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Abstract

This paper presents a new technique for estimating and cor-
recting the geometric distortion produced by common off-
the-shelf lenses. The taks of recovering the three most im-
portant parameters modeling the lens distortion of a digital
camera is formulated as a problem of image warping where
the distorted image of a planar calibration plate taken by
the camera has to be registered onto the virtual undistorted
image of the same target that would be produced by an ideal
pinhole digital camera in a convenient position with respect
to it. The Levenberg-Marquardt algorithm is chosen for
solving the associated minimization problem in which the
cost function is the squared L2 norm of the difference be-
tween the intensities of the reference and distorted image.
In this paper, the algorithm is applied to a practical case
of lens distortion correction; the experimental results re-
ported here confirm the effectiveness of the image warping
approach.

1 Introduction

In Computer Vision, camera calibration refers to the prob-
lem of recovering the external and internal geometry of an
optical acquisition device in order to have a complete de-
scription of its image formation process and, therefore, to
be able to make accurate 3-D measurements from 2-D im-
agery [1, 2, 3]. The external geometry of a camera is defined
as the 3-D motion which relates the 3-D reference frame at-
tached to the camera, the camera coordinate system, to a
given 3-D world coordinate system. The internal geometry
refers instead to the parameters of the mathematical model
describing the geometric aberrations produced by the lens
system of the camera. The displacements due to this kind of
distortion are usually modeled with appropriate polynomi-
als in the coordinates of the 2-D frame indexing the camera
image plane [4].
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Many calibration algorithms estimate the external and
internal camera geometry at the same time by establishing
relationships between 3-D fiducial markers and their projec-
tions on the image plane [1, 2]. However, the correction for
lens distortion can be tackled and solved as a problem per
se, without recovering the external geometry of the cam-
era. Usually, calibration targets containing straight lines
[5, 6, 7, 8], grids, or regular patterns [9] are used to esti-
mate the internal geometry since straightness or spatial reg-
ularity constitute convenient prior information that can be
exploited. In this paper, we resort to image warping [10] as
a means for retrieving the internal geometry of an unknown
digital camera. The idea of using image warping was orig-
inally proposed by Collins and Tsin for calibrating active
camera systems [11]; their method is based on a dense op-
tical flow approach. In our method instead, the distorted
image of a regular calibration pattern – a black-and-white
checkerboard – is registered on a virtual reference image
generated by an ideal pinhole camera devoid of any lens
and perspective warp. The experimental results presented
in this paper confirm the effectiveness of our algorithm

This paper has five sections. Section 2 introduces the
mathematical model used for correction of lens distortion.
Section 3 presents the image warping algorithm. Section
4 reports some experimental results. Section 5 draws the
conclusions.

2 Mathematical Model for Correction of Ge-
ometric Lens Distortion

2.1 Internal Geometry of the Camera

Let us consider the picture of Fig. 1 (a); it represents the im-
age fd(x; y), (x; y) 2 R2 , of a planar calibration plate with
a black-and-white regular checkerboard pattern. 1 Owing to
the geometric distortion introduced by the optical system of
the camera, lines which are straight on the actual calibration

1The image of Fig. 1 (a), downloaded from [12], belongs to a set of
25 images of the same calibration checkerboard taken from various view-
points.
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Figure 1. (a) Image fd(x; y) of a planar calibration plate with a checkerboard pattern; (b) Selection of the
region of interest in fd(x; y) and extraction of the X-junctions; (c) Synthetic random pattern gd(x; y) built from
the X-junctions extracted from fd(x; y); (d) Image gd(x; y) overlaid to fd(x; y).

plate appear curved in fd(x; y). The orthogonal Cartesian
frame xy defines the reference system of the camera image
plane.
By denoting with xd

:
= (xd; yd) any generic (distorted)

point of fd(x; y), the correct location xd
:
= (xu; yu) that

would be measured if the camera were devoid of geometric
lens distortion is given by�

xu =  1(xd; yd; �`) = xd + Æ1(xd; yd; �`);
yu =  2(xd; yd; �`) = yd + Æ2(xd; yd; �`);

(1)

where Æ1(xd; yd; �`) and Æ2(xd; yd; �`) are the amounts of
correction along the x-axis and y-axis, respectively. Ac-
cording to Eqs. (1), the two corrective offsets are functions
of the distorted location xd as well as of the parameters �`
describing the internal (or intrinsic) geometry of the camera
[1, 2, 3]. Brown advanced an accurate mathematical model
for Æ1(xd; yd; �`) and Æ2(xd; yd; �`) which depends on three

sets of parameters [1, 4]: i) the coordinates (xp; yp) of the
principal point (where the optical axis of the camera inter-
sects the image plane); ii) the polynomial coefficients � i of
the radial component of distortion; and iii) the polynomial
coefficients pi of the decentering component of distortion.
In many practical cases, a very good description of the geo-
metric lens aberration can be obtained by keeping only the
three parameters which account for most of the distortion,
namely the coordinates of the principal point and the first
radial distortion coefficient �1. The two offsets in Eqs. (1)
thus read �

Æ1(xd; yd; �`) = �1(xd � xp)r
2;

Æ2(xd; yd; �`) = �1(yd � yp)r
2;

(2)

where r2
:
= (xd � xp)

2 + (yd � yp)
2 and the internal

geometry of the camera is described by the vector � `
:
=

[xp yp �1]
T 2 R3 .
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Figure 2. The two geometric transformations relating image fd(x; y) to the virtual reference image fr(x0; y0);
fu(x; y) represents the version of fd(x; y) after compensation for lens distortion; (xp; yp) are the coordinates
of the principal point of camera.

2.2 2-D Projective Transformation

If the parameters � ` in Eqs. (2) were known, it would be
possible to compensate the image fd(x; y) for lens distor-
tion through Eqs. (1) and (2) and transform it into a new
‘undistorted’ image fu(x; y); an ideal digital pinhole cam-
era with the same focal length would yield such an im-
age. Let us suppose now that we can move this virtual
pinhole camera into a centered fronto-parallel configuration
[2] with respect to the calibration plate, the planar checker-
board. This simply means that the axes of its image plane
are parallel to the sides of the checkerboard and that its
optical axis pierces the plate at the center. Let fr(x0; y0),
(x0; y0) 2 R

2 denote the image of the calibration pattern
seen from this position, x0y0 being the reference frame of
the virtual pinhole camera image plane. Based on the pla-
narity of the calibration plate, it is straightforward to show
that the two images fu(x; y) and fr(x0; y0) relate through a
2-D projective transformation or projectivity [3] defined by
fr(x

0; y0) = fu(x; y), where

8>><
>>:

x0 =
a11(x� xp) + a12(y � yp) + b1
c1(x� xp) + c2(y � yp) + 1

;

y0 =
a21(x � xp) + a22(y � yp) + b2
c1(x� xp) + c2(y � yp) + 1

;
(3)

with aij ; bi; ci 2 R, i; j = 1; 2. Eqs. (3) can be simplified
and rewritten as

8><
>:

x0 = '1(x; �P)
:
=
�11x+ �12y + �1

1x+ 
2y + 1

;

y0 = '2(x; �P)
:
=
�21x+ �22y + �2

1x+ 
2y + 1

;
(4)

where �ij
:
= aij=d, �i

:
= (bi � ai1xp � ai2yp)=d, and


i
:
= ci=d, with d

:
= 1 � c1xp � c2yp, i; j = 1; 2, x

:
=

[x y]T , and �
P

:
= [�11 �21 �12 �22 �1 �2 
1 
2]

T 2 R
8 .

By combining the two geometric transformations of Eqs. (1)
and (2) and Eqs. (4), the two images fd(x; y) and fr(x0; y0)

relate through fr(x0; y0) = fd(x; y), where8>>>>>>>><
>>>>>>>>:

x0 = '1 ( 1(x; �`);  2(x; �`); �P) =

=
�11 1(x; �`) + �12 2(x; �`) + �1

1 1(x; �`) + 
2 1(x; �`) + 1

;

y0 = '2 ( 1(x; �`);  2(x; �`); �P)

=
�21 1(x; �`) + �22 2(x; �`) + �2

1 1(x; �`) + 
2 2(x; �`) + 1

;

(5)

The two geometric transformations are schematically repre-
sented in Fig. 2.

3 Image Warping
Based on Eqs. (5), the estimation of the internal geome-
try of the camera can be set forth as a problem of image
warping [10] where the image fr(x0; y0) has to be regis-
tered over fd(x; y) by minimizing their distance expressed
by the squared L2 norm, i.e.,

min
�
�2(�)

:
=

min
�




fr�'1

�
 1(x; �`);  2(x; �`); �P

�
;

'2

�
 1(x; �`);  2(x; �`); �P

��
� fd(x)




2
L2

=

min
�

Z
R2

�
fr

�
'1

�
 1(x; �`);  2(x; �`); �P

�
;

'2

�
 1(x; �`);  2(x; �`); �P

��
� fd(x)

�2
dx;

(6)

where �
:
= [�T` �

T

P
]T 2 R

11 denotes the overall parameter
vector. The eight coefficients of the 2-D homography in
Eqs. (5) are obtained as a byproduct of the solution to the
problem in Eq. (6).

For convenience, the function to minimize in Eq. (6) can
be rewritten as

�2(�)
:
=
X
n2P

(�(n; �))
2 :
=

X
n2P

�
fr

�
'1

�
 1(x(n); �`);  2(x(n); �`); �P

�
;

'2

�
 1(x(n); �`);  2(x(n); �`); �P

��
� fd(x(n))

�2
;

(7)



where the sum numerically approximates the integral in
Eq. (6) and P indicates the set of pixels of the digital ver-
sions of the two images. The problem of Eq. (6) can be
solved with the Levenberg-Marquardt algorithm [2] which
iteratively refines the estimate of the extremal point by solv-
ing the normal equations

Æ� = �
�
H��

2 + �I11
�
�1
r��

2; (8)

whereH��
2 2 R

11�11 and r��2 2 R
11 respectively de-

note the Hessian matrix and the gradient of the cost function
�2(�) with respect to the parameter vector �, I 11 2 R

11�11

being the identity matrix, and � is an appropriate iteration-
dependent stabilization parameter; if ^�

(k)

is the estimate of
the extremal point at the k-th iteration, its update is given
by ^�

(k+1)

= ^�
(k)

+ Æ�.
For compactness of notation, let us denote the matrix

H��
2 and the vector r��2, respectively, as H��

2 =h
@2�2(�)
@�i@�j

i
and r��2 =

h
@�2(�)
@�j

i
, i; j = 1; : : : ; 11. The

first partial derivatives of �2 are

@�2(�)

@�j
= 2

X
n2P

�(n; �)
@fr
@�j

: (9)

The derivatives of fr with respect to the projective transfor-
mation parameters �

P
can be expressed as

@fr
@�j

= r
T

'fr

2
664
@'1

@�j
@'2

@�j

3
775 ; j = 4; : : : ; 11; (10)

where r'fr
:
=
h
@fr
@'1

@fr
@'2

iT
. The nonzero partial deriva-

tives of '1 and '2 with respect to the projective transfor-
mation parameters �

P
are:

@'1

@�11
=

@'2

@�21
=
 1

D
;

@'1

@�12
=

@'2

@�22
=
 2

D
;

@'1

@�1
=
@'2

@�2
=

1

D
;

@'1

@
1
= �'1

 1

D
;

@'1

@
2
= �'1

 2

D
;

@'2

@
1
= �'2

 1

D
;

@'2

@
2
= �'2

 2

D
;

(11)

where D
:
= 
1 1 + 
2 2 + 1. The derivatives of fr with

respect to the lens distortion parameters � ` can be expressed
as

@fr
@�j

=
1

D
r

T

'fu [A�'cT ]

2
664
@ 1

@�j
@ 2

@�j

3
775 ; j = 1; 2; 3;

(12)

where A
:
=
�
�11 �12
�21 �22

�
2 R

2�2 , '
:
= ['1 '2]

T
2 R

2 , and
c
:
= [
1 
2]

T 2 R
2 . The partial derivatives of  1 and  2

with respect to the three lens distortion parameters � ` are

@ 1

@xp
= ��1

�
r2 + (x� xp)

2
�
;

@ 2

@xp
=
@ 1

@yp
= �2�1(x� xp)(y � yp);

@ 2

@yp
= ��1

�
r2 + 2(y � yp)

2
�
;

@ 1

@�1
= r2(x� xp);

@ 2

@�1
= r2(y � yp);

(13)

By collecting the eleven partial derivatives of fr with re-
spect to � into the gradient vector

r�fr
:
=

2
6666666666664

@fr
@�1
...
@fr
@�3

@fr
@�4
...
@fr
@�11

3
7777777777775
=

2
666666666666666666666664

1
D
rT

'fr [A�'cT ]

"
@ 1
@�1
@ 2
@�1

#
...

1
D
rT

'fr [A�'cT ]

"
@ 1
@�3
@ 2
@�3

#

rT

'fr

"
@'1
@�4
@'2
@�4

#
...

rT

'fr

"
@'1
@�11
@'2
@�11

#

3
777777777777777777777775

;

(14)
the gradient of the objective function can finally be written,
through Eq. (10), as

r��
2 = 2

X
n2P

�(n; �)r�fr: (15)

The second partial derivatives of �2(�) are

@2�2(�)

@�i@�j
= 2

X
n2P

�
@fr
@�i

@fr
@�j

+�(n; �)
@2fr
@�i@�j

�
; (16)

i; j = 1; : : : ; 11. Usually, the Hessian H��
2 is computed

by disregarding in Eq. (16) the term containing the second
partial derivatives of fr which, as the algorithm progres-
sively converges to the optimal solution, becomes negligi-
ble in comparison to the term involving only first partial
derivatives of fr [2]. Therefore, the Hessian of the objec-
tive function can be approximated as

H��
2 = 2

X
n2P

r�frr
T

� fr: (17)

In order to apply our image warping algorithm, the image
fd(x; y) of Fig. 1 (a) has to be segmented first. A region of
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Figure 3. Virtual reference image gr(x0; y0).

interest (ROI) is defined by drawing with a graphical user
interface (GUI) we have implemented the four lines shown
in Fig. 1 (b). The algorithm of [13] is then applied within the
ROI to determine the subpixel locations of the X-junctions
(or corners) of the checkerboard pattern in fd(x; y); the X-
junctions found with this method are marked with yellow
‘+’ symbols in Fig. 1 (b). The grid associated with these
features is then filled with randomly generated gray lev-
els to generate the textured image gd(x; y) shown in Fig. 1
(c); Fig. 1 (d) shows the superposition of this image to the
actual image fd(x; y). The same gray levels are used to
generate the virtual image seen by the ideal pinhole cam-
era in the centered fronto-parallel configuration with respect
to the calibration plate; the corresponding image gr(x0; y0)
is shown in Fig. 3. Of course, the two images gd(x; y)
and gr(x0; y0) relate as fd(x; y) and fr(x0; y0), i.e., through
Eqs. (5).

4 Experimental Results
The image warping algorithm of Section 3 can be directly
applied to gd(x; y) and gr(x

0; y0). However, if these
images are large in size, like in our case, being 480 � 680
pixels, the solution of Eq. (6) may be very rather lengthy.
It is therefore advisable to isotropically shrink the two
images according to gd(�x; �y) and gr(�x

0; �y0), with
0 < � < 1; in our implementation, we have set � = 0:5 so
that the two shrunk images are one fourth the area of the
original images. The new parameter vector becomes � � =�
(xp=�) (yp=�) (�2�1) �11 �21 �12 �22 (�1=�) (�2=�)
(�
1) (�
2)]

T
2 R11 .

The solution of the minimization problem of Eq. (6) re-
quires an appropriate choice of the initial values of the pa-
rameters � in order to guarantee the global convergence of
the normal equations of Eq. (8) to the optimal solution of
the cost function �2(�). By setting xp = 0, yp = 0, and
�1 = 0 in Eqs. (5), the parameters �

P
can be found in
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Figure 4. Compensation for lens distortion: the
intensity is proportional to the corrective offsetp
Æ21 + Æ22 (in pixels) as indicated by the colorbar.

a closed form with a linear least-squares algorithm since
Eqs. (5) are linear with respect to these parameters [2, 3]
and the locations of the X-junctions of fd(x; y) are known
together with the corresponding points of fr(x0; y0). Let
�̂ij , �̂i, and 
̂i, i; j = 1; 2, be the estimates of the coeffi-
cients of �

P
obtained with this method. The starting point

for the Levenberg-Marquardt algorithm is therefore set as
�o = [0 0 0 �̂11 �̂21 �̂12 �̂22 �̂1 �̂2 
̂1 
̂2]

T . Usually, this
initial condition turns out to be very close to the optimal
solution whence only a few iterations are necessary for the
convergence of the algorithm; in the example of this paper,
convergence was achieved in a dozen iterations.

The second column of Table 1 displays the parameter
vector � obtained from the internal and external parameters
estimated with the Matlab Calibration Toolboox of [12]; the
third column shows instead the results returned by out im-
age warping algorithm. It should be noticed that the two sets
of parameters are very close. Figure 4 provides a graphical
rendition of the overall corrective offset

p
Æ21 + Æ22 , where

Æ1 and Æ2 are the two displacements of Eqs. (2) for the es-
timated values of xp, yp, and �1; the yellow ‘+’ symbol
denotes the physical center of the image plane whereas the
red ‘�’ symbol indicates the estimated principal point. The
legend of Fig. 4 clearly shows that, near the four corners, the
necessary corrections are of about forty pixels. Figure 5 (a)
displays the original image fd(x; y) after compensation for
lens distortion with the values of xp, yp, and �1 in the third
column of Table 1; Figure 5 (b) shows the rectification of
fd(x; y), i.e., the compensation of this image for both lens
distortion and perspective warp according to the estimates
of the third column of Table 1.

A final note on the use of the randomly textured pattern
introduced in Section 3. The algorithm was also tested by
filling the grid of Fig. 1 (b) with a regular black-and-white
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Figure 5. (a) Image fd(x; y) after compensation for lens distortion; (b) Image fd(x; y) after rectification.

checkerboard pattern like the one of the original image, but
the randomly textured pattern, unlike the other, guaranteed
the convergence to the optimal solution. This can be ex-
plained by observing that the normal equations of Eq. (8)
used by the Levenberg-Marquardt algorithm are based on
image gradients and patterns like that shown in Fig. 1 (c)
result in a gradient across the image more diverse than the
gradient produced by a regular black-and-white checker-
board; different image portions are then associated with dif-
ferent gradient values and, therefore, more spatial clues are
available for steering the warping of the reference image
fr(x

0; y0) onto fd(x; y).

5 Conclusions

In this article, we have advanced a new method for estimat-
ing the geometric aberration produced by the lens system of

� Calibration Toolbox image warping

xp -16.48 -15.72
yp -2.90 -2.26
�1 5:71 10�7 5:71 10�7

�11 1.18 1.18
�21 0.03 0.03
�12 -0.09 -0.09
�22 1.22 1.22
�1 69.91 69.82
�2 53.57 53.46

1 �3:30 10�4 �3:32 10�4


2 3:79 10�4 3:79 10�4

Table 1. Estimates of the parameter vector � ob-
tained with the Matlab Calibration Toolbox of [12]
(second column) and with our technique (third
column).

a digital camera. Our algorithm estimates its internal geom-
etry by using image warping. The image of a planar calibra-
tion plate is first conveniently processed in order to extract a
pattern of interest; this image is then warped onto a virtual
image of the same pattern that would be generated by an
ideal pinhole camera devoid of lens and perspective warp.
The experiment presented in the paper shows the effective-
ness of this technique.
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