
Software Development and Open User Communities

P. Forbrig and A. Dittmar

University of Rostock, Department of Computer Science,
Albert-Einstein-Str. 21, D-18051 Rostock, Germany

Abstract. The request for software systems which can be used by different groups of people
under different conditions asks for support by new modularization principles on the modeling
level.
This paper follows the idea of combining several submodels, as e.g. task and object models, to
specify different views on software systems and their situations of use as known from model-
based approaches. But further, a separate specification of the general aspects of a model and the
constraints imposed by concrete situations is suggested.
At the example of the adapted action model this specification strategy is deeper explained and it
is shown how it can contribute to a more flexible modeling for open user communities.

1. Introduction

Human beings apply interactive software systems to fulfil tasks. In this sense, software is nothing
else but a tool for us. We use it like a hammer or a mechanical machine to achieve the goals set
by the appropriate tasks. Thanks to the development of new interactive techniques, the way a user
can perform his task has become less restrictive. Thus, window systems and direct manipulation
allow him to execute several subtasks concurrently.
“There is no point in building a system that is functionally correct or efficient if it doesn't support
user's tasks or if users cannot employ the interface to understand how the system will achieve
task objects” (Duke & Harrison, 1995). Model-based approaches like (Paterno 2000), (Puerta,
Cheng, Ou & Min, 1999) or (Wilson, Johnson, Kelly, Cunningham & Markopoulos, 1993)
follow this idea. Task-based and object-oriented techniques are used to derive, for example, user
interfaces the user can cope with.
In this paper, it is assumed that a software system has to support tasks in a certain area of
application which can be specified by a task model. An example of a task model describing the
preparation a meal is given in Fig.1. It demonstrates that task modeling is not restricted to any
kind of tasks or tools.
We claim, however, that the existing models are to rigid to specify all requirements of interactive
systems for open user communities. Besides different user characteristics different constraints of
the user’s actual environment have to be considered. Has the user to perform a task alone or does
he work in a group? Is he disabled in a certain way? What is his standard of knowledge? Does the
user have a large screen or does he use a mobile phone to work with an INTERNET
connection?... The term specific situation of use refers to such questions.
Let us have a look at the simple example in Fig.1. Basically, the model allows us to prepare
potatoes, vegetable and (most important) meat concurrently. There are only general constraints
coming from the field of application like washing and tenderizing the meat before roasting it.
But, the model neglects individual preferences or abilities as well as specific constraints in the
actual environment. Imagine, for example, that a person can handle at most two pots or pans at

the same time. He could prepare the potatoes in one pot, steam the vegetable in a pan and, then,
roast the meat ’immediately afterwards’ in the same pan to get a hot meal, nevertheless.

...

’Prepare a meal’

’Prepare potatoes’ ’Prepare vegetable’ ’Prepare meat’

’Wash
vegetable’

’Cut
vegetable’

’Steam
vegetable’

’Wash
meat’

’Tenderize
meat’

’Roast
meat’

a)

b)
’Prepare a meal’ = ’Prepare potatoes’ | ’Prepare vegetable’ | ’Prepare meat’
’Prepare potatoes’ = ...
’Prepare vegetable’= (’Wash vegetable’ | ’Cut vegetable’) ; ’Steam vegetable’
’Prepare meat’ = ’Wash meat’ ; ’Tenderize meat’ ; ’Roast meat’

Figure 1. Preparation of a meal

Software design for open user communities asks for support by new modularization principles on
the model level. We argue that a separation between kernel models which describe the general
requirements imposed by the area of interest and additional models is a step in the requested
direction. An additional model can be seen as an extension of the appropriate kernel model
adapting it to a specific situation of use.
Before in Sect.3 this more flexible specification process is described Sect.2 gives a proposal to
modify a ‘classical’ task model allowing model adaptations. The paper is closed by a summary.

2. From ‘Classical’ Task Models to Model Adaptations

A ‘classical’ or simple task model consists of two parts as to be seen in the abstract example of
Fig.2. The hierarchical description H decomposes the task T into subtasks Ti until the level of
basic tasks. To each basic task Ti an operation opi is assigned which has to be executed in order to
fulfill Ti. The task tree is the most stable part of the task model. It gives an impression what has
to be done whereas the sequential description S specifies the order in which the operations can be
performed to fulfil the whole task. Therefore, in S the task T is considered as a process of a
process algebra in the usual way of task-based approaches (e.g. (Paterno, 2000)). S is built up by
two types of equations. An equation of the first type describes temporal constraints between those
subtasks which have a common parent node in the task tree (equT, equT1, and equT2 in Fig.2).
Equations of the second type define the above mentioned mapping between basic tasks and
operations of the set OP (equT11, equT12, equT21, and equT22 in the example). For reasons of brevity
equations of the last type as well as operations are omitted later on. Temporal dependencies
between subtasks can be formulated by well-known operators as used e.g. in (Johnson, Wilson &
Markopoulos, 1991). In Fig.2 the temporal operators for parallel (|) and sequential execution (;)
of subtasks were applied. Thus, T can be fulfilled by executing one of the following 6 sequences
of basic tasks: 〈T11,T12,T21,T22〉, 〈T11,T21,T12,T22〉, 〈T11,T21,T22,T12〉, 〈T21,T11,T12,T22〉,
〈T21,T11,T22,T12〉, 〈T21,T22,T11,T12〉.

S={ equT: T = T1 | T2 ,

 equT1: T1 = T11 ; T12 ,

 equT2
: T2 = T21 ; T22 ,

 equT11
: A11 = op1 ,

 equT12
: T12 = op2 ,

 equT21
: T21 = op3 ,

 equT22
: T22 = op4 }

T

T1 T2

T21 T22

OP = {op1, op2, op3, op4 }

H:

T12 T11

In this paper a simple task model is taken to describe the kernel task model. Its task tree
determines which subtasks can be performed in general. The sequential description contains only
those temporal relations which come from the area of application. In Fig.2, T1 and T2 could be
interpreted as tasks decomposed into further subtasks concerning the input of some data to the

 Figure 2. A simple task model for the abstract task T

software system (T11 and T21) and the calculation of the appropriate results (T12 and T22). Further
it is known that the execution of T12 and T22 takes a long time (even with the best processor).
Obviously, T11 has to be performed before T12 just as T21 before T22. But, there are no temporal
constraints between T1 and T2. A user interface derived from this task model could consists of
two windows W1 and W2 in parallel, W1 reflecting T1, W2 reflecting T2. In both windows the
calculation is disabled until all input data are given.
Considering open user communities there are also changing constraints arising from the specific
situation of use. In our example, a user could work with a small device which can display only
one of the windows W1 and W2 at the same time. It is blocked until a calculation is finished. The
task model could be adapted to this situation by saying that T1 has to be executed for enabling T2

because T1 has a higher priority, for example. (We admit this is only a scholarly example but we
hope it is sufficient to explain the idea.)

Figure 3. An adaptation of Fig.2

In our approach, a kernel task model is adapted to a specific situation of use by additional
temporal constraints noted as equations similar to them in the sequential description of the kernel
model. That means that the task hierarchy itself is considered as stable but the set of possible
execution sequences can be restricted. The possibility of disabling some of optional subtasks is
also included. Fig.3 shows an adaptation of the kernel model in Fig.2.
The above mentioned situation is reflected in the specific constraint equC which restricts the 6
possible execution sequences to only one: (〈T11,T12,T21,T22〉).

S = { equT: T = T1 | T2,
equT

1
: T1 = T11 ; T12,

equT
2
: T2 = T21 ; T22 }

equc: C = T1;T2

part of the
kernel model

specific
constraints

Fig.4 illustrates an adapted model for the introductory example (a person could handle 2 pots or
pans at most). The temporal operator 〈〈 〉〉 is used to specify the relation (‘Roast meat’
immediately afterwards ‘Steam vegetable’) because 〈〈Ti〉〉 means that the execution of subtask Ti

has not to be disturbed by any other subtask of the task model.

Figure 4. An adaptation of Fig.1

3. A More Flexible Specification of Software

It is widely accepted that the use of different models during the software development leads to
more matured systems because they can catch different aspects of the problem space. Most
model-based methods distinguish between a model of the existing task situation and the
envisioned one. These models are further subdivided into submodels describing the tasks (task
model), the environment (business object model) and the users (user model). They support the
derivation of a design model of the interactive system. Deeper discussions of this topic can be
found in (Forbrig, 1999).

Figure 5. Ontology of the model-based approach

Although such approaches contribute to a flexible specification of software the submodels itself
are often to rigid to describe different user needs. Consequently, we are often confronted with

 S = { Prep. meal = Prep. potatoes | Prep. vegetable | Prep. meat,

 Prep. potatoes = ... ,
 Prep, vegetable = (Wash vegetable | Cut vegetable) ; Steam vegetable,
 Prep. meat = Wash meat ; Tenderize meat ; Roast meat }

equc: C = 〈〈Steam vegetable ; Roast meat〉〉

Kernel Models

User ModelBusiness-Object
Model

Model of the Interactive System
User Interface Application Core

Task
Model

Model of
Specific

Constraints

specifications which are either to restrictive for single users or give them too much freedom
within the application context.
This paper proposes to separate a submodel into a kernel part and additional ones to allow more
flexible specifications. Whereas the kernel part is stable or static (as far as you can consider a
model as stable) an additional part depends on the specific situation of use. The general idea of
the approach is illustrated in Fig.5. As to be seen the model of the interactive system is derived
from the kernel submodels as usual. But in the kernel models only the general constraints given
by the field of application are specified. Models of specific constraints can adapt a kernel model
to a specific situation of use and change the model of the interactive system dynamically.

 4. Summary

Software systems for open user communities have to reflect the different needs of users. Hence, it
is reasonable to distinguish even in the specification phase between two parts of description.
Firstly, a general one which is valid in all situations of use. Secondly, a specific one which takes
into consideration the characteristics of a single user or group of users.
In Sect.2 a proposal of adapting task models was made. Models of specific temporal constraints
adapt a kernel model by restriction without changing the nature of it completely. The idea is
based on process algebras which allow a very precise specification of temporal relations. A more
detailed explanation is given in (Dittmar 2000). We believe that similar mechanisms of
adaptation can also be found for the other submodels within a model-based approach.
Of course, there are many open questions. Sometimes it can be difficult to categorize a constraint
as general or specific, for example. Nevertheless, we believe that the principle of adaptation can
support a more flexible software development.

5. References

Duke, D. J., Harrison, M. D.: Mapping user requirements to implementations. Software
Engineering Journal, Vol. 1 (1995) 13-20

Johnson, P., Wilson, S., Markopoulos P.: A framework for task based design (1991)

Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer Verlag,
2000

Puerta, A., Cheng, E., Ou, T., Min, J.: MOBILE: User-Centred Interface Building. In:
Proceedings of the ACM Conf. on Human Aspects on Computing Systems CHI’99. ACM Press,
New York (1999) 426-433

Wilson, S., Johnson, P., Kelly, C., Cunningham, J., Markopoulos, P.: Beyond hacking: A model
based approach to user interface design. In: Alty, J.L., Diaper, D., Guest, S. (eds.): People and
Computers VIII, Proceedings of the HCI’93 Conference (1993), 418-423

Dittmar, A: More precise descriptions of temporal relations within task models, ICSE2000,
Workshop Design Specification and Verification of Interactive Systems, 2000, LNCS 1946,151-
168

Forbrig, P.: Task- and object-oriented development of interactive systems - How many models
are necessary?. Proc. DSVIS 99, Braga, 1999, 225-237

