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1 In tro duction

In general,a feature can be de�ned as a pattern occurring in a dataset that
is the manifestation of correlations among various components of the data.
For many features that occur in scienti�c data, these correlations can be
de�ned precisely. For other features, they are not well understood or do not
lend themselves to precisede�nitions. Surprisingly, the swirling feature in
o w �elds, commonly refered to as a vortex, is an example of a feature for
which a precisede�nition doesnot exist.

By most accounts [1{3], a vortex is characterizedby the swirling motion
of uid around a central region. This characterization stemsfrom our visual
perception of swirling phenomenathat are pervasive throughout the natural
world. However, translating this intuitiv e description of a vortex into a
formal de�nition has beenquite a challenge.

Lugt [1] proposedthe following de�nition for a vortex: A vortex is the
rotating motion of a multitude of material particles around a common cen-
ter. The problem with this de�nition is that it is too vague. Although it is
consistent with visual observations, it doesnot lend itself readily to imple-
mentation in a detection algorithm. In light of this, Robinson [3] attempted
to provide a more concretede�nition of a vortex by specifying the conditions
for detecting swirling o ws in three dimensions:

A vortex exists when instantaneous streamlines mapped onto a
planenormal to the vortex core exhibit a roughlycircular or spiral
pattern, when viewed from a reference frame moving with the
center of the vortex core.
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The primary shortcoming of this operational de�nition is that it is self-
referential: the existence of a vortex requires a priori knowledge of the
orientation and motion of its core.

Despite the lack of a formal de�nition, various detection algorithms have
been implemented that can adequately identify vortices in most computa-
tional datasets. In this paper, we present an overview of existing detection
methods; in particular, we focus on nine methods that are representativ e of
the state-of-the-art. Although this is not a complete listing of vortex detec-
tion algorithms, the range of relevant issuescovered by thesenine methods
is comprehensive in scope. The methods are:

� Helicity Method by Levy et al. [4]

� Swirl Parameter Method by Berdahl and Thompson [5]

� Lambda2 Method by Jeongand Hussain [6]

� Predictor-Corr ector Method by Banks and Singer [7]

� Eigenvector Method by Sujudi and Haimes [8]

� Parallel Vectors Method by Roth and Peikert [9]

� Maximum Vorticity Method by Strawn et al. [10]

� Streamline Methods by Sadarjoen et al. [11]

� Combinatorial Method by Jiang et al. [12]

We �rst present three taxonomies for classifying these nine detection
methods in Section 2. We then describe each algorithm in Section 3, along
with pseudocode whereappropriate. Next, we describe a recently developed
veri�cation algorithm for swirling o ws in Section4. In Section5, we discuss
the di�eren t visualization techniques for vortices. Finally, we concludeand
highlight future directions in this �eld.

2 Taxonom y

Almost every paper published on the subject of vortex detection has pre-
sented a classi�cation of its predecessorsin somefashion. One of the most
comprehensive classi�cations of vortex detection methods was proposedby
Roth in [13]. In this section, we present three taxonomies for classifying
existing detection methods. Thesetaxonomiesare basedon how the vortex
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Metho d Region/Line Galilean Lo cal/Global

Helicity Line Not Invariant Local
Swirl Parameter Region Not Invariant Local
Lambda2 Region Invariant Local
Predictor-Corrector Line Invariant Global
Eigenvector Line Not Invariant Local
Parallel Vectors Line Not Invariant Local
Maximum Vorticit y Line Invariant Local
Streamline Region Not Invariant Global
Combinatorial Region Not Invariant Local

Table 1: Taxonomiesof vortex detection algorithms.

is de�ned, whether or not the detection method is Galilean invariant, and
the local or global nature of the identi�cation process.

The �rst taxonomy classi�es detection methods basedon the de�n tion
of a vortex. A vortex can be de�ned either as a region or as a line. A
region-basedvortex de�nition speci�es criteria for identifying contiguous
grid nodes(or cells) that belongto either the vortex or its core. A line-based
vortex de�nition, on the other hand, speci�es criteria for locating vortex core
lines. A set of contiguous line segments constitutes the vortex core line.
In general, detection algorithms corresponding to region-basedde�nitions
are easierto implement and computationally cheaper than their line-based
counterparts. Line-basedalgorithms must precisely locate points where the
vortex core line intersect the grid cells. However, line-based algorithms
provide more compact representations of vortices and can easily distinguish
betweenindividual vortices in closeproximit y. The latter is problematic for
region-basedapproaches. Table 1(column 1) categorizesthe nine detection
methods basedon this criterion.

The secondtaxonomy classi�es detection methods basedon whether or
not they are Galilean (Lagrangian) invariant. Most detection methods work
under the assumption of either steady o w �elds or vortices moving much
slower than the average uid particle. In a time-varying o w �eld, a vor-
tex exhibits swirling motion only when viewed from a referenceframe that
moveswith the vortex [1,3]. In order to detect vortices in unsteady (time-
dependent) o ws, it is necessaryfor the method to satisfy Galilean invari-
ance. A detection method is Galilean invariant if it produces the same
results when a uniform velocity is addedto the existing velocity �eld. Thus,
methods which do not depend directly on the velocity, such as pressureor
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vorticit y, are Galilean invariant. This is an important property especially in
the context of tracking vortices in time-varying o w �elds. Table 1(column
2) categorizesthe nine detection methods basedon this criterion.

The third taxonomy classi�es detection methods basedon the local or
global nature of the identi�cation process.A detection method is considered
to be local if the identi�cation processrequires only operations within the
local neighborhood of a grid cell. Methods that rely on the velocity gradient
tensor are usually local methods. On the other hand, a global method
requires examining many grid cells in order to identify vortices. Methods
that involve tracing streamlinesin velocity or vorticit y �elds are considered
to beglobal. From the de�nitions in the precedingsection,it is apparent that
a vortex is a global feature. It may be preferable to detect global features
usingglobal methods; however, on the basisof computation, global detection
methods tend to be more expensive than local methods. However, in order
verify the accuracy of the detected results, a global approach is necessary.
We describe this aspect in more detail in Section 4. Table 1(column 3)
categorizesthe nine detection methods basedon this criterion.

3 Vortex Detection Algorithms

3.1 Helicit y Metho d

Levy et al. [4] intro duced the use of normalized helicity H n for extracting
vortex core lines, though they werenot the �rst to identify the strong corre-
lation betweenhelicity and coherent structures in turbulent o w �elds. H n

is a scalar quantit y de�ned everywhereexcept at critical points:

Hn =
v � !
jv jj ! j

(1)

Hn is the cosine of the angle between velocity v and vorticit y ! . The
underlying assumption is that near vortex core regions, the angle between
v and ! is small. In the limiting case,where v k ! , H n = � 1, and the
streamline that passesthrough that point haszerocurvature (straight line).
The authors suggestedan approach to extract vortex core lines by �rst
locating maximal points of Hn on cross sectional planes, which are also
points of minimal streamline curvature, and then growing the core line by
tracing a streamline from the maximal points.

The signof Hn indicates the direction of swirl (clockwiseor counterclock-
wise) of the vortex with respect to the streamwise velocity component. It
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switcheswhenever a transition occurs betweenprimary and secondaryvor-
tex. The authors successfullyusedthis feature with corresponding colors to
distinguish betweenthe primary and secondaryvortices in the hemisphere-
cylinder and ogive-cylinder datasets. However, the extracted core line may
not always correspond to the actual vortex core line [13].

3.2 Swirl Parameter Metho d

Berdahl and Thompson[5] presented a vortex detection method basedon the
connectionbetweenswirling motion and the existenceof complexeigenvalues
in the velocity gradient tensor J. The authors intro duced the intrinsic swirl
parameter � , de�ned by the ratio of the convection time tconv (the time for
a uid particle to convect through the region of complex eigenvalues RC )
to the orbit time torbit (the time for a uid particle to return to the same
angular position). Thus,

tconv =
2�

jI m(� C )j
torbit =

L
jvconv j

(2)

where I m(� C ) is the imaginary part of the complex conjugate pair of eigen-
values, L is the characteristic length associated with the size of RC , and
vconv is the convection velocity aligned along L . From Equation 2, � can be
written as:

� =
tconv

torbit
=

jI m(� C )jL
2� jvconv j

(3)

When � ! 0, the uid particle convects too rapidly through RC to be
\captured" by the vortex. Thus � is nonzero in regionscontaining vortices
and attains a local maximum in the vortex core. For three dimensions,the
length and orientation of L are unknown, becausein general there is no
single plane of swirling o w. The authors suggestusing the plane normal
to either the vorticit y vector ! or the real eigenvector eR , which are local
approximations to the actual vortex core direction vector. The convective
velocity v conv is computed by projecting the local velocity vectors onto this
plane:

vconv = v � (v � n)n (4)

where n is the plane normal computed from either ! or eR .
Figure 1 (courtesy of Michael Remotigue, Mississippi State University)

illustrates the results when this method is applied to the propeller dataset.
In the left image, the intensity of � is described by a colormap. In the right
image, isosurfacesare generatedshowing the path of the tip vortex as well
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as a ring vortex that was shed o� the propeller base. However, selecting
the right threshold for � in order to distinguish individual vortices is often
di�cult.

Figure 1: Swirl parameter

3.3 Lam bda2 Metho d

Jeong and Hussain [6] proposeda de�nition for a vortex that is commonly
referred to asthe � 2-de�nition. They begin with the premisethat a pressure
minimum is not su�cien t as a detection criterion. The problems are due to
unsteady irrotational straining, which can createa pressureminimum in the
absenceof a vortex, and viscous e�ects, which can eliminate the pressure
minimum within a vortex. To remove these e�ects, they decompose the
velocity gradient tensor J into its symmetric part, the rate of deformation
or strain-rate tensor S, and antisymmetric part, the spin tensor 
 , and
consideronly the contribution from S2 + 
 2.

S =
J + JT

2

 =

J � JT

2
(5)

They de�ne a vortex as a connectedregion where S2 + 
 2 has two negative
eigenvalues. BecauseS2 + 
 2 is real and symmetric, it has only real eigen-
values. Let � 1, � 2, and � 3 be the eigenvaluessuch that � 1 � � 2 � � 3. If � 2

is negative at a point, then that point belongsto a vortex core. Through
several analytical examplesand direct numerical simulation datasets,the au-
thors demonstratedthe e�ectiv enessof the � 2-de�nition comparedto others.
However, in situations whereseveral vortices exist, it can be di�cult for this
method to distinguish betweenindividual vortices.
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3.4 Predictor-Corrector Metho d

The vorticit y-predictor, pressure-correctormethod for detecting vortex core
lines wasproposedby Banks and Singer[7,14]. Their underlying assumption
is that vortical motion is sustained by pressuregradients and indicated by
vorticit y ! . The algorithm extracts a skeleton approximation to the vortex
core by tracing vorticit y lines and then correcting the prediction basedon
local pressureminimum. In order to �nd the initial set of seedpoints for
tracing vorticit y lines, they considergrid points with low pressureand high
vorticit y magnitude. However, as the authors pointed out, it is possiblefor
a grid point to satisfy both conditions without being part of a vortex core.
An outline of the algorithm is provided in Algorithm 1.

1: locate seedpoints with low pressureand high j! j
2: for all seedpoints do
3: rep eat
4: compute ! i at current skeleton point
5: step in ! i direction to predict next point
6: compute ! i +1 at predicted point P !

7: locate minimum pressureP p on plane ? !
8: if dist (P ! ; Pp) < threshold then
9: correct next point to P p

10: else
11: terminate skeleton growth
12: end if
13: eliminate seedpoints within distancer

14: un til skeleton exits domain or is too long
15: end for

Algorithm 1: Predictor-corrector method

For the predictor step, vorticit y integration can be performed using
fourth-order Runge-Kutta. The authors, instead, suggesteda simpli�cation
whereby the step sizecorrespondsto the smallestdimensionof the local grid
cell. For the corrector step, steepest descent is usedto �nd the local pressure
minimum, with the step size,again, being the smallest grid cell dimension.

Algorithm 1 terminates when the minimum pressurepoint is too far from
the predicted point; however, the method is not guaranteed to terminate in
every case,becausethe growing skeleton can form closedloops,which is not
ideal for real vortices. Furthermore, special care must to be taken in order
to minimize the number of skeletons approximating the same vortex core
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line, since the skeleton grown from each seedpoint may end up describing
the samevortex core.

3.5 Eigen vector Metho d

The eigenvector method for detecting vortex core lines was �rst proposed
by Sujudi and Haimes [8]. The method is based on critical-p oint theory,
which assertsthat the eigenvaluesand eigenvectors of the velocity gradient
tensor J, evaluated at a critical point, de�ne the local o w pattern about
that point. As the authors pointed out, there are swirling o ws which do
not contain critical points within its center. In order to handle thesecases,
velocity vectorsareprojected onto the planenormal to the eigenvector of the
real eigenvalue, assumingthe other two eigenvalues are complex conjugate
pairs, to seeif they are zero. If they are, then the point must be part of
vortex core. An outline of the algorithm is given in Algorithm 2.

1: decomposegrid cells into tetrahedral cells
2: for all tetrahedral cells do
3: linearly interpolate v to produce J
4: compute all three eigenvaluesof J
5: if two eigenvaluesare complex conjugatesthen
6: compute eigenvector eR for the real eigenvalue
7: project v onto eR ! reducedvelocity v r

8: compute the zero v r straight line  z

9: if  z intersectscell twice then
10: add line segment to vortex core
11: end if
12: end if
13: end for

Algorithm 2: Eigenvector method

Initially , all meshelements are decomposedinto tetrahedral cells. Linear
interpolation of v within the cell follows, which inducesa constant J. The
reduced velocity v r is computed by subtracting the velocity component in
the direction of eR , and is equivalent to projecting v onto the plane normal
to eR . Finding the zero locations on the plane requires setting up a system
of three equations using the linearly interpolated components of v r , which
can be solved using any two of the three linearly independent equations.
The solution is a straight line of zero v r .
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This method was successfullyapplied to detecting vortex cores in nu-
merous CFD applications [15,16]. Figure 2 (courtesy of Robert Haimes,
Massachusetts Institute of Technology) illustrates one such example taken
from [16]. The yellow line segments represent the vortex coresextracted from
a transient F/A-18 simulation dataset. However, asthe authors pointed out,
producing contiguous vortex corelines is not always possiblebecausethe un-
derlying interpolant may not be linear or line segments may not meet up at
sharedfaces.Modi�cations to the original algorithm are proposedin [17] to
addressthis issueand improve its performance.

Figure 2: Eigenvector approach ( c 1998IEEE)

3.6 Parallel Vectors Metho d

The parallel vectors operator was �rst intro duced by Roth and Peikert [9]
as a higher-order method for locating vortex core lines. They recast the
�rst-order eigenvector method into a parallel alignment problem betweenv
and its �rst derivative Jv (i.e., reducedvelocity is zerowhen v is parallel to
the real eigenvector of J). In order to better capture slowly rotating curved
vortices that are typical in turb omachinery o w �elds, they use the second
derivative of v which is de�ned as:

w =
D 2v
D t2 =

D(Jv )
D t

= JJv + Tvv (6)

whereT is a 3� 3� 3 tensor. Essentially , a vortex core line is the locuswhere
v is parallel to w: f x : v (x) � w(x) = 0g. An outline of the algorithm is
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given in Algorithm 3.

1: for all grid points do
2: calculate J and compute v 0 = Jv
3: calculate J0 and compute w = Jv 0

4: end for
5: for all grid facesdo
6: �nd zero of function v � w
7: useNewton iterations starting from facecenter
8: if zero lies on face then
9: connect with straight line to previous zero

10: end if
11: end for

Algorithm 3: Parallel vectors method

Due to discretization errors, excessive uctuations may result from com-
puting the higher-order derivatives. To avoid this, the authors recommend
smoothing the vector �eld data as a preprocessingstep. In [13,18], other
approachesfor �nding parallel vectors are presented, along with post priori
criteria for removing line segments that might be of insu�cien t strength
(speedof local rotation) or quality (angle betweenvelocity at core and core
line).

Figure 3 (courtesy of Martin Roth, SwissFederal Institute of Technology
Z•urich) illustrates the results for the Francis turbine runner dataset and the
stator of a reversiblepump-turbine dataset. The black line segments indicate
the locations of detectedvortex core lines. Note the existenceof gapsin the
detectedcorelines, which aremainly due to the largenumber of raw solution
lines produced by the higher-order method [13].

3.7 Maxim um Vorticit y Metho d

Strawn et al. [10]de�ne a vortex coreasa local maximum of vorticit y magni-
tude j! j in the plane normal to ! . This technique is applicable for free-shear
o ws, but not shear layers, which have high j! j but no local j! j maxima.
The motivation for this approach comesfrom situations wheremultiple vor-
tices with the sameorientation and overlapping coresare in closeproximit y.
The resulting velocity �eld would only exhibit a single rotational center. To
addressthis issue, the authors intro duced the maximum vorticit y method
outlined in Algorithm 4.
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Figure 3: Parallel vector operator

For the preprocessingstep, ! is transformed into computational space,
where the search for j! j maxima is done on a uniform grid. The gradient
of j! j is assumedto vary bilinearly over the grid face. Finding the solu-
tion points where rj ! j = 0 requires solving a pair of quadratic equations
derived from the bilinear interpolation function. The authors also suggest
using two thresholds to eliminate someof the weaker vortex centers. The
�rst threshold eliminates cell faceswith low j! j, and the secondthreshold
eliminates cell faceswhosenormal may be misaligned with ! . This method
was successfullyapplied to distinguish individual vortices in the delta wing
dataset (primary , secondary, and tertiary vortices) and the V-22 tiltrotor
bladesdataset (tip and root vortices from each rotor blade).

3.8 Streamline Metho ds

Sadarjoenet al. [11]proposedan e�cien t algorithm for detecting vorticesus-
ing the winding anglemethod. The winding angleconceptwas�rst proposed
by Portela [2] in a mathematically rigorous but computationally expensive
fashion. Essentially , given a two-dimensionalstreamline, the winding angle
measuresthe amount of rotation of the streamline with respect to a point.
Sadarjoen et al. [11,19,20] simpli�ed the de�nition and proposedan e�cien t
algorithm for extracting two-dimensionalvortices basedon it. By their def-
inition, the winding angle � w of a streamline is a measureof the cumulativ e
changeof direction of streamline segments.

� w =
N � 2X

i =1

\ (p i � 1; p i ; p i +1 ) (7)

11



1: compute ! at all grid nodes
2: for all cell facesdo
3: examine its 4� 4 surrounding nodes
4: if 9 maximum j! j in central nodesthen
5: mark grid faceas candidate face
6: end if
7: end for
8: for all candidate facesdo
9: compute rj ! j using central di�erence at nodes

10: compute solution points where rj ! j = 0
11: if points within faceand are local maxima then
12: mark them as vortex core points
13: end if
14: end for

Algorithm 4: Maximum vorticit y method

where p i are the N streampoints of the streamline, and \ (p i � 1; p i ; p i +1 )
measuresthe signedanglebetweenthe two line segments delimited by p i � 1,
p i , and p i +1 , with counterclockwise rotation being positive and clockwise
rotation beingnegative. Therefore,a vortex existsin a regionwhere� w � 2�
for at least one streamline. For slowly rotating vortices, the 2� winding
criterion can be relaxed appropriately. An outline of the method is given in
Algorithm 5.

Once the winding streamlinesare marked, a clustering algorithm, based
on the distancebetweencenter point and cluster, is usedto group the stream-
lines that belongto the samevortex. The location of each cluster is taken to
be the location of the vortex core. Various attributes of the vortex, such as
shape and orientation are usedto quantitativ ely visualize the vortices. Fig-
ure 4 (courtesy of I. Ari Sadarjoen, Delft University of Technology) depicts
the results when the method is applied to a slice of the tapered cylinder
dataset. Elliptical icons are used to represent the shape of the extracted
vortices, and the two colors (green and red) are used to represent the two
di�eren t orientations.

Yet another streamline method is the curvature density center method
for locating vortex cores in two-dimensional o w �elds [11,19,20]. Pagen-
darm et al. [21] extendedthe method for three-dimensional o w �elds. The
underlying assumption behind this approach is that the center of curvature
for each point on a winding streamline should form a tight cluster, and
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1: selectan initial set of seedpoints
2: for all seedpoints do
3: trace its streamline and compute � w

4: if j� w j � 2� and initial point near end point then
5: mark streamline as winding
6: end if
7: end for
8: for all winding streamlinesdo
9: compute its center point c (geometric mean)

10: if c =2 vortex clusters then
11: add c to vortex clusters
12: end if
13: end for

Algorithm 5: Winding angle method

the local maxima within this cluster is the vortex core. By computing the
curvature center at each sample point throughout the domain, a density
�eld is formed whosepeaksare the locations of vortex cores. As pointed out
in [11,19,20], this approach lacks the robustnessto work well for non-circular
o ws, such as the elliptically shaped vortices illustrated in Figure 4.

3.9 Com binatorial Metho d

Jiang et al. [12] presented a method for extracting vortex coreregionsbased
on ideas from combinatorial topology. In this approach, a combinatorial
labeling schemebasedon Sperner's Lemma is applied to the velocity vector
�eld in order to identify centers of swirling o ws. The origin of Sperner's
Lemma lies in the Fixed Point Theory of combinatorial topology. The
connection between vortices and �xed points (i.e., critical points) are well
known [22,23]. WhereasSperner's Lemma labels the vertices of a simplicial
complex and identi�es the �xed points of the labeled subdivision, the pro-
posedmethod labels the velocity vectors at grid nodes and identi�es grid
cells that are most likely to contain critical points.

Each velocity vector v is labeledaccordingto the direction rangein which
it points. It is su�cien t to examine the surrounding nodesof a grid cell for
the existenceof revoling velocity vectors. The number of direction ranges
correspondsto the number of surrounding nodes. (For a quadrilateral mesh,
there are four direction ranges,each spanning90� . For two-dimensionalo w
�elds, a grid cell belongsto a vortex core region if each of the four velocity
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Figure 4: Winding angle method

vectors from the surrounding nodes point in a unique direction range, or
satisfy the direction-spanning criterion. For three-dimensionalo w �elds, it
is necessaryto approximate the local swirling plane at each grid cell, and
then project the surrounding velocity vectors onto this plane. An outline of
the three-dimensionalalgorithm is given in Algorithm 6.

1: for all grid cells do
2: compute swirl plane normal n at cell center
3: project v from surrounding nodes
4: for all vp in swirl plane do
5: compute its angle � from local x-axis
6: label direction range for �
7: end for
8: if all direction rangesare labeled then
9: mark grid cell as vortex core

10: end if
11: end for

Algorithm 6: Combinatorial method

The authors usea simpleregiongrowth algorithm alongwith Algorithm 6
in order to segment the individual vortex core regions. What makes this
method e�ectiv e is its insensitivity to approximations to the local swirl plane
normal n. Figure 5 shows the results from this method on the the blunt �n
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dataset. The yellow regionsaredetectedvortex coreregions,visualizedusing
isosurfaces. The blue lines are the streamlines seedednear the detected
vortex cores, and they serve to demonstrate the successof this approach
by showing that the detected vortex coresactually lie in the center of the
swirling o w. However, this approach can produce false positives [24].

Figure 5: Combinatorial method ( c 2002IEEE)

4 Swirling Flo w Veri�cation

The main de�ciency common to all these detection algorithms is not the
false positives which they may produce, but rather their inabilit y to au-
tomatically distinguish between the false positives and the actual vortices.
Imprecise vortex de�nitions or numerical artifacts are just two of the rea-
sonswhy thesefalsepositivesoccur. The fundamental problem is that most
detection algorithms employ local operators (e.g., velocity gradient tensor
J) for detecting global features. As pointed out by Thompson et al. [25],
these local operators are problematic becausethey do not incorporate the
necessaryglobal information into the detection process.

The most direct approach for verifying if a candidate feature is indeed
a vortex is by visual inspection. The primary problem with this approach
is that it requires human intervention, a processthat is contrary to the
automatic nature of the detection algorithms. The geometric veri�cation
algorithm proposedby Jiang et al. [24] addressesthis issueby automating
the veri�cation process.By identifying the swirling streamlinessurrounding
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a candidatevortex core,the veri�cation algorithm canarbitrate the presence
or absenceof a vortex most consistent with visual scrutiny.

As a post-processingstep, the veri�cation algorithm can work with any
detection algorithm. Given a candidate vortex core, the goal is to identify
the swirling streamlines surrounding it by using various di�eren tial geom-
etry properties of the streamlines. The algorithm was designedfor three-
dimensional o w �elds; in the two-dimensionalcase,using the winding angle
method discussedin Section3.8 to verify planar swirling streamlinesis su�-
cient. Identifying three-dimensionalswirling streamlines is non-trivial since
vortices can bend and twist in various ways. An outline of the veri�cation
algorithm for a candidate vortex core is given in Algorithm 7.

1: uniformly distribute seedpoints at start position
2: for all seedpoints do
3: for i = 0 to N do
4: trace next streampoint
5: compute tangent vector t and probe vector
6: probe vortex core for swirl plane normal n
7: align n to z-axis and save transformation
8: apply transformation to t ! t a

9: project t a on (x,y)-plane ! t p

10: if \ (t 0
p; t i

p) � 2� then
11: accept candidate vortex core
12: end if
13: end for
14: end for

Algorithm 7: Geometric veri�cation algorithm

The veri�cation algorithm beginsby locating the upstream extent (tip)
of the candidate vortex core. For candidate core lines, this is trivial; for
candidate core regions,the authors in [24] proposeda bounding box heuris-
tic. The initial position is the tip of the candidate vortex core. Seedpoints
are distributed uniformly on a circle in the swirl plane at the start position.
Oncethe projected tangent vectorsmakesa full revolution in the (x,y)-plane
(i.e., satisfy the 2� swirling criterion), the candidate vortex core is accepted
as an actual vortex core.

Figure 6 depicts the results for the delta wing dataset. In the left image,
the yellow regionsare actual vortex coresand the greenregionsare falsepos-
itiv es, artifacts from the combinatorial method. The middle image depicts
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Figure 6: Geometric veri�cation ( c 2002IEEE)

the swirling streamlines surrounding the veri�ed vortex cores. The right
image shows the manner in which Algorithm 7 con�rms that the identi�ed
candidate is indeed a vortex core. The cyan arrows represent the tangent
vectors and the orange arrows represent the probe vectors. The bottom
image on the right illustrates the projected tangent vectors revolving in the
(x,y)-plane.

5 Visualization of Vortices

Methods usedto visualize vortices are inextricably linked to the manner in
which the vortices are detected. For example,line-basedalgorithms produce
results that canbestbevisualizedasline segments, asshown in Figures2. In
contrast, results generatedby region-type algorithms can best be visualized
using colormaps or isosurfaces,as shown in Figure 1. Additionally , iconic
representations, such as the elliptical icons shown in Figure 4, can also be
usedto quantitativ ely visualize various attributes of vortices.

By seedingstreamlinesnear vortex cores,the swirling patterns that are
generally associated with vortices can be visualized. This is one of the pri-
mary techniques to ascertain the accuracy of detected results, either man-
ually or automatically (seeSection 4). Figure 7 illustrates how someof the
pioneersin this �eld leveragethis technique to validate or invalidate results
from detection algorithms. The top left image (courtesy of I. Ari Sadar-
joen, Delft University of Technology) illustrates the Paci�c Ocean dataset
where streamlines (cyan lines) are seededthroughout the domain to show
regionsof winding streamlines. The intent [11] was to demonstrate the inef-

17



Figure 7: Visualization of vortices ( c 1998IEEE)

fectivenessof the curvature center density method. The density peaks(gray
isosurfaces)do not correspond well with the winding streamlines. The top
right image (courtesy of Martin Roth, SwissFederal Institute of Technol-
ogy Z•urich) depicts the vortical o w in the blunt �n dataset. Vortex core
lines (white lines) were extracted using the parallel vectors method. In this
case[9], the intent was to demonstrate the e�ectiv enessof their method for
extracting vortex core lines that correspond exactly to the center of swirling
streamlines(black lines).

Besidesseedingstreamlines,the cutting plane technique is alsopreferred.
Each cutting plane takesa sampleslice of the dataset along a certain direc-
tion, and the visualization method can be isocontours of a scalarquantit y or
line-integral convolution (LIC) [26] of velocity vectors. The bottom image
of Figure 7 depicts the wing-tip dataset where vortex core lines (red line
segments) were extracted using the eigenvector method. Samplesliceswere
taken [16] along the detectedvortex coreto demonstratethe correspondence
betweenthe isocontours and the extracted core line.
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6 Conclusion

Throughout the past decade, there has been a steady stream of publica-
tions on the subject of vortex detection. We presented an overview of nine
detection algorithms that are representativ e of the state-of-the-art. Each
detection algorithm is classi�ed basedon how it de�nes a vortex, whether
or not it is Galilean invariant, and the local or global nature of its identi-
�cation process. Although many of the algorithms share similarities, each
has its own advantages and disadvantages. A recently developed veri�ca-
tion algorithm, that can be usedin conjunction with any detection method,
was also overviewed, as well as various techniques for visualizing detected
vortices.

Although much progresshas been made towards detecting vortices in
steady o w �elds, there is still a paucity of methods that can do the same
in unsteady (time-varying) o w �elds. None of the detection methods de-
scribed in this paper can adequately address all of the issuesunique to
unsteady vortical o ws. A major challange will be to develop e�cien t and
robust vortex detection and tracking algorithms for unsteady o w �elds.

7 Ac knowledgemen ts

This work is partially funded by the National ScienceFoundation under the
Large Data and Scienti�c Software Visualization Program (ACI-9982344),
the Information Technology Research Program (ACS-0085969),an NSF
Early Career Award (ACI-9734483), and a grant from the US Army Re-
search O�ce (DAA-D19-00-1-0155).

References

[1] H. J. Lugt. Vortex Flow in Nature and Technology. Wiley, 1972.

[2] L. M. Portela. Identi�c ation and Characterization of Vortices in the
Turbulent Boundary Layer. PhD thesis, Stanford University, 1997.

[3] S. K. Robinson. Coherent Motions in the Turbulent Boundary Layer.
Ann. Rev. Fluid Mechanics, 23:601{639,1991.

[4] Y. Levy, D. Degani, and A. Seginer.Graphical Visualization of Vortical
Flows by Means of Helicity. AIAA J., 28(8):1347{1352,August 1990.

19



[5] C. H. Berdahl and D. S. Thompson. Eduction of Swirling Structure
Using the Velocity Gradient Tensor. AIAA J., 31(1):97{103, January
1993.

[6] J. Jeong and F. Hussain. On the Identi�cation of a Vortex. J. Fluid
Mechanics, 285:69{94,1995.

[7] D. C. Banks and B. A. Singer. A Predictor-Corrector Technique for Vi-
sualizing Unsteady Flow. IEEE Trans. on Visualization and Computer
Graphics, 1(2):151{163, 1995.

[8] D. Sujudi and R. Haimes. Identi�cation of Swirling Flow in 3D Vec-
tor Fields. In AIAA 12th Computational Fluid Dynamics Conference,
Paper 95-1715, June 1995.

[9] M. Roth and R. Peikert. A Higher-Order Method for Finding Vortex
Core Lines. In IEEE Visualization '98, pages143{150, October 1998.

[10] R. C. Strawn, D. N. Kenwright, and J. Ahmad. Computer Visualization
of Vortex Wake Systems. AIAA J., 37(4):511{512,April 1999.

[11] I. A. Sadarjoen, F. H. Post, B. Ma, D. C. Banks, and H.-G. Pagendarm.
Selective Visualization of Vortices in Hydrodynamic Flows. In IEEE
Visualization '98, pages419{422, October 1998.

[12] M. Jiang, R. Machira ju, and D. S. Thompson. A Novel Approach to
Vortex Core Region Detection. In Joint Eurographics{IEEE TCV G
Symposium on Visualization, pages217{225, May 2002.

[13] M. Roth. Automatic Extraction of Vortex Core Lines and Other Line-
Type Features for Scienti�c Visualization. PhD thesis, Swiss Federal
Institute of Technology Z•urich, 2000.

[14] D. C. Banks and B. A. Singer. Vortex Tubesin Turbulent Flows: Iden-
ti�cation, Representation and Reconstruction. In IEEE Visualization
'94, pages132{139, October 1994.

[15] D. N. Kenwright and R. Haimes. Vortex Identi�cation{Applications
in Aerodynamics. In IEEE Visualization '97, pages413{416, October
1997.

[16] D. N. Kenwright and R. Haimes. Automatic Vortex Core Detection.
IEEE Computer Graphics and Applications, 18(4):70{74, July-August
1998.

20



[17] R. Haimesand D. N. Kenwright. On the Velocity Gradient Tensorand
Fluid Feature Extraction. In AIAA 14th Computational Fluid Dynam-
ics Conference, Paper 99-3288, June 1999.

[18] R. Peikert and M. Roth. The \P arallel Vectors" Operator{A Vector
Field Visualization Primitiv e. In IEEE Visualization '99, pages263{
270, October 1999.

[19] I. A. Sadarjoen and F. H. Post. Geometric Methods for Vortex Extrac-
tion. In Joint Eurographics{IEEE TCV G Symposium on Visualization,
pages53{62, May 1999.

[20] I. A. Sadarjoen. Extraction and Visualization of Geometries in Fluid
Flow Fields. PhD thesis, Delft University of Technology, 1999.

[21] H.-G. Pagendarm,B. Henne, and M. R•utten. Detecting Vortical Phe-
nomena in Vector Data by Medium-ScaleCorrelation. In IEEE Visu-
alizatiopn '99, pages409{412, October 1999.

[22] M. S. Chong, A. E. Perry, and B. J. Cantwell. A GeneralClassi�cation
of Three-DimensionalFlow Fields. Phys. Fluids, A, 2(5):765{777,1990.

[23] A. E. Perry and M. S. Chong. A Description of Eddying Motions
and Flow Patterns Using Critical Point Concepts. Ann. Rev. Fluid
Mechanics, 19:125{155,1987.

[24] M. Jiang, R. Machira ju, and D. S. Thompson. Geometric Veri�cation
of Swirling Features in Flow Fields. In IEEE Visualization '02, pages
307{314, October 2002.

[25] D. S. Thompson, R. Machira ju, M. Jiang, J. Nair, G. Craciun, and
S. Venkata. Physics-BasedFeature Mining for Large Data Exploration.
IEEE Computing in Science & Engineering, 4(4):22{30, July 2002.

[26] V. Verma, D. Kao, and A. Pang. PLIC: Bridging the Gap Between
Streamlinesand LIC. In IEEE Visualization '99, pages341{351,Octo-
ber 1999.

21


