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Introduction 
 

     Antisense oligonucleotides are able to modulate gene expression levels by a post-

transcriptional mechanism involving an RNA:DNA heteroduplex and the cleavage of the 

RNA by RNase H (1,2).  This sequence-specific hybridization between an antisense 

molecule and its target can, in principle, allow the inhibition of any target mRNA without 

affecting closely related genes.  One approach for identifying antisense sequences that 

knockdown a target gene to desired levels is to screen many candidate antisense 

molecules to find the most active antisense sequences.  In addition to antisense screening 

by trial and error, several computational approaches have been developed to improve the 

hit rate of selecting active antisense sequences (3-14).  These models all associate some 

factors of an antisense sequence with the antisense sequence’s activity (sequence ~ 

activity).  Methods that identify factors to incorporate into a sequence ~ activity model 

provide the opportunity not only provide the opportunity to improve the predictive 

models and avoid factors that unnecessarily introduce complexity, but also are important 

in contributing to a more complete understanding of the antisense knockdown 

mechanisms of action. 

 

     The factors responsible for antisense activity have been shown to involve 

oligonucleotide stability, oligonucleotide secondary structure, target sequence structure 

and accessibility, bioavailability, cell type, and nucleotide sequence motifs (9,14-16).  

When designing antisense sequences to effectively knockdown gene expression or 

attempting to predict the activity of an antisense oligonucleotide, it is crucial to know the 

factors and their association with activity.  Previous studies of sequence motifs that 

associate with antisense activity in a sequence ~ activity model have identified a small 

number of motifs that significantly associate with activity (8,13), but a systematic survey 

of a broad range of motif lengths associating with sequence activity in a publicly 

available dataset has not been performed.  The objective of this study is to identify 

nucleotide sequence motifs that are non-randomly associated with antisense activity in 

order to more accurately build a sequence ~ activity model for antisense molecules.   
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Materials and Methods 

 

Database 

     We chose two criteria for selecting sequences for inclusion into the antisense sequence 

activity database.  First, the antisense sequence contained a complete phosphorothioate 

backbone.  No mixed or chimeric sequences were included.  Second, the cellular levels of 

antisense activity needed to be measured by either a direct mRNA or protein product 

method.  Antisense sequences and their associated activities were obtained from a 

previously described antisense database(17), or the USPTO database 

(http://www.uspto.gov/).  The antisense sequence activity dataset can be obtained from 

the authors. 

 

Motif 

     A word is a series of symbols from an alphabet juxtaposed, and motifs are subwords 

(or substrings) that comprise a word.  For example, using the alphabet (18T) the word of 

length 4, TTGC, contains 2 motifs of length 3, TTG and TGC, and 3 motifs of length 1, C, 

G and T.  The total number of possible motifs is then N
L
, where N is the number of 

characters in the alphabet and L is the motif length. 

 

Calculations and statistics 

     The t-test and chi-square test probability calculations were performed and graphs were 

plotted with the R statistical package (http://www.R-project.org).  Directional graphs 

were generated with the GraphViz package 

(http://www.research.att.com/sw/tools/graphviz/). The Weka machine-learning package 

(http://www.cs.waikato.ac.nz/ml/weka) was used to build decision trees to predict 

sequence effectiveness.  

Change in equilibrium Gibbs free energies (δG) were calculated by the nearest neighbor 

method (19) for change in enthalpy (δH) and entropy (δS) 

(1) δG = δH – (δS x 298.15°K) 

and the bit-wise information content was calculated by the method described by Shannon 

for negative entropy. 

(2) - Σi pi log2 pi  

Programs written by the authors implemented the algorithms and other calculations 

described. 

 

Results 
 

     We assembled a database of 3913 antisense sequences with associated cellular 

activities for knocking down their target gene.  The activities ranged from 0.0 to 1.0, 

where an activity of 0.0 indicates complete inhibition of the target gene and 1.0 is no 

difference in target activity when compared to the appropriate control.  Not surprisingly, 

the distribution of activities is asymmetrically skewed (g1 = -0.520, H0: g1 = 0, ts = 13.3, 

P < 1 x 10
-10
), with fewer sequences having activities near 0.0, and many sequences with 

activities at or near 1.0.  Also, the activity distribution of the 3913 activities is highly 

platykurtic (g2 = -0.936), with fewer sequence activities near the mean than when 

compared to a normal distribution.  Of the 3913 sequences, 1130 had an activity of 1.0, 
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and even the remaining 2783 sequence activities were skewed (g1 = -0.233, H0: g1 = 0, ts 

= 5.02, P = 5 x 10
-7
), with fewer sequences having activities near 0.0 when compared to a 

normal distribution.  Furthermore, the remaining 2783 activities were also platykurtic (g2 

= -0.873).   

 

     To help identify sequence motifs that are associated with effective (activities nearer 

0.0) versus ineffective (activities near 1.0) antisense sequences, we divided sequences 

into 2 groups: the 944 high effectiveness sequences with activities ranging from [0.0, 0.5) 

and the 2924 low effectiveness sequences with activities from [0.5, 1.0].  We then tried to 

identify unique motifs that discretely discriminate between more effective and less 

effective sequences.  Looking for sequence motifs, unique for one group or another, can 

result in one of 4 possible outcomes for a single motif. A motif can occur only within 

high effectiveness sequence population (group A), only within low effectiveness 

sequence population (group C), within both high and low effectiveness populations 

(group B), or finally, within neither population (group D).  The total number of possible 

motifs (group E) is E = A + B + C + D.   

 

     Motifs of lengths 1 through 3 were not discretely distributed between effective and 

ineffective sequences (Table 1).  One sequence motif of length 4 was discretely 

distributed only in the ineffective sequences, specifically the tetra-nucleotide sequence 

motif “GGGG”.  Motifs of length 5 were further able to discriminate ineffective 

sequences, and 21 motifs were found uniquely within ineffective antisense sequences.  

Furthermore, increasing motif lengths allowed for increasing discrimination between 

effective and ineffective sequences, but as motif length increases, it is difficult to know 

whether these motifs are being associated with sequence activity due to some actual 

relationship to activity, or simply due to the increasing number of single occurrences in 

either the high-or-low-effectiveness categories and the relatively small (3913) number of 

initial sequence activity observations. 
 

Table 1. Length distribution of motifs in effective and ineffective antisense sequence populations A = 

effective sequences, B = effective and ineffective sequences, C = ineffective sequences, D neither 

effective nor ineffective sequences, E = all possible motifs 

A B C D E length 

0 4 0 0 4 1 

0 16 0 0 16 2 

0 64 0 0 64 3 

0 255 1 0 256 4 

0 1003 21 0 1024 5 

37 3219 768 72 4096 6 

912 5763 6209 3500 16384 7 

4039 4548 16595 40354 65536 8 

6554 2229 22654 230707 262144 9 

7136 1140 23347 1016953 1048576 10 
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     In order to examine whether there are any physical properties that can be used to 

identify sequence motifs that occur discretely in high-effectiveness or low-effectiveness 

sequences, we calculated the equilibrium change in Gibbs free energy of hybridization 

(δG) of the motif categories in Table 1. These are shown in Table 2.  Overall, the δGs of 

each motif length category associated only with high-effectiveness sequences (group A) 

are uniformly (sign test, P = 0.03125) and significantly more negative when compared 

with motifs found only in low-effectiveness sequences (group C) (5 paired t-tests, 

maximum P = 2 x 10
-6
), for the motifs lengths 6 through 10. Additionally, comparing the 

δGs between motifs found only in effective sequences (group A) against all motifs (group 

E) showed a significantly more negative value in effective sequences  (5 paired t-tests, 

maximum P = 0.006).  Finally the δGs in motifs found only in low-effectiveness 

sequences (group C) are overall more positive than all motifs (group E), but these 

differences are not significant for motif lengths 9 and 10.  These patterns are consistent 

with previous observations demonstrating an overall δG difference between high-and-

low-effectiveness antisense sequences, but additionally suggests that this observation is 

not only true for the entire antisense sequence, but also for the motifs that comprise an 

antisense sequence. 

 
Table 2. Length distribution of motifs in effective and ineffective antisense sequence populations δG 

in units cal mol
-1
, Standard Deviation given in parentheses. 

  

A B C D E length 

- - - - - 1 

- 335.8 

(18107) 

- - 335.8 

(18107) 

2 

- -1304 

(13623) 

- - -1304 

(13623) 

3 

- -3012  

(6875) 

-4330 - -3017 

(6902) 

4 

- -4701 

(1291) 

-4352 

(91128) 

- -4693 

(2905) 

5 

-6731 

(14894) 

-6466 

(545) 

-5938 

(5853) 

-6493 

(69883) 

-6370 

(1097) 

6 

-8300 

(2227) 

-8277 

(276) 

-7811 

(1184) 

-8018 

(1767) 

-8047 

(386) 

7 

-10049 

(408) 

-10074 

(385) 

-9621 

(698) 

-9693 

(205) 

-9723 

(129) 

8 

-11781 

(142) 

-11886 

(404) 

-11360 

(516) 

-11388 

(47) 

-11400 

(41.7) 

9 

-13522 

(225) 

-13681 

(2641) 

-13064 

(594) 

-13073 

(13) 

-13076 

(13) 

10 

 

     To further examine the physical properties of motifs that occur only in high-

effectiveness or low-effectiveness sequences, we calculated the Shannon entropies of the 

categories in Table 1. These calculations are shown in Table 3.  Overall, the high-

effectiveness motifs (group A) had greater bit-wise information content when compared 

with motifs found only in low effectiveness sequences (group C).  Statistical significance 

is weak for lengths 6, 7 and 8 (t-tests, P = 0.06, 0.04, 0.01), but more apparent with 

lengths 9 and 10 (t-tests, P = 1.0 x 10
–6
, 2.9 x 10

–4
).  Patterns of bit-wise information 
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content are less clear when comparing motifs found only in high-or-low-effectiveness 

sequences to all motifs (group E) and no trend is apparent. 

 
Table 3. Length distribution of motifs in effective and ineffective antisense sequence populations 

Entropy, Standard Deviation given in parentheses 

A B C D E length 

- - - - - 1 

- 1.5 

(0.1406) 

- - 1.5 

(0.1406) 

2 

- 3.254 

(0.1655) 

- - 3.254 

(0.1655) 

3 

- 5.245 

(0.1079) 

0 - 5.225 

(0.1066) 

4 

- 7.375 

(0.0191) 

5.550 

(1.4668) 

- 7.337 

(0.0525) 

5 

10.264 

(0.0457) 

9.501 

(0.0129) 

9.654 

(0.0567) 

9.172 

(1.168) 

9.531 

(0.0221) 

6 

12.156 

(0.0481) 

11.512 

(0.0062) 

11.667 

(0.0060) 

12.235 

(0.0427) 

11.761 

(0.0084) 

7 

13.957 

(0.0092) 

13.438 

(0.0005) 

13.664 

(0.0037) 

14.209 

(0.0050) 

14.003 

(0.0029) 

8 

15.947 

(0.0008) 

15.398 

(0.0088) 

15.710 

(0.0009) 

16.320 

(0.0011) 

16.255 

(0.0010) 

9 

17.997 

(0.0008) 

17.477 

(0.0553) 

17.799 

(0.0017) 

18.535 

(0.0003) 

18.512 

(0.0003) 

10 

 

     Some motifs are able to discriminate high-effectiveness and low-effectiveness 

sequences, and these motifs have distinct physical properties in their δGs and bit-wise 

information content, but even with a dataset of 3913 sequences, motifs of length 6 

become rare in the dataset (group D).  Increasing motif lengths became increasingly rare 

in the dataset and by motif length 8 the majority of motif observations are not seen in the 

dataset.  In order to more closely examine motif frequency distributions in high 

effectiveness and low effectiveness sequences, we asked whether any motifs were overly 

distributed in high-effectiveness versus low-effectiveness sequences. To address this 

question, we developed a Monte Carlo procedure to compare the frequency distribution 

of a motif in the original dataset partitioned into high-activity and low-activity groups to 

a randomized sequence activity dataset. The randomized dataset contained the same 

number of sequence and activity pairs as the original dataset, and the randomized 

sequences were drawn from the original dataset’s sequence length and base content 

distributions.  The randomized activities were drawn from the original dataset’s activity 

distribution.  By repeating this method 10
5
 times, we built a null distribution of a motif’s 

abundance in high-effectiveness and low-effectiveness sequences, and asked whether the 

observations made in the original dataset were typical for the motif or if the distribution 

was biased towards high- or low-effectiveness sequences.   

 

     We used this Monte Carlo method to examine the 1364 motifs of lengths 1 through 5.  

The probability of their overabundance in high-effectiveness sequences by chance is 

displayed in figure 1.  156 motifs occur in high-effectiveness and 213 motifs occur in 

low-effectiveness sequence more than expected when compared to datasets drawn from 

the same underlying distributions (α = 0.05, two-tailed).  While 156 and 213 are both 
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large proportions of the total number of motifs, 11% and 15% respectively, the 

occurrence of motifs across antisense effectiveness are indistinguishable from normally 

distributed (figure 1).  The overall base distributions in motifs associated with high-

effectiveness sequences deviates from random, with cytosines higher than expected by 

chance (C=151, T=95, G=93, A=78).  The motifs are shown in Table 4.  In contrast, the 

                                                                         bases in motifs associated with low- 

                                                                         effectiveness sequences contain a higher 

                                                                         proportion of adenines (A= 185, T=157,  

                                                                         G=107, C=84).  These motifs are shown in 

                                                                         Table 5.  These observations and motifs are 

                                                                          consistent with previous observations 

                                                                          concerning antisense sequences, suggesting 

                                                                          this method may be useful in identifying 

                                                                          motifs significantly associated with 

                                                                          sequence activity, either positively or 

                                                                          negatively (8,13).   
     Fig. 1.  Antisense activity association 

     of 1364 sequence motifs. 

 

                          Table 4. 156 Motifs Significantly Associated with high effectiveness antisense sequences, 

                     grouped by length 
 

1 
 

2 
 

3 
 

4 
 

5 

 
 
 

 
 

 
    

 
     

C 
 

CA 
 
ACC 

 
AACC CACC GCCA TACC 

 
AAACG CAACC CCGTG GAACG TACCA 

 
 

CC 
 
CAC 

 
AACG CACT GCCC TCCC 

 
AACCA CAAGC CCTAC GACCG TACCC 

 
 

CG 
 
CCA 

 
ACCA CATC GCGT TCCG 

 
AACCC CACCA CCTCC GATAG TCCAC 

 
 

CT 
 
CCC 

 
ACCC CCAC GTCC TCGT 

 
AACGA CACTC CCTGT GCAAG TCCCC 

 
 

GC 
 
CCG 

 
ACCT CCAT  TCTC 

 
ACCAT CATCC CCTTG GCCAC TCCCG 

 
 

TC 
 
CCT 

 
ACTC CCCA  TGCT 

 
ACCCT CATCG CGACC GCCTC TCCCT 

 
 

 
 
CGC 

 
AGCC CCCC  TGTC 

 
ACCGG CATGT CGACG GCGAC TCCGC 

 
 

 
 
CGT 

 
AGCT CCCG  TGTG 

 
ACCTA CCAAC CGATG GCGCT TCCGT 

 
 

 
 
CTC 

 
ATCG CCCT  TTGC 

 
ACGAA CCACC CGCAA GCGTC TCGTC 

 
 

 
 
GCC 

 
 CCGC   

 
ACGCA CCACG CGCCC GCGTT TCTCG 

 
 

 
 
GCT 

 
 CCTC   

 
ACGCG CCACT CGCCT GGCCA TGATA 

 
 

 
 
TCC 

 
 CGCC   

 
ATACC CCATC CGCGA GGCGT TTGCG 

 
 

 
 
TGC 

 
 CGCT   

 
ATCCC CCCAA CGGTA GGCTA TTGGC 

 
 

 
 

 
 

 CGTC   
 
ATCGC CCCAC CGTAC GGGCC  

 
 

 
 

 
 

 CGTG   
 
ATCTC CCCAT CGTCC GGTCC  

 
 

 
 

 
 

 CTCC   
 

 CCCCA CGTGA GTCAC  

 
 

 
 

 
 

    
 

 CCCCC CGTGC GTCCC  

 
 

 
 

 
 

    
 

 CCCGC CTACC GTGAG  

 
 

 
 

 
 

    
 

 CCCTC CTCAG GTGTG  

 
 

 
 

 
 

    
 

 CCCTG CTCCC   

 
 

 
 

 
 

    
 

 CCCTT CTCCG   

 
 

 
 

 
 

    
 

 CCGAC CTCGT   

 
 

 
 

 
 

    
 

 CCGCC CTCTC   

 
 

 
 

 
 

    
 

 CCGCG CTGTG   

 
 

 
 

 
 

    
 

 CCGCT CTTGC   

 
 

 
 

 
 

    
 

 CCGGG    
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     To further determine whether this method identifies motifs that have properties 

identified previously in high- and low-effectiveness sequences, we again examined the 

physical properties of the identified motifs.  The 156 motifs abundant in high-

effectiveness sequences had a lower δG when compared to the 213 motifs in low-

effectiveness sequences (ave δG = -4503.26, sd = 76.07 versus ave δG = -3062.22, sd = 

40.69 in the two groups respectively; t = 16.4, P < 1 x 10
-37
). The distribution of motif   

                      

Table 5.  213 Motifs Significantly Associated with low activity antisense sequences, 

grouped by length and sequence 

1 
 
2 

 
3 

 
4 

 
5 

 
 

 
 

 
 

  
 

 
 

   

A 
 
AA 

 
AAA 

 
AAAA GAAA 

 
AAAAA 

ATAAA CGTGT GGGGT TCGAC 

 

 

AT 

 

AAG 

 

AAAG 

GACG  

AAAAG 

ATAAC CTATA GGTAG TCTAG 

 

 

GA 

 

AAT 

 

AAAT GATT 

 AAACA ATAAT CTATC GGTTA TCTTA 

 

 

GG 

 

AGG 

 AACA GCGG  

AAAGA 

ATACG CTATT GTAAG TGCGA 

 
 
TA 

 
ATA 

 
AAGA GGAA 

 
AAAGT 

ATAGA CTCAC GTAGG TGGAT 

 

 

TT 

 

ATT 

 

AATA 

GGAC  

AAATA 

ATAGG CTGGG GTGGG TGGGG 

 

 

 

 

GAA 

 AATC 

GGGA 

 

AAATG 

ATATA CTTAC GTGTA TTAAA 

 
 

 
 
GGA 

 
AATG GGGG 

 
AAATT 

ATATT CTTCG GTTAT TTAAC 

 

 

 

 

GGG 

 

AATT GTTA 

 AACAA ATCCG GAAAA TAAAA TTAAT 

 

 

 

 

TAA 

 ACAA 

TAAA 

 

AACTA 

ATCGA GAAAG TAAAC TTACA 

 
 

 
 
TAG 

 
ACTA TAAT 

 
AAGAA 

ATTAA GAATA TAAAG TTACG 

 

 

 

 

TAT 

 

AGAA 

TACG  

AAGAT 

ATTAG GACGA TAAAT TTACT 

 

 

 

 

TTA 

 

AGAT TACT 

 AAGCG ATTAT GAGAA TAATA TTAGT 

 

 

 

 

TTT 

 

AGGA TAGA 

 

AATAA 

ATTGA GATAA TAATC TTATA 

 

 

 

 

 

 

AGGG TAGG 

 

AATAG 

ATTTA GATCA TAATG TTATT 

 

 

 

 

 

 

ATAA TATA 

 

AATAT 

ATTTG GATTA TAATT TTCGA 

 

 

 

 

 

 

ATAT TATT 

 AATCA ATTTT GCGCG TACGT TTCTT 

 

 

 

 

 

 

ATTA 

TCAA  

AATCT 

CAAAT GCGGC TACTA TTTAA 

 

 

 

 

 

 

ATTT TCTA 

 AATGG CAATA GCGGG TACTT TTTAC 

 

 

 

 

 

 CAAT 

TCTT 

 AATTA CAATT GGAAA TAGAA TTTAT 

 
 

 
 

 
 
CATA TGGG 

 AATTG CATTA GGAAT TAGAT TTTTA 

 

 

 

 

 

 

CGGC TTAA 

 AATTT CATTT GGACA TAGTT TTTTT 

 

 

 

 

 

 

CTAT 

TTAC  ACAAA CCGGC GGACG TATAA  

 
 

 
 

 
 

 TTAT 
 ACAAT CGAGC GGATC TATAT  

 
 

 
 

 
 

 TTTA 
 ACATA CGAGT GGCGG TATGA  

 
 

 
 

 
 

 TTTT 
 ACTAC CGATA GGGAC TATTA  

 
 

 
 

 
 

  
 ACTAT CGCTA GGGCG TATTG  

 
 

 
 

 
 

  
 AGAAA CGGGG GGGGA TATTT  

 

 

 

 

 

 

  

 AGGGA CGGTT GGGGC TCAAA  

 
 

 
 

 
 

  
 AGGGG CGTAA GGGGG TCAAT  
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δGs from all motifs, as well as motifs associated with high and low effectiveness, is 

consistent with previous conclusions of longer discretely distributed motifs, with more 

negative δGs associating with high-effectiveness antisense sequences. 

 

     Shorter length motifs can be subwords of longer motifs, and we examined whether 

any of the 213 motifs identified in low-effectiveness sequences were subwords of the 156 

motifs in high-effectiveness sequences, and vice versa.  Of the 156 motifs in high-

effectiveness sequences, 67 did not contain subwords from the motifs found in low-

effectiveness sequences.  Conversely, of the 213 motifs in low-effectiveness sequences, 

129 did not contain subwords from the motifs found in high-effectiveness sequences.  

The majority of cross-population subwords removed resulted from the single base motifs, 

“C” from the high-effectiveness motifs and “A” from the low-effectiveness motifs.  

Again, these subword-unique motifs are consistent with previous observations for 

physical properties.  The 67 motifs (ave δG = -4249.69, sd = 17301) unique in high-

effectiveness sequences had a lower δG when compared to the 129 motifs (ave δG = -

2392.67, sd = 2575) unique in low-effectiveness sequences (t = 13.1, P < 1 x 10
-22
).  

However, when comparing the physical properties of these unique motifs with all motifs 

of length 1 through 5 (ave δG = -4143.2, sd = 1010), there is no significant difference in 

δG between the 67 motifs unique in high-effectiveness sequences (P = 0.43).  By 

contrast, the 129 unique motifs have a significantly higher δG when compared to all 

motifs of lengths 1 through 5 (t = 29.2, P < 1 x 10
-50
). 

 

     The motifs identified by this Monte Carlo method are not a random sample from all 

possible motifs.  Relationships between motifs of distinct lengths can be represented as a 

directional graph, where a connection between motif nodes is made when a motif is a 

subword of another motif. An example of such a graph is presented in figure 2.  Graph 

connectivity in the 156 and 213 motifs found in effective sequences and in the 67 and 129 

motifs found in ineffective sequences is significantly higher than connectivities for any 

motif dataset randomly chosen from all possible motifs of lengths 1 through 5.   

 

     The distribution of motifs across an antisense sequence may play a role in the 

sequence’s effectiveness.  To examine whether the identified motifs deviated from a null 

expectation of uniform distribution across a sequence, we divided the original sequence 

strings into 2 regions: an inner region and an outer region.  The region within the 

sequence was then used as the first axis of a 2 x 2 contingency analysis, and the second 

axis was sequence activity.  Analyses were performed using several criteria to divide 

region and activity, but the results presented, with region divided at 7 nucleotides and 

activity divided at 0.5 were typical.   

 

     First, the distribution of motifs associated with effective antisense sequences was 

examined.  30 of the 156 motifs found in high-effectiveness sequences had numerical 

counts of 5 or greater in each cell of the 2 x 2 contingency table.  Of these 30 motifs, 14 

(8.9% of 156) had significant deviations from the expected uniform distribution by the 

chi-square test, incorporating Bonferonni corrections on the chi-square for multiple 

comparisons.  All 14 of these significant deviations were consistent where the proportion 

of motifs in effective versus ineffective sequences was greater in the outer region of the  



 

©2005 Integrated DNA Technologies. All rights reserved.                                                                                              9 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Connectivity among the 156 nucleotide motifs significantly associated with high activity 

antisense sequences grouped by 5’ sequence. 

 

antisense when compared to the inner region.  By contrast, 18 of the 213 motifs found in 

low-effectiveness sequences had numerical counts of 5 or greater, and of these, 11 (5.1% 

of 213) had significant deviation from the expected uniform distribution.  Again, all 11 of 

these deviations were together consistent and opposite in direction from the pattern found 

with effective motifs.  The proportion of motifs in effective versus ineffective sequences 

was greater in the inner region when compared to the outer region.  In summary, more of 

the effective antisense sequences tend to have “good” motifs towards the outer regions of 

an effective antisense, while “bad” motifs are more tolerated towards the inner region of 

an effective antisense.  Additional examinations for nucleotide-specific positional effects 

and strand asymmetry effects did not show any obvious general trends (results not 

shown). 

 

     Finally, we built a C4.5 decision tree (20) to predict the effectiveness of a novel 

sequence based on the number of "good" and "bad" motifs it contained.  We determined 

that the motif variables alone are a poor way of discriminating sequence effectiveness; 

after training a model over all 3913 instances, a 10-fold cross-validation produced 2953 

correctly classified instances (75.46%) and 960 incorrectly classified instances (24.53%).  
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The vast majority of correctly classified instances were ineffective sequences, and as a 

result, the model overclassifies toward "ineffective"; of the 967 effective sequences, only 

39 were classified correctly.  By contrast, only 32 ineffective sequences were 

misclassified as effective.  However, this tree has only two branches (at "good-motifs > / 

<= 19" and "good-motifs > / <= 29") and three leaves -- it only classified sequences with 

more than 29 "good" motifs as effective.  Introducing more data about each sequence -- 

for example, δG, the number of "good" motifs appearing toward the outside of the 

sequence, the number of "bad" motifs appearing toward the interior of the sequence, and 

the bit-wise information content -- will provide more decision-making criteria and a more 

accurate model of antisense effectiveness. 

 

Discussion 

 

     Our intentions were to examine sequence motifs and determine if they were non-

randomly associated with antisense sequences and their activities with a dataset of 

phosphorothioate oligonucleotides.  In the course of this goal, we developed a Monte 

Carlo method to systematically examine the distribution of non-discretely associated 

motifs, and discovered novel patterns of motif association and distribution within 

antisense sequences.  This method was able to uncover sequence motifs that have 

previously been identified with antisense sequence effectiveness, such as TCCC (8,13), 

CCAC, ACTC, and GCCA (13). However, the motif CTCT has been previously 

identified (13) as associating with effective antisense sequences, but we did not identify 

this motif with this method and dataset.  Furthermore, this method uncovers motifs that 

have previously been identified with antisense sequence ineffectiveness, such as GGGG, 

AAA and TAA (13).  Another motif, ACTG, which has been previously identified (13) 

with ineffective antisense, was not identified with this method and dataset.  In addition to 

these motifs that have been previously identified, these methods and dataset were able to 

find several hundred more motifs that appear to be non-randomly associated with 

antisense sequence activity. 

 

     Sequence motifs that associate with antisense activities appear not to be drawn at 

random from all possible motifs by their relationships as subwords, thermodynamic 

properties or information content.  This observation should not be surprising, since it is 

apparent that biological systems are certainly not random, but it does suggest that these 

methods are able to identify some properties of antisense molecules that may influence 

the biological systems where these sequences act.  While we use statistical significance to 

help identify patterns, we would like to mention that statistical and biological 

significance do not necessarily associate.  We have found a significant association of 

motif thermodynamics with activity, and this observation is congruent with previous 

observations that have shown an overall association between antisense activity and 

thermodynamic properties.  However, from our observations we may provide some 

further insight into this thermodynamic association.  Based on the overall thermodynamic 

differences between “good” and “bad” motifs, and more clearly the thermodynamic 

differences between unique motifs in “good”, “bad” and all motifs, the association of 

sequence effectiveness with thermodynamic stability may be less related to choosing 

motifs with high stability than to avoiding motifs with low stability.  Furthermore, we 
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have identified an overall pattern for motif distributions across an antisense molecule.  

Specifically, we have found that “good” motifs appear to be more effective when on the 

ends and that “bad” motifs appear to be less deleterious when centrally located in an 

antisense molecule. 

 

     The rational design of nucleic acid molecules to perform target gene knockdown, such 

as RNaseH mediated antisense or RISC medicated RNA interference, requires some 

knowledge of the how these nucleic acid molecules function within their biological 

context.  Data mining to explore biological datasets is one method to discover previously 

unidentified patterns that may suggest likely biological mechanisms of action.  For 

example, the motifs that we identify as “good” may provide some site of interaction for 

protein binding or may provide some preferential feature for higher RNaseH activity.  

Also, the identification of an inner and outer symmetry in antisense sequences may 

suggest some pattern of molecular recognition involving a difference between the core 

and the ends of an antisense molecule.  Furthermore, the identification of patterns that 

associate with sequence activity can be used in the selection of candidate molecules for 

further biological screening.  Thereby, information from many experiments can be 

combined and used to determine criteria for discriminating between effective and 

ineffective antisense, and these criteria can be used as rules to potentially increase 

candidate antisense molecule hit rates.  
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