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1 Intro duction

In general,a feature can be de ned as a pattern occurring in a dataset that
is the manifestation of correlations among various componerts of the data.
For many features that occur in sciertic data, these correlations can be
de ned precisely For other features, they are not well understood or do not
lend themselesto precisede nitions. Surprisingly, the swirling feature in
ow elds, commonly referedto as a vortex, is an example of a feature for
which a precisede nition doesnot exist.

By most accouris [1{3], a vortex is characterized by the swirling motion
of uid around a certral region. This characterization stemsfrom our visual
perception of swirling phenomenathat are pervasive throughout the natural
world. Howewer, translating this intuitiv e description of a vortex into a
formal de nition hasbeenquite a challenge.

Lugt [1] proposedthe following de nition for a vortex: A vortex is the
rotating motion of a multitude of material particles around a common cen-
ter. The problem with this de nition is that it is too vague. Although it is
consistert with visual obsenations, it doesnot lend itself readily to imple-
mentation in a detection algorithm. In light of this, Robinson [3] attempted
to provide a more concretede nition of a vortex by specifying the conditions
for detecting swirling ows in three dimensions:

A vortex exists when instantaneous streamlines mapped onto a
plane normal to the vortex core exhibit a roughlycircular or spiral
pattern, when vieweal from a reference frame moving with the
center of the vortex core.



The primary shortcoming of this operational de nition is that it is self-
referertial: the existence of a vortex requires a priori knowledge of the
orientation and motion of its core.

Despite the lack of a formal de nition, various detection algorithms have
beenimplemented that can adequately identify vortices in most computa-
tional datasets. In this paper, we presern an overview of existing detection
methods; in particular, we focus on nine methods that are represertativ e of
the state-of-the-art. Although this is not a completelisting of vortex detec-
tion algorithms, the range of relevant issuescovered by these nine methods
is comprehensie in scope. The methods are:

Helicity Method by Levy et al. [4]

Swirl Parameter Method by Berdahl and Thompson [5]
Lamkda, Method by Jeongand Hussain[6]
Predictor-Corr ector Method by Banks and Singer[7]
Eigenvector Method by Sujudi and Haimes[8]

Parallel Vectors Method by Roth and Peikert [9]
Maximum Vorticity Method by Strawn et al. [10]
Streamline Methods by Sadarjoen et al. [11]
Combinatorial Method by Jiang et al. [12]

We rst presen three taxonomies for classifying these nine detection
methods in Section 2. We then describe ead algorithm in Section 3, along
with pseudaode where appropriate. Next, we describe a recerly developed
veri cation algorithm for swirling owsin Section4. In Section5, we discuss
the di erent visualization techniques for vortices. Finally, we conclude and
highlight future directions in this eld.

2 Taxonomy

Almost every paper published on the subject of vortex detection has pre-
serted a classi cation of its predecessorsn somefashion. One of the most
comprehensie classi cations of vortex detection methods was proposedby
Roth in [13]. In this section, we preser three taxonomies for classifying
existing detection methods. Thesetaxonomiesare basedon how the vortex



Metho d Region/Line Galilean Lo cal/Global
Helicity Line Not Invariant Local
Swirl Parameter Region Not Invariant Local
Lambda; Region Invariant Local
Predictor-Corrector Line Invariant Global
Eigenvector Line Not Invariant Local
Parallel Vectors Line Not Invariant Local
Maximum Vorticit y Line Invariant Local
Streamline Region Not Invariant Global
Combinatorial Region Not Invariant Local

Table 1: Taxonomiesof vortex detection algorithms.

is de ned, whether or not the detection method is Galilean invariant, and
the local or global nature of the identi cation process.

The rst taxonomy classi es detection methods basedon the de ntion
of a vortex. A vortex can be de ned either as a region or as a line. A
region-basedvortex de nition species criteria for identifying contiguous
grid nodes(or cells) that belongto either the vortex or its core. A line-based
vortex de nition, on the other hand, speci es criteria for locating vortex core
lines. A set of contiguous line segmeits constitutes the vortex core line.
In general, detection algorithms corresponding to region-basedde nitions
are easierto implement and computationally cheaper than their line-based
counterparts. Line-basedalgorithms must preciselylocate points where the
vortex core line intersect the grid cells. However, line-based algorithms
provide more compact represenations of vortices and can easily distinguish
betweenindividual vorticesin closeproximity. The latter is problematic for
region-basedapproades. Table 1(column 1) categorizesthe nine detection
methods basedon this criterion.

The secondtaxonomy classi es detection methods basedon whether or
not they are Galilean (Lagrangian) invariant. Most detection methods work
under the assumption of either steady ow elds or vortices moving much
slower than the average uid particle. In a time-varying ow eld, a vor-
tex exhibits swirling motion only when viewed from a referenceframe that
moveswith the vortex [1,3]. In order to detect vortices in unsteady (time-
dependert) ows, it is necessaryfor the method to satisfy Galilean invari-
ance. A detection method is Galilean invariant if it producesthe same
results when a uniform velocity is addedto the existing velocity eld. Thus,
methods which do not depend directly on the velocity, such as pressureor



vorticit y, are Galilean invariant. This is an important property especially in
the context of tracking vortices in time-varying ow elds. Table 1(column
2) categorizesthe nine detection methods basedon this criterion.

The third taxonomy classi es detection methods basedon the local or
global nature of the identi cation process.A detection method is considered
to be local if the identi cation processrequires only operations within the
local neighborhood of a grid cell. Methodsthat rely on the velocity gradient
tensor are usually local methods. On the other hand, a global method
requires examining many grid cells in order to identify vortices. Methods
that involve tracing streamlinesin velocity or vorticity elds are considered
to beglobal. From the de nitions in the precedingsection,it is apparert that
a vortex is a global feature. It may be preferableto detect global features
using global methods; however, on the basisof computation, global detection
methods tend to be more expensive than local methods. Howewer, in order
verify the accuracy of the detected results, a global approac is necessary
We describe this aspect in more detail in Section 4. Table 1(column 3)
categorizesthe nine detection methods basedon this criterion.

3 Vortex Detection Algorithms

3.1 Helicit y Metho d

Levy et al. [4] introduced the use of normalized helicity H, for extracting
vortex corelines, though they werenot the rst to identify the strong corre-
lation betweenhelicity and coherent structures in turbulent ow elds. Hp
is a scalar quantity de ned everywhere exceptat critical points:
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Hy is the cosine of the angle between velocity v and vorticity ! . The
underlying assumption is that near vortex core regions, the angle between
v and ! is small. In the limiting case,wherev k!, H, = 1, and the
streamline that passeghrough that point haszero curvature (straight line).
The authors suggestedan approac to extract vortex core lines by rst
locating maximal points of Hy on cross sectional planes, which are also
points of minimal streamline curvature, and then growing the core line by
tracing a streamline from the maximal points.
The signof H,, indicates the direction of swirl (clockwise or counterclock-
wise) of the vortex with respect to the streamwise velocity componert. It



switcheswheneer a transition occurs between primary and secondaryvor-
tex. The authors successfullyusedthis feature with corresponding colorsto
distinguish betweenthe primary and secondaryvortices in the hemisphere-
cylinder and ogive-cylinder datasets. However, the extracted core line may
not always correspond to the actual vortex core line [13].

3.2 Swirl Parameter Metho d

Berdahl and Thompson[5] presened a vortex detection method basedon the
connectionbetweenswirling motion and the existenceof complexeigernvalues
in the velocity gradient tensor J. The authors introducedthe intrinsic swirl
parameter , de ned by the ratio of the corvection time teony (the time for
a uid particle to corvect through the region of complex eigervalues R¢)
to the orbit time tqypir (the time for a uid particle to return to the same
angular position). Thus,
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wherel m( ¢) is the imaginary part of the complex conjugate pair of eigen-
values, L is the characteristic length assaiated with the size of R¢, and
Vconv IS the convection velocity aligned along L. From Equation 2, canbe
written as:

teonv _ JIM( c)jL
= = . . 3
torbit 2 |Vconv) )
When ! 0, the uid particle cornvectstoo rapidly through Rc to be

\captured" by the vortex. Thus is nonzeroin regionscontaining vortices
and attains a local maximum in the vortex core. For three dimensions,the
length and orientation of L are unknown, becausein general there is no
single plane of swirling ow. The authors suggestusing the plane normal
to either the vorticity vector ! or the real eigervector egr, which are local
approximations to the actual vortex core direction vector. The cornvective
velocity veony IS computed by projecting the local velocity vectors onto this
plane:

Veonv =V (V. Nn)n (4)

wheren is the plane normal computed from either ! or er.

Figure 1 (courtesy of Michael Remotigue, Mississippi State University)
illustrates the results when this method is applied to the propeller dataset.
In the left image, the intensity of is described by a colormap. In the right
image, isosurfacesare generatedshowing the path of the tip vortex as well



as a ring vortex that was shedo the propeller base. Howewer, selecting
the right threshold for in order to distinguish individual vortices is often
di cult.

Figure 1: Swirl parameter

3.3 Lambda, Metho d

Jeongand Hussain [6] proposeda de nition for a vortex that is commonly
referredto asthe »-de nition. They beginwith the premisethat a pressure
minimum is not su cien t asa detection criterion. The problems are due to
unsteady irrotational straining, which can createa pressureminimum in the
absenceof a vortex, and viscous e ects, which can eliminate the pressure
minimum within a vortex. To remove these e ects, they decompose the
velocity gradient tensor J into its symmetric part, the rate of deformation
or strain-rate tensor S, and antisymmetric part, the spin tensor , and
consideronly the cortribution from S2+ 2.

S= = (5)

They de ne a vortex as a connectedregion where S2+ 2 hastwo negative
eigervalues. BecauseS? + 2 is real and symmetric, it hasonly real eigen-
values. Let 1, 2, and 3 bethe eigervaluessuc that 1 2 3. If >
is negative at a point, then that point belongsto a vortex core. Through
seweral analytical examplesand direct numerical simulation datasets,the au-
thors demonstratedthe e ectiv enesfthe »-de nition comparedto others.
Howevwer, in situations where se\eral vortices exist, it canbedi cult for this
method to distinguish betweenindividual vortices.



3.4 Predictor-Corrector Metho d

The vorticit y-predictor, pressure-correctormethod for detecting vortex core
lineswasproposedby Banks and Singer[7,14]. Their underlying assumption
is that vortical motion is sustained by pressuregradients and indicated by
vorticity ! . The algorithm extracts a skeleton approximation to the vortex
core by tracing vorticit y lines and then correcting the prediction basedon
local pressureminimum. In order to nd the initial set of seedpoints for
tracing vorticit y lines, they considergrid points with low pressureand high
vorticit y magnitude. However, asthe authors pointed out, it is possiblefor
a grid point to satisfy both conditions without being part of a vortex core.
An outline of the algorithm is provided in Algorithm 1.

1: locate seedpoints with low pressureand high j! j
2: for all seedpoints do

3. repeat

4: compute ! ; at current skeleton point

5: stepin ! ; direction to predict next point
6: compute! j;; at predicted point P,

7 locate minimum pressureP, on plane ? !
8: if dist(P, ;Pp) < threshold then

9: correct next point to P

10: else

11: terminate skeleton growth

12: end if

13: eliminate seedpoints within distance

14: until skeleton exits domain or is too long
15: end for

Algorithm 1: Predictor-corrector method

For the predictor step, vorticity integration can be performed using
fourth-order Runge-Kutta. The authors, instead, suggesteda simpli cation
wherely the step sizecorrespondsto the smallestdimension of the local grid
cell. For the corrector step, steepestdescen is usedto nd the local pressure
minimum, with the step size,again, being the smallestgrid cell dimension.

Algorithm 1 terminates whenthe minimum pressurepoint is too far from
the predicted point; however, the method is not guaranteed to terminate in
every case,becausethe growing skeleton can form closedloops, which is not
ideal for real vortices. Furthermore, special care must to be taken in order
to minimize the number of skeletons approximating the same vortex core
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line, sincethe skeleton grown from ead seedpoint may end up describing
the samevortex core.

3.5 Eigenvector Metho d

The eigervector method for detecting vortex core lines was rst proposed
by Sujudi and Haimes [8]. The method is based on critical-p oint theory,
which assertsthat the eigervaluesand eigervectors of the velocity gradient
tensor J, evaluated at a critical point, de ne the local ow pattern about
that point. As the authors pointed out, there are swirling o ws which do
not cortain critical points within its certer. In order to handle these cases,
velocity vectorsare projected onto the plane normal to the eigervector of the
real eigervalue, assumingthe other two eigervalues are complex conjugate
pairs, to seeif they are zero. If they are, then the point must be part of
vortex core. An outline of the algorithm is given in Algorithm 2.

1. decomposegrid cellsinto tetrahedral cells

2: for all tetrahedral cells do

linearly interpolate v to produceJ

4:  compute all three eigervaluesof J

5. if two eigervaluesare complex conjugatesthen
6: compute eigervector er for the real eigervalue
7
8
9

project v onto eg ! reducedvelocity v,
compute the zerov, straight line
if , intersectscell twice then

10: add line segmen to vortex core
11: end if
12:  end if

13: end for

Algorithm 2: Eigenvector method

Initially , all meshelemeris are decompsedinto tetrahedral cells. Linear
interpolation of v within the cell follows, which inducesa constart J. The
reducedvelocity v, is computed by subtracting the velocity componert in
the direction of er, and is equivalent to projecting v onto the plane normal
to er. Finding the zerolocations on the plane requires setting up a system
of three equations using the linearly interpolated componens of v, which
can be solved using any two of the three linearly independert equations.
The solution is a straight line of zerov,.



This method was successfullyapplied to detecting vortex coresin nu-
merous CFD applications [15,16]. Figure 2 (courtesy of Robert Haimes,
Massadwusetts Institute of Tecnology) illustrates one such example taken
from [16]. The yellow line segmelts represet the vortex coresextracted from
atransient F/A-18 simulation dataset. Howewer, asthe authors pointed out,
producing cortiguous vortex corelinesis not always possiblebecausehe un-
derlying interpolant may not be linear or line segmens may not meet up at
sharedfaces. Modi cations to the original algorithm are proposedin [17]to
addressthis issueand improve its performance.

Figure 2: Eigenvector approad ( ¢ 1998IEEE)

3.6 Parallel Vectors Metho d

The parallel vectors operator was rst introduced by Roth and Peikert [9]
as a higher-order method for locating vortex core lines. They recast the
rst-order eigervector method into a parallel alignmert problem betweenv
andits rst derivative Jv (i.e., reducedvelocity is zerowhenv is parallel to
the real eigervector of J). In order to better capture slowly rotating curved
vortices that are typical in turb omacdinery ow elds, they usethe second
derivative of v which is de ned as:

2
=DV _DOV) gy 4w 6)

Dt2 Dt
whereT isa3 3 3tensor. Essetially, a vortex coreline is the locuswhere
v is parallel to w: fx : v(x) w(x) = 0g. An outline of the algorithm is

9



givenin Algorithm 3.

1. for all grid points do

2:  calculate J and compute v0= Jv

3: calculate J°and computew = Jv©°

4: end for

5. for all grid facesdo

6: nd zeroof function v w

7. useNewton iterations starting from face certer
8. if zerolieson facethen

9 connectwith straight line to previous zero
10:  end if

11: end for

Algorithm 3: Parallel vectors method

Due to discretization errors, excessie uctuations may result from com-
puting the higher-order derivatives. To avoid this, the authors recommend
smoothing the vector eld data as a preprocessingstep. In [13,18], other
approadiesfor nding parallel vectors are preserted, along with post priori
criteria for removing line segmens that might be of insu cien t strength
(speedof local rotation) or quality (angle betweenvelocity at core and core
line).

Figure 3 (courtesy of Martin Roth, SwissFederallnstitute of Tednology
Zurich) illustrates the results for the Francis turbine runner dataset and the
stator of areversible pump-turbine dataset. The black line segmets indicate
the locations of detected vortex corelines. Note the existenceof gapsin the
detectedcorelines, which are mainly dueto the large number of raw solution
lines produced by the higher-order method [13].

3.7 Maxim um Vorticit y Metho d

Strawn et al. [10]de ne avortex coreasa local maximum of vorticit y magni-
tude j! j in the planenormal to ! . This technique is applicable for free-shear
ows, but not shear layers, which have high j! j but no local j! j maxima.
The motivation for this approad comesfrom situations where multiple vor-
tices with the sameorientation and overlapping coresare in closeproximity.
The resulting velocity eld would only exhibit a singlerotational certer. To
addressthis issue, the authors introduced the maximum vorticity method
outlined in Algorithm 4.
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Figure 3: Parallel vector operator

For the preprocessingstep, ! is transformed into computational space,
where the seart for j! j maxima is done on a uniform grid. The gradient
of jI j is assumedto vary bilinearly over the grid face. Finding the solu-
tion points whererj ! j = 0 requires solving a pair of quadratic equations
derived from the bilinear interpolation function. The authors also suggest
using two thresholds to eliminate some of the weaker vortex certers. The
rst threshold eliminates cell faceswith low j! j, and the secondthreshold
eliminates cell faceswhosenormal may be misalignedwith ! . This method
was successfullyapplied to distinguish individual vortices in the delta wing
dataset (primary, secondary and tertiary vortices) and the V-22 tiltrotor
bladesdataset (tip and root vortices from ead rotor blade).

3.8 Streamline Metho ds

Sadarjoenet al. [11] proposedan e cien t algorithm for detecting vortices us-
ing the winding anglemethod. The winding angleconceptwas rst proposed
by Portela [2] in a mathematically rigorous but computationally expensive
fashion. Essertially, given a two-dimensional streamline, the winding angle
measuresthe amount of rotation of the streamline with respect to a point.
Sadarjoenet al. [11,19,20] simpli ed the de nition and proposedan e cien t
algorithm for extracting two-dimensionalvortices basedon it. By their def-
inition, the winding angle , of a streamline is a measureof the cumulativ e
change of direction of streamline segmets.

K 2
w= \ (Pi 1;Pi;Pi+1) (7)
i=1
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1: compute ! at all grid nodes

2: for all cell facesdo

3.  examineits 4 4 surrounding nodes

4: if 9 maximum j! j in certral nodesthen

5: mark grid face as candidate face

6: end if

7: end for

8: for all candidate facesdo

9: computerj ! j using certral di erence at nodes
10: compute solution points whererj ! j=0

11: if points within faceand are local maxima then
12: mark them asvortex core points

13:  end if

14: end for

Algorithm 4: Maximum vorticit y method

where p; are the N streampoints of the streamline, and \ (pi 1;pPi;Pi+1)
measureghe signedangle betweenthe two line segmeits delimited by p; 1,
pi, and pi+1, with counterclockwise rotation being positive and clockwise
rotation beingnegative. Therefore, avortex existsin aregionwhere ,, 2
for at least one streamline. For slowly rotating vortices, the 2 winding
criterion can be relaxed appropriately. An outline of the method is givenin
Algorithm 5.

Oncethe winding streamlinesare marked, a clustering algorithm, based
on the distancebetweencerter point and cluster, is usedto group the stream-
linesthat belongto the samevortex. The location of ead cluster is takento
be the location of the vortex core. Various attributes of the vortex, such as
shape and orientation are usedto quartitativ ely visualize the vortices. Fig-
ure 4 (courtesy of I. Ari Sadarjoen, Delft University of Tednology) depicts
the results when the method is applied to a slice of the tapered cylinder
dataset. Elliptical icons are usedto represen the shape of the extracted
vortices, and the two colors (green and red) are usedto represern the two
di erent orientations.

Yet another streamline method is the curvature density certer method
for locating vortex coresin two-dimensional ow elds [11,19,20]. Pagen-
darm et al. [21] extendedthe method for three-dimensional ow elds. The
underlying assumption behind this approac is that the certer of curvature
for ead point on a winding streamline should form a tight cluster, and

12



selectan initial set of seedpoints
. for all seedpoints do
trace its streamline and compute
if j wj 2 and initial point near end point then
mark streamline as winding
end if
end for
. for all winding streamlinesdo
compute its certer point ¢ (geometric mean)
if ¢ Z vortex clusters then
add c to vortex clusters
end if

© NN R
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Algorithm 5: Winding angle method

the local maxima within this cluster is the vortex core. By computing the
curvature certer at ead sample point throughout the domain, a density
eld is formed whosepeaksare the locations of vortex cores. As pointed out
in [11,19,20], this approad lacks the robustnessto work well for non-circular
ows, such asthe elliptically shaped vortices illustrated in Figure 4.

3.9 Combinatorial Metho d

Jiang et al. [12] preseried a method for extracting vortex coreregionsbased
on ideas from combinatorial topology. In this approad, a combinatorial
labeling schemebasedon Sperner's Lemmais applied to the velocity vector
eld in order to identify certers of swirling ows. The origin of Sperner's
Lemma lies in the Fixed Point Theory of combinatorial topology. The
connection between vortices and xed points (i.e., critical points) are well
known [22,23]. WhereasSperner's Lemma labelsthe vertices of a simplicial
complex and identi es the xed points of the labeled subdivision, the pro-
posed method labels the velocity vectors at grid nodes and identi es grid
cellsthat are most likely to contain critical points.

Each velocity vectorv is labeledaccordingto the direction rangein which
it points. It is su cien t to examinethe surrounding nodesof a grid cell for
the existenceof revoling velocity vectors. The number of direction ranges
correspondsto the number of surrounding nodes. (For a quadrilateral mesh,
there are four direction ranges,eat spanning90 . For two-dimensional o w
elds, a grid cell belongsto a vortex coreregion if eat of the four velocity
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Figure 4. Winding angle method

vectors from the surrounding nodes point in a unique direction range, or
satisfy the direction-spanning criterion. For three-dimensional ow elds, it
is necessaryto approximate the local swirling plane at ead grid cell, and
then project the surrounding velocity vectors onto this plane. An outline of
the three-dimensionalalgorithm is givenin Algorithm 6.

. for all grid cellsdo

compute swirl plane normal n at cell center

project v from surrounding nodes

for all vy in swirl plane do
compute its angle from local x-axis
label direction range for

end for

if all direction rangesare labeled then
mark grid cell as vortex core

10:  end if

© o NORAE®WNRE

11: end for

Algorithm 6: Combinatorial method

The authors usea simpleregiongrowth algorithm alongwith Algorithm 6
in order to segmen the individual vortex core regions. What makes this
method e ectiv eis its insensitivity to approximations to the local swirl plane
normal n. Figure 5 shows the results from this method on the the blunt n
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dataset. The yellow regionsare detectedvortex coreregions,visualizedusing
isosurfaces. The blue lines are the streamlines seedednear the detected
vortex cores, and they sere to demonstrate the successof this approac
by showing that the detected vortex coresactually lie in the certer of the
swirling ow. Howewer, this approac can produce false positives[24].

Figure 5: Combinatorial method ( ¢ 2002 IEEE)

4 Swirling Flow Verication

The main de ciency common to all these detection algorithms is not the
false positives which they may produce, but rather their inability to au-
tomatically distinguish betweenthe false positives and the actual vortices.
Imprecise vortex de nitions or numerical artifacts are just two of the rea-
sonswhy thesefalse positivesoccur. The fundamental problem is that most
detection algorithms employ local operators (e.g., velocity gradiert tensor
J) for detecting global features. As pointed out by Thompson et al. [25],
these local operators are problematic becausethey do not incorporate the
necessaryglobal information into the detection process.

The most direct approad for verifying if a candidate feature is indeed
a vortex is by visual inspection. The primary problem with this approac
is that it requires human interverntion, a processthat is corntrary to the
automatic nature of the detection algorithms. The geometric veri cation
algorithm proposedby Jiang et al. [24] addresseshis issueby automating
the veri cation process.By identifying the swirling streamlinessurrounding
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a candidate vortex core,the veri cation algorithm canarbitrate the presence
or absenceof a vortex most consistert with visual scrutiny.

As a post-processingstep, the veri cation algorithm can work with any
detection algorithm. Given a candidate vortex core, the goal is to identify
the swirling streamlines surrounding it by using various di erential geom-
etry properties of the streamlines. The algorithm was designedfor three-
dimensional ow elds; in the two-dimensionalcase,using the winding angle
method discussedn Section3.8to verify planar swirling streamlinesis su -
cient. ldentifying three-dimensionalswirling streamlinesis non-trivial since
vortices can bend and twist in various ways. An outline of the veri cation
algorithm for a candidate vortex coreis given in Algorithm 7.

1: uniformly distribute seedpoints at start position
2: for all seedpoints do

3 fori=0to N do

4 trace next streampoint

5: compute tangent vector t and probe vector
6: probe vortex core for swirl plane normal n
7 align n to z-axis and save transformation

8: apply transformation tot ! t,

9: project t, on (x,y)-plane ! t,

10: if \ (t5;tp) 2 then

11: accept candidate vortex core

12: end if

13:  end for

14: end for

Algorithm 7: Geometric veri cation algorithm

The veri cation algorithm beginsby locating the upstream extert (tip)
of the candidate vortex core. For candidate core lines, this is trivial; for
candidate coreregions, the authors in [24] proposeda bounding box heuris-
tic. The initial position is the tip of the candidate vortex core. Seedpoints
are distributed uniformly on a circle in the swirl plane at the start position.
Oncethe projected tangent vectorsmakesa full revolution in the (x,y)-plane
(i.e., satisfy the 2 swirling criterion), the candidate vortex coreis accepted
as an actual vortex core.

Figure 6 depicts the results for the delta wing dataset. In the left image,
the yellow regionsare actual vortex coresand the greenregionsare false pos-
itiv es, artifacts from the combinatorial method. The middle image depicts
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Figure 6: Geometric veri cation ( ¢ 2002IEEE)

the swirling streamlines surrounding the veried vortex cores. The right
image shows the manner in which Algorithm 7 con rms that the identi ed
candidate is indeed a vortex core. The cyan arrows represen the tangert
vectors and the orange arrows represen the probe vectors. The bottom
image on the right illustrates the projected tangernt vectorsrevolving in the

(x,y)-plane.

5 Visualization of Vortices

Methods usedto visualize vortices are inextricably linked to the manner in
which the vortices are detected. For example, line-basedalgorithms produce
resultsthat canbestbe visualizedasline segmets, asshown in Figures2. In
contrast, results generatedby region-type algorithms can best be visualized
using colormaps or isosurfaces,as shaovn in Figure 1. Additionally, iconic
represeftations, such as the elliptical icons shavn in Figure 4, can also be
usedto quantitativ ely visualize various attributes of vortices.

By seedingstreamlinesnear vortex cores,the swirling patterns that are
generally assaiated with vortices can be visualized. This is one of the pri-
mary techniquesto ascertain the accuracy of detected results, either man-
ually or automatically (seeSection4). Figure 7 illustrates how someof the
pioneersin this eld leveragethis technique to validate or invalidate results
from detection algorithms. The top left image (courtesy of I. Ari Sadar-
joen, Delft University of Tednology) illustrates the Pacic Ocean dataset
where streamlines (cyan lines) are seededthroughout the domain to show
regionsof winding streamlines. The intent [11] wasto demonstrate the inef-
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Figure 7: Visualization of vortices ( ¢ 1998 IEEE)

fectivenessof the curvature center density method. The density peaks(gray
isosurfaces)do not correspond well with the winding streamlines. The top
right image (courtesy of Martin Roth, Swiss Federal Institute of Tednol-
ogy Zurich) depicts the vortical ow in the blunt n dataset. Vortex core
lines (white lines) were extracted using the parallel vectors method. In this
case[9], the intent wasto demonstrate the e ectiv enessof their method for
extracting vortex corelinesthat correspond exactly to the center of swirling
streamlines (black lines).

Besidesseedingstreamlines,the cutting plane technique is alsopreferred.
Each cutting plane takesa sampleslice of the dataset along a certain direc-
tion, and the visualization method can be isocortours of a scalarquartit y or
line-integral convolution (LIC) [26] of velocity vectors. The bottom image
of Figure 7 depicts the wing-tip dataset where vortex core lines (red line
segmens) were extracted using the eigervector method. Samplesliceswere
taken [16] along the detectedvortex coreto demonstratethe correspondence
betweenthe isocorntours and the extracted core line.
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6 Conclusion

Throughout the past decade,there has been a steady stream of publica-
tions on the subject of vortex detection. We preserted an overview of nine
detection algorithms that are represenativ e of the state-of-the-art. Each
detection algorithm is classi ed basedon how it de nes a vortex, whether
or not it is Galilean invariant, and the local or global nature of its identi-
cation process. Although many of the algorithms share similarities, eadh
has its own advantages and disadvantages. A recenly dewveloped veri ca-
tion algorithm, that canbe usedin conjunction with any detection method,
was also overviewed, as well as various techniques for visualizing detected
vortices.

Although much progresshas been made towards detecting vortices in
steady ow elds, there is still a paucity of methods that can do the same
in unsteady (time-varying) ow elds. None of the detection methods de-
scribed in this paper can adequately addressall of the issuesunique to
unsteady vortical ows. A major challange will be to dewvelop e cient and
robust vortex detection and tracking algorithms for unsteady ow elds.
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