Boolean Completeness in Two-valued Set Logic

DAN A. SIMOVICI, IVAN STOJMENOVIC and RATKOTOŠIĆ

Dept. Math. and Comp. Sci., Univ. of Massachusetts at Boston, Boston, MA 02125, USA; Computer Science Dept., Univ. of Ottawa, Ottawa, Ontario K1N 9B4, Canada; Institute of Mathematics, Univ. of Novi Sad, 21000 Novi Sad, Yugoslavia

Dedicated to Professor Ivo G. Rosenberg on the occasion of his 65th birthday, and based on his remarkable Completeness Theorem

Recommended for Publication by Lucien Haddad

(Received 1 July 1997; in final form 1 April 1999)

This paper discusses the functional completeness problems in r-valued set logic, which is the logic of functions mapping r-tuples of subsets into subsets over r values. It is shown that r-valued set logic is isomorphic to 2r-valued logic, meaning that the well known completeness criteria (described by Ivo G. Rosenberg) in multiple valued Post algebras apply to set valued logic. Since Boolean functions are convenient choice as building blocks in the design of set logic functions, we introduce the notion of Boolean completeness of a set. A set is Boolean complete if it becomes complete ones all Boolean functions are added to the set. Finally, this paper gives a full description of Boolean complete sets, Boolean maximal sets, Boolean bases and Boolean Sheffer functions for the case of two-valued set logic.

Keywords: Bio-computing; set logic; functional completeness; Boolean functions; bases

1. INTRODUCTION

The works of Higuchi, Kameyama and Aoki on biological computing, that is on computing based on the interaction between enzymes and substrata, suggest the interest of studying set-valued functions and switching devices. Bio-switching devices introduced and studied in

*Corresponding author. e-mail: ivan@site.uottawa.ca

267
[6, 1, 2] use the specificity of the reaction between enzymes and substrata in order to compute multi-valued switching functions. This kind of circuitry allows ultra-high-valued data processing and a high degree of computing parallelism.

We consider the set $r = \{e_0, e_1, \ldots, e_{r-1}\}$ as the set of fundamental values of an r-valued set logic. The bio-circuits mentioned above operate on the set of subsets of r, denoted as usual by $P(r)$ (thus $X \in P(r) \iff X \subseteq r$), and, therefore, can be described as set valued functions of the form $f : f : P(r)^n \to P(r)$ that map n-tuples of subsets of r into a subset of r. The set of all such function fs is referred to as r-valued set logic.

The number of n-variable functions $f : P(r)^n \to P(r)$ is quite considerable: there are 2^{2^r} such functions; for $n = 1$ and $r = 2$ there are 256 functions while for $n = 1$ and $r = 3$ we find $2^{2^4} = 16,780,032$ such one-variable functions.

A small fraction of these functions are Boolean functions that is, functions that can be constructed from constants and variables, using union, intersection and complementation. The set $P(r)$ is a Boolean algebra ($P(r), \emptyset, r, \cup, \cap, \overline{\cdot}$) when equipped with set-theoretical operations $X \cup Y$, $X \cap Y$ and \overline{X}, which denote the union, intersection and complementation, respectively. The first two are binary operations while the complement is a unary operation. The number of n-ary r-valued Boolean functions of set logic is 2^{2^r} (cf. [15]). For $n = 1$ we find 16 Boolean functions for $r = 2$ and 64 such functions for $r = 3$.

Let k be a fixed positive integer and let $E_k = \{0, 1, \ldots, k-1\}$. The set of n-ary k-valued logical functions (i.e., maps $f : E_k^n \to E_k$) is denoted by $P_k(n)$. The union of $P_k(n)$ for $n = 0, 1, 2, \ldots$ is denoted P_k. The number of n-ary k-valued logical functions is k^e.

Every r-valued set logic function can be regarded as a k-valued logic function for $k = 2^r$, as follows. Without loss of generality we may use characteristic binary vectors to represent the elements of $P(r)$ as binary numbers. A subset $X \in P(r)$ is represented as binary number $x_0 \ x_1 \cdots x_{r-1}$ determined by $x_i = 1$ if and only if $e_i \in X$, for $i = 0, 1, \ldots, r - 1$. Next, $X \in P(r)$ is mapped into the decimal number x which has binary representation $x_{r-1}x_{r-2}\cdots x_1x_0$, $x = 2^{r-1}x_{r-1} + 2^{r-2}x_{r-2} + \cdots + 2x_1 + x_0$.

Example 1 For \(r = 2 \) the elements of \(\mathcal{P}\{e_0, e_1\} \) are represented in the following way:

<table>
<thead>
<tr>
<th>Set</th>
<th>binary</th>
<th>decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>({e_0})</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>({e_1})</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>({e_0, e_1})</td>
<td>11</td>
<td>3</td>
</tr>
</tbody>
</table>

Example 2 For \(r = 2 \), \(k = 2^r = 4 \), the operations \(\cup, \cap, \text{ and } - \) are represented by the following tables.

| \(\cup \) | 0 1 2 3 | \(\cap \) | 0 1 2 3 | \(-\) | 3 |
|-----------|---------|-----------|---------|-----|
| 0 | 0 1 2 3 | 0 0 0 0 | 0 | 3 |
| 1 | 1 1 3 3 | 1 0 1 1 | 1 | 2 |
| 2 | 2 3 2 3 | 2 0 2 2 | 2 | 1 |
| 3 | 3 3 3 3 | 3 1 2 3 | 3 | 0 |

In general, \(\bar{x} = r - 1 - x \), while \(x \cup y = u \) and \(x \cap y = v \) are determined by \(u_i = \max(x_i, y_i) \), \(v_i = \min(x_i, y_i) \) for \(i = 0, 1, \ldots, r - 1 \). We refer to these functions as union, intersection and complement functions in \(P_k \), \(k = 2^r \). For example, \(1 \cup 2 = 01 \cup 10 = 11 = 3 \), \(1 \cap 3 = 01 \cap 11 = 01 = 1 \).

The closure of the set of these three functions and constants is denoted by \(BF \) and contains all functions that correspond to Boolean functions in \(r \)-valued set logic. For simplicity, we refer to \(BF \) as the set of Boolean functions in \(P_k \). Also, let \(BF_k(n) \) be the set of all Boolean \(n \)-ary functions in \(P_k \). It is well known that \(|BF_k(n)| = 2^{2^n} \). For example, \(|BF_4(1)| = 16, |BF_4(2)| = 256, |BF_4(3)| = 65536 \).

In the sequel, let \(X(n) \) denotes the set of \(n \)-ary functions of given set \(X \).

2. Functional Completeness in Set Logic

A subset \(F \) of \(P_k \) is said to be closed if it contains all compositions (or superpositions) of its members. The composition includes permuting
variables in a function, identifying two variables, and replacing variables by functions from F. A more formal definition of superposition is given in [7]. If the functions from F are treated as circuits then the composition is creation of new functions by using the output of some functions as input to other ones, where it is allowed to use multiple copies of same output or to permute input "wires".

A closed set F is P_k-maximal if there is no closed set G such that $P_k \supset G \supset F$ (proper inclusion). A subset X is complete in P_k if P_k is the least closed set containing X (in other words, if the functions in X can produce by composition any function in P_k). It is well known that a subset X of functions is complete in P_k if and only if it is contained in no P_k-maximal set (completeness condition) (cf. [5, 10]).

Investigations of completeness and related topics, usually called functional completeness problem, are mathematically important and have a wide range of applications including their direct relationship to logical circuit design. A complete set X in P_k is called a base of P_k if no proper subset of X is complete in P_k. The rank of a base is the number of its elements. A function f is Sheffer for P_k if $\{f\}$ is a base (of rank 1) of P_k. Clearly f is Sheffer for P_k iff it belongs to no P_k-maximal set.

To describe P_k-maximal sets, we need the following essential concept of "functions preserving a relation" (cf. [10]). Let $h \geq 1$. An h-ary relation ρ on E_k is a subset of E_k^h (i.e., a set of h-tuples over E_k) whose elements are written as columns. Given row n-vectors $a_i = (a_{i1}, \ldots, a_{in})$ ($i = 1, 2, \ldots, h$) we write $(a_1, \ldots, a_n)^T \in \rho$ to indicate that $(a_{1j}, \ldots, a_{nj})^T \in \rho$ for all $j = 1, 2, \ldots, n$, where T denotes the transpose (this means that the $h \times n$ matrix with rows a_1, \ldots, a_h has all columns in ρ). We say that an n-ary $f \in P_k$ preserves ρ if $f((a_1), \ldots, f(a_h))^T \in \rho$ whenever $(a_1, \ldots, a_h)^T \in \rho$.

Then the set of functions preserving ρ is denoted by $\text{Pol}\ \rho$:

$$\text{Pol}\ \rho = \{f \mid (a_1, \ldots, a_n)^T \in \rho \rightarrow (f(a_1), \ldots, f(a_n))^T \in \rho\}.$$

All P_k-maximal sets are of the form $\text{Pol}\ \rho$ for some relation ρ. Their full description is given by Rosenberg [10–14] and the following is the list of all relations that correspond to P_k maximal sets. They are grouped into six classes:

(R_1) Every partial order on E_k having a greatest and a least element.

(R_2) Every relation $\{(x, s(x)) \mid x \in E_k\}$ where s is a permutation of E_k with k/p cycles of the same prime length p.

(R_3) Every 4-ary relation $\{(a_1, a_2, a_3, a_4) \mid a_i \in E_k, a_1 + a_2 = a_3 + a_4\}$, where $(E_k, +)$ is a p-elementary abelian group (p prime).
(Ra) Every non-trivial equivalence relation on E_k.
(R5) Every central relation on E_k. For $1 \leq h \leq k - 1$, a central relation is formed as follows (note that this definition is new):
- Choose t combinations (c_{i1}, \ldots, c_{ih}) of h out of k elements, $i = 1, 2, \ldots, t$, such that $\{c_{11}, \ldots, c_{1h}, \ldots, c_{t1}, \ldots, c_{th}\} \neq E_k$ (i.e., there exist at least one element from E_k which is not part of any chosen combination),
- for each combination form all $h!$ permutations; let I be the set of all $h!$ permutations,
- a central relation is $E_k^h - I$, where E_k^h denotes the set of all h-tuples over E_k, and "-" is set difference (i.e., eliminate permutations from I from E_k^h).
(R6) Every relation determined by a h-regular $(2 < h \leq k)$ family of equivalences T on E_k, where $T = \{\theta_1, \ldots, \theta_m\}$ is a family of equivalence relations, $h^m \leq k$, is h-regular if the following conditions are satisfied:
1. Each equivalence relation θ_j has exactly h equivalence classes, $1 \leq j \leq m$,
2. If e_j is an arbitrary equivalence class of θ_j then the intersection $\cap \{e_j | 1 \leq j \leq m\}$ is non-empty.

The relation determined by T is the h-ary relation λ_T containing all the h-tuples $(a_1, \ldots, a_h) \in E_k^h$ such that for each j, $1 \leq j \leq m$ at least two elements among a_1, \ldots, a_h are θ_j-equivalent.

Theorem 1 (Jablonski [5] and Rosenberg [12]) A set F of functions from P_k is complete if and only if for every relation ρ described above there exists an $f \in F$ not preserving ρ.

We have established mapping from n-ary functions of r-valued set logic to n-ary functions of 2^r-valued logic. From this mapping, it immediately follows that above functional completeness criteria in P_k applies also to r-valued set logic with $k = 2^r$.

3. BOOLEAN COMPLETENESS IN SET LOGIC

In the sequel, we suppose that $k = 2^r$, r positive integer.

In [1, 2] the question of constructing all set logic functions using Boolean functions is studied. Since the set is incomplete, some
functions are added to the set of Boolean functions to form a complete set. For example, in [1] bio-output is added while in [2] literal function is added. In these considerations Boolean functions are considered "cheap" elements in the design of set logic functions. Following these investigations, we are interested in characterizing all sets of functions which become complete when all Boolean functions are added to them. We define the notion of Boolean completeness as follows.

Definition 1 A subset F of P_k is said to be Boolean complete in P_k if the set $BF \cup F$ is complete in P_k.

Definition 2 A Boolean complete set F in P_k is called a Boolean base of P_k if no proper subset of F is Boolean complete in P_k. The rank of a Boolean base is the number of its elements.

Definition 3 A non-Boolean function $f \in P_k$ is a Boolean Sheffer for P_k if $\{f\}$ is a Boolean base (of rank 1) of P_k.

Definition 4 A maximal set F in P_k is said to be a Boolean maximal set in P_k if $BF \subseteq F$.

Theorem 2 (Boolean completeness theorem in a general form) A subset F of non-Boolean functions in P_k ($k = 2^r$) is Boolean complete in P_k if and only if F is contained in no Boolean maximal set in P_k.

Proof According to completeness theorem of Jablonski [5], a subset F of P_k is complete if it is contained in no maximal set of P_k. If for a maximal set M, $BF - M \neq \emptyset$, then BF contains a function $f \in P_k$, not belonging to M. So, for each maximal set M in P_k which is not a Boolean maximal set in P_k there exists a Boolean function not belonging to M. Hence follows the statement.

4. BOOLEAN COMPLETENESS IN TWO-VALUED SET LOGIC

In this section we give a full description of Boolean complete sets, Boolean bases and Boolean Sheffer functions for the case $r = 2, k = 4$, i.e., in P_4.
There are exactly 82 maximal sets in P_4, divided into six classes $R_1 - R_6$. We refer to these classes also as partial order, self-dual, linear, equivalence, central and semi-degenerate classes of maximal sets, respectively. To determine which of 82 maximal sets are Boolean maximal sets, it is sufficient to check for each of them whether it contains all constants, union, intersection and complement functions.

4.1. Partial Order Class R_1

There are exactly 18 different partial orders on E_4 having a greatest and a least element. Among them, there are 12 linear orders and six partial orders in which only one pair of elements are noncomparable. Let the partial order relation be denoted by \prec. Then an unary function f preserves partial order \prec if and only if $x \prec y \rightarrow f(x) \prec f(y)$ for every $x, y \in E_4$.

Lemma 1 The complement function does not preserve any partial order.

Proof Let a be the least element in given partial order. Let $b = a = 3-a$. Clearly $b \neq a$ and $b = a$. Then, $a \prec b \rightarrow a \prec b$ is not satisfied since $b = a$ contradicts the choice of least element a.

Hence $\bar{x} \in BF - M$ for every of 18 maximal sets M determined by partial orders, and class R_1 contains no Boolean maximal set in P_4.

4.2. R_2-Selfdual Class

There are three relations on E_4 belonging to R_2, corresponding to permutations $s_1 = (1\ 0\ 3\ 2)$, $s_2 = (2\ 3\ 0\ 1)$ and $s_3 = (3\ 2\ 1\ 0)$.

Lemma 2 The constant functions do not belong to any selfdual class.

Proof Consider unary constant function $f(x) = a$. Let $(b\ c)^T \in \rho$ where ρ is any of three relations in selfdual class $(c = s_i(b))$. Then $(f(b)\ f(c))^T = (a\ a)^T \notin \rho$. Therefore constant function does not preserve ρ.

Hence $a \in BF - M$ for every maximal set in selfdual class, and class R_2 contains no Boolean maximal set in P_4.

4.3. R_3-Linear Functions

For $r = 2$, the class R_3 contains only one maximal set L, which is also known as the set of linear functions in E_4. It can be also defined as follows. A function is linear if there are $a_0, \ldots, a_n \in E_4$ so that
\[f(x_1, \ldots, x_n) = a_0 + a_1x_1 + \cdots + a_nx_n, \]
where $x+y$ and xy denote $x+y(\text{mod } 4)$ and $xy(\text{mod } 4)$.

Lemma 3 $BF-L \neq \emptyset$.

Proof Follows from $|L(n)| = 2^{2(n+1)} < 2^{2^{n+1}} = |BF(n)|$.

Thus L is not a Boolean maximal set in P_4.

4.4. R_4-Equivalence Class

There are 13 different non-trivial partitions on E_4 and consequently there are 13 non-trivial equivalences on E_4. These equivalence relations are:
\[\alpha_1 = \{(01)\{23\}\}, \alpha_2 = \{(02)\{13\}\}, \alpha_3 = \{(03)\{12\}\}, \alpha_4 = \{(0)\{123\}\}, \alpha_5 = \{(1)\{023\}\}, \alpha_6 = \{(2)\{013\}\}, \alpha_7 = \{(3)\{012\}\}, \]
\[\alpha_8 = \{(0)\{1\}\{23\}\}, \alpha_9 = \{(0)\{2\}\{13\}\}, \alpha_{10} = \{(0)\{3\}\{12\}\}, \alpha_{11} = \{(2)\{3\}\{01\}\}, \alpha_{12} = \{(1)\{3\}\{02\}\}, \alpha_{13} = \{(1)\{2\}\{03\}\}. \]

Let the corresponding maximal sets be $C_i = \text{Pol} \alpha_i, 1 \leq i \leq 13$. C_i contains functions f satisfying the following property: if x_j and y_j are equivalent under α_i for $1 \leq j \leq n$ then $f(x_1, \ldots, x_n)$ and $f(y_1, \ldots, y_n)$ are also equivalent under α_i.

Lemma 4

(a) $BF-C_i \neq \emptyset$ for $i = 3, 4, \ldots, 13$.

(b) $BF \subseteq C_i$ for $i = 1, 2$.

Proof

(a) Consider the complement function. In order to have it included in a maximal set C_i, the following property should be satisfied: if x and y are equivalent under α_i then \overline{x} and \overline{y} should also be equivalent under α_i. Thus if 0 and 1 are equivalent then $3 = \overline{0}$ and $2 = \overline{1}$ should also be equivalent. The last is not satisfied for relations α_6, α_7 and
α_{11}. By considering other choices of x and y we may conclude that the complement function does not belong to C_i for 4 \leq i \leq 12. From 0 \cap 1 = 0 and 3 \cap 1 = 1 it follows that the intersection function does not belong to C_3 and C_{13} (pairs (0, 3) and (1, 1) are equivalent while (0, 1) is not).

(b) Follows from the fact that the Boolean functions constants, complement, union and intersection which form a complete set on the class of Boolean functions belong to both C_1 and C_2. Therefore C_1 and C_2 are the only Boolean maximal sets from the equivalence class. We give their corresponding relations in full notation.

\[\alpha_1 = \begin{pmatrix} 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\ 0 & 1 & 0 & 1 & 2 & 3 & 2 & 3 \end{pmatrix} \]
\[\alpha_2 = \begin{pmatrix} 0 & 0 & 2 & 2 & 1 & 1 & 3 & 3 \\ 0 & 2 & 0 & 2 & 1 & 3 & 1 & 3 \end{pmatrix} \]

4.5. \(R_5 \)-Central Class

There are 40 different central relations on \(E_4 \). Among them, according to [13], there are 14 unary relations, 22 binary relations and 4 ternary relations.

The unary central relations are all proper non-empty subsets of \(E_4 \), i.e. (0), (1), (2), (3), (01), (02), (03), (12), (13), (23), (012), (013), (023), (123).

Lemma 5 For each unary central relation there exist a constant function which does not preserve it.

Proof For each proper subset of \(E_4 \) there exist an element \(u \) which does not belong to it. Then the constant \(u \) obviously does not preserve the relation. For example, for subset (023) the constant function \(\text{I} \) does not preserve the relation (\(\text{I}(0) = \text{I} \) is a contradiction). If we denote by \(P_{i(1), \ldots, i(m)} \) the set of all permutations of different elements \(i(1), \ldots, i(m) \) from \(E_4 \), \(2 \leq m \leq 4 \), then the complete list of
binary and ternary central relations on E_4 is the following:

$$d_{15} = E_4^2 - P_{12} - P_{13} - P_{23},$$
$$d_{16} = E_4^2 - P_{13} - P_{23}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\ 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \end{pmatrix}$$

$$- \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\ 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \end{pmatrix},$$

$$d_{17} = E_4^2 - P_{12} - P_{23},$$
$$d_{18} = E_4^2 - P_{12} - P_{13},$$
$$d_{19} = E_4^2 - P_{23},$$
$$d_{20} = E_4^2 - P_{12},$$
$$d_{21} = E_4^2 - P_{13},$$
$$d_{22} = E_4^2 - P_{02} - P_{03} - P_{23},$$
$$d_{23} = E_4^2 - P_{03} - P_{23},$$
$$d_{24} = E_4^2 - P_{02} - P_{23},$$
$$d_{25} = E_4^2 - P_{02} - P_{03},$$
$$d_{26} = E_4^2 - P_{02},$$
$$d_{27} = E_4^2 - P_{03},$$
$$d_{28} = E_4^2 - P_{01} - P_{03} - P_{13},$$
$$d_{29} = E_4^2 - P_{03} - P_{13},$$
$$d_{30} = E_4^2 - P_{01} - P_{13},$$
$$d_{31} = E_4^2 - P_{01} - P_{03},$$
$$d_{32} = E_4^2 - P_{01},$$
$$d_{33} = E_4^2 - P_{01} - P_{02} - P_{12},$$
$$d_{34} = E_4^2 - P_{02} - P_{12},$$
$$d_{35} = E_4^2 - P_{01} - P_{12},$$
$$d_{36} = E_4^2 - P_{01} - P_{02},$$
$$d_{37} = E_4^2 - P_{123},$$
$$d_{38} = E_4^2 - P_{012},$$
$$d_{39} = E_4^2 - P_{023},$$
$$d_{40} = E_4^2 - P_{013}.$$

Lemma 6 All maximal sets determined by relations $d_{15} - d_{40}$ are not Boolean complete sets in P_4.

Proof For $15 \leq i \leq 40$, $i \neq 20$, $i \neq 27$, it can be easily seen that the complement function does not preserve relation d_i. For example, the pair $(0 \ 1)^T$ belongs to d_{16} while $(0 \ 1)^T = (3 \ 2)^T$ does not. On the other hand, the intersection function does not preserve relations d_{27} ($1 \cap 2 = 0, 3 \cap 3 = 3$) and d_{20} ($3 \cap 2 = 2, 1 \cap 2 = 1$).

Hence there is no weak maximal set in P_4 in the central class.

4.6. R_6-Semidegenerate Class

There are seven different relations on E_4 belonging to the family R_6. The complete list of them is the following:

$$q_1 = E_4^3 - P_{023} - P_{123},$$
$$q_2 = E_4^3 - P_{013} - P_{123},$$
$$q_3 = E_4^3 - P_{012} - P_{123},$$
$$q_4 = E_4^3 - P_{013} - P_{023},$$
\[
q_5 = E_4^3 - P_{012} - P_{023}, \quad q_6 = E_4^3 - P_{012} - P_{013}, \\
q_7 = E_4^3 - P_{0123}.
\]

First six relations correspond to the case \(h = 3, \ m = 1 \) (in the general definition of class \(R_6 \)) and equivalence relations \(\{\{01\} \{2\} \{3\}\}, \{\{02\} \{1\} \{3\}\}, \{\{03\} \{1\} \{2\}\}, \{\{12\} \{0\} \{3\}\}, \{\{13\} \{0\} \{2\}\}, \text{and} \{\{23\} \{0\} \{1\}\} \) while the last relation correspond to the case \(h = 4, m = 1, \) and equivalence relation \(\{\{0\} \{1\} \{2\} \{3\}\} \).

Let the corresponding maximal sets be \(G_i = \text{Pol}(q_i), \ i = 1, 2, \ldots, 7. \)

Lemma 7 \(BF-G_i = \emptyset, \) for \(i = 1, 2, \ldots, 7. \)

Proof It can be easily observed that the complement function does not preserve relations \(q_1 - q_6 \) (for example, it does not preserve \(q_1 \) and \(q_2 \) because \(0 = 3, \ 1 = 2, \ 2 = 1 \)), while the intersection operation does not preserve relation \(q_7 \) (\(1 \cap 0 = 0, \ 1 \cap 1 = 1, \ 2 \cap 3 = 2, \ 3 \cap 3 = 3 \)). \(\square \)

From above considerations the following theorem easily follows.

Theorem 3 \(P_4 \) has exactly two weak maximal sets: \(C_1 \) and \(C_2. \)

Corollary 1 A subset \(F \) of non-Boolean functions in \(P_4 \) is Boolean complete in \(P_4 \) if and only if \(F \subseteq C_1 \neq \emptyset \) and \(F \subseteq C_2 \neq \emptyset. \)

Corollary 2 \(|B| \leq 2 \) for any weak base \(B \) in \(P_4. \)

5. Enumeration of Weak Bases in \(P_4 \)

Lemma 8 \(|C_1(n)| = |C_2(n)| = 2^{2^n - 2^n} \) for \(n \geq 0. \)

Proof \(C_1(n) \) is the set of functions \(f : E_4^n \to E_4 \) preserving the relation \(\alpha_1 = \begin{pmatrix} 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\ 0 & 1 & 0 & 1 & 2 & 3 & 2 & 3 \end{pmatrix}. \) Partition the set \(E_4^n \) into the \(n \)-dimensional blocks in such a way that two points \((x_1, \ldots, x_n) \) and \((\beta_1, \ldots, \beta_n), \) \(x_i, \beta_i \in E_4, \) belong to the same block iff for every \(i = 1, 2, \ldots, n, \) either both \(x_i \) and \(\beta_i \) belong to \(\{0, 1\} \) or both of them belong to \(\{2, 3\}. \) If \(f \in C_1 \) then the values \(f(x_1, \ldots, x_n) \) in the points of a fixed block are all from the same subset, either \(\{0, 1\} \) or \(\{2, 3\}. \)

The number of blocks is \(2^n \) and each block contains \(2^n \) points. For each block the set of values, either \(\{0, 1\} \) or \(\{2, 3\}, \) can be chosen in two
different ways. It follows that the sets of values for all 2^n blocks can be chosen in 2^{2^n} ways. For every such choice, there are 2^{2^n} ways for each of the 2^n blocks to choose the values of $f(x_1, \ldots, x_n)$ in the points of that block from a two-element subset. So, there are $2^{2^n}(2^{2^n})^{2^n} = 2^{2^{2^n}}$ functions in $C_1(n)$. The cardinality of $C_2(n)$ is the same by symmetry. ■

Lemma 9 \[|C_1(n) \cap C_2(n)| = 2^{2^{2^n}}, \text{ for } n \geq 0. \]

Proof $C_1(n) \cap C_2(n)$ is the set of functions preserving both relations α_1 and α_2. Consider two different partitions of the set E_q^n. The first partition π_1 is the same as in the proof of Lemma 8. The second partition π_2 of E_q^n is performed in such a way that two points (χ_1, \ldots, χ_n) and $(\beta_1, \ldots, \beta_n)$, $\chi_i, \beta_i \in E_q$, belong to the same block iff for every $i = 1, 2, \ldots, n$, either both χ_i and β_i belong to $\{0, 2\}$ or both of them belong to $\{1, 3\}$. It is easy to see that any two blocks from different partitions, π_1 and π_2, have exactly one common point.

Note that all intersections $\{0, 1\} \cap \{0, 2\} = \{0\}$, $\{0, 1\} \cap \{1, 3\} = \{1\}$, $\{2, 3\} \cap \{0, 2\} = \{2\}$, $\{2, 3\} \cap \{1, 3\} = \{3\}$ are single sets. So after choosing the set of values for every block of the partition π_1 either $\{0, 1\}$ or $\{2, 3\}$ and for every block of the partition π_2 (either $\{0, 1\}$ or $\{2, 3\}$), the function f is uniquely determined. Since the sets of values for all blocks of the partition π_1 (and also for all blocks of the partition π_2) can be chosen in 2^{2^n} different ways, it follows that the number of functions f preserving both relations α_1 and α_2 is $(2^{2^n})^2 = 2^{2^{2^n}}$. ■

Corollary 3 $C_1 \cap C_2 = BF$.

Proof According to Lemma 4(b), $BF \subseteq C_1$ and $BF \subseteq C_2$. Hence follows $BF(n) \subseteq C_1(n)$ and $BF(n) \subseteq C_2(n)$, for every $n \geq 0$, and consequently $BF(n) \subseteq C_1(n) \cap C_2(n)$. Since $|BF(n)| = 2^{2^{2^n}}$, according to Lemma 9, $|C_1(n) \cap C_2(n)| = |BF(n)|$, for every $n \geq 0$, we obtain that $C_1(n) \cap C_2(n) = BF(n)$. Taking the sums for $n \geq 0$ we conclude $C_1 \cap C_2 = BF$. ■

Let $b_1(n)$ and $b_2(n)$ be the numbers of weak bases in P_4 or ranks 1 and 2, respectively, containing n-ary functions.

Corollary 4

(i) $b_1(n) = |C_1(n) \cap C_2(n)|$,

(ii) $b_2(n) = |C_1(n) - BF(n)| \cdot |C_2(n) - BF(n)|$.

Theorem 4

(a) The number of weak Sheffer n-ary functions in P_4 is

$$b_1(n) = 2^{22n+1} - 2^{22n+2} + 1 + 2^{2n+1}.$$

(b) The number of two-element weak bases containing n-ary functions in P_4 is

$$b_2(n) = 2^{22n+1} + 2^{2n+1} - 2^{22n+2} + 2^{2n+1} + 2^{2n+2}.$$

Proof

(a) According to Corollary 4(i), $b_1(n) = |C_1(n) \cap C_2(n)| = |P_4(n)| - |C_1(n)| - |C_2(n)| + |C_1(n) \cap C_2(n)| = 4^{4n} - 2 \cdot 2^{2n+2n} + 2^{2n+1} = 2^{2n+1} - 2^{2n+2n+1} + 2^{2n+1}$.

(b) The number of non-Boolean functions in $C_1(n)$ is $|C_1(n) - BF(n)| = |C_1(n)| - |BF(n)| = 2^{2n+2n} - 2^{2n+1}$. The same is the number of non-Boolean functions in $C_2(n)$. According to Corollary 4(ii), $b_2(n) = (2^{2n+2n} - 2^{2n+1})^2 = 2^{2n+1} + 2^{2n+1} - 2^{2n+2n+1} + 2^{2n+2}$.

Obviously,

$$\lim_{n \to \infty} \frac{b_1(n)}{2^{22n+1} - 2^{2n+1}} = 1,$$

so Theorem 4(a) implies the following statement.

Corollary 5 Almost all non-Boolean set valued functions are weak Sheffer functions.

6. CONCLUSION

Lemmas 1, 2, and 3 can be easily generalized for the set valued functions in P_k, where $k = 2^r$ and r is an arbitrary integer > 2. It appears that there are $2^r - 2$ weak maximal sets in equivalence class. For larger r, most of relations belong to central group (cf. [13]). Listing all weak maximal sets, classification and enumeration of weak bases for 2^r-valued logic (or equivalently r-valued set logic) for $r > 2$ remains an open problem for further study.
References

