
PDMC 2004 Preliminary Version

Load Balancing Parallel Explicit State Model
Checking

Rahul Kumar 1 and Eric G. Mercer 2

Verification and Validation Laboratory
Department of Computer Science

Brigham Young University
Provo, USA

Abstract

This paper first identifies some of the key concerns about the techniques and algo-
rithms developed for parallel model checking; specifically, the inherent problem with
load balancing and large queue sizes resultant in a static partition algorithm. This
paper then presents a load balancing algorithm to improve the run time performance
in distributed model checking, reduce maximum queue size, and reduce the number
of states expanded before error discovery. The load balancing algorithm is based
on generalized dimension exchange (GDE). This paper presents an empirical anal-
ysis of the GDE based load balancing algorithm on three different supercomputing
architectures—distributed memory clusters, Networks of Workstations (NOW) and
shared memory machines. The analysis shows increased speedup, lower maximum
queue sizes and fewer total states explored before error discovery on each of the
architectures. Finally, this papers presents a study of the communication overhead
incurred by using the load balancing algorithm, which although significant, does
not offset performance gains.

1 Introduction

Explicit state model checking is a methodology to verify properties in a design
through reachability analysis. The practical application of model checking,
however, is hindered by the state explosion problem [5]. State explosion is a
result of enumerating the state space of a concurrent system using interleaving
semantics where each concurrently enabled transition must be considered sep-
arately in any given state. Several techniques exist to address aspects of the

1 Email: rahul@cs.byu.edu
2 Email: egm@cs.byu.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Kumar and Mercer

state explosion problem. Symmetry and partial order reduction exploit struc-
ture and concurrency to reduce the number of states in the reachable state
space that must be explored to complete the model checking problem [3][6].
Bit state hashing (supertrace) and hash compaction reduce the cost of storage
states in the reachable state space [7][13]. All of these techniques enable the
verification of larger problems, but in the end, are restricted to the number
of states that can be stored on a single workstation. If the model checking
algorithm exhausts resources on the workstation it is running on before com-
pletion of the verification problem, then the problem must be altered in some
way to reduce the size of its reachable state space until it can fit into the
available resources.

The goal of distributed model checking is to combine the memory and
computational resources of several processors to enhance state generation and
storing capacity. The seminal work in distributed model checking presented by
Stern and Dill creates a static partition of the reachable state space during ex-
ecution [14]. The workload observed as a function of time and communication
overhead on each processor depends critically on how the states are partitioned
between the verification processes. Several techniques such as caching (sibling
and state), partial order reduction, symmetry reduction, different partition
functions and dynamic partitioning have been explored in the past to reduce
communication overhead and create perfect state distributions [11][10]. Even
with the use of the above mentioned techniques, creating a perfect partition
for any given problem while maintaining equally loaded processors requires a
priori knowledge of the state space, which is the very problem we are trying
to solve.

This paper presents an empirical study of the seminal static partition al-
gorithm showing the level of load imbalance, regardless of the chosen static
partition, that exists between the processes on different supercomputing plat-
forms. The imbalance results in high idle times in several processors, as well
as extremely large search queues. The high idle times indicate that many pro-
cessors are not contributing to state enumeration, and the large search queues
lead to premature termination by exhausting memory resources. Furthermore,
the imbalance in the partition slows down error discovery since states leading
to errors can be buried deep in the search queues. The paper further presents
a load balancing algorithm based on generalized dimensional exchange(GDE)
to mitigate idle time at the expense of additional communication overhead.
Load balancing the state partition algorithm improves speedup in distributed
model checking despite the increased communication. In addition, it reduces
maximum queue sizes by up to 10 times, and it reduces the number of states
enumerated before error discovery on average. These effects are shown in em-
pirical studies on three different supercomputing architectures: Network of
Workstations(NOW), Clusters and Shared memory architectures.

2



Kumar and Mercer

2 Models and Platforms

Empirical analysis of this work is performed to better understand the per-
formance of the static partitioning algorithm and other techniques using par-
allel Murϕ [9]. Testing is done and results are gathered on the following
platforms:

(i) IBM 1350 Linux Cluster which has 128 dual processor nodes with high
speed interconnect;

(ii) Network of workstations (NOW) with 100 Mbps interconnect; and

(iii) Marylou10 IBM pSeries 690 64 Power4+ processors @ 1.7 GHz 64 GB
total memory.

A major part of the testing is performed using the models located at the model
database in [1]. These models have been selected because they provide a large,
controllable, interesting and diverse set for testing. The selected models are
not representative of all types of problems, but they effectively capture our
general observations in studying the several problems.

3 Analysis of Distributed Model Checking Techniques

This section will first analyze the static partition algorithm and present the
problems encountered when using it. After the analysis, we discuss two ex-
isting techniques to solve these problems. Our results indicate that these
techniques are not very effective on the models and benchmarks used by us.

3.1 Queue Imbalance and Idle Time

The static partition algorithm enables the verification of larger models at a
much faster rate using several processors. Our further investigation of the
algorithm supports the conclusion that idle times during distributed verifica-
tion are high, and there is a high imbalance in the distribution of states across
the queues of the participating processors causing premature termination, de-
graded error discovery and large queue sizes. Figure 1(a) shows the sizes of
the queues as sampled at one second intervals for all processors during the en-
tire period of verification using 32 processors on the NOW architecture. The
interval sampling is implemented using the alarm and signal utilities avail-
able on most UNIX based systems. The horizontal axis represents time and the
vertical axis represents the number of states in the queue of a given processor.
The figure shows the imbalance in queue sizes, with many processors having
useful work to do only in the early part of the verification. During the latter
part of the verification, only 20% of the processors are active. These results
are consistent with recent work by Behrmann, [2] where the same imbalance
is observed.

Figure 1(b) displays the aggregate percentage of time that has been spent

3



Kumar and Mercer

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7
x 10

4

Time(s)

S
ta

te
s

Queue Occupancy for 32 nodes

0

10

20

30

40

50

60

CPU SG Idle

Pe
rc

en
ta

ge

Function

Aggregate Times for Static Partitioning Algorithm

(a) (b)

Fig. 1. This figure shows the high queue imbalance through time and time distri-
bution for the major functions using an IBM 1350 cluster. (a) Queue sizes for the
jordon model using 32 processors. (b) Aggregate times for all processors for major
functions in verification showing a large idle time.

on the major composite functions during verification for the atomix model.
The major composite functions are CPU, State generation(SG), and Idling.
CPU is time spent performing I/O operations and communication. State
generation time is defined to be the time spent processing states from the
queue and generating their successors. Idle time is the time spent waiting for
new states to be received because the processors search queue is empty. In this
state, the verification processor is still processing messages. The states in the
messages are discarded however, because they have been previously added to
the hash table. The figure demonstrates that after communication, idle time
dominates. In fact, almost a third of the total aggregate time is spent idling.
Similar results have been observed for other models of varying size and shape.

3.2 Partition Function

Idle time is a direct result of load imbalances. This is seen in experiments with
various hash functions and their effect on speedup. We have studied the effects
of the partition function on the distribution of states by implementing the
partition function various hash functions including several hash functions in
SPIN [8]. Figure 2(a) shows the queue distribution for 64 queues on the NOW
architecture using the single bit forward hash function from SPIN. Although
more processors remain active through the verification run when compared to
Figure 1(a), a significant number still become idle and remain idle for over half
the running time of the verification process. Figure 2(b) shows the same queue
distribution using a different bit mask for the same hash function taken from
SPIN. The distribution is extremely different even though all other parameters
have been maintained for both experiments. Similar results have been noticed
for other hash functions such as Jenkins forward hash function and dynamic
partitioning algorithms used by us [10]. These results indicate that to create
a perfect distribution of the states in the queues across all the processors

4



Kumar and Mercer

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time(s)

S
ta

te
s

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time(s)

S
ta

te
s

(a) (b)

Fig. 2. Queue imbalance for the atomix model using 64 processors and two different
hash functions from Spin on the NOW architecture.

and to then maintain that distribution through the entire verification process,
requires an a priori knowledge of the state space is required. This is the very
problem we are trying to solve in the first place.

3.3 State Cache

A technique to improve performance of distributed model checking is the use
of state caching to reduce the number of messages and hash lookups. Previous
work regarding state caching, to improve performance has been presented in
[11][4]. Our analysis indicates the presence of duplicate states in the same
message or in different messages being sent to other processors. This is due to
the fact that many states in the state space of the model can be reached by
different paths and from different states. To avoid this, a block of memory is
allocated on each processor to function as a direct mapped state cache. Only
states not present in the cache are forwarded to their owning processors.

Further investigation of the state cache shows that the decrease in the
number of messages is not significant once the cache size is over 1 KB in-spite
of high occupancy rates. This is due to low transition locality in using a large
number of processors in parallel verification. The average speedup that has
been observed by using a cache is constant but not very high. Speedups in the
region of 1.05 are gained relative to the static partitioning algorithm. Figure 3
shows the speedup achieved using a cache of 1 MB on the IBM 1350 Cluster.
The speedup realized due to the cache is offset by time spent looking up states
in the direct mapped state cache, as well as time spent inserting states into
the cache. This results in the cache not providing a significant improvement
in speedup, queue size or error discovery.

5



Kumar and Mercer

 0.94

 0.96

 0.98  1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0
 5

 10
 15

 20
 25

 30
 35

Speedup

P
rocessors

S
peedup using C

ache relative to S
tatic P

artitioning A
lgorithm

Jordon
A

tom
ix

Fig. 3. Speedup relative to the static partition algorithm obtained using a cache of
size 1 MB on IBM 1350 Cluster.

4 Methods

We introduce the concept of load balancing the queues to reduce aggregate
idle time in distributed model checking. Work in [12] describes a global load
balancing technique where all the processors involved in the state-space gen-
eration try to achieve a state of perfect equilibrium. In equilibrium, all pro-
cessors have an equal number of states in the queue in an effort to remove the
imbalance. Short periods of state generation are followed by a period where
the processors balance the queues with each other by exchanging queue infor-
mation and extra states in the queues. There are several drawbacks to this
method. First, there is too much communication overhead introduced in the
parallel model checking problem which itself is very communication intensive.
This causes the algorithm to not scale if the model or the number of pro-
cessors is increased significantly. Second, the user/verifier is responsible for
specifying the number of iterations after which a load balancing cycle should
occur (frequency). If the value selected is very small (high frequency) then the
communication overhead is extremely high and the effective speedup is very
low. On the other hand, if the value selected is large (low frequency) then
effective load balancing does not take place and the parallel verification pro-
cess behaves in the same manner as the static partition algorithm. Another
issue with the global load balancing algorithm is the amount of time incurred
waiting for all the processors to synchronize for load balancing. Consider a

6



Kumar and Mercer

P0

P1

P3

P2 P3

P7

P5

P4

P1

P6

n = 2

n = 3

n = 1

n = 0 P0

P2

P0 P1

P0

Fig. 4. Hypercube structure for 1 to 8 processors.

scenario of 4 processors P0, P1, P2 and P3. Let us suppose that P1, P2 and
P3 are ready for load balancing and have already initiated the load balanc-
ing phase. If in this situation P0 happens to be very heavily loaded inserting
states into its queue, P0 will be unable to enter the load balancing phase at
the same time as the other processors, causing the other processors to wait
until P0 has finished processing states/messages and enter the load balancing
phase.

We use Generalized Dimensional Exchange(GDE) for load balancing which
performs iterative load balancing among the involved processors by having
each processor equalize its workload with each dimensional neighbor [15][16].
Dimensional neighbors are calculated based on the topology selected for the
processors. Our GDE methodology groups processors in the verification pro-
cess into a hypercube like structure. Figure 4 shows the structure of a hy-
percube for 1 through 8 processors as well as the number of dimensions that
are created in each case. The GDE algorithm setup is similar to the edge
coloring problem where no two edges can be assigned the same color; thus,
if processors in a hypercube structure are colored with the same rules as the
edge coloring problem, there will be dlog(N)e colors that are needed, where N
is the number of processors. Each color can then be thought of as a dimen-
sion with a subset of the processors belonging to a particular dimension. This
network structure enables us to view the processors in an elegant manner and
implement algorithms that are more efficient communication.

In the GDE load balancing scheme, each node balances the workload (num-
ber of states in the queue) with its dimensional neighbors. In a network of 8
processors, processor P0 balances with processors P1, P2 and P4. During the
balancing stage, each processor can choose to balance the workload completely
so that each of the two queues have the same amount of work, or they can
choose to balance to some other point. The exchange parameter is defined
as the amount of workload to be shared between the two processors when
performing a load balancing operation. Work in [16] proves that the optimal

7



Kumar and Mercer

Algorithm: GDEBalanceQueues()
1: /∗ Method called by BFS/DFS every i iterations on each process ∗/
2: for AllDimensionalNeighbors do
3: n := getNextDimensionalNeighborID()
4: q := getLocalQueueSize()
5: s := sendQueueSizes(n, q)
6: return

Fig. 5. GDE load balancing algorithm from sending end.

Algorithm: HandleMessage(M, ID)
1: /∗ If a queue size is received from ID then need to load balance ∗/
2: /∗ Get queue size of neighbor from message M ∗/
3: qn = getQueueSize(M)
4: ql := getLocalQueueSize()
5: if ql > qn then
6: sendStates((ql − qn)/2, ID)
7: else
8: /∗ Receive happens in a non-blocking fashion ∗/
9: receiveStates((qn − ql)/2, ID)

10: return

Fig. 6. GDE load balancing algorithm on receiving end.

value for creating an equilibrium state in as few iterations as possible is 1
2
.

Figures 5 and 6 show the pseudo code for the algorithm. Every i iterations
where i is the balance frequency set by the user, the processor sends its current
queue size to it’s dimensional neighbors. On the receiving side, once a proces-
sor receives a queue size from a dimensional neighbor, the processor executes
the algorithm shown in Figure 6. If the workload on the local queue is higher
than the workload on the neighbor, then states are sent to the neighbor. If on
the other hand the workload is not higher, no action is taken and execution is
returned to state generation and communication procedures. Receiving states
from other processors happens implicitly and no blocking occurs. For our
testing purposes we set the exchange parameter to be one half and the bal-
ance frequency to be 1

1000
states. A balance frequency of 1

1000
means that load

balancing is initiated after 1000 states have been processed from a processor’s
queue, or if the processor’s queue is empty.

5 Results

Figure 7 shows the relative speedup of the GDE load balancing scheme relative
to the static partitioning algorithm(without cache) for the atomix and jordon

8



Kumar and Mercer

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0
 5

 10
 15

 20
 25

 30
 35

Speedup

P
rocessors

S
peedup R

elative to S
tatic P

artitioning A
lgorithm

jordon
atom

ix

Fig. 7. Speedup for the GDE scheme relative to the static partitioning algorithm
on the IBM 1350 Linux Cluster.

models using the IBM 1350 Linux Cluster. Apart from the higher speedup, we
can also see that the speedup curves are moving up as the number of processors
increases indicating that this algorithm scales to some degree. This is due to
the efficient communication patterns created by the N-dimension hypercube
of the network topology. Figure 8 shows the speedup of the GDE scheme
on the NOW architecture. We can see that the speedup achieved is higher
than the speedup achieved on the distributed memory cluster architecture of
Figure 7. Figure 9 shows the speedup of the same models and scheme on a
shared memory machine as described earlier. The speedup here seems to be
less than the speedup achieved on the other two architectures. The general
trend seems to be that the slower the interconnect between the processors, the
more effective the GDE load balancing scheme; thus, for the shared memory
architecture, where the interconnect is the fastest, we can see that the load
balancing is the least effective, to the point where it is detrimental. However
for the distributed memory architecture, the interconnect is faster than the
NOW architecture, but slower than the shared memory architecture: thus,
it provides the opportunity to the GDE scheme to increase the performance
and efficiency. On the other hand, the NOW architecture provides the slowest
interconnect and the best speedup results as seen in Figure 8. The observed
behavior and speedup pattern is an area for future research and study.

9



Kumar and Mercer

 1

 1.2

 1.4

 1.6

 1.8  2

 2.2

 2.4

 0
 2

 4
 6

 8
 10

 12
 14

 16

Speedup

P
rocessors

S
peedup R

elative to S
tatic P

artitioning A
lgorithm

atom
ix

dense
cache315142

queens8

Fig. 8. Speedup for the GDE scheme relative to the static partitioning algorithm
on NOW architecture.

Figure 10(a) shows the state of the queues every second after applying
the GDE load balancing algorithm when using 32 processors on the IBM
Cluster. Comparing this to Figure 1(a), a significant difference is seen in
using the GDE load balancing algorithm. More processors have states to
expand throughout the verification. Also, the number of snapshots taken in
each case indicates that only half the time was needed to verify the model
completely. Figure 10(b) shows the percentage of the time spent on the major
modules in the parallel model checker. Compared to Figure 1(b) we can see
that due to the load balancing, the idle time is reduced from 35% of the total
time to almost nothing and the CPU time has been increased due to extra
communication to improve performance.

Figure 11(a) shows the state of the queues before load balancing and Fig-
ure 11(b) shows the state of the queues after load balancing on the NOW
architecture. For this particular example a higher balancing frequency was
used to achieve a better balance. As can be seen from the figure, using a
higher frequency created a near perfect distribution of the states among the
participating queues. A speedup of 1.6 was achieved in this case.

The search order of the parallel verification algorithm is modified signif-
icantly. Using the static partitioning algorithm, there is some amount of

10



Kumar and Mercer

 0.8

 0.9  1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0
 10

 20
 30

 40
 50

 60
 70

Speedup

P
rocessors

S
peedup R

elative to S
tatic P

artitioning A
lgorithm

jordon
atom

ix

Fig. 9. Speedup for the GDE scheme relative to the static partitioning algorithm
on the shared memory architecture.

0 10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

12000

Time(s)

S
ta

te
s

Queue Occupancy for balanced queues in 32 nodes

0

10

20

30

40

50

60

70

CPU SG Idle

Pe
rc

en
ta

ge

Function

Aggregate Times for GDE Load Balanced Algorithm

(a) (b)

Fig. 10. This figure shows the queue imbalance and aggregate times for each function
during model checking for the jordon model(a) Queue sizes for the jordon model us-
ing 32 processors after load balancing showing balanced queues (b)Aggregate times
for each function after the GDE load balanced scheme was implemented showing
low idle time.

11



Kumar and Mercer

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6
x 10

5

Time(s)

S
ta

te
s 

in
 q

ue
ue

Queue occupancy per node for 8 nodes

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
x 10

4

Time(s)

S
ta

te
s 

in
 q

ue
ue

Load balanced queue occupancy per node for 8 nodes

(a) (b)

Fig. 11. Balanced and unbalanced queues for the jordon model on the NOW archi-
tectures(a) Queue sizes for the jordon model using 8 processors before load balanc-
ing. (b) Queue sizes for the jordon model using 8 processors after load balancing
showing highly balanced queues.

determinism involved since a particular state is guaranteed to be processed on
a specific process and each error state or deadlock state is always discovered
on the same processor. Since GDE shuffles the states in the queue from one
process to another, a state that was originally in a particular queue can be
transferred to another queue; thus, it causes error and deadlock states to be
discovered on different processors and in a different order when compared to
the static partitioning algorithm. The resultant effect is that on average, the
shuffling of states causes error states and deadlock states to be discovered ear-
lier than they would have been in the static partition algorithm. Also, if the
error state happens to be in a very inconspicuous location, shuffling the states
in the queues can help the parallel algorithm find the error earlier. Table 1
shows the results gathered by running the load balancing algorithm and the
static partition algorithm on models that have errors using 8 processors. The
number of states generated are reported for each algorithm before the error
state is discovered. The speedup is the ratio of the number of states saved
in the GDE algorithm. A clear example of a model containing an inconspic-
uous error is the queens8 problem. The queens8 problem involves placing 8
queens on a chess board in such a manner that no queen is threatening any
other queen. The error state is successfully placing all the queens in the de-
scribed manner. The static partition algorithm performs well compared to the
serial algorithm, but the GDE load balanced algorithm outperforms both al-
gorithms. Even in other models we can see that the load balanced algorithm
outperforms the static partition algorithm by a significant factor with the
worst case scenario of performing only slightly better than the static partition
algorithm.

12



Kumar and Mercer

Table 1
Average number of states generated before error state discovered

Model Static Partition GDE Algorithm Speedup

queens8-deadlock 22546 500 45.09

adash1212 17650 8500 2.08

jordon 6600 3860 1.71

queens8-error 1505086 962343 1.56

arbiter4 4416 3300 1.34

sparse-shallow 31640626 25866803 1.22

atomix 2150688 1983550 1.08

two diamonds 2280376 2156913 1.06

A major challenge with the static partitioning algorithm is the early termi-
nation of verification due to lack of space available in the queues of individual
processors. In extremely large and dense models with high branching factors,
each processed state generates a lot of successors that have to be saved in
the queue. If a queue has not been allocated with enough memory to ac-
commodate these states, then the verification process has to be discontinued
and verification cannot complete. A high number of states in a queue also
occurs due to the high load imbalance in the queues of the processors. A pro-
active effort is made to keep the queues in a state of equilibrium. The GDE
load balancing algorithm, which implicitly causes the queues to be smaller
and more manageable; thus, it reduces the strenuous memory requirements of
the queue for each processor. Table 2 shows the maximum size of the queue
for each algorithm for various models using 8 processors in the verification
and the standard deviation within the maximum queue size on each processor
for both the static partition and GDE load balanced algorithms. From the
table we can see that there is a large difference between the static partition
algorithm, and the GDE load balanced algorithm. For the load balanced algo-
rithm, the maximum queue size is almost an order of magnitude smaller than
the maximum queue size for the static partition algorithm, and the amount
of memory used for the queue differs by an equal proportion. The standard
deviation for the maximum queue sizes for each algorithm is shown in the last
two columns of Table 2. For the static partition algorithm, we can see that
the standard deviation is very large compared to the maximum queue size.
In contrast, the GDE load balanced scheme provides much lower standard
deviations indicating that the queues are in an equilibrium state.

Communication overhead is incurred with the use of GDE as a load bal-
ancing technique. Table 3 compares the average number of messages sent
between any two processors in the verification using the static partition al-
gorithm(with a state cache) and the optimized load balanced algorithm(with
state cache). From the table we observe that for the models cache, atomix
and dense the number of messages sent in the load balanced version is fewer

13



Kumar and Mercer

Table 2
Maximum queue size and standard deviation of maximum queue size

Model Max Queue Size Ratio Standard Deviation

Static Partition GDE Static Partition GDE

dense 352226 30824 11.43 139137 575

jordon 511934 54387 9.41 183442 249

two diamonds 389792 48351 8.06 118165 149

sparse-shallow 377491 80416 4.69 117099 855

atomix 239938 62261 3.85 76428 319

queens8 1587876 418589 3.79 235335 2679

cache315142 289803 97492 2.97 99843 579

Table 3
Average number of messages exchanged between two processors

Model Static Partitoin GDE Algorithm Percentage

atomix 276751.41 254148.7 -8.17

dense 324927.66 320916.58 -1.23

cache315142 350984.19 349259.3 -0.49

jordon 621258.95 632280.92 1.74

sparse shallow 993826.05 1032035.14 3.7

queens8 242680.2 254276.52 4.56

two diamonds 994516.56 1112782.97 10.63

than the messages exchanged in the static partition algorithm. This is due
to the state cache. For the other cases the number of messages sent in the
load balanced version is greater but within the same order of magnitude. The
last column displays the difference as the percentage relative to the higher
number of messages sent. We can see that the in the worst case, only 10%
more messages are sent to achieve a speedup of 1.6 times. This communica-
tion overhead is acceptable since it provides us with balanced queues, smaller
queues and improves the error detection capabilities of the model checker.

6 Conclusions and Future Work

From the discussion above we can highlight some major points of interest.
Parallel model checkers using the static partitioning algorithm have certain
inefficiencies due to a variety of factors primarily related to the partitioning
function and communication schemes. We have demonstrated that using the
static partition algorithm, the queues on each process are highly imbalanced
and the effective number of processors during the verification is half of the
number of processors that are actually involved in the verification. We have
also shown that using a state cache provides a small amount of improvement

14



Kumar and Mercer

in terms of speedup over the static partition algorithm.

Using load balancing techniques such as GDE, we have successfully bal-
anced the queues on all processors and reduced the time to verify models in
our benchmark suite. Due to the non-deterministic nature of the GDE load
balancing algorithm, we have also changed the search order to the degree
where error states in our models can be discovered earlier and by exploring
a fewer number of states. Using the GDE load balancing algorithm we have
also shown that maximum queue sizes have been decreased by an order of
magnitude compared to the maximum queue sizes obtained in the static par-
tition algorithm for the models and benchmark suite used by us. We have also
shown that the communication overhead does not counteract the usefulness
of GDE load balancing when using a state cache.

Future work in this research area would involve creating load balancing
schemes that are completely independent of any user input regarding the fre-
quency of load balancing. Processors should be capable of avoiding situations
where there is no useful work to do. A more detailed study of the GDE scheme
with respect to the amount of load balancing done between a pair of proces-
sors is also important. Other dynamic load balancing schemes also provide an
interesting field of further research too.

References

[1] VV Lab Model Database. http://vv.cs.byu.edu.

[2] G. Behrmann. A performance study of distributed timed automata reachability
analysis. In Electronic Notes in Theoretical Computer Science, volume 68.
Elsevier, 2002.

[3] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. In Proceedings of the 5th International Conference on
Computer Aided Verification, pages 450–462. Springer-Verlag, 1993.

[4] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A dynamic extension of SPIN. In
SPIN, pages 261–276, 1999.

[5] O. Grumberg E. M. Clarke Jr. and D. A. Peled. Model checking. pages 9–11,
2002.

[6] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of
deadlock freedom and safety properties. In Proceedings of the 3rd International
Workshop on Computer Aided Verification, pages 332–342. Springer-Verlag,
1992.

[7] G. J. Holzmann. An analysis of bitstate hashing. In Proc. 15th Int. Conf on
Protocol Specification, Testing, and Verification, INWG/IFIP, pages 301–314,
Warsaw, Poland, 1995. Chapman and Hall.

15



Kumar and Mercer

[8] G. J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

[9] M. Jones, E. Mercer, T. Bao, R. Kumar, and P. Lamborn. Benchmarking
explicit state parallel model checkers. In Electronic Notes in Theoretical
Computer Science, volume 89. Elsevier, 2003.

[10] R. Kumar, M. Jones, J. Lesuer, and E. Mercer. Exploring dynamic partitioning
schemes in hopper. Technical Report 3, Verification and Validation Laboratory,
Computer Science Department, Brigham Young University, Provo, Utah,
September 2003.

[11] F. Lerda and W. Visser. Addressing dynamic issues of program model checking.
Lecture Notes in Computer Science, 2057:80–100, 2001.

[12] D. M. Nicol and G. Ciardo. Automated parallelization of discrete state-space
generation. Journal of Parallel and Distributed Computing, 47(2):153–167,
1997.

[13] U. Stern and D. L. Dill. Improved Probabilistic Verification by Hash
Compaction. In Correct Hardware Design and Verification Methods, volume
987, pages 206–224, Stanford University, USA, 1995. Springer-Verlag.

[14] U. Stern and D. L. Dill. Parallelizing the Murphi verifier. pages 256–278, 1997.

[15] M. H. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load
balancing on highly parallel computers. IEEE Trans. Parallel Distrib. Syst.,
4(9):979–993, 1993.

[16] C. Xu and F. Lau. Iterative dynamic load balancing in multicomputers.

16


