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Maximizing Sets and Fuzzy Markoff Algorithms
Lotfi A. Zadeh, Life Fellow, IEEE

Abstract—A fuzzy algorithm is an ordered set of fuzzy instruc-
tions that upon execution yield an approximate solution to a given
problem.

Two unrelated aspects of fuzzy algorithms are considered in
this paper. The first is concerned with the problem of maxi-
mization of a reward function. It is argued that the conventional
notion of a maximizing value for a function is not sufficiently
informative and that a more useful notion is that of a maximizing
set. Essentially, a maximizing set serves to provide information
not only concerning the point or points at which a function is
maximized, but also about the extent to which the values of the
reward function approximate to its supremum at other points in
its range.

The second is concerned with the formalization of the notion
of a fuzzy algorithm. In this connection, the notion of a fuzzy
Markoff algorithm is introduced and illustrated by an example. It
is shown that the generation of strings by a fuzzy algorithm bears
a resemblance to a birth-and-death process and that the execution
of the algorithm terminates when no more “live” strings are left.

I. PREAMBLE

T HIS PAPER is based on a report entitled “On Fuzzy
Algorithms,” [14] or FA for short, which was written

in 1972 but not submitted for publication at that time.
The report dealt with two issues that have grown in im-

portance in the intervening years. The first issue relates to
the concept of maximization (or minimization). The issue
arises because in many real-world problems what matters is
not only the value of , say , at which a function is
maximized, but also the robustness of the maximizing value.
This suggests that the concept of a maximizing value be
replaced by the concept of a maximizing fuzzy set or, more
simply, a maximizing set. This is the issue that is addressed
in the first part of FA.

The second part of FA deals with the concept of a fuzzy
algorithm. In an informal way, the concept of a fuzzy algo-
rithm was introduced in [13]. One of the main objectives of FA
is to formalize the concept of a fuzzy algorithm, employing
for this purpose the concept of a Markoff algorithm, rather
than that of a Turing machine [1], [2], [11]. An interesting
aspect of fuzzy Markoff algorithms relates to the fact that, as
in the case of genetic algorithms [6], [9], [10], the result of
execution at each stage is a set of strings, rather than a single
string. However, in the case of fuzzy Markoff algorithms, the
set of strings is fuzzy, rather than crisp. Fuzzification of the
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concept of a genetic algorithm would yield the same result.
A natural way of fuzzifying—and hence generalizing—the
concept of a genetic algorithm is to assume that the fitness
function is both fuzzy and granular, rather than crisp. Such an
assumption would be closer to reality.

The importance of the concept of a fuzzy algorithm stems
from the fact that fuzzy algorithms mimic the ways in which
humans make decisions and act in the presence of imprecision,
uncertainty, and partial truth. But what is even more important
is that fuzzy algorithms provide a more realistic way of defin-
ing many basic concepts that are intrinsically fuzzy, e.g., the
concepts of smoothness, ovalness, stationarity, independence,
stability, and causality. This is the issue that was addressed in
subsequent papers and especially in [15] and [16], in which
the basic concepts of a linguistic variable, fuzzy if–then rule,
and fuzzy questionnaire were introduced. In particular, some
of the ideas introduced in [16] relate to later theories on rough
sets [7] and machine learning [8].

II. I NTRODUCTION

Roughly speaking, a fuzzy algorithm [13] is an ordered set
of fuzzy instructions that upon execution yield an approximate
solution to a given problem. As in the case of nonfuzzy
algorithms, a fuzzy algorithm is usually expected to be capable
of providing an approximate solution to any problem in a
specified class of problems, rather than to a single problem.

Simple examples of fuzzy algorithms that occur in everyday
experience are cooking recipes, instructions for parking a car,
instructions for tying a knot, etc. As a more concrete example,
consider the following simple control problem. Suppose that
we wish to transfer a blindfolded subject from an initial
position in a room with no obstacles to a final position.
Furthermore, suppose that the fuzzy instructions are limited to
the following set: 1) turn counterclockwise by approximately

degrees, with being a multiple of, say, 15; 2) take a step;
3) take a small step; and 4) take a very small step.

Under these assumptions, a simple fuzzy algorithm for guid-
ing from to may be stated as follows. (It is understood
that after executes an instruction, his or her new position and
orientation are observed fuzzily by the experimenter, who then
chooses that instruction from the algorithm that most closely
fits the last observation). Basically, the algorithm mimics what
a human might do to reach the target.

1) If is facing , then go to 2, else go to 5.
2) If is close to , go to 7, else go to 6.
3) If is very close to , go to 8, else go to 7.
4) If is very very close to , then stop.
5) Ask to turn counterclockwise by an amount needed

to make him or her face. Go to 1.
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6) Ask to take a step. Go to 1.
7) Ask to take a small step. Go to 1.
8) Ask to take a very small step. Go to 1.

Will this algorithm work? If yes, how well? A basic
characteristic of fuzzy algorithms is that questions of this
type cannot, in general, be answered precisely. Thus, we must
be content with fuzzy answers, such as “the algorithm will
work reasonably well so long as the degree of fuzziness in
observations is relatively small and the subject executes the
instructions in a way that is consistent with the expectation
of the experimenter.” Needless to say, such vague assertions
would not be acceptable to those who expect the convergence
properties of an algorithm to be expressible as a provable
theorem. Unfortunately, unpalatable as it may be, there may
be no alternative to accepting much lower standards of pre-
cision if we wish to be able to devise approximate (that is,
fuzzy) solutions to the many complex and ill-defined problems
that arise in the analysis of large-scale man-machine and
manlike systems [3]. Fuzzy algorithms and fuzzy algorithmic
definitions may well prove to be of considerable practical
importance once we learn more about their properties and how
to construct them for specific purposes. In what follows, we
shall focus our attention on a few concepts that may contribute
to this objective.

III. T HE CONCEPT OF A MAXIMIZING SET

Consider a real-valued function on , with
representing the reward associated with an action .
We assume that is bounded both from above and from below,
that is, , where and
represent, respectively, the supremum and infimum ofover

.
Suppose that we wish to maximize the reward and pose the

question: for what value of does attain its maximum value?
A conventional answer to this question might be “at .”
It is clear, however, that such an answer does not provide
sufficient information about the value that should be assigned
to because what matters is not only thatis maximized at

, but also how it behaves in the neighborhood of.
Thus, if is quite flat around , then the solution is
a robust one, and hence, it is not essential thatbe exactly
equal to . The opposite is true, of course, if is sharply
peaked around .

The inadequacy of the concept of a maximizing value
suggests the introduction of a more general concept, namely,
the concept of amaximizing set. Intuitively, a maximizing set

, or simply , for a function on is a fuzzy subset
of such that the grade of membership of a pointin
represents the degree to which approximates to
in some specified sense. For example, suppose for simplicity
that is the finite set and that

, and . Further, suppose that the
grade of membership of in is defined by

if

if (1)

Then, and , with
all other points having zero grade of membership in.

In the case under consideration, the maximizing value of
is and the maximizing set for is the fuzzy

set . Clearly, since the
maximizing set provides essential information about the effect
of choosing values of other than on the values of the
reward function , it would be very desirable, in general, to
know —and not just —in situations involving a decision
on the value to assign to in order to maximize a reward
function. For example, if the maximizing set for a reward
function defined on the interval is of the form

for

for

for

for

then the maximizing value for the reward is . However,
inasmuch as the values of the reward function in the immediate
neighborhood of are very low, it would be very risky
to set . Obviously, it would be much better to set ,
say, since is flat and close to unity in the neighborhood of
three. Although contrived to illustrate the point, the example
clearly shows the inadequacy of the notion of the maximizing
value for dealing with realistic decision problems—problems
in which the sensitivity of the solution to perturbations is
almost always an important issue.

An equation such as (1) serves to “calibrate” the definition
of a maximizing set. It would be unreasonable to expect that
a universal definition be applicable to all situations. However,
the following calibrating definition can frequently be used as a
starting point from which other definitions, if necessary, may
be obtained by modification.

A. Definition of a Maximizing Set

Assume that a real-valued reward functionis defined over
a domain and that , that is,
is bounded both from above and from below. To define a
maximizing set for , it is expedient to consider separately
three cases, as follows.

Case 1: A reward function will be said to be positive-
definite if it is nonnegative for all in , that is, if

(Fig. 1). In this case, the membership function of the
maximizing set is defined by

(2)

Case 2: A reward function is nondefinite if
and (Fig. 2). In this case, the defining relation (2)
is applied to a translate of, expressed by

(3)

Thus, for a nondefinite reward function, the membership
function of the maximizing set is defined by

(4)
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Fig. 1. Maximizing set for a positive-definite reward function.

Fig. 2. Maximizing set for a nondefinite reward function.

Case 3: A reward function is negative-definite if it is
nonpositive for all in , that is, . In this case, (2)
is applied to a translate of, expressed by

(5)

yielding the definition

(6)

Taken together, (2), (4), and (6) constitute a general def-
inition of the maximizing set for a reward function that is
bounded both from above and from below.

The following properties of the maximizing set are imme-
diate consequences of the above definition.

1) The maximizing set for is unique.
2) The maximizing set for is invariant under linear

scaling.
In other words

(7)

where is any real constant.
3) The maximizing set for is not invariant under trans-

lation.

Fig. 3. Maximizing set for a negative-definite reward function.

Thus, if and constant , then in general

More specifically, for any fixed , the dependence of
on is of the form

where and are constants. This implies that, as
the magnitude of increases, the membership function
tends to unity.

4) For , the maximizing set is convex if and only
if the reward function is quasiconcave.
By definition, a fuzzy subset of (linear vector
space of -tuples of real numbers) is convex [12] if all
of its level sets are convex, that is, if the sets

(8)

are convex in . Equivalently, is convex if
satisfies

(9)

for all in and all in .
Also by definition, a function on is quasiconcave
if all of the level sets

are convex for all finite in .

Now the definition of in terms of implies that if
is quasiconcave, so is . This in turn implies the convexity
of . Thus, if is quasiconcave, then is convex and
vice-versa.

Example: The maximizing sets for the reward functions
shown in Figs. 1–3 are convex.

Comment: It should be observed that a concave reward
function can be transformed into a quasiconcave function that
is bounded both from above and from below by an order-
preserving transformation.
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B. The Fuzzy Maximum

The concept of a maximizing set is, in effect, a fuzzification
of the concept of a maximizing value. From this point of view,
it is natural to ask the question: what is the fuzzy counterpart
of the notion of the maximum of a function? To put it another
way: if is a maximizing value for , then the maximum
value of is , that is, the image of under the mapping

. What is the corresponding image of the maximizing set?
To answer this question, we note that if is a function

from to , with , then, as defined
in [12], a fuzzy set in induces a fuzzy set in , whose
membership function is given by

(10)

where is the preimage of , that is

(11)

If we identify with the maximizing set in , then may
be interpreted as the fuzzy maximum of, which is a fuzzy
subset of ( range of ). Denoting this fuzzy subset
of by , it follows from the definition of that the
value of for each point in the preimage of is the
same, namely, . Consequently, from (10), we can
infer that the membership function of the fuzzy maximum of

is given by

if exists

otherwise (12)

Example: Suppose that and has the form
shown in Fig. 1. More specifically

The maximizing set for is given by

Correspondingly, the fuzzy maximum of is given by

elsewhere

C. The Minimizing Set

So far we have focused our attention on the concept of the
maximizing set for , denoted by or simply . In terms
of , the minimizing set for , denoted by or simply

, may be defined by

Minimizing set for Maximizing set for (13)

By using the expressions for given by (2), (4), and
(6), it can readily be shown that the sum of and is
a constant. Thus

for positive-definite

(14)

for nondefinite (15)

and

for negative-definite

(16)

The constancy of the sum of and implies
that is large where is small and vice-versa.
(Fuzzy sets that are related to one another in this way are
weakly complementary.) In particular, if is nondefinite, then
by (15), and are complementary fuzzy subsets of—a
property that is in accord with our intuition.

The maximizing and minimizing sets of a reward function
contain the type of information that is usually provided by
sensitivity analysis. In practice, these sets would usually be
defined by exemplification, that is, by associating approximate
grades of membership with a finite set of representative points
in .

IV. FUZZY MARKOFF ALGORITHMS

In the preceding section, we were concerned with the
formalization of the notion of an approximate maximizing
value, which led us to the concept of a maximizing set.

In this section, our concern is with the formalization of the
notion of a fuzzy algorithm. As was pointed out in [13], a
fuzzy algorithm may be equated with a fuzzy Turing machine.
In [11], both the fuzzy Turing machine and the fuzzy Markoff
algorithm are defined and their equivalence is demonstrated.
Here, we shall give a simpler definition of a fuzzy Markoff
algorithm, which is a natural extension of the conventional way
in which a Markoff algorithm is defined [1], [2]. In effect, our
definition of a fuzzy Markoff algorithm is intended mainly to
make more precise the concept of a fuzzy algorithm in the
same sense that a Markoff algorithm formalizes the concept
of a nonfuzzy algorithm.

Let denote the set of all finite strings over a finite alpha-
bet . For our purposes, it will be convenient to represent a
finite fuzzy subset of in the form of a linear combination

(17)

where the , denote strings in and the
represent their respective grades of membership in.

Example: Let . Then

is equivalent to expressing as the collection of ordered pairs
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When expressed in the form (17), the concatenation of two
fuzzy sets of strings

and

where and are strings in that
can readily be obtained by term-by-term multiplication and
addition, with the understanding that

(18)

(19)

Example:

Then

A nonfuzzy Markoff algorithm is a function from to
that is characterized by a finite sequence of productions

of the general form

or (20)

where (the antecedent) and (the consequent) are strings
in , and the arrow signifies that if occurs as a substring
in a string , then the leftmost occurrence of in may be
replaced by . The presence of the period indicates that the
production is terminal, in the sense that the execution of the
algorithm terminates after a terminal production is applied.

A typical very simple problem in the theory of Markoff
algorithms is the following. Suppose , and let
be any string in . Find a Markoff algorithm that removes the
first three occurrences of from . For example,
is transformed into . A fuzzy version of this problem
would be: find a fuzzy Markoff algorithm that removes the
first few occurrences of from . In this case, if we define
few as the fuzzy set

few

then the result of applying this fuzzy Markoff algorithm to
would be a fuzzy set rather than a single

string. Thus, denoting the fuzzy algorithm by FM, we have
in symbols

More generally, let denote the set of all fuzzy subsets
of . Then an FM may be regarded as a function fromto

, which satisfies certain conditions and is characterized
in a particular way that will be described presently.

Specifically, let be a finite fuzzy subset of

(21)

Then we postulate that the image ofunder FM is given by

(22)

which implies that is a linear operator in . In conse-
quence of (22), the operation of on a fuzzy set of strings
can be described in terms of its operation on individual strings.
This basic property of fuzzy Markoff algorithms plays an
important role in the description of their execution. In contrast
to the form of a production in a nonfuzzy Markoff algorithm,
a typical production in a fuzzy Markoff algorithm has the
appearance

(23)

where the , the are numbers in the interval
, and the terms ending with a period are the terminating

components in the consequent of. The important point is
that the consequent of is a fuzzy set of strings rather than
a single string.

Now suppose that a string can be expressed as ,
where and is not a substring of . (i.e., in

represents its leftmost occurrence.) Then, on substituting
the consequent of for in , we obtain the fuzzy set of
strings represented by.

(24)

Furthermore, if is a number in , then

(25)

where

Example: Suppose and

Then

and

In summary, a production is applicable to a string if
its antecedent is a substring of. The result of applying to

is expressed by (24) and (25). (Note that the substitution is
made in the leftmost occurrence inof the antecedent of .)

We are now ready to define the execution of a fuzzy Markoff
algorithm in terms of (22) and the rewriting rules (24) and (25).
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Definition of a Fuzzy Markoff Algorithm:A fuzzy
Markoff algorithm is a function from to that
satisfies (22) and is characterized by (a) a finite alphabet,
(b) possibly a finite auxiliary alphabet (comprising various
markers that may be needed for bookkeeping purposes), and
(c) a finite sequence of productions of the form
(23), with . null string .

It is convenient to describe the operation of on a string
in in terms of a subalgorithm , which is defined on

. Thus, if is a fuzzy set of strings in , e.g.,

then, as in (22)

(26)

To compute , we proceed as
follows.

Apply the first applicable production in the sequence
, to and call the result . (Note that

will always be applicable since may be written as .) Set

sum of terms in that terminate in a

period (27)

sum of the remaining terms in (28)

and

(29)

(30)

The result of operating with on is defined to be the
sum of the fuzzy sets of strings and . Thus

(31)

In terms of , the computation of , where ,
is carried out as follows.

1) Set initial string.
2) Set (empty set).
3) Apply to and compute .
4) Set

(32)

5) If is empty, terminate the execution of .
6) If is not empty, set . Go to 3.

The execution of the algorithm is actually quite straight-
forward and simple in principle. The following example will
serve as an illustration. (No auxiliary alphabet used.)

Example: Assume and

Let the initial string be . Applying to ,
we note that the first applicable production is. It yields for

and

Since is nonempty, we apply to ,
yielding

Now, applying to , we get

and applying to , we have

Thus

and

Since is nonempty, we apply to ,
obtaining

Next, applying to , we get

and applying to , we obtain

Thus

and finally

At this point, execution of the algorithm terminates because
.

The execution of an FM may be likened to a birth-and-death
process in which the operation with on a string gives
rise to the birth of new strings, represented by , and the
death of others, represented by . In the same sense,
and represent the “newly born” and the “dead” strings
resu1ting from operating with on a “live” fuzzy set of
strings . Finally, plays the role of the population of
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the dead in a cemetery with (32) representing the addition of
the newly deceased to that population.

As in a birth-and-death process, the population of “live”
strings can grow explosively if the productions are
such that each execution of results in significantly more
“births” than “deaths.” This rather interesting aspect of fuzzy
Markoff algorithms is not present in conventional Markoff
algorithms.

In the foregoing discussion, we have restricted ourselves
to formulating what appears to be a natural extension of the
notion of a Markoff algorithm. Exploration of the properties
of such algorithms will be pursued in subsequent papers on
this subject.
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