allocation in Distributed Factory Scheduling.”
IEEE Expert 6(1): 29—40.

Zweben, M., Davis, E. and Gargan, R. 1990. “Anytime Rescheduling.” Proc. DARPA Workshop on
Innovative Approaches to Planning and Scheduling,

