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Abstract 

We outline a cognitive and computational account of causal learning in children.  

We propose that children employ specialized cognitive systems that allow them to 

recover an accurate “causal map” of the world: an abstract, coherent, learned 

representation of the causal relations among events.  This kind of knowledge can be 

perspicuously understood in terms of the formalism of directed graphical causal models, 

or “Bayes nets”.  Children’s causal learning and inference may involve computations 

similar to those for learning causal Bayes nets and for predicting with them.  

Experimental results suggest that 2- to 4-year-old children construct new causal maps and 

that their learning is consistent with the Bayes net formalism. 
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A theory of causal learning in children: Causal maps and Bayes nets

 

When we are children, the input that reaches us from the world is concrete, 

particular, and limited.  Yet, as adults, we have abstract, coherent, and largely veridical 

representations of the world around us.  The great epistemological question of cognitive 

development is how we get from one place to the other: How do children learn so much 

about the world so quickly and effortlessly?  In the past 30 years, cognitive 

developmentalists have demonstrated that there are systematic changes in children’s 

knowledge of the world.  However, we know much less about the representations that 

underlie that knowledge and the learning mechanisms that underlie changes in that 

knowledge.    

In this paper, we will outline one type of representation and several related types 

of learning mechanisms that may play a particularly important role in cognitive 

development.  The representations are of the causal structure of the world and the 

learning mechanisms involve a particularly powerful type of causal inference.  Causal 

knowledge is important for several reasons.  Knowing about causal structure permits us 

to make wide-ranging predictions about future events.  Even more important, knowing 

about causal structure allows us to intervene in the world to bring about new events – 

often events that are far removed from the interventions themselves. 

Traditionally, psychologists thought there was little causal knowledge in 

childhood – in particular, Piaget argued that preschoolers were “precausal” (Piaget 1929, 

1930).  In the past two decades, however, there has been an explosion of research on 

causal knowledge in young children.  By the age of five, children understand some of the 
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basic causal principles of everyday physics (Bullock, Gelman, & Baillargeon, 1982; 

Leslie & Keeble, 1987; Oakes & Cohen, 1990; Spelke, Breinlinger, Macomber, & 

Jacobson, 1992), biology (Gelman & Wellman, 1991; Inagaki & Hatano, 1993; Kalish, 

1996), and psychology (Flavell, Green, & Flavell, 1995; Gopnik & Wellman, 1994; 

Perner, 1991).  Children as young as two years old can make causal predictions, provide 

causal explanations, and understand counterfactual causal claims (Harris, German, & 

Mills, 1996; Hickling & Wellman, 2001; Sobel & Gopnik, 2002; Wellman, Hickling & 

Schult, 1997).  Moreover, children’s causal knowledge changes over time (see e.g. 

Bartsch & Wellman, 1995; Gopnik & Meltzoff, 1997), and changes in the light of new 

evidence (Slaughter & Gopnik, 1996; Slaughter, Jaakkola, & Carey, 1999).  This 

suggests that children are actually learning about the causal structure of the world.  

Much of this work has taken place in the context of the “theory theory”: the idea 

that children have intuitive theories of the world, analogous to scientific theories, and that 

these theories change in ways that are similar to scientific theory change (Carey, 1985; 

Gopnik, 1988; Gopnik & Meltzoff, 1997; Keil, 1989; Perner, 1991; Wellman, 1990).  

Causal knowledge plays a central role in theories both in science (Cartwright, 1989; 

Salmon, 1984), and in everyday life (Gopnik & Wellman, 1994; Gopnik & Glymour, 

2002).  

We argue that causal knowledge and causal learning in children involve a type of 

representation we call a “causal map”.  Causal learning depends on learning mechanisms 

that allow us to recover an accurate causal map of the world.  Causal maps can be 

inferred from observations of the patterns of correlation among events2, or from 

observations of the effects of interventions, that is, actions that directly manipulate 
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objects, or from both types of observations.  We propose that young children employ 

unconscious inductive procedures that allow them to infer causal representations of the 

world from patterns of events, including interventions. These procedures produce 

accurate representations of causal structure, at least for the most part. 

We will argue that these kinds of representations and learning mechanisms can be 

perspicuously understood in terms of the normative mathematical formalism of directed 

graphical causal models, more commonly known as Bayes nets (Pearl 2000; Spirtes, 

Glymour & Scheines 1993, 2001).  This formalism provides a natural way of 

representing causal structure and it provides powerful tools for accurate prediction and 

effective intervention.  It also provides techniques for reliably learning causal structures 

from patterns of evidence, including interventions.  We will describe the formalism, 

explain how it permits prediction and intervention, and describe several computational 

procedures by which even complicated causal maps can be learned from correlations, 

interventions, and prior knowledge.  We will suggest that children’s causal learning may 

involve more heuristic and limited versions of similar computations.  We will describe 

experiments supporting the hypothesis that children’s causal learning is in accord with 

Bayes net representations and learning mechanisms.  These experiments also suggest that 

children’s learning does not just involve a causal version of the Rescorla-Wagner rule.    

 

The causal inverse problem 

The study of vision has led to some of the most successful theories in cognitive 

science.  The visual system, whether human or robotic, has to solve what has been called 

“the inverse problem” (Palmer, 1999).  From the retinal (or fore-optic) image, the visual 

 



 CAUSAL MAPS 6

system has to reconstruct information about objects moving in space.  Vision scientists 

explore how that reconstruction can be done computationally, and how it is done in 

humans.  Although accounts are very different in detail, they share some general features:  

(1) Visual systems have an objective problem to solve: they need to discover how three-

dimensional moving objects are located in space.  (2) The data available are limited in 

particular ways.  For example, the information at the retina is two-dimensional, while the 

world is three-dimensional.  (3) Solutions must make implicit assumptions about the 

spatial structure of the world and about the ways that objects in the world produce 

particular patterns on the retina.  The system can use those assumptions to recover spatial 

structure from the data.  In normal conditions, those assumptions lead to veridical 

representations of the external world.  However, these assumptions are also contingent – 

if they are violated, then the system will generate incorrect representations of the world 

(as in perceptual illusions).  

We propose an analogous problem about discovering the causal structure of the 

environment.  (1) There are causal facts, as objective as facts about objects, locations, 

and movements, used and evidenced in accurate prediction and effective intervention.  

(2) The data available are limited in particular ways.  Children may observe correlations 

between events that they cannot or do not manipulate; they may observe events they can 

only manipulate indirectly, through other events; the correlations they observe, with or 

without their own interventions, may involve an enormous number of features, only some 

of which are causally related.  (3) Children have a causal learning system, like the visual 

system, that recovers causal facts by making implicit assumptions about the causal 

structure of the environment, and the relations between the environment and evidence.  
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Those assumptions are contingent – where they are false, causal inference may fail to get 

things right. 

 

Causal Maps 

What kinds of representations might be used to solve the causal inverse problem?  

The visual system seems to use many very different types of representations to solve the 

spatial problem.  But one particularly important way organisms solve the spatial inverse 

problem is by constructing “cognitive maps” of the spatial environment (Gallistel, 1990; 

O’Keefe & Nadel, 1978; Tolman, 1932).  These cognitive maps provide animals with 

representations of the spatial relations among objects.   

There are several distinctive features of cognitive maps.  First, such maps provide 

non-egocentric representations.  Animals might navigate through space, and sometimes 

do, egocentrically, by keeping track of the changing spatial relations between their bodies 

and objects as they move through the spatial environment.  Cognitive maps are not 

egocentric in this way.  They allow animals to represent geometric relationships among 

objects in space independently of their own relation to those objects.  A cognitive map 

allows an animal who has explored a maze by one route to navigate through the maze 

even if it is placed in a different position initially.  This aspect of cognitive maps 

differentiates them from the kinds of cognitive structures proposed by the behaviorists – 

structures that depend on associations between external stimuli and the animal’s own 

responses. 

Second, cognitive maps are coherent.  Rather than just having particular 

representations of particular spatial relations, cognitive maps allow an animal to represent 
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many different possible spatial relations in a generative way.  An animal who knows the 

spatial layout of a maze can use that information to make new inferences about objects in 

the maze.  

Third, cognitive maps are learned.  Animals with the ability to construct cognitive 

maps can represent an extremely wide range of new spatial environments, not just one 

particular environment.  This also means that spatial cognitive maps may be defeasible – 

the current representation the animal has of the environment may not be correct.  As an 

animal explores its environment and gains more information about it, it will alter and 

update its cognitive map of that environment.  

Our hypothesis is that children construct similar representations that capture the 

causal character of their environment.  This capacity plays a crucial role in the solution to 

the causal inverse problem.  We hypothesize that even very young children construct 

non-egocentric, abstract, coherent, learned representations of causal relations among 

events, and these representations allow them to make causal predictions and anticipate 

the effects of interventions.  

Note that we are not proposing that children actually use spatial maps for the 

purpose of representing or acquiring causal knowledge, or that children somehow extend 

spatial representations through processes of metaphor or analogy.  Rather we propose 

that there is a separate cognitive system with other procedures devoted to uncovering 

causal structure, and that this system has some of the same abstract structure as the 

system of spatial map-making.  

Causal maps would be an interesting halfway point between what are traditionally 

thought of as domain-specific and domain-general representations.  Our proposal is that 
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these representations are specialized for causal knowledge, as spatial maps are 

specialized for spatial knowledge.  This differentiates these representations from 

completely domain-general representations like those proposed in associationist or 

connectionist theories (e.g., Elman et al, 1996).  We would predict that causal maps 

would not be used to represent spatial, or phonological or musical relations, for example.  

At the same time, however, these maps represent all kinds of causal structure.  This 

includes the kinds of causes that are involved in theories of everyday physics, biology 

and psychology, as well as other kinds of causal knowledge.  This differentiates these 

representations from the representations of more nativist “modularity” theories (e.g., 

Atran, 1990; Leslie & Roth, 1993; Spelke et al., 1992).  Such theories propose that there 

are only a few separate domain-specific causal schemes.  

While causal maps represent causal knowledge, in particular, (and in general) 

they are not the only devices to represent causal knowledge.  Just as cognitive maps may 

be differentiated from other kinds of spatial cognition, causal maps may be differentiated 

from other kinds of causal cognition.  Given the adaptive importance of causal 

knowledge, we might expect that a wide range of organisms would have a wide range of 

devices for recovering causal structure.  Animals, including human beings, may have 

some hard-wired representations which automatically specify that particular types of 

events lead to other events.  For example, animals may always conclude that when one 

object collides with another the second object will move on a particular trajectory.  Or 

they may specifically avoid food that leads to nausea (Palmerino, Rusiniak, & Garcia, 

1980).  These sorts of specific hard-wired representations could capture particular 

important parts of the causal structure of the environment.  This is the proposal that 
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Michotte (1962) and Heider (1958) made regarding the “perception” of physical and 

psychological causality.  

Animals might also be hard-wired to detect a wider range of causal relations that 

involve especially important events.  Such capacities underpin classical and operant 

conditioning, where animals learn associations between ecologically important events, 

like food or pain, and other events.  Conditioning is adaptive because it allows animals to 

capture particularly important causal relations in the environment. 

Animals could also use a kind of egocentric causal navigation.  They might 

calculate the immediate causal consequences of their own actions on the world and use 

that information to guide further action.  Operant conditioning is precisely a form of such 

egocentric causal navigation, with special reference to ecologically important events.  

More generally, trial-and-error learning involves similar abilities for egocentric causal 

navigation.  

Causal maps, however, would go beyond the devices of hard-wired 

representations, classical and operant conditioning, and trial-and-error learning.  They 

would confer the same sort of advantages as spatial maps (Campbell, 1995).  Most 

significantly, with a non-egocentric causal representation of the environment, an animal 

could predict the causal consequences of an action without actually having to perform it.  

The animal could simply observe causal interactions in the world and then produce a new 

action that would bring about a particular causal consequence, in the same way that an 

animal with a spatial map can produce a new route to reach a particular location.  The 

capacity to produce these novel interventions would be a hallmark of causal maps.  

Moreover, such an animal could combine information about the effects of its own 
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actions, of the sort used in operant conditioning or trial-and-error learning, with purely 

observational information, of the sort used in classical conditioning, in a systematic way.  

Causal maps would also allow animals to extend their causal knowledge and learning to a 

wide variety of new kinds of causal relations, not just causal relations that involve 

rewards or punishments (as in classical or operant conditioning), not just object 

movements and collisions (as in the Michottean effects), and not just events that 

immediately result from their own actions (as in operant conditioning or trial-and-error 

learning). Finally, animals could combine new information and prior causal information 

to create new causal maps, whether that prior information was hard-wired or previously 

learned. 

 Human animals, at least, do seem to have such causal representations (the case is 

not so clear for non-human animals, even including higher primates, see Povinelli, 2001; 

Tomasello & Call, 1997).  Causal knowledge in human adults and children, particularly 

the sort of causal knowledge that is represented in everyday theories, seems to have much 

of the character of causal maps.  Everyday theories represent causal relations among a 

wide range of objects and events in the world, independently of the relation of the 

observer to those objects and events (although the observer may, of course, be included 

in that knowledge).  They postulate coherent relations among such objects and events that 

support a wide range of predictions and interventions, including novel interventions.  

These representations include a very wide range of causal facts about a very wide range 

of events, not just ecologically significant events.  These representations go beyond the 

representations that would be proposed by Michottean mechanisms, classical or operant 

conditioning, or trial-and-error learning.  Finally, the causal knowledge encoded in 
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theories, like causal maps, appears to be learned through our experience of, and 

interaction with, the world around us.  

 

Learning causal maps 

If the causal maps idea is correct, we can rephrase the general causal inverse 

problem more specifically.  How do we recover causal maps from the data of experience?  

How can we learn a new causal map?  We suggest that this is one of the central cognitive 

problems for young children learning about the world.  

The epistemological difficulties involved in recovering causal information are just 

as grave as those involved in recovering spatial information.   Hume (1739/1978) posed 

the most famous of these problems, that we only directly perceive correlations between 

events, not their causal relationship.  How can we make reliably correct inferences about 

whether one event caused the other?  Causation is not just correlation, or contiguity in 

space, or priority in time, or all three, but often enough, that is our evidence.  

It gets worse.  Causal structures rarely just involve one event causing another.  

Instead, events involve many different causes interacting in complex ways.  A system for 

recovering causal structure has to untangle the relations among those causes, and 

discount some possible causes in favor of others.   

Moreover, many causal relations may be probabilistic rather than deterministic.  

When a child points to a toy, this makes mom more likely to look at the toy, but it does 

not mean that mom will always look at the toy.   Even if the underlying causal 

relationship between two kinds of events is deterministic, the occurrence of other causal 

factors, which may not be observed, will typically make the evidence for the relationship 
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probabilistic.  The system must be able to deal with probabilistic information. 

Finally, in many cases, we make inferences about causes that are themselves 

unobserved or even unobservable.  Something in a piece of wood makes it ignite, 

something in a plant makes it grow, something in a person’s mind leads to action.  

However, we only observe the events of the wood igniting, the plant growing, or the 

person acting.  How do we know what caused those events? 

We propose that children are equipped with a causal learning system that makes 

certain assumptions about causal structure and about how patterns of events indicate 

causal structure, just as the visual system makes assumptions about spatial structure and 

about how retinal patterns indicate spatial structure.  These assumptions help solve the 

causal inverse problem.  Broadly speaking, there are two different kinds of assumptions 

that might be used to help solve the general problem of discovering causal relations.  

First, we might propose what we will call substantive assumptions.  We might 

automatically conclude that particular types of events cause other particular types of 

events. For example, we might assume that ingesting food causes nausea, or that a ball 

colliding with another causes the second ball to move.   The Michottean perceptual 

causal principles have this character, although, of course, they would only allow a very 

limited set of causal conclusions.  There might also be broader and more general 

assumptions of this kind, which could underpin a wider range of causal inferences, 

temporal sequence, for example – effects cannot precede causes.  Similarly, we might 

propose that we automatically interpret the relation between intentional actions and the 

events that immediately follow those actions as causal.   

Some of these substantive assumptions could be innate.  But, in addition, as we 

 



 CAUSAL MAPS 14

learn about the world, our specific substantive knowledge about causal relations could act 

as a constraint on our later causal inferences.  For example, if we learn that, in general, 

desires cause actions, we may assume that a new action was caused by a desire. 

Undoubtedly, substantive assumptions play an important role in solving the causal 

inverse problem.  Innate substantive assumptions, however, would only allow us to solve 

a relatively limited set of causal problems with specific content.  Children’s capacities for 

causal learning appear to be much broader and more flexible than these substantive 

assumptions alone would allow.  In the case of substantive prior causal knowledge that is 

not innate, there must be some other set of assumptions that allow that prior knowledge 

to be acquired in the first place.  

We might also propose what we will call formal causal assumptions.  These 

assumptions would say that certain patterns of correlation among events, including events 

that involve interventions, reliably indicate causal relations, regardless of the content of 

those events.  They posit constraining relations between causal dependencies and patterns 

of correlations and interventions.   

It is important to realize that this sort of account would not reduce causal relations 

between events to patterns of correlation between those events or define causal structure 

in terms of correlation.  On our view, correlations may indicate causal structure but they 

do not constitute causal structure – just as retinal patterns indicate but do not constitute 

spatial structure.  

Our idea is that causal learning systems make certain fundamental assumptions 

about how patterns of correlation and intervention are related to causal relations, in much 

the same way that the visual system makes geometrical assumptions about how two-
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dimensional sensory information is related to three-dimensional space.  Those 

assumptions may turn out to be wrong in individual cases, just as they may turn out to be 

wrong in the visual case.  In a visual illusion, like the illusions of depth that are produced 

by “3-d” movies and Viewmaster toys, the assumptions of the visual system lead to the 

wrong conclusion about three-dimensional spatial structure.  Similarly, on our view we 

might, in principle, have causal illusions, cases where the pattern of events led to the 

wrong conclusion about causal structure.  Overall, and in the long run, however, these 

causal assumptions will lead to accurate representations of the causal structure of the 

world.  Again, as in the spatial case, this would explain why they were selected for by 

evolution.   

Just as causal maps are an interesting halfway point between domain-specific and 

domain-general representations, these causal learning mechanisms are an interesting 

halfway point between classically nativist and empiricist approaches to learning.  

Traditionally, there has been a tension between restricted and domain-specific learning 

mechanisms like “triggering” or “parameter-setting”, and very general learning 

mechanisms like association or conditioning.  In the first kind of mechanism, very 

specific kinds of input trigger very highly structured representations.  In the second kind 

of mechanism, any kind of input can be considered, and the representations simply match 

the patterns in the input.  Our proposal is that causal learning mechanisms transform 

domain-general  information about patterns of events, along with other information, into 

constrained and highly structured representations of causal relations.   

 

Causal maps and causal learning in adults and children.   
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The literature on everyday theories suggests that causal maps are in place in both 

adults and young children.  However, there is much less evidence about the learning 

procedures that are used to recover those maps.  For adults, there is evidence that both 

substantive assumptions and formal assumptions can be used to recover causal structure.  

Some investigators have shown that adults use substantive prior knowledge about 

everyday physics and psychology to make new causal judgments (e.g. Ahn et al. 2000).  

Other investigators have shown that adults can also use formal assumptions to learn new 

causal relations - adults can use patterns of correlation among novel kinds of events to 

infer new causal structure.  Several different specific proposals have been made to 

characterize such learning (e.g. Cheng & Novick, 1992; Cheng, 1997; Novick & Cheng, 

in press; Shanks, 1985; Shanks & Dickinson, 1987; Spellman, 1996).  In particular, 

Cheng and her colleagues have developed the most extensive and far-reaching such 

account: the “Power PC” theory (Cheng, 1997; Novick & Cheng, in press).  However, 

adults, particularly university undergraduates, have extensive causal experience and often 

have explicit education in causal inference.  Adults might be capable of such learning 

while children were not.  

There is also research showing that children, and even infants, use substantive 

assumptions and prior knowledge to make causal judgments.  Most research on causal 

learning in children has concerned children’s application of substantive principles of 

everyday physics.  Specifically, Bullock, Gelman, & Baillargeon (1982) and Shultz 

(1982) showed that children could apply principles of everyday physics (such as 

principles involving spatial contact and temporal priority) to make new causal inferences.  

Work on infants also suggests that some of these principles are in place at an early age 
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(Leslie & Keeble, 1987: Oakes & Cohen, 1990).  In these experiments, children and 

infants seem to assume, for example, that spatial contact is required when one object 

causes another object to move, or that causes must precede effects.   

A different tradition of work suggests, at least implicitly, that children make 

substantive assumptions about the causal relations between their own intentional actions 

and the events that immediately follow those actions.  For example, the literature on 

infant contingency learning (Rovee-Collier, 1987; Watson & Ramey, 1987) suggests that 

even infants can learn about the causal effects of their own actions by observing the 

relations between those actions and events that follow them.  This learning, however, is 

restricted to egocentric contexts.  It is analogous to trial-and-error learning in animals.  

The literature on imitative learning (e.g. Meltzoff, 1988a, b) suggests that, at least by 

nine months, infants can go beyond such purely egocentric inferences and make similar 

causal inferences by observing the immediate effects of the actions of others.  Even in 

this case, however, infants seem to be restricted to considering the immediate relations 

between actions and the events that follow them. 

However, there has been no work exploring whether young children, like adults, 

can use formal assumptions to recover causal maps from patterns of correlation between 

events.  We do not even know whether children are capable of the kinds of formal causal 

learning that have been demonstrated in adults, let alone whether they are capable of 

other kinds of formal causal learning.  If children can use such assumptions, that would 

provide them with a particularly powerful and general learning tool.  Such procedures 

would allow children to go beyond the limited substantive knowledge that might be given 

innately and learn about genuinely new kinds of causal relationships and structure.  
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Children would not only be able to infer that an object must make contact with another to 

cause it to move, or that their own actions cause the events that follow them.  Instead, 

they could also learn such novel causal facts as that remote controls activate television 

sets, that watering plants makes them grow, or that crowds make shy people nervous.  

Such procedures might then play a major role in the impressive changes in causal 

knowledge we see in the development of everyday theories.  Moreover, demonstrating 

that this type of learning is in place in very young children would show that it does not 

require extended expertise or education. 

 

The role of normative mathematical accounts in psychological research 

Do children implicitly use formal assumptions and, if so, what formal 

assumptions do they use?  To answer this question, it would help to know which formal 

assumptions could, in principle, solve the causal inverse problem.  Again, we may draw 

an analogy to vision science.  Psychological solutions to the spatial inverse problem have 

been informed by normative mathematical and computational work.  Figuring out how 

systems could, in principle, recover 3-dimensional structure from 2-dimensional 

information turns out to be very helpful in determining how the visual system actually 

does recover that information.  

For example, Mayhew and Longuet-Higgins (1982) formulated a new 

mathematical and geometrical solution to one visual inverse problem. They showed that, 

in principle, depth information could be recovered from the combination of horizontal 

and vertical disparities between two stereo images, with no other information. (Earlier 

theories had argued that information about eye-position was also necessary).  A 3-
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dimensional object would only generate certain patterns of horizontal and vertical 

disparities and not others.  As a direct result, psychophysicists tested, for the first time, 

whether the human visual system uses this same information in the same way, and found 

that, in fact, it does (Rogers & Bradshaw, 1993). In addition, computer scientists have 

used this mathematical account to help design computer vision systems.  The 

mathematical theories give us ways of coherently asking the question of how, and how 

well, humans solve these problems.  Mathematical accounts of causal representations and 

learning could inform a psychological theory in a similar way.  The Bayes net formalism 

provides such an account. 

    

The Causal Bayes Net Formalism 

The causal Bayes net formalism has developed in the computer science, 

philosophy, and statistical literatures over the last two decades (Glymour & Cooper, 

1999; Kiiveri & Speed, 1982; Pearl, 1988, 2000; Spirtes, Glymour & Scheines, 1993, 

2001).  It provides a general, unified representation of causal hypotheses that otherwise 

take a variety of forms as “statistical models” (path analysis, structural equation models, 

regression models, factor models, etc.).  In conjunction with automated inference 

procedures, the formalism has been applied to design computer programs that can 

accurately make causal inferences in a range of scientific contexts including 

epidemiology, geology, and biology (Glymour & Cooper, 1999; Ramsey et al., 2002; 

Shipley, 2000).  The representations of causal graphical models, commonly called Bayes 

nets, can model complex causal structures and generate accurate predictions and effective 

interventions.  Moreover, Bayes net representations and associated learning algorithms 
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can accurately infer causal structure from patterns of correlation, involving either passive 

observation or intervention, or both, and exploiting prior knowledge.  A wide range of 

normatively accurate causal inferences can be made, and, in many circumstances, they 

can be made in a computationally tractable way.  The Bayes net representations and 

algorithms make inferences about probabilistic causal relations.  They also allow one to 

disentangle complex interactions among causes, and sometimes to uncover hidden 

unobserved causes (see Glymour, 2001; Glymour & Cooper, 1999; Jordan, 1998; Pearl, 

1988, 2000; Spirtes, Glymour, & Scheines, 1993, 2001). 

 

Inferring causal structure from conditional dependence: An informal example  

Bayes nets are actually a formalization, elaboration, and generalization of a much 

simpler and more familiar kind of causal inference.  Causal relations in the world lead to 

certain characteristic patterns of events.  If X causes Y, the occurrence of X will make it 

more likely that Y will occur.  We might think that this could provide us with a way of 

solving the causal inverse problem.  When we see that X is usually followed by Y, we 

can conclude that X caused Y.  

But there is a problem.  The problem is that other events might also be causally 

related to Y.  For example, some other event Z might be a common cause of both X and 

Y.  X does not cause Y, but whenever Z occurs, it is more likely that both X and Y will 

occur together.  Suppose you notice that when you drink wine in the evenings, you are 

likely to have trouble sleeping.  It could be that the wine is causing your insomnia.  

However, it could also be that you usually drink wine in the evenings when you go to a 

party.  The excitement of the party might be keeping you awake, independently of the 

 



 CAUSAL MAPS 21

wine.  The party might both cause you to drink wine, and independently cause you to be 

insomniac, and this might be responsible for the association between the two kinds of 

events.  X (wine) would be associated with Y (insomnia) and yet it would be wrong to 

conclude that there was a causal relation between them.  We could represent these two 

possibilities with two simple graphs  

1.  Z (Parties)  X (Wine)  Y (Insomnia)  

(Parties cause wine drinking, which causes insomnia)  

2.  X (Wine)  Z (Parties)  Y (Insomnia)  

(Parties cause wine drinking and also cause insomnia).  

Intuitively, we can see that these two causal structures will lead to different 

patterns of correlation among the three types of events.  If #1 is right, we can predict that 

we will be more likely to have insomnia when we drink wine, regardless of how much we 

party.  If #2 is right, we can predict that we will be more likely to have insomnia when 

we party, regardless of how much we drink.  Similarly, we would predict that different 

interventions will be adaptive in these two cases.  If #1 is right then we should avoid 

drinking to help cure our insomnia (even solitary drinking) and if #2 is right we should 

avoid parties (even sober parties).  

According to either of these graphs drinking wine is correlated with insomnia, 

and the fact that we are drinking wine increases the probability that we will have 

insomnia, but for two different reasons. In #1 the two events are related because wine-

drinking causes insomnia, but in #2 they are related because the fact that we are drinking 

wine increases the probability that we are at a party, and parties cause insomnia. If #1 is 

true the correlation between wine-drinking and insomnia tracks the probability that an 
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intervention to stop drinking will reduce insomnia. But if #2 is true, the correlation 

between wine-drinking and insomnia does not track this probability – not drinking won’t 

help. In much the same way, smoking is correlated both with having yellow fingers and 

getting cancer, and so having yellow fingers is correlated with cancer, but cleaning your 

hands won’t keep you from getting cancer, and quitting smoking will.  Knowing the right 

causal structure may not be essential for predicting one thing from another, but it is 

essential for predicting the effects of interventions that deliberately manipulate events. 

If we knew which of these graphs was right, we could manage to get some sleep 

without unnecessarily sacrificing alcohol or society.  How could we decide?  Intuitively, 

it seems that we could work backwards from knowing how the graphs lead to patterns of 

events to inferring the graphs from those patterns of events.  One thing we could do is to 

perform a series of experimental interventions, holding wine or parties constant, and 

varying the other variable.  Since we already know that social drinking is associated with 

insomnia, we could systematically try solitary drinking or sober partying and observe the 

effects of each of these interventions on our insomnia.   

We could also, however, simply collect observtions of the relative frequencies of 

X, Y and Z.  If you observe that you are more likely to have insomnia when you drink 

wine, whether or not you are at a party, you could conclude that the wine is the problem.  

If you observe that you are only more likely to have insomnia when you go to a party, 

regardless of how much or how little wine you drink, you could conclude that the parties 

are the problem.  In both cases wine, insomnia and partying will all be correlated with 

one another.  But if Graph 1 is correct then insomnia will continue to be dependent on 

wine even if we take partying into account, insomnia is still dependent on wine 
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conditional on partying. However, insomnia will no longer be dependent on partying if 

we take wine into account, insomnia and partying are independent conditional on wine. 

In contrast, if Graph 2 is correct then insomnia and partying will still be dependent if we 

take wine into account, insomnia and partying are dependent conditional on wine. 

However, insomnia will no longer be dependent on wine when we take partying into 

account, insomnia and wine are independent conditional on partying.   In this simple 

case, then, you have figured out which of two causal structures is correct by observing 

the patterns of conditional dependence and independence among events.  

This sort of reasoning is ubiquitous in science.  In experimental design, we 

control for events that we think might be confounding causes.  In observational studies, 

we use techniques like partial correlation to control for confounding causes.  In effect, 

what you did in your reasoning about your insomnia was to design an experiment 

controlling for partying, or to “partial out” the effects of partying from the wine-insomnia 

correlation.  

We can translate these informal intuitions about conditional dependence into the 

more precise language of probability theory (see Reichenbach, 1956).  More formally, we 

could say that if graph #1 is right, and there is a causal chain that goes from parties to 

wine to insomnia, then Y ⊥ Z  | X  – the probability of insomnia occurring is independent 

(in probability) of the probability of party-going occurring conditional on the occurrence 

of wine-drinking (see footnote 2).  If graph #2 is right, and parties are a common cause of 

wine and insomnia, then X ⊥ Y | Z  – the probability of wine-drinking occurring is 

independent (in probability) of the probability of insomnia occurring conditional on the 

occurrence of party-going.  
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There is also a third basic type of graph; insomnia might be a common effect of 

both wine-drinking and parties (X Y Z). In this case, X is not independent of Z 

conditional on Y.  The intuitions here are less obvious, but they reflect the fact that, in 

this case, knowing about the effect and about one possible cause gives us information 

about the other possible cause. We can illustrate this best with a different example. 

Suppose X is a burglar, Y is the burglar alarm sounding, and Z is the neighboring cat 

tripping the alarm wire, so that Y is a common effect of X and Z. If we hear the alarm 

sound and see the cat tripping the wire, we are less likely to conclude that there was a 

burglar than if we simply hear the alarm sound by itself (see Pearl 2000, Spirtes et al. 

1993 for discussion).      

The notions of dependence and independence involved in these formal statements, 

unlike the intuitive notions, are precisely defined in terms of the probabilities of various 

values of the variables.  Suppose each of the variables in our example has only two 

values: we drink, party, or have insomnia or we don’t.  If drinking and insomnia are 

independent in probability, then the probability of drinking and insomnia occurring 

together will equal the probability of drinking occurring multiplied by the probability of 

insomnia occurring. Similarly, the probability that drinking does not occur and that 

insomnia also does not occur will equal the probability of not drinking multiplied by the 

probability of not having insomnia.  More generally, the same will be true for any 

combination of values of X and Y.   

However, if X and Y are dependent in probability then there will be some set of 

values of X and Y such the probability of their occurring together will not equal the 

probability of X occurring multiplied by the probability of Y occurring.  For example, if 
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drinking wine causes insomnia, then the probability of drinking and insomnia occurring 

together will be greater than the probability of drinking occurring multiplied by the 

probability of insomnia occurring.  

 Formally, X and Y are independent in probability if and only if for every value of 

X and Y 

Pr(X,Y) = Pr(X) * Pr(Y) 

Similarly, we can define the conditional independence of two variables given another 

value in these probabilistic terms.  X (drinking) is independent of Y (insomnia) 

conditional on Z (parties) if and only if for every value of X, Y and Z 3 

Pr(X ,Y | Z) = Pr(X | Z) * Pr(Y | Z).       

The informal reasoning we described above is limited to rather simple cases.  But, 

of course, events may involve causal interactions among dozens of variables rather than 

just three.  The relations among variables may also be much more complicated.  X might 

be linearly related to Y, or there might be other more complicated functions relating X 

and Y, X might inhibit Y rather than facilitating it, or X and Z together might cause Y 

though neither event would have that effect by itself. And, finally, there might be other 

unobserved hidden variables that are responsible for patterns of correlation.  Is there a 

way to take the probability theoretic statement of the reasoning we use intuitively and 

generalize it to these more complicated cases?  The causal Bayes net formalism provides 

such a method.       

 

Bayes nets

The causal Bayes net formalism has three aspects: directed acyclic graphs represent 
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causal relations, the graphs are associated with probability distributions, and the Markov 

assumption constrains those probability distributions. We will state these three aspects 

more formally first and then give a more informal and discursive explanation. 

1. Causal hypotheses are represented by directed acyclic graphs, in 

which the causal variables or features are the nodes or vertices.  A directed 

edge between two variables, X → Y, stands for the proposition that there 

is some intervention that fixes an assignment of values to all other 

variables represented in the graph (resulting in Y having a particular 

probability distribution pr(Y)) such that an intervention that (i) changes 

the value of X from x to some x’ for distinct values x, x’ of X,  but (ii) 

does not influence Y other than through X, and (iii) does not change the 

fixed values of other variables, will result in a probability distribution 

pr’(Y) ≠pr(Y) (see Spirtes et al. 1993 for a full mathematical justification 

of this characterization).  

2. There is a joint probability distribution on all assignments of values 

to all variables in the graph.  Typically, a particular probability 

distribution can be specified by values of parameters that may be linked to 

the structure of the graph, with sets of different parameter values 

specifying different probability distributions.  For example, in a linear 

system with a normal (Gaussian) distribution, in which each variable is a 

linear function of its direct causes and of unobserved factors (often 

described as “noise” or “error”), the parameters can be given by the linear 

coefficients and the covariance matrix of the unobserved factors.  Often 
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(in regression models for example) the covariance matrix is assumed to be 

diagonal, that is, the unobserved factors are assumed to be independent in 

probability. The directed acyclic graph, the numerical values for the linear 

coefficients, the variance of the unobserved factors, and the specification 

that the unobserved factors are jointly independent in probability, 

determine a unique joint probability distribution on all values of the 

variables.  If the variables are discrete – for example if they take only two 

possible values, say “present” or “absent” – the parameters are simply the 

probability distributions for each variable conditional on each possible 

assignment of values to its direct causes in the graph. 

3. The joint probability distribution on all assignments of values to all 

variables in the graph is constrained in the following way: For any 

variable R in the directed graph, the graph represents the proposition that 

for any set S of variables in the graph, (not containing any descendants of 

R) R is jointly independent of the variables in S conditional on any set of 

values of the variables that are parents of R (the direct causes of R, those 

variables that have edges directed into R).  In the Bayes net literature, this 

condition is called the Markov assumption .  If the marginal probability 

distributions of each variable in a directed acyclic graph conditional on 

each vector of values of its parent variables are a function of the values of 

its parents alone, the Markov assumption necessarily follows.  

Causal Bayes nets, then, represent causal structure in term of directed graphs, like 

the simple graphs we used in the wine/insomnia example or the more complex graph 
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shown below in Figure 1.  The nodes of the graph represent variables, whose values are 

features of the system to which the net applies.  “Color,” for example, might be a variable 

with many different possible values; “weight” might be a variable with a continuum of 

values; “having eyes” might be a variable with just two discrete values, absent or present.  

Figure 1: A causal graph 

Z

S X W

R Y

  

 

In a causal Bayes net, the arrows represent the direct causal relations between two 

variables. These causal relations are objective relations among types of objects and 

events in the world; the sorts of relations scientists discover. There are, of course, knotty 

philosophical questions about the metaphysics of these causal relations. But, at the least, 

we can assume that these causal facts lead to facts about the effects of interventions on 

the world – indeed, this is why science is possible.   

From this perspective, the precise definition of an arrow between X and Y given 

in point 3 of the formal characterization above, can be roughly translated as follows: If 

we did the right experiment, controlling all the other variables in the graph, changing the 

value of X would directly cause a change in the value of Y.  Similarly, in Fig. 1, for 
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example, if we fixed the value of  X, Y, W and Z, and then changed the value of S, the 

value of R would change.     

The complex definition in the three parts of clause 1 above is essential for 

generality, exactly because the correlations among a set of variables do not uniquely 

determine their causal relations. For example, X Y  Z and X  Y  Z are distinct 

causal hypotheses, but they imply the same constraint on probabilities: X, Y, and Z are 

correlated, and X is independent of Z conditional on Y.  However, these hypotheses 

imply different predictions about the result of (ideal) interventions. For example, only the 

first hypothesis implies that interventions that alter X while fixing Z at a constant value 

throughout will alter the probability of Y. Details are given in Chapters 3 and 4 of 

Spirtes, et al., 1993, 2001. 

These directed graphs must also be acyclic.  An arrow going out from one node 

cannot also lead back into that node (like for example, X Y Z X).  No feedback 

loops are allowed in the graphs (although there are generalizations to cyclic graphs, see 

Richardson 1996, and Spirtes et al., 2001).    

These graphs may encode deterministic relations among the variables (so, for 

example, S might always lead to X).  More often, the causal relations among the 

variables are conceived of as probabilistic (either because they are intrinsically 

probabilistic or because there is assumed to be unmeasured “noise” due to variations in 

other unrepresented causes).  So, for example S might have a .78 probability of leading to 

X.  The relations may also vary in other ways – for example, they might be inhibitory, or 

additive, or linear, or non-linear.  The parameterization of a graph provides additional 

information about the statistics of the causal relations (such as whether they are 
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deterministic or probabilistic, or linear or non-linear).  This information goes beyond the 

information that S directly causes X, which is encoded by the arrow itself.   

The Markov assumption says that, if the graph is causal, there are certain 

conditional independence relations among the variables, no matter how the graph is 

parameterized, and it defines those relations. (The Markov assumption does not 

characterize conditional independence relations that hold only for particular parameter 

values). We can use “kinship terms” to characterize various relations among the arrows, 

and help explain the Markov assumption more intuitively. Thus if, as in Fig. 1, S and X 

are directly connected by an arrow that is directed into X, S is a parent of X and X is a 

child of S. Similarly we can talk about ancestors and descendants to characterize indirect 

relations among the variables. In Fig. 1, Z is an ancestor of X and X is a descendant of  Z. 

The Markov assumption says that the variables in a causal network are independent of  

all other variables in the network, except their descendants, conditional on their parents.  

For example, in Figure 1, the Markov assumption says that X is independent of {R, Z} 

conditional on any values of variables in the set {S, Y}.  

In general, the Bayes net formalism allows us to take information about the 

correlations of some variables in a causal network, and/or about the results of 

experimental interventions on some variables, and then correctly infer the correlations 

among other variables and/or the results of experimental intervention on those variables. 

The arrows encode propositions about the effects of interventions on a variable, and from 

those arrows we can make new inferences about other correlations and interventions, as 

we will see below in the section on prediction and planning. Conversely, we can infer the 

arrows, that is, infer propositions about interventions on some variables, from 
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information about the correlations among other variables and about the effects of 

interventions on other variables, as we will see below in the section on learning. And, as 

we will also see, in some cases we can do this even when the variables are not observed. 

No matter what the metaphysics of causation may be, these sorts of inferences are central 

to causal learning. 

 

Using causal Bayes nets for prediction and planning 

A directed acyclic graph, with a probability distribution constrained by the 

Markov assumption, represents a set of causal hypotheses about a system.  Given such a 

graph we can make two kinds of normatively accurate inferences.  First, we can use the 

graph to predict the value of a variable in the system from observed values of other 

variables in the system.  However, we can also make another type of inference, often 

quite different from the first. We can predict the value of a variable when actions 

intervene from outside the system to directly alter the values of other variables.  The 

causal Bayes net formalism provides algorithms for both kinds of inference.  

Prediction. The first prediction problem is this: given a Bayes net (i.e., a directed 

acyclic graph and associated probability distribution that obeys the Markov assumption), 

given any variable X in the graph, and given any vector V of values for any set S of other 

variables in the graph, compute the probability of X conditional on the values V for the 

variables in S.  Bayes nets were originally applied to solve this problem in expert systems 

in artificial intelligence. They were first used to help calculate the conditional 

probabilities among sets of variables. A variety of efficient exact and heuristic algorithms 

have been developed to solve this problem (see e.g,. Jordan 1999). The problem also has 
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qualitative versions: for example, to predict whether the unconditional probability 

distribution of X is or is not equal to the conditional distribution of X given values for S, 

that is, whether S provides information about X, or to predict for any particular value x of 

X, whether its probability increases or decreases when conditioned on a set of values for 

S.  Algorithms are available for those problems as well (Pearl, 2000). 

Planning.  It is also possible to use a causal Bayes net to predict the effects of an 

intervention.  We can define an intervention as an action which directly alters or fixes the 

value of one or more variables in the graph, while changing others only through the 

influence of the directly manipulated variables.  That is exactly the kind of prediction we 

need to make in planning actions to achieve specific goals.  There are qualitative versions 

of these problems as well.  General algorithms for these problems are described in 

Spirtes, et al, (1993, 2001) and more accessibly in Pearl (2000).  It is possible to compute 

from the graph alone whether an intervention on one or more variables will change the 

probability distribution for another variable, and to compute the resulting probability 

distribution. We can sometimes make such predictions even when the available 

information is incomplete. 

Intuitively, these computations can be justified by treating the intervention as a 

variable with special causal features.  For example, consider the canonical case of an 

intentional human action as an intervention.  Take the experimental intervention in our 

previous example.  We intentionally drink wine and then observe the effects on our 

insomnia.  As an intervention, this action will have certain distinctive causal features, 

features that other variables do not have.  For example, we believe that our decision to 

drink directly and exclusively caused us to drink, and therefore nothing else did – our 
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intervention “fixed” the value of the wine-drinking variable, and partying and other 

variables had no causal effect on that variable.  We also believe that our decision to drink 

only affected other variables, like insomnia, because it affected drinking itself; it didn’t, 

for example, independently increase our insomnia or partying.  Moreover, we believe that 

the decision itself was not caused by other variables in the graph, like wine-drinking or 

partying.  

Our knowledge of these special causal features of interventions gives them a 

special status in inferring causal structure – that is why experiments are a particularly 

good way to find out about causal relations.  In fact, if our action did not have these 

features we could not draw the right causal conclusions.  Suppose that, unbeknownst to 

us, our anxious spouse has replaced the wine in half the bottles in our cellar with a 

deceptive non-alcoholic grape drink.  In this case our intervention to drink does not, by 

itself, fix whether or not we actually drink wine, and it does not directly and exclusively 

cause us to drink or not drink wine, our actual wine-drinking is also caused by which 

bottle we pick out.  Our experiment would fail. Or suppose that doing any sort of 

experiment makes us so nervous that it keeps us awake – we just can’t take the scientific 

pressure. We experiment by drinking wine and sure enough, we stay awake, but we 

would be wrong to conclude that wine caused our sleeplessness.  In this case, the 

problem is that the intervention affected other variables independently of the variable that 

was intervened on.  Or suppose the outcome of our experimental intervention subtly 

influenced our next decision, so that, for example, we were more likely to continue our 

experiment when the results seemed to encourage us to drink, and to curtail it when they 

didn’t.  That is, downstream variables causally influenced our further interventions.  In 
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all three of these cases, we could not draw the right causal conclusions even though we 

acted.  

So actions that don’t have the right causal features shouldn’t count as 

interventions, at least not for purposes of making predictions or uncovering causal 

relations.  Conversely, a variable that did have similar causal features could count as an 

intervention even if it did not directly involve human action.  Although our own 

intentional actions are the canonical case of an intervention, from a formal point of view 

any variable that has the right causal features can be considered to be an intervention. 

These features include the fact that the variable is a direct cause, and the only direct 

cause, of another variable in the graph, that it fixes the value of that variable, that it is not 

independently connected to other variables in the graph and that it is not itself caused by 

other variables in the graph. (See Spirtes, et al., 1993, Chapter 4, Hausman & Woodward, 

1999). Variables of this special kind might include our own actions, the actions of others, 

or other events.  

The Bayes net formalism provides a way of translating these sorts of intuitions 

into a formal set of procedures.  We expand the graph by adding the new intervention 

variable and a single new arrow representing the influence of the intervention. The 

variable that is manipulated is forced to have a fixed value. If we then apply the Markov 

assumption to the expanded graph, we can predict the effects of the intervention (see 

Pearl, 2000; Spirtes, et al., 1993, 2001).  

In most cases, the formal representation of an intervention can be simplified by 

not explicitly representing the intervention variable. Instead, we specify the value of the 

manipulated variable that the intervention produces, and remove all the other arrows 
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directed in to the manipulated variable (Pearl (2000) vividly refers to this as “graph 

surgery”). This simplified representation works because, under the intervention, the 

manipulated variable has a fixed value; it does not vary as other variables in the system 

vary. The influence of other variables on the manipulated variable is removed by the 

intervention, and that is represented by eliminating the arrows directed into the 

manipulated variable. 

 

Generating predictions from a causal graph : An example 

To illustrate, we can use the directed acyclic graph in Figure 1 to make two kinds 

of inferences, one set predicting conditional independence relations among the variables 

and the other set predicting the effects of interventions.  First, consider the implications 

of the graph for conditional independence relations. We can expand our earlier 

probabilistic definition of conditional independence to apply to a set of values of 

variables.  In this way, we can calculate the dependence or independence of two variables 

in the graph conditional on a set of values of other variables in the graph.  

If the causal graph in Figure 1 obeys the Markov assumption it will encode a 

variety of conditional independence claims.   It implies, for example, that Z and R are 

independent conditional on the set {S}, and that Z and Y are independent conditional on 

the empty set of variables.  It does not imply that Z and Y are independent conditional on 

{S}.  W is independent of all of the other variables conditional on {X}.  X is independent 

of Z, and independent of R conditional on {S}.  Thus the joint probability distribution 

represented by the graph in Figure 1 can be written algebraically as the product of the 

marginal distributions of each variable conditioned on its parents, or: Pr(Z, S, R, Y, W) = 
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Pr(W | X) * P(X | Y, S) * Pr(S | Z, Y) * Pr(R | S) * Pr(Z) * Pr(Y). 

The graph in Figure 1 also represents hypotheses about probabilistic 

independence if the system were to be subjected to “ideal” interventions from outside the 

system.  An ideal intervention that fixes a value X = x can be represented in the following 

way. We introduce a new variable I, with two values, one if the intervention takes place 

and the other if it does not. We add an arrow going from I to X.  Then we extend the joint 

probability distribution on the variables in the graph to include I, in the following way. 

Conditional on I = no intervention, the remaining variables have whatever probability 

distribution obtains with no intervention. Condition on I = intervention, fix X to x, and 

specify that the probability that X = x is 1. All other variables have their original 

distribution but conditioned on X = x. Such an intervention fixes a value for one or more 

of the variables represented in the system.  Because the intervention is understood to fix 

the value of a variable, say X, from outside the system, the variables that are represented 

in the graph as causing X (S and Y in the graph in Figure 1) do not cause X after the 

intervention.   

This fact can also be represented more simply by performing graph surgery. In 

this case we do not represent the intervention variable but instead remove the arrows in 

the original graph that are directed into X and fix X = x.  Thus, the causal graph that 

would result from an intervention that fixes X at the value x is shown in Figure 2. 

Figure 2:  The causal graph in Figure 1 with an intervention (I) on X 
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The probabilities for values of the variables that result from an outside 

intervention are computed from the conditional probabilities (on X = x) associated with 

the original graph, but the probability of the manipulated variable is changed so that the 

fixed value has probability 1.  So the probability distribution for S, R, W, Y, Z that 

results when X is fixed at x is: 

Pr(Z, S, R, Y, W) = Pr( W | X = x) * Pr(S | Z, Y) *  Pr(R| S) *  Pr(Z) *  Pr(Y). 

The Manipulation Theorem of Spirtes et al. (1993, 2000) says that the conditional 

independence relations that result from an outside intervention can be determined by 

applying the Markov Assumption to the altered graph as in Figure 2.  For example, in the 

new graph representing the system after the intervention, S, R, Y, and Z are independent 

of W.  

While the formalism may seem complex, the algorithms for computing 

conditional independence or for computing the probability of one variable conditional on 

another, or for computing the probabilities that result from an intervention, are efficient.  

Provided a causal graph is sparse – most pairs of variables are not directly connected by 

an arrow – computation is very fast.  Bayes nets, then, provide a formal and 
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computationally tractable way to generate accurate causal predictions, and to design 

effective causal interventions.   

 

Learning causal Bayes nets 

So far, we have seen that causal Bayes nets, that is, directed acyclic graphs with 

probability distributions that are constrained by the Markov Assumption, provide a 

formalism for representing and using causal relations.  Like causal maps, they represent 

non-egocentric, coherent, systems of causal relations – systems that generate accurate 

predictions and effective interventions.  Causal Bayes nets then provide a formal 

characterization of causal maps.  Very recently, some psychologists have suggested that 

adult causal knowledge might be represented as causal Bayes nets (Glymour & Cheng, 

1999; Gopnik, 2000; Gopnik & Glymour, 2002; Lagnado & Sloman, 2002; Sloman & 

Lagnado, 2002; Rehder & Hastie, 2001; Tenenbaum & Griffiths, 2003; Waldmann & 

Hagmayer, 2001; Waldmann & Martignon, 1998).  

However, the causal Bayes net formalism also suggests ways of representing and 

understanding how we learn causal knowledge, as well as how we use that knowledge.  

Causal learning is particularly important from the viewpoint of cognitive development.  

Given a causal graph we can generate accurate predictions, including predictions about 

the conditional probabilities of events and about the effects of interventions.  This 

suggests that we could also work backwards to generate the graphs from conditional 

probabilities and interventions.  And even in cases where we might not be able to 

generate the entire graph, we could at least discover aspects of the graphs, for example, 

we could discover some of the arrows but not others. This would provide us with a 
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method for learning causal Bayes nets from data.  In order to do this we would have to 

supplement the Markov assumption with other assumptions. 

We will describe four general techniques that might be used to learn causal Bayes 

nets.  These include two from computer science (Bayesian and constraint-based learning 

algorithms) and two from the psychological literature (a causal version of the Rescorla-

Wagner rule and the learning rule in Cheng’s causal power theory).  The psychological 

techniques have been applied to causal inference in adults, but they have not been tested 

in children. 

There is a certain trade-off inherent in these two types of techniques.  The 

computer science techniques have generally been applied in “data-mining” problems, 

problems that involve information about a wide range of variables, all considered 

simultaneously.  They can infer a very wide range of causal structures from a very wide 

range of data, but they have psychologically unrealistic memory and processing 

requirements.  The psychological techniques come from the empirical literature on causal 

learning in adults.  They have more realistic memory and processing requirements, but 

they apply to a much more limited range of causal structures and data.   

One important difference between the computational learning methods and 

current psychological learning methods, in particular, involves the question of 

determining whether a variable is a cause or an effect.  The psychological methods 

require that the potential causes are discriminated from the potential effects beforehand. 

Usually this is accomplished with time order information –  causes precede effects.  But 

the ordering can also be established by other methods such as using prior knowledge, or 

knowing that one variable is being manipulated and the other is not. Then, the 
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psychological learning methods calculate the strength of the causal relations between 

each potential cause and each potential effect.  

The computational learning methods can use this sort of information if it is 

available, but they can also draw causal conclusions without knowing beforehand which 

variables are potential causes and which are potential effects.  In many cases, they can 

determine the direction of the causal relation between two simultaneous events.  As long 

as other variables are also measured, these methods can sometimes determine whether X 

causes Y or Y causes X from the dependencies alone, without relying on time order or 

prior knowledge.  We will see later that this fact provides a way of discriminating among 

these learning methods. 

 

The Faithfulness Assumption. All four of these techniques, and arguably, any 

technique that could infer Bayes nets from data, must make at least one further 

assumption, in addition to the Markov assumption itself.  This assumption has been 

formally stated in the context of constraint-based methods, but it is also implicit in other 

learning methods.  It can be stated as follows: 

4. In the joint distribution on the variables in the graph, all conditional 

independencies are consequences of the Markov assumption applied to the 

graph. 

The principle has been given various names; following Spirtes et al. (1993), we 

will call it the Faithfulness assumption.  The Markov assumption says that there will be 

certain conditional independencies if the graph has a particular structure, but it does not 

say that there will be those conditional independencies if and only if the graph has a 
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particular structure.  The Faithfulness assumption supplies the other half of the 

biconditional.  

The Faithfulness assumption is essentially a simplicity requirement.  It might be 

possible that just by random coincidence, without any causal reason, two causal relations 

could exactly cancel out each other’s influence.  For example, going to a party might 

cause drinking which causes drowsiness, but the excitement of the party might cause 

wakefulness, with the result that partying and drowsiness are independent, even though 

there are causal relations between them – the causal relations cancel one another out.  

This is a particular example of a phenomenon known as Simpson’s paradox in the 

statistical literature. The Faithfulness assumption assumes that such sinister coincidences 

will not occur.      

A causal learner in a Simpson’s paradox situation is like someone looking into a 

Viewmaster, the favorite toy of our childhood. Three-dimensional objects produce 

particular patterns of two-dimensional images at each eye. The Viewmaster works by 

presenting each eye with the image that would have been produced by a three-

dimensional object, with the result that the viewer sees an object in depth.   The visual 

system makes a kind of Faithfulness assumption, it assumes that the observed visual 

relations were produced by a three-dimensional structure even though, in fact, they were 

not.  

In fact, it has been shown that for absolutely continuous probability measures on 

the values of linear coefficients of linear models, Faithfulness holds with probability 1, 

and similarly for absolutely continuous probability measures on the conditional 

probabilities (of each variable on each vector of values of its parents) in models with 
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discrete variables (Meek 1995; Spirtes et al., 1993).  It is easy to construct violations of 

the Faithfulness assumption mathematically. However, in nondeterministic or noisy 

systems we would be extremely unlikely to encounter a set of events that violated the 

assumption, just as we would be extremely unlikely to encounter a phenomenon like the 

Viewmaster in the natural world. 

The search problem. The Markov assumption and the Faithfulness assumption are 

like the geometric and optical assumptions that allow the visual system to solve the 

spatial inverse problem.  By making these two quite general assumptions about the causal 

structure of the world, and the relation between causation and conditional independence, 

we can provably solve the causal inverse problem for a great variety of types of causal 

structure and types of data. 

This solution relies on the fact that, according to the Markov and Faithfulness 

assumptions, only some causal graphs and not others are compatible with a particular set 

of conditional probabilities of particular variables.  These assumptions constrain the 

possibilities, they tell us whether a particular graph is or is not consistent with the data.  

This leaves us, however, with two further problems. There is the algorithmic problem of 

finding a way to efficiently search through all the possible graphs, and discard those that 

are inconsistent with the data. There is also the statistical problem of estimating the 

probabilities from the data. 

Again, we can draw the analogy to vision.  Given certain assumptions about 

geometry and optics, mathematical theories can tell us, at least in part, which 

representations of objects are consistent with a particular set of perceptual data. Marr 

(1982) calls this the computational level of representation.   For example, the geometrical 
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assumptions in mathematical vision science tell us that a three-dimensional object that is 

projected onto two two-dimensional retinas will only lead to certain disparities between 

those images and not others.  In practice, however, computer vision systems (or, for that 

matter, biological vision systems) must also find procedures that allow them to compute 

the object representations from the retinal data in a reasonably efficient way. Marr (1982) 

calls this the algorithmic level of representation.  Vision scientists use the geometrical 

theory that relates depth to disparity to help design search procedures in computer vision 

programs, and to help discover the search procedures that are actually used by the human 

visual system.  

In the causal case, one way of making the search tractable is to limit the 

possibilities by using other kinds of information or assumptions about the graphs.  For 

example, temporal order information can rule out certain possibilities, Y  X should not 

appear in the graph if X always comes before Y.  Similarly, other kinds of prior 

knowledge can influence the search. We may already know, for example, that X causes Y 

or that X doesn’t cause Y, and that means that we must include or exclude an arrow from 

X to Y in the graphs.  Or someone else may explicitly tell us that X causes Y or give us 

other facts about the graphs. Similarly, we may know from other sources that the graphs 

have specific types of structures or specific parameterizations, and so restrict our search 

appropriately.    

However, in the computer science literature, efficient search procedures have 

been developed that make minimal additional assumptions, although they can incorporate 

other types of knowledge if they are available.  The procedures can be applied to purely 

observational data, to experimental data, to combinations of the two sorts of data, to 
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continuous variables, to discrete variables, and to certain combinations of discrete and 

continuous variables, with and without a range of prior knowledge.  These learning 

procedures include Bayesian methods (Heckerman, Meek & Cooper, 1999) constraint-

based methods (Scheines, Spirtes, Glymour & Meek, 1994), and various combinations of 

the two.  

Computational Approaches: Bayesian methods. In general, Bayesian causal 

learning methods have the same structure as Bayesian methods in statistics.  The possible 

causal hypotheses, represented by Bayes nets, are assigned a prior probability.  This 

probability is then updated, given the actual data, by the application of Bayes theorem.  

Typically, we accept or conjecture the hypothesis with the highest posterior probability, 

but we will also know the probability of other hypotheses. In principle we can, if we 

choose, sum the probability of any particular causal connection over all of the 

hypotheses.   

 In detail and ideally, a prior probability measure is imposed on every directed 

acyclic graph of interest.  A family of possible joint probability distributions for the 

variables is assumed, as a function of a finite set of parameters associated with each 

graph.  For example, if a distribution family is assumed to be Gaussian, each variable is 

assumed to be a linear function of the values of its parents plus a normally distributed 

error term.  The parameters are then the linear coefficients and the variance of each 

variable.  If the variables are all discrete, the joint distribution is typically assumed to be 

multinomial, and the parameters are the probabilities of each variable conditional on each 

vector of values of its parents.  The directed acyclic graph together with a complete set of 

parameter values, determine a unique joint probability distribution on all of the variables.  
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This probability distribution in turn determines a sampling distribution, assuming the 

Bayes net describes an independent probability distribution for each unit in the sample. 

Putting the pieces together, when integrated, the prior probability distribution 

over the graphs, multiplied by the probability distribution over the parameters conditional 

on each graph, multiplied by the sample probability conditional on each graph and each 

possible set of parameter values for that graph, results in a prior probability distribution 

for the sample.  Under various technical assumptions, the sampling distribution 

conditional on any given graph can be quickly computed (Heckerman, 1995).  

Ideally, Bayes theorem is then applied to compute the posterior probability 

distribution over the graphs, conditional on the data.  In practice, because the number of 

directed acyclic graphs grows super exponentially with the number of variables, heuristic 

greedy algorithms are used instead.  One starts with an arbitrary graph, computes its 

posterior probability,  also computes the posterior probabilities of a specified set of 

alterations of the initial graph (adding, deleting, or reversing  arrows) chooses the 

alteration with the highest posterior probability, and repeats the process until no more 

improvements are found. 

Constraint-based methods. Constraint-based methods work quite differently.  In 

these methods, the dependence or independence between each set of variables is 

calculated from the data, as the algorithms require them. These dependence relations are 

determined by applying  standard statistical tests of significance to the actual data.  

Graphs are constructed that are consistent with those dependence and independence 

relations, step by step.  The TETRAD algorithms (Scheines, et al., 1994) are typical of 

constraint-based discovery procedures.  They are most clearly described by an example.  
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Suppose the unknown structure to be discovered is as in Figure 3: 
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Figure 3 

 

Note that the according to the Markov and Faithfulness assumptions, this graph implies 

that the following independence relations, and only these, hold: 

X ⊥ Y ;  W ⊥ {X,Y} |  Z 

We are given data on X, Y, Z and W for a sample of units drawn from an 

unknown probability distribution, and make the Markov assumption and Faithfulness 

assumption about the graph in Figure 3.  We are also given the information that the 

probability distribution belongs to a family of probability distributions – say normal or 

multinomial – but no other information.  In particular, there is no information about time 

order.  We cannot recover the entire graph, but we can discover the following: X either 

causes Z or there is an unmeasured common cause of X and Z. Similarly for Y and Z. Z 

causes W.  Further, we can discover that there is no unmeasured common cause of Z and 

W.  Here is how. 

 1. Form the complete undirected graph on all of the variables, as in Figure 4. 
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Figure 4 

 

2. Test each pair of variables for independence.  Eliminate the edges between any 

pair of variables found to be independent.  The result is Figure 5. 
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Figure 5 

 

3. For each pair U, V, of variables connected by an edge, and for each variable T 

connected by an edge to one or both of U, V, test whether U ⊥ V | T.  If an independence 

is found, remove the edge between U and V. The result is Figure 6: 

 
 
 X 
 
  Z   W 
  

Y 
 

Figure 6 

 

 4. For each pair U, V of variables connected by an edge, and each pair, T, S of 
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variables each of which is connected by an edge to either U or V, test the hypothesis that 

U ⊥ V | {T, S}.  If an independence is found, remove the edge between U, V. In  the 

graph of figure 5, Z is adjacent to W and Z  has two adjacent variables, but Z and W are 

not independent conditional on {X,Y} and no change is made. This part of the procedure 

stops.    

5. 5. For each triple of variables T, V, R such that T - V - R and there is no edge 

between T and R, orient as T o-> V <-o R if and only if V was not conditioned upon 

when removing the T - R edge. (This results in Figure 7.)  
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Figure 7 

 

 

6. For each triple of variables, T, V, R such that T has an edge with an arrowhead 

directed into V and V – R, and T, has no edge connecting it  to R, orient V – R as V → R. 

The final result is Figure 8. 
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Figure 8 
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The “o” marks indicate that the procedure cannot determine whether the association is 

produced by a causal arrow from one variable to the other, as from X to Z, or by a 

common unobserved cause of X and Z, or both.  

The general algorithms for constraint learning of causal Bayes nets are given in 

Spirtes et al. (1993, 2001), along with proofs of their asymptotic correctness under the 

Markov and Faithfulness assumptions.  Given these assumptions and given sufficient 

data, these algorithms will almost certainly come to the correct conclusion about which 

possible causal structures are consistent with the data. 

Constraint based search methods can use prior knowledge about the existence or 

absence of particular causal connections. For example, if a constraint based program such 

as TETRAD II (Scheines, et al., 1994) is told that Z occurs later than X, and Y occurs 

earlier than X, then in testing whether there is a direct connection Y  X, the program 

will not test their independence conditional on Z.  The program can also use prior but 

uncertain knowledge about causal connections. For example, if the program is told that 

there is some chance that Y may directly cause X, it can adjust the significance level in 

statistical decisions as to whether Y and X are independent or independent conditional on 

other variables. These uncertain prior degrees of belief are handled more elegantly in 

Bayesian search methods. 

Psychological approaches: The causal Rescorla-Wagner  method. Work in the 

psychological literature also suggests methods for learning causal structure from data.  

Associative learning, for example, has been proposed as a method of learning causal 

relations (Shanks & Dickinson, 1987).  It is important to distinguish between this causal 

interpretation of associative learning and associative learning per se.  Classical 
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associative learning theories assume that organisms simply make associations without 

learning about anything independent of the associations themselves.  Such theories have 

classically been applied to learning in animals and they have also been extensively 

applied to learning in children (see e.g. Elman et al., 1996; Thelen & Smith, 1996).  

Instead, some investigators have recently proposed that human adults use associative 

learning rules to infer underlying causal relations. We could think of these accounts as 

techniques used to infer a causal graph from data. 

 The basic principle underlying such an account would be that the strength of the 

association between two variables, calculated by associative learning rules, indicates the 

probabilistic strength of the causal connection between them.  Presumably, we could 

construct a causal graph by combining information about pairs of variables.  This 

information could then be combined with other types of causal information.  Finally, it 

could be translated into a set of instructions for intervening on one event to bring about 

another.  However, these links between association, causal structure, prior knowledge, 

and intervention have not been made explicit in this literature. 

 The most influential associative learning procedure is due to Rescorla and 

Wagner (1972).  The Rescorla-Wagner (hereafter, RW) procedure estimates that the 

associative strength of potential cause Ci with the effect, E, after trial t+1 is 

, where ∆Vi
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            Unlike constraint-based algorithms, the RW algorithm gives a trajectory of 

associations or estimates of causal strength as the data are acquired step by step.  The 

RW process is often compared with other learning theories through its long run behavior, 

or equilibria (Cheng, 1997; Danks, 2003).  A vector of associative strengths V = <V0, …, 

Vn> (one dimension for each cause) is an equilibrium of the Rescorla-Wagner model for a 

probability distribution if and only if  ( )( )0=∆∀ iVEi .  That is, a strength vector is an 

equilibrium if and only if, for every cause, the expected value of the change in the 

associative strength of that cause with the outcome is zero.  Cheng (1997) characterizes a 

great many cases in which the equilibria of the RW procedure learning the effect of X 

and Y on Z are: 

pr(Z | X, ~Y) – pr(Z | ~X, ~Y) 

pr(Z | ~X, Y) – pr(Z | ~X, ~Y) 

Danks (2003) gives a fully general characterization of the equilibria.   

 When the potential causes occur before the effect, and there are no unmeasured 

common causes of the potential causes and the effect, the associative strengths might be 

interpreted as estimates of the strengths of causal connections in a Bayes net.  In fact, 

thinking about the RW rule in the context of Bayes nets gives an interesting evolutionary 
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and normative explanation for the very existence of the rule.  RW works because, in 

many cases, it recovers the correct causal structure of the world.  

             Even in such special cases, however, the interpretation is problematic for a variety 

of reasons.  Cheng (1997), for example, shows that adult subjects are sensitive to ceiling 

effects not captured by equilibria of the RW procedure. Further, the learning model can 

only account for interactive causes by treating the combination of interacting causes as a 

separate cause. 

 Psychological approaches: Cheng’s Power PC method. Cheng (1997) has recently 

proposed a theory of causal representation and learning for adult humans, the Power PC 

theory. We will consider the representation and the learning theory separately. Although 

it was empirically motivated and developed independently, the Power PC theory 

representation is equivalent to a Bayes net representation with a special parametric form 

for the probabilities.  Networks so parameterized are known as “noisy-or-gates” and 

“noisy-and-gates” in the computer science literature, and they can be chained together 

into any directed acyclic graph, and can include unobserved common causes (Glymour, 

2001).  The Markov condition necessarily holds if noisy or and/or noisy and gates are 

chained together into a directed acyclic graph.  Novick & Cheng (in press) have given a 

much more intricate set of parameterizations of causal models with interaction, without 

precedent in the computer science or statistical literatures, and these structures, too, can 

be chained together in networks. Cheng’s theory, then, proposes that adult human causal 

representation involves a particular type of causal Bayes net with a particular 

parameterization. 

             Cheng (1997) also provides a method for learning such graphs, and the causal 
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power of the arrows, from data.  She provides a direct estimate of causal strength, again 

assuming that the potential causes are discriminated from the effects, that there are no 

unobserved common causes of the observed potential causes and the effect, and that the 

potential causes do not interact to produce the effect.  This estimate differs from the 

estimate provided by the Rescorla-Wagner rule.  Cheng’s estimator for a generative cause 

A - one whose presence increases the probability of the effect, E – is  

frF(E | A) – frF (`E | ~A)

(1 – frF (E | ~A)) 
 

           The frequency frF is for a “focal set” of cases in which subjects judge A to be 

independent in probability of any other causes of E.  This focal set is defined 

psychologically – it is the set of cases in which the subject believes that the potential 

cause being assessed is independent of other potential causes of the effect.  It is not 

necessarily derived from any particular objective features of the data, though, of course, 

one would assume that the data would affect the subject’s beliefs.  Cheng (1997) 

observes, in particular, that when the values of A are the result of interventions, subjects 

will tend to regard A as independent of other causes of E. A different estimator is given 

when the cause is preventive and lowers the probability of the effect.  

          Made into a learning rule, this estimator is asymptotically correct for the 

parameterization of Bayes nets of the kind Cheng specifies, in particular, in cases in 

which there are no unobserved common causes of potential causes (A above) and effects 

(E above). (This is assuming that, in the focal set, the potential causes really are 

independent in probability from other potential causes of the effect).  Her estimator of the 

efficacy of A in these cases equals, asymptotically, the probability that the effect occurs 
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conditional on A occurring and no other cause of the effect occurring. Novick & Cheng 

(in press) give related estimation rules for interactive causes of a variety of types. 

Generalizations of Cheng’s rule have been shown to be able to correctly estimate her 

generative causal power parameters in certain cases in which the potential cause A and 

the effect E are both influenced by an unobserved common cause (Glymour, 2001.) 

          The statistical problem: Fictional sample sizes and learning rates.   

           We mentioned above that, in addition to the search problem, learning a causal 

Bayes net also presents a statistical problem. Before we can infer causal structure from 

conditional probabilities we need to be able to infer those conditional probabilities from 

data about frequencies. In the experiments we will subsequently describe, the number of 

trials is typically very small so that, from a statistical point of view, the data provide little 

information about underlying probabilities. Nonetheless, as we will see, children are very 

willing to make causal inferences from such small samples.  

             At least three of these four learning algorithms must make some further 

qualitative assumption to account for these judgements. For Bayesian learning 

algorithms, the further assumption is an informative prior probability distribution over 

the graphs and parameters, that is, a distribution that does not give uniform prior 

probabilities to all hypotheses. In other words, children might use their prior knowledge 

that some graphs are more likely than others to help infer probability judgments from the 

limited new data (Tenenbaum & Griffiths, 2003). An informative prior is equivalent to 

assuming the prior probabilities used were obtained by applying Bayes rule to an 

uninformative prior and a fictional sample. Constraint-based procedures must assume that 

each of the observed cases are multiplied by the same number to form a fictive sample 
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size—for example, each case is treated in statistical inference as if it were a hundred 

cases. In other words, children might assume that the small samples they see are 

representative of the actual distribution, so, for example, if they see that A is associated 

with B on one trial, they assume that they would see the same thing on a hundred trials. 

Similarly, the Rescorla-Wagner model must set one of its parameters—the learning 

rate—to a very high value.  

           Cheng’s learning method does not use a statistical procedure or a learning rate, but 

estimates causal powers directly from the observed frequencies. This has the advantage 

that no extra assumption is needed to address small sample cases.  However, it does not 

provide a dynamical account of how causal inference might improve as children gain a 

larger data set. Danks (Danks, Tenenbaum & Griffiths, 2003) has recently shown that 

there is a dynamical learning procedure, analogous to the Rescorla-Wagner updating rule,   

that converges to Cheng’s generative causal powers. This procedure supplies a learning 

rate analogous to the Rescorla-Wagner parameter. 

Learning Bayes nets with unobserved variables. So far we have been considering 

learning models that recover Bayes nets in which all the variables are observed.  Bayes 

net representations can also involve unobserved variables, and there are procedures for 

learning about such unobserved variables from the data.  These procedures are 

particularly interesting from a psychological point of view.  The “theory theory”, for 

example, proposes that children can infer unobserved variables, such as internal mental 

states, from patterns of data.  How might such learning be possible?  

  The Markov Assumption is not assumed to hold for observed variables alone, and 

in fact, it will not hold for just the observed variables, when there are unobserved 
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common causes; that is, when there are unobserved variables that directly influence two 

or more observed variables.  Consider, for example, the structure shown in Figure 9: 
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Figure 9 

 

where U is an unobserved variable.  The Markov Assumption, applied to the graph in 

figure 9, implies 

X ⊥ {Z, R} and R ⊥ {X, Y} 

and no other independence or conditional independence relations among {X, Y, Z, R} 

alone.   

There is no directed acyclic graph on the observed variables alone that implies 

these, and only these, independence relations.  It is not hard to see why. Y and Z are 

dependent so either Y → Z or Z → Y. This must be true because neither X nor R can be 

common causes of Y and Z, since X is independent of Z and R is independent of Y.  

Suppose Y → Z.  Then since X and Y are dependent, either X → Y or Y → X, or else 

one or both of R, Z are common causes of Y and X.  R cannot be a cause of Y because R 

and Y are independent, and Z cannot be a cause of Y because, by the supposition, Y 

causes Z and the graph would be cyclic.  So X → Y or Y → X.  However, in either case, 

since by supposition, Y → Z,  then by the Faithfulness and Markov assumptions, X and Z 

are not independent. However, this contradicts the first of the independence relations 
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above, X and Z are independent.  The alternative supposition, Z → Y, leads to the same 

conclusion by a parallel argument.  In causal contexts, the Markov and faithfulness 

assumptions apply only to causally sufficient sets of variables, that is, to sets of variables 

that include every (direct) common cause of their members.  This feature of causal Bayes 

net representations turns out to be useful in learning. 

Unobserved common causes produce extra dependencies among variables. 

Conversely, violations to Faithfulness (which can occur in deterministic systems without 

noise) produce extra independencies (or conditional independencies) among variables. 

We can algorithmically decide whether the independencies and conditional 

independencies violate Faithfulness, and, if Faithfulness is not violated, we can determine 

whether the dependencies violate the Markov assumption. If they do, we can conclude 

that there must be an unobserved common cause.  In short, if there are dependencies in 

the data that could not be generated by a Bayes net involving the observed variables, we 

conclude that there must be some unobserved common cause or causes that is responsible 

for the additional dependencies.   

       Consider once more the example in Figure 9 with the independence relations:  X 

⊥ {Z, R} and R ⊥ {X, Y}.  If we apply the procedure previously illustrated for constraint 

based learning, we first form the complete undirected graph, then remove edges between 

X and R, Y and R, Z and X, because each of these pairs is independent. The result is the 

undirected graph:  

X – Y – Z – R 

There are two triples whose terminal variables are not connected by an edge: X – Y – Z 

and Y – Z – R.  In removing the X – Z edge we did not condition on Y, and in removing 
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the Y – R edge we did not condition on Z, so these triples are oriented: Xo → Y ←o Z 

and Yo → Z ←o R.  Hence the final result of the procedure is:  

Xo → Y↔Z ←o R 

The double headed arrow indicates that Y and Z must be connected by a common cause 

that is neither X nor R.  

 Constraint based procedures, then, can sometimes identify the presence of 

unobserved common causes. At present, Bayesian methods are much more limited in this 

respect. If you start out with specific alternative graphs which involve unobserved 

variables, Bayesian methods can use the data to compare the posterior probabilities of 

those graphs to the posterior probabilities of other graphs. However, there are as yet no 

Bayesian methods that do a general search for the presence of unobserved variables.  

Causal Bayes Nets As A Psychological Model Of Children’s Learning.  

The concept of causality is an intricate web relating ideas about association, 

independence, conditional independence, and intervention.  The causal Bayes net 

representation may not capture the whole of this web of ideas, but it captures a great deal 

of it.  Our psychological hypothesis is that people, and children, in particular, represent 

causal relationships in ways that can be described as causal Bayes nets. Moreover, they 

apply learning procedures to construct new causal representations from observations of 

correlations and interventions.  This hypothesis provides a framework for more specific 

explanations of specific causal learning abilities. It can help us understand how children 

can derive correct predictions of the effects of interventions from passive observation, 

how they can integrate correlational data and data from interventions, and how they can 

combine prior knowledge and new observations to discover new causal relations.  It 
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suggests processes through which children can correctly postulate unobserved variables.  

No other representational proposal that we know of allows for this range of inferences 

and predictions.   

Of course, we are not proposing that children have conscious knowledge of these 

representations or learning procedures or that they have little graphs in their heads.  Our 

proposal is that causal knowledge and learning can be represented in this way at the 

computational level (Marr, 1982). We can say that children use Bayes nets or infer Bayes 

nets from data in much the same way we can say that the visual system uses 

representations of three-dimensional structure or infers these representations from 

stereoscopic disparities.  This leaves open the further question of how these computations 

are actually implemented in the brain (what Marr (1982) calls the implementation level).  

In the case of vision, at least, “low-level” vision, we have some ideas about how neural 

connections actually implement these computations.  We might hope that, at some future 

point, a similar project would be fruitful in the causal domain.  However, as in vision, 

such a project would depend on specifying the representations and computations first.      

Our hypothesis can be differentiated from other hypotheses about causal learning 

in children.  It is possible that young children do not learn genuinely new causal relations 

but initially rely on a few innate domain-specific causal schemas that are later enriched 

(see e.g. Atran, 1990; Leslie & Roth, 1993; Spelke et al., 1992).  A related, though 

somewhat richer, view is that children only (or primarily) use substantive assumptions, 

like spatial contact and temporal order, to infer new causal relations, and do not learn 

about new causal relations from information about correlation (Ahn et al, 2000).  

Alternatively, it is possible that, even if young children do learn, that learning is 
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restricted to the mechanisms of classical or operant conditioning.  Again, a related but 

somewhat richer hypothesis is that young children simply associate events but do not 

infer genuine causal relations between them (see e.g., Elman et al, 1996; Thelen & Smith, 

1994).  Alternatively, children might only use trial and error or imitative learning to 

determine the direct causal consequences of their own actions or those of others.  

None of these hypotheses accounts for, or allows, most of the features of causal 

inference described earlier.  In fact, even if children used all these methods of learning 

together, the inferences they made would still be restricted in important ways.  We will 

present new empirical evidence which demonstrates that very young children can, in fact, 

make causal inferences that require more powerful learning mechanisms, like all four of 

the formal learning mechanisms we described in the previous section. 

This general hypothesis is nonetheless consistent with a variety of other specific 

hypotheses about how causal relations are learned, including the four different formal 

learning models we described above, and many variations and extensions of those 

models. We further hypothesize, more specifically, that the causal learning mechanisms 

that are involved in children’s cognitive development lie somewhere between those 

proposed by the computational and psychological types of learning methods.  That is, 

they are more powerful and general than the psychological learning mechanisms that 

have currently been proposed, but they are, at least in some respects, more constrained 

than the normative computational learning mechanisms.   

We make this hypothesis because children do, in fact, seem to be able to learn 

more complex causal structures from a wider variety of data than the current 

psychological models address. For example, the literature on everyday psychology 
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suggests that children learn complex causal maps relating beliefs, desires, emotions and 

perceptions (e.g. Gopnik & Wellman, 1994). This literature also suggests that children 

might make causal inferences without discriminating potential causes and potential 

effects beforehand. In many psychological cases, mental states can be both causes and 

effects, and it is not obvious whether one person’s actions caused another’s or vice-versa. 

Moreover, often, indeed, usually mental states are not directly observed.    

However, it is also eminently possible that children would not be capable of the 

same types of causal learning as experienced and educated adults. Before the experiments 

we will describe here, there was no evidence that children were even able to use the same 

formal causal learning mechanisms demonstrated in human adults, let alone more general 

mechanisms. If children do not have such mechanisms available, we would have to find 

some other explanation for the development of the causal knowledge encoded in 

everyday theories. Perhaps, contrary to our hypotheses, this knowledge is innate rather 

than learned.     

Testing strategies.  Before we describe our experiments, however, we should 

clarify how they are related to the Bayes net formalism. The formalism is not itself a 

psychological hypothesis. Instead, it is a normative mathematical account of how 

accurate causal inference is possible, whether this inference is performed by children, 

computers, undergraduates, or sophisticated adult scientists. Again, we return to the 

vision analogy. The relation between depth and stereo disparity is not a psychological 

fact but a geometrical and optical fact, one that would allow accurate inferences to be 

made by any kind of visual system, human, animal or artificial.  

The vision science formalism also involves several interwoven representations 
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and assumptions. The mathematical account of stereo includes a geometrical 

representation of the objects we see, and a set of geometrical and optical assumptions 

about how those objects produce patterns of visual disparity. It also includes the 

equivalent of the Faithfulness assumption, that is, the assumption that the disparities we 

see were actually produced by the geometry of the object and its geometrical and optical 

relations to two-dimensional images. These three aspects of the formalism allow us to 

create a variety of algorithms that let us work backwards from disparity to depth in a 

reasonably efficient way.  

The Bayes net representation has three very similar essential pieces—the 

graphical representation of causal relations, the Markov assumption connecting each 

graph with constraints on probability distributions, and the Faithfulness assumption 

which assumes that the probabilities are, in fact, produced by the representations and the 

Markov assumption. Those essential and interrelated pieces can be used to create specific 

learning algorithms.  The role of the Markov condition in causal reasoning can scarcely 

be tested in isolation from other assumptions, any more than the geometric assumptions 

of optics can be tested apart from a three-dimensional geometric representation of 

objects.  

In vision, we assume that the representations and assumptions are unconscious – 

our subjects would hardly be informative if we asked them explicitly whether three-

dimensional objects are consistent with horizontal and vertical disparities. We also don’t 

test different parts of the geometry separately. Instead, in psychophysics, we test the 

entire model of depth from disparity by getting people to look at different patterns of 

disparities, and determining whether they see depth.   Such evidence tells us whether or 
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not the visual system uses the geometrical and optical information, and it can help us 

decide which particular search algorithms might be used. 

We make the same assumptions about causal learning. We obviously can’t ask 

three-year-olds explicitly whether they think that particular causal structures are 

consistent with particular conditional probabilities. Moreover, we are almost certain that 

adults would make mistakes if they were asked to make explicit judgments of this kind, 

even if they unconsciously used the correct assumptions in their implicit causal 

judgments.  Instead, the experiments with children we will describe here are a kind of 

cognitive psychophysics. We present children with various patterns of evidence about 

conditional probabilities and see what causal conclusions they draw. We can then see 

how much, or how little, these unconscious inferential procedures are in accord with the 

normative mathematical account, again just as in the case of vision, and we can 

discriminate among particular learning procedures.   

 In our first study, we will show that children as young as 30 months old can 

implicitly use conditional dependence information to learn a causal map. In the second 

study, we will offer further evidence for this ability from a paradigm – backward 

blocking – that directly contradicts the causal RW model.  Then we will show that 

children can make normatively accurate inferences to solve a problem that is outside the 

scope of Cheng’s published theory and causal RW models, but can be handled by 

constraint-based and Bayesian methods.  This problem involves determining the causal 

relation of two simultaneous events – did X cause Y or did Y cause X?  Then, we will 

extend this paradigm to provide further evidence that directly contradicts the causal RW 

model.  Finally, we will describe preliminary evidence that children can also solve 
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another problem that is outside the scope of published Cheng methods and RW methods, 

but can be handled by other Bayes net learning methods.  This problem involves inferring 

the existence of an unobserved common cause. 

Causal learning in young children: Experimental evidence  

How could we test these ideas empirically?  In particular, what could we do to  

discover how, or even whether, children use information about conditional dependence to 

construct accurate causal maps?  We need methods that allow us to expose children to 

patterns of evidence in a controlled way, and to see if they will draw genuinely novel and 

genuinely causal conclusions based on that evidence. We need a kind of developmental 

cognitive psychophysics. We will describe experiments that use two such methods: the 

blicket detector and the puppet machine. 

 
Inferring causal maps from conditional dependence: The blicket detector 

 Gopnik and colleagues devised the “blicket detector” to explore children’s causal 

learning (Gopnik & Esterly, 1999; Gopnik & Nazzi, in press; Gopnik & Sobel, 2000; 

Nazzi & Gopnik, 2000).  The blicket detector is a square wooden and plastic box that 

lights up and plays music when certain objects, but not others, are placed upon it.  (In 

fact, the machine is secretly controlled by a human confederate, but neither adults nor 

children guess this).  This apparatus appears to present children with a new, non-obvious, 

causal relation.  Some objects (which we call “blickets”) have the causal power to make 

the machine go and some do not.  We can then expose children to different patterns of 

evidence about the blocks and the detector and discover what causal inferences they will 

draw.  A first set of studies (Gopnik & Nazzi, in press; Gopnik & Sobel, 2000; Nazzi & 
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Gopnik, 2000) demonstrated that young children could, in fact, learn about this new 

causal relation, and use that knowledge to categorize the objects.  

In the next set of experiments, we explored whether children could use evidence 

about conditional dependence and independence to infer these new causal relations.  

Gopnik, Sobel, Schulz, and Glymour (2001) presented 3- and 4-year-old children with 

the blicket detector after a familiarization period in which the experimenter told children 

that the machine was “a blicket machine” and that “blickets make the machine go.”  

Children were then presented with two types of tasks.  In the “one-cause” tasks, the 

experimenter first put object A on the detector, which activated it.  Then he put object B 

on the detector, which did not activate it.  Then, he placed both objects on the machine 

simultaneously twice in a row.  The machine activated both times.  Finally, he asked the 

children if each object, individually, was a “blicket” or not (see Figure 10).    

--------------------------------- 

Insert Figure 10 Here 

--------------------------------- 

Children might have solved the one-cause task by simply picking the object that 

made the machine go off more frequently.  To control for this possibility we included a 

“two-cause” task: the experimenter placed object A on the machine by itself three times.  

Each time, A activated the machine.  Then the experimenter placed object B on the 

machine by itself three times.  It did not activate the machine the first time, but did 

activate it the next two times.  Again, children were asked if each object individually was 

a blicket or not.  In this experiment, as in the one-cause task A sets the machine off all 

three times and B sets it off two out of three times.  If children respond differently in the 
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two tasks, they could not simply be responding to frequencies.  Moreover, this task also 

controlled for the possibility that children were using other simple perceptual strategies, 

such as picking the object that activated the machine first.    

In the one-cause task, children said that object A was a blicket significantly more 

often than they said that B was a blicket (96% vs. 41%).  In contrast, in the two-cause 

task they were equally likely to say that A and B were blickets (97% and 81.5%).  

Moreover, they said that object B was a blicket significantly more often in the two-cause 

task than in the one-cause task.   

Notice, however, that some children in the one-cause task did say that both 

objects were blickets.  This may have been the result of a general tendency to say “yes”, 

which is common in very young children.  In a second experiment, 30-month-olds were 

given a slightly modified procedure.  Children were asked to make a forced choice 

between the two alternatives “Which one is the blicket, A or B?”  The results were 

similar, children chose object A significantly more often than object B in the one-cause 

task (78% vs. 22%), they chose each object equally often in the two-cause task (47% vs. 

53%), and they chose object B significantly more often in the two-cause task than in the 

one-cause task. 

The experimental condition, that is, the one-cause task, can be analyzed in several 

ways.  Let A and B be binary variables representing the location of objects A and B  

(present or absent on the detector) and let D be a binary variable for the state of the 

detector (on or off).  We have that the frequency (fr) of (A, D)  ≠ fr(A)fr(D) and fr(B,D)  

≠ fr(B)fr(D). That is, A and B are each dependent in probability on the state of the 

detector.  Further, fr(A, B)  ≠ fr(A)fr(B), that is, A and B are not independent.  Also, fr(B, 
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D | A) = fr(B | A)fr(D | A).  The state of the blicket detector is independent of the 

presence and of the absence of object B conditional on the presence of object A.  Finally, 

fr(A, D | B)  ≠ fr(A | B)fr(D | B).  Conditioning on the value of B does not make A and D 

independent.  

Applied to this case the constraint based learning algorithm for Bayes nets  

constructs the following model (shown in Figure 11),  (provided it is assumed that the 

interventions eliminate the possibility of common causes of A and the detector, and of B 

and the detector, and the sample size is given a large fictitious multiplier). This graph 

represents all the possible causal graphs that are consistent with the Markov and 

Faithfulness assumptions and the patterns of conditional dependence we just described.  

        A o o B

D

Figure 11

 

The graph says that A causes D and B does not. (It also says that there is some 

undetermined, and perhaps unobserved, causal link between A and B, represented by the 

circles and the ends of the edge connecting those variables. In fact, there is such a link, 

namely the experimenter, who usually puts both of the blocks on the machine at the same 

time). The experiment can also be explained on a number of other hypotheses.  The 

Power PC estimate of generative causal power is 1 for A and 0 for B. With a very high 
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learning rate (analogous to the sample size multiplier in the constraint search), RW yields 

a high association of A with D and a low association of B with D.  

Designing a new intervention. In these experiments, we assumed that children 

understood our original instructions about the causal power of the blocks, and were 

indeed using the word “blicket” to identify the blocks that made the machine go.  They 

were constructing a causal map of the blocks and the detector by using one of the 

methods we described above, including perhaps the causal version of RW.  However, it 

was also possible that children were not making a causal inference at all, even a causal 

inference using RW, but were simply associating the word “blicket” with the effect, and 

further associating the block with the effect.  They need not have understood that the 

blicket actually made the machine go.  How could we ensure that children really were 

reasoning causally, and creating a causal map, rather than simply associating the word 

“blicket” and the effect? 

Two things could distinguish a genuinely causal map from a simple association.  

First, causal reasoning implies a set of predictions about interventions.  If A is causally 

related to B then taking action to influence A should influence B.  If children really think 

that the blickets make the machine go, they should be able to use the blickets themselves 

to bring about effects on the machine.  Second, children’s causal reasoning involves both 

substantive prior knowledge, principles about what sorts of things cause what other 

things to happen, as well as formal principles about how patterns of conditional 

dependence and independence indicate causality.  If children are using a causal map, they 

should combine both types of information to reach causal conclusions.  

In the case of physical causality, and particularly in the case of machines, a likely 
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general substantive principle is that if an event makes a machine go, the cessation of the 

event will make the machine stop – this applies to many common cases of switches, etc.  

This is not a necessary principle, of course, but it is a plausible pragmatic assumption 

about this type of causal relation.  If children really think that the blickets have the causal 

power to make the machine go, they should also infer that removing the blicket is likely 

to make the machine stop, even if they have never seen this event.  Moreover, they 

should intervene appropriately to bring about this effect.  On the other hand, if they are 

merely associating the word, the object, and the effect, children should not draw this 

inference, nor should they be able to craft an appropriate intervention.  

In a subsequent experiment, (Gopnik et al. 2001, Experiment 3) we tested these 

ideas with three and four-year-olds.  We modified the task so that children did not see 

that removing the block made the machine stop (see Figure 12). The experimenter placed 

one block, B, on the machine and nothing happened.  The B block was removed, and then 

she placed the other block, A, on the machine, and the machine activated.  After a few 

seconds (with the machine activating) she replaced the original B block on the machine 

next to the A block and the machine continued to activate for an extended time.  She then 

simply asked the children “Can you make it stop?”  If children were drawing causal 

conclusions from patterns of conditional dependence and independence, and combining 

those conclusions with their substantive causal knowledge, they should remove the A 

block, rather than the B block.  We also used a similar “two-cause” control task.  This 

involved exactly the same sequence of events except that the B block did activate the 

machine when it was placed upon it.  In this case, children who use causal reasoning 

should remove both blocks.   
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--------------------------------- 

Insert Figure 12 Here 

--------------------------------- 

The one-cause task always preceded the two-cause task since this meant that 

children had never seen the right response at the time they made their intervention, and so 

could not simply be imitating the experimenter.  They had never seen that removing a 

block made the machine stop in the one-cause task, or that removing both blocks made it 

stop in the two-cause task. 

 The children behaved as we predicted.  In the one-cause task, they removed only 

object A 75% of the time, significantly more often than any of the other responses (they 

removed object B alone 12.5% of the time, and removed both blocks simultaneously 

12.5% of the time).  Similarly, in the two-cause task, they removed both blocks 

simultaneously 50% of the time, significantly more often than they removed object A 

alone (12.5% of the time) or object B alone (27.5% of the time).  Children were also 

significantly more likely to remove object A in the one-cause task than in the two-cause 

task and were significantly more likely to remove both blocks simultaneously in the two-

cause task than in the one-cause task. 

  The results of these experiments rule out many possible hypotheses about 

children’s causal learning.  Since children did not activate the detector themselves, they 

could not have solved these tasks through operant conditioning, or through trial-and-error 

learning.  The blickets and non-blickets were perceptually indistinguishable and both 

blocks were in contact with the detector, so children could not have solved the tasks 

through their substantive prior knowledge about everyday physics.  
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The “make it stop” condition in this experiment also showed that children’s 

inferences went beyond classical conditioning, simple association, or simple imitative 

learning.  Children not only associated the word and the effect, they combined their prior 

causal knowledge, and the new causal knowledge they inferred from the dependencies, to 

create a brand-new intervention that they had never witnessed before.  As we mentioned 

above, this kind of novel intervention is the hallmark of a causal map. Interestingly, there 

is, to our knowledge, no equivalent of this result in the vast animal conditioning 

literature, although such an experiment would be easy to design.  Would Pavlov’s dogs, 

for example, intervene to silence a bell that led to shock, if they had simply experienced 

an association between the bell and the shock, but had never intervened in this way 

before? 

In all these respects, children seemed to have learned a new causal map.  

Moreover, this experiment showed that children were not using simple frequencies to 

determine the causal structure of this map, but more complex patterns of conditional 

dependence.  However, this experiment was consistent with all four learning models we 

described above, including the causal interpretation of the RW model. 

Inference from indirect evidence: Backward blocking. In the next study we 

wanted to see if children’s reasoning would extend to even more complex types of 

conditional dependence, and, in particular, if they would reason in ways that went beyond 

causal RW.  There are a number of experimental results that argue against the RW model 

for adult human causal learning.  One such phenomenon is “backward 

blocking.”(Shanks, 1985; Shanks & Dickinson, 1987; Wasserman & Berglan, 1998). In 

backward blocking, learners decide whether an object causes an effect by using 
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information from trials in which that object never appears.     

Sobel and colleagues have demonstrated backward blocking empirically in young 

children (Sobel, Tenenbaum & Gopnik, in press).  In one experiment (Sobel et al, in 

press, Experiment 2), 3 and 4-year-olds were introduced to the blicket detector in the 

same manner as in the Gopnik et al. (2001) experiments.  They were told that some 

blocks were blickets and that blickets make the machine go. In a pretest, children saw 

that some blocks, but not others, made the machine go and the active objects were 

labelled as “blickets”.  Then children were shown two new blocks (A and B).   

In one condition, the control, inference condition, A and B were placed on the 

detector together twice, which responded both times.  Then children observed that object 

A did not activate the detector by itself.   In the other condition, the backward blocking 

condition, children saw that two new blocks, A and B activated the detector together 

twice.  Then they observed that block A did activate the detector by itself.  In both 

conditions, children were then asked if each block was a blicket and were asked to make 

the machine go (see Figure 13). 

--------------------------------- 

Insert Figure 13 Here 

--------------------------------- 

In the control, inference condition, children said that object A was a blicket only 

6% of the time, and always said that object B was a blicket (100% of the time), 

significantly more often.  Performance on the backward blocking condition was quite 

different: children categorized object A as a blicket 99% of the time.  However, the 

critical question was how children would categorize object B.  Overall, children 
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categorized object B as a blicket only 31% of the time.  In fact, even the youngest 

children categorized object B as a blicket significantly less often in the backward 

blocking condition (50% of the time) than they did in the one-cause condition (100% of 

the time).  In sum, children as young as 3 years old made different judgments about the 

causal power of object B, depending on what happened with object A.  They used the 

information from trials that just involved A to make their judgment about B. 

Children responded in a similar way to the “make it go” intervention question. 

This question was analogous to the “Make it stop” question in Gopnik et al. 2001. 

Children had never seen the experimenter place the B block on the detector by itself in 

either condition. Nevertheless, in the inference condition they placed this block on the 

detector by itself 84% of the time. In the backward blocking condition they did so 19% of 

the time, significantly less often, and significantly less often than they placed the A block 

on the detector by itself (64% of the time).  

What would the various learning models predict about this problem? In the pretest 

children are shown that some blocks are blickets (about half the blocks, in fact). Children 

then have the following data in the following sequence. 

 Inference    Backward Blocking 

1. A absent, B absent, E absent 1. A absent, B absent, E absent 

2. A present, B present, E present 2. A present, B present, E present 

3. A present, B present, E present 3. A present, B present, E present 

4. A present, B absent, E absent  4. A present, B absent, E present 
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According to the RW model both A and B are positively associated with E (the 

effect). The last trial, 4, should strengthen or weaken the association with A but should 

have no effect on the association with B, since B is absent.  If that association is 

sufficiently strong, subjects should conclude that both A and B cause E. In particular, B 

should be equally strongly associated with E in the inference condition and the backward 

blocking condition. 

In contrast, both Cheng’s learning rule, with a suitable choice of focal sets, and 

constraint based and Bayesian learning methods yield a qualitative difference between A 

and B in the backward blocking condition.  In the RW model, the effect or lack of effect 

of the A block by itself has no influence on the judgment about B, but it has a crucial 

effect in these other models. 

According to Cheng’s methods, if the focal set for A in the backward blocking  

condition consists of cases 1 and 4 (so B has the same value in both cases—recall that a 

constant is independent, and conditionally independent, of everything), the estimate of 

the causal power of A is 1. Choosing the focal set for B to be cases 2, 3 and 4 (so A has 

the same value, present, in all cases), the estimate of the causal power of B is 

undetermined.  

By constraint based reasoning, using the definition of conditional independence 

as pr(X, Y | Z) = pr(X | Z) * pr(Y | Z), and taking the observed frequencies to be 

representative of the probabilities (equivalently, multiplying the cases by some large 

constant), A is not independent of E and is also not independent of E conditional on the 

absence of B. So, if there are no unobserved common causes, A is a cause of E.  In 

contrast, B is associated with E, but conditional on A, and also conditional on ~A, B is 
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independent of E. So B is not a cause of E.  

However, recall that constraint-based methods can also take uncertain prior 

knowledge into account, if inelegantly. In the current experiment, children know 

beforehand that about half the time blocks are blickets, and they seem to take this 

knowledge into account in their judgment about B.4  That is, the Markov and Faithfulness 

assumptions and the dependencies alone say that A is a cause, but that B is not. Prior 

knowledge adds the fact that B may be a cause, and is so about half the time.  

Tenenbaum and Griffiths (2003) have recently described a Bayesian Bayes-net 

learning model for backward blocking with the data above. This model more elegantly 

exploits the prior knowledge about blickets that was gained in the pretest. Their model 

rests on several assumptions: the presence of each block either is sufficient to cause E or 

is causally unrelated to E; the causal status of A and B are independent; and E does not 

occur unless A or B occurs.  Bayesian updating then licenses the following inferences.  

After observing case 2 and 3, the posterior probability that A is a cause of E increases 

above its prior probability, and similarly for B.  But after observing case 4, these 

quantities diverge.  The probability that A is cause of E becomes 1, because otherwise 

case 4 could never be observed.  The probability that B is a cause of E returns to its 

baseline prior probability, because knowing that A is surely a cause of E makes case 2 

and 3, in retrospect, uninformative about the causal status of B.  

All three of these models predict qualitative backward blocking. They predict a 

difference in the causal judgment about B in the two conditions, and RW does not. 

Constraint-based models with prior knowledge and Cheng methods predict that children 

will not judge that B is a blicket in the backward blocking case.  The Bayesian model 
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predicts, similarly, but in more detail, that children will revert to their prior probability 

that B is a blicket, which is the guess they would make from the pre-test evidence alone. 

Children’s categorization then was in qualitative accord with the Bayesian, 

Constraint-Based and Cheng models, but not with the RW model.  It should, however, be 

noted that the RW learning rule can be modified to account for backward blocking by 

adding terms that decrease the association of a cue with an outcome when the outcome 

occurs in the absence of the cue (Wasserman & Berglan, 1998). It should also be noted 

that there is at least some evidence (Miller & Matute, 1996) that rats show something like 

backward blocking in the limited context of classical conditioning, suggesting that their 

inferences also go beyond RW.  However, there is no evidence that animals can use 

backward blocking to create a new causal map and design a new intervention based on 

that map, as the children in these experiments did.  

Inferring the direction of causal relations from interventions and correlations: The puppet 

machine 

The experiments we have described so far have shown that even very young 

children, as young as thirty months old, are capable of some types of causal inference and 

learning that had previously been demonstrated only in human adults.  We have also 

made the point that these types of inference and learning are consistent with the Bayes 

net representations and learning mechanisms.  However, one of the principal advantages 

of applying a normative formalism like Bayes nets is that it suggests new types of causal 

learning: types of causal learning that have not previously been explored in children or 

adults.  The next three experiments use a new experimental paradigm to explore types of 

learning that are novel in three respects.  First, they involve learning about the direction 
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of the causal arrow between two simultaneous events; did X cause Y, or did Y cause X?  

Second, they involve learning about this causal relation from a combination of 

observations of correlations and observations of interventions.  Third, in the last 

experiment, they involve inferring an unobserved common cause of X and Y. 

As we mentioned earlier RW and other associationist causal learning procedures, 

(including the modified rule that accounts for backward blocking), and the learning 

procedures in Cheng’s published theory, require information that distinguishes potential 

causes and effects.  The potential causes and effects have to be discriminated before these 

models can operate.  Then the models calculate individually either the association 

strength between each cause and each effect, or the causal power of each cause to 

produce each effect.  The models do not themselves generate the discrimination of causes 

and effects from observations of the dependencies.  In contrast, Bayes net learning 

methods consider the fit between the entire data set and all the possible graphs that 

include the relevant variables, including graphs with arrows in one direction or the 

reverse direction.  

One way Bayes net learning methods can solve the problem of simultaneous 

events is to use information about the effects of interventions.  As we have repeatedly 

emphasized, one of the central advantages of the Bayes net formalism is that it gives a 

unified account of both correlations and interventions – it naturally explains how both 

predictions and interventions follow from causal structure, and it provides an account of 

how both observations of correlations and observations of interventions can be used in 

concert to infer causal structure.  Work in the adult causal learning literature suggests that 

adults can learn about causal relations between events by looking at the patterns of 
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correlation among those events.  Though there are some suggestions in this adult 

literature about the treatment of interventions (Cheng 1997 p.375), there have not been 

systematic theoretical treatments or empirical investigations of this type of learning.5  

On the other hand, work in the developmental literature, as well as work on 

operant conditioning and trial and error learning in animals, does suggest a limited kind 

of learning from intervention.  As we mentioned earlier, this literature suggests that 

children (and animals) make the substantive assumption that their intentional actions 

cause the events that immediately follow those actions.  The developmental literature on 

imitative learning  also suggests that human children, at least, can make such inferences 

by observing the effects of the actions of others, though this is not so clear for animals. 

(Meltzoff & Prinz, 2002; Tomasello & Call, 1997).  

The Bayes net formalism suggests ways in which we could combine information 

about interventions, our own or those of others, and information about events that are not 

the result of interventions, to draw more complex causal conclusions. This includes 

conclusions about the causal relations between simultaneous events. We can ask whether 

children will go beyond just assuming that their interventions directly cause the events 

that follow them. Can children also use information about the effects of interventions to 

discover the causal relationships among other events, as we do in scientific experiments?    

The blicket detector paradigm lies within the scope of the RW and Cheng models.  

The blickets are clearly the potential causes and the light is the potential effect.  Could 

we design a paradigm that goes beyond the scope of these models?  Schulz and 

colleagues have designed such a paradigm: the puppet machine (Schulz, 2001; Schulz & 

Gopnik, 2001).  We have used versions of this and similar techniques with both adults 

 



 CAUSAL MAPS 79

and kindergarteners (Kushnir, Gopnik, Schulz & Danks, 2003; Sobel & Kushnir, 2003) 

but here we will report only the results with 4-year-olds.   

In these experiments, children saw two or three stylized “puppets”, actually 

differently colored rubber balls attached to wooden sticks and placed behind a stage.  The 

puppets were given different names based on the color of the balls (e.g., this is Reddy and 

this is Bluey).  The puppets could be inserted into a single mechanism behind the stage, 

out of sight of the child, and the experimenter could move that mechanism up and down 

(invisibly) to move both puppets simultaneously, so that children simply saw correlations 

without interventions. She could also visibly intervene on each puppet separately by 

visibly pulling on the stick from above (see Fig. 14).  

--------------------------------- 

Insert Figure 14 Here 

--------------------------------- 

 Experiment 1. 16 4-year-olds were tested. Children began with a pretest/training 

trial.  Children saw the puppets move together and stop together simultaneously.  They 

were told, “These two puppets move together and stop together.  But one of these puppets 

is special.  The special puppet always makes the other puppet move.  Can you tell me 

which one is the special puppet?” Then the experimenter again (invisibly) made the 

puppets move together and stop together simultaneously.  This time, while the puppets 

moved together, the experimenter explicitly identified the causal puppet, naming the 

puppets according to the color of their rubber balls.  She said, “I’m moving X and X is 

making Y move. Which is the special puppet?”  This gave the impression that one of the 

puppets had the power to make the other puppet move, and that the experimenter was 
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(invisibly) moving that special puppet, which then moved the other puppet (in fact, the 

experimenter was moving the common mechanism, but children did not know that).  

Children were only included in the experimental trials if they said that X was the special 

puppet. This training task established that special puppets caused other puppets to move. 

Then children received the experimental tasks, with new differently colored 

puppets.  In particular, we presented children with two types of tasks.  In the “common 

effects” task the children first saw the puppets move together and stop together 

simultaneously four times.  Then they saw the experimenter visibly intervene to make Y 

move, by pulling on the stick from above, while X did not move.  Then both puppets 

moved together again and the experimenter asked, “Which is the special puppet?”   The 

color and position of the special puppet was counter-balanced across trials. 

The correct causal representation in this case is that the movement of Y is a 

common effect of the experimenters’ intervention (which we will call I) and the 

movement of X.  

 I  Y  X.  

If children infer this representation correctly they should conclude that X was special, it 

caused Y to move.  

The second, “common cause”, task involved three new differently colored 

puppets, X, Y, and Z. Children saw the puppets move together and stop together 

simultaneously several times.  Then they saw the experimenter visibly intervene to make 

Y move by itself, while X and Z did not move, and saw the experimenter visibly 

intervene to make Z move by itself, while X and Y did not move.  Again, they were 

asked to identify the special puppet. The correct causal representation in this case is that 
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the movements of Y  and Z are a common effect of the experimenter’s interventions and 

X , and that  X is a common cause of Y and Z. So X is special, it caused Y and Z to 

move.  

I1   Z X  Y  I2.   

 In a control condition, 16 children of the same age saw a set of events that was 

similar perceptually, especially in terms of the salience of each puppet, but in which no 

causal conclusion was possible.  The pretest, the test question, and the events of the 

puppets moving together and stopping together were the same, but the experimenter 

intervened by placing a rock in front of the Y, or Y and Z, puppets instead of moving 

them. 

Children received each of the tasks two times, with different puppets.  Preschool 

children (as well as kindergarteners and undergraduates) made these inferences correctly.  

They chose X as the special puppet 78% of the time in the common effects tasks and 84% 

of the time in the common cause tasks, significantly more often than they chose the other 

puppet or puppets.  In the control condition children chose the X puppet 31% of the time 

and 34% of the time respectively, significantly less often than in the experimental 

condition, and no better than chance.  Eleven out of the 16 children were correct on both 

common effects tasks and 12 of the 16 were correct on both common cause tasks, 

significantly greater than chance in both cases.  

Note especially that the children’s causal judgements were about events—the 

motions of the puppets—for which they had no time order. Note also that they were not 

making inferences about the direct causal consequences of the experimenter’s action. 
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Instead, they used the action to make an inference about the causal relation between the 

two puppets.  

Qualitatively, this result follows directly from the Markov and Faithfulness 

assumptions.  Applying the theory of intervention (described on p. 31 above) to the 

correct graphs generates the right predictions, applying it to the possible incorrect graphs 

does not. (Pearl, 2000; Spirtes et al. 1993, 2001). There are three possible causal graphs 

of the observed variables given the instructions.  

 1) X      Y       2) X Y    3) Y X 

The dependence between X and Y in the non-intervention trials eliminates possibility (1) 

which would imply that the two variables are independent.  If (3) were the case then the 

intervention on Y would not cut the arrow between Y and X, since this arrow is not 

directed into the manipulated variable, and X and Y would still be dependent.  In (2) 

however, the intervention does cut the arrow and so X and Y become independent in that 

case, always assuming the data are representative of the probabilities.  So  (2) is the only 

graph of the observed variables that is consistent with the instructions, the data, and the 

Markov and Faithfulness assumptions.  A similar reasoning process applies to the 

common cause case.  The correct structures would be inferred by constraint-based and 

Bayesian learning methods.  Because they require a prior specification of potential cause 

and effect, the causal RW rule and Cheng’s Power PC learning procedures do not make 

predictions in these cases.  

Experiment 2. The next experiment was designed to eliminate an alternative 

explanation for Experiment 1 and to provide a direct contrast with the predictions of the 

causal Rescorla-Wagner account.  In Experiment 1 children were told that the special 
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puppet always made the other puppet move. Moreover, they had to make a forced choice 

between the two puppets.  They were asked, “Which one is special?” which implied that 

one and only one puppet was special. In the common effects task it is possible that the 

children simply observed that Y moved and X did not on one trial, and therefore rejected 

Y as a potential cause (since it didn’t always make the other puppet go).  Because 

children were given a forced-choice between the two alternatives, they said that X was 

the cause instead.  They could have identified X as the special puppet merely because Y 

was no longer an option, not because they had inferred that causal structure from the 

pattern of dependencies.   

However, if the experimenter did not specify that the causes were deterministic or 

ask for a forced choice, the fact that Y failed to cause X on one trial would not be 

grounds for eliminating Y as a candidate cause, or saying that X was the cause instead.  

Y might usually but not always cause X, and neither or both of the puppets might be 

special. In Experiment 2, we modified the common effects procedure in this way.  We 

told children that some puppets were special and that special puppets almost always 

make other puppets move. Instead of asking, “Which puppet is special?” we 

independently asked “Is Y special?  Does Y make X move?” and “Is X special?  Does X 

make Y move?”   The Bayes net learning algorithms would still conclude that X causes Y 

and Y does not cause X (assuming, again, that the frequencies in the data are 

representative) since the pattern of dependencies is the same. They would generate the 

common effects causal structure  

I  Y  X as the correct causal graph given this pattern of evidence.  Children should 

say “yes” to the question about x and “no” to the question about y.  
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Eliminating the forced choice and allowing indeterministic causation also allowed 

us to directly contrast the predictions of Bayes net learning procedures and the causal 

RW learning procedure.  As we discussed above, the causal RW procedure, including the 

procedure as modified to account for backward blocking, makes no prediction about how 

children might answer the question “Which one is the cause?” because there are no 

procedures that distinguish causes from effects in this case.  However, if children are 

asked “Does X cause Y?” and “Does Y cause X?” the question itself specifies the 

potential cause and potential effect.  The causal RW model should predict that the answer 

to these questions will be based on the association strength between the potential cause 

and the potential effect.  If there are a sufficient number of positive trials, then the answer 

should be “yes” to both questions.  

This difference in predictions reflects the fact that causal RW considers the 

association strength between each potential cause and effect separately, and does not 

distinguish between interventions and other events. In contrast, the Bayes net learning 

procedures assess the entire causal structure given the entire data pattern, and treats 

interventions differently from other events.  

However, contrasting these predictions depends on knowing if, in fact, there is 

sufficient associative strength between Y and X to lead to a causal response using the 

RW rule. Note that X and Y are positively associated on all the trials in which X occurs. 

Y and X are positively associated on 5 out of the 6 trials in which Y occurs. Perhaps this 

difference is sufficient to lead children to say “yes” to X and “no” to Y. It could be that 

the single negative trial with Y weakens the association sufficiently to rule out a causal 

response.  
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In Experiment 2, we compared our modified version of the common effects 

puppet show with a new puppet show involving two new puppets U and V.  In the 

common effects puppet show, X and Y are perfectly associated except for a single trial 

on which Y moves but X does not.  In the new association puppet show, two new 

puppets, U and V, are similarly perfectly associated except for a single trial on which U 

moves but V does not.  However, in the new puppet show, the experimenter visibly 

intervenes on U in all the trials.  On five trials, she pulls U up and down and the other 

puppet, V, moves as well.  On a single trial, however, the experimenter pulls U up and 

down and V does not move. The question is whether this single negative trial will lead 

the children to rule out U as the cause of V.  

Schematically, the two conditions can be represented as follows: 

Common Effects  Association 

Y & X                     U (by intervention) & V                

Y & X    U (by intervention) & V 

Y & X    U (by intervention) & V 

Y (by intervention) & -X U (by intervention) & - V 

Y & X    U (by intervention) & V 

Y & X    U (by intervention) & V 

 

Note that the difference between the common effects condition and the 

association condition is entirely a difference in the balance of intervention and non-

intervention trials. On the Bayes net account it is critical that one of the trials is an 

intervention, the others not, while on the associationist account the distinction between 
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intervention trials and non-intervention trials is irrelevant—what matters for learning is 

the associations, however they are produced. 

Thirty-two four-year-old children (mean age of 4,6) were randomly assigned to a 

common effects group of 16 children, and an association group of 16 children.  All the 

children in both groups began with a pretest/training test similar to that of Experiment 1 

with two puppets, Z and Q.  However, rather than telling the children: “One of these 

puppets is special.  The special puppet always makes the other puppet move.” the 

children were told: “Some of these puppets are special.  Special puppets almost always 

make other puppets move.”  Moreover, instead of asking “Which puppet is special?” the 

experimenter then asked “Is (Z) special?  Does (Z) make (Q) move?”  In order to avoid 

setting a precedent for yes/no answers, and thus implying a forced choice, children were 

not asked about puppet (Q) in the pretest. 

 The procedure for the common effects group was just like the procedure in 

Experiment 1.  Two new differently colored puppets were placed in the first and third 

hole of the stage. The children saw the puppets move up and down together three times.   

The experimenter then reached above the stage and grasped the dowel of puppet (Y) and 

moved (Y) up and down within the child’s sight. X didn’t move. Then the children again 

saw the puppets move up and down simultaneously twice in a row, with no visible 

intervention from the experimenter.  The experimenter then asked the child “Is (X) 

special?  Does (X) make (Y) move?” and “Is (Y) special?  Does (Y) make (X) move?”  

The order of the questions and the location and color of the special puppet was 

counterbalanced between trials.  If the children were able to understand the causal 
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structure  (I Y X) of the event, they should say that X is special and that Y is not 

special.  The procedure was then repeated with two new puppets. 

 In the association condition, two new differently colored puppets were placed in 

the first and third hole of the stage. This time, the experimenter manipulated one puppet 

visibly by moving the dowel from above and simultaneously (but surreptitiously) pulled 

the string behind the stage so that both puppets moved.  From the child’s point of view, 

she saw the experimenter move a puppet, which simultaneously made the second puppet 

move.  The children saw the experimenter move puppet (U) and saw puppet (V) move 

too three times in a row. On the next trial, however, the experimenter visibly moved U 

but did not surreptitiously pull the string, so V did not move. Then children saw the 

experimenter move puppet (U) and saw puppet (V) move simultaneously two more times.   

Finally, the experimenter asked “Is (U) special?  Does (U) make (V) move?” and “Is (V) 

special?  Does (V) make (U) move?”  The order of the questions and the location and the 

color of the special puppet was counterbalanced between trials. The procedure was then 

repeated with two new puppets. 

We first looked at children’s overall performance.  According to the Bayes net 

formalism, the correct answer to the two questions in the common effects task is that X is 

special and that Y is not special.  In the association task, children should answer that U is 

special and that V is not special.  Since they received two tasks in each condition, if 

children were performing at chance, children should show this pattern (that is, perform at 

ceiling) 6.25% of the time in each condition.  In the common effects condition, 9 of the 

16 children correctly identified X as the special puppet and Y as not special across both 

trials, significantly more often than would be expected by chance: ( p < .001 by binomial 
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test).  Likewise, in the association condition, 11 of the 16 children correctly identified U 

as the special puppet and V as not special across both trials, significantly more than 

would be expected by chance:  (p < .001 by binomial test). The 9 out of 16 children 

performing at ceiling in the common effects condition in Experiment 2 is not 

significantly different from the 11 out of 16 children performing at ceiling in the common 

effects condition in Experiment 1, χ2(1, N =16)  = .533, ns., despite the fact that they had 

to answer two questions instead of one.   

Thus, children’s performance in the common effects task in Experiment 1 cannot 

be attributed to the forced-choice deterministic paradigm. Children were equally 

successful when they were asked to judge each puppet independently in the probabilistic 

context of Experiment 2.  It might seem possible that the children in the common effects 

condition in Experiment 2 simply ignored the information in the training that special 

puppets probabilistically (almost always) make other puppets go, and still ruled out the Y 

puppet because of the single negative trial.  However, the results of the association 

condition rule out this possibility. Children chose U as a special puppet significantly 

above chance despite the fact that U also failed to make the other puppet move on one 

trial.  The results of the association condition also suggest that children do not require 

causes to behave deterministically; they said U caused V to move, even though it 

produced the expected effect only 5/6 of the time.  

We can also consider the implications of these results for the causal RW account.  

The crucial comparison concerns the children’s responses to the Y and U puppets.  

According to the Bayes net learning procedures, children should say that puppet Y is not 

special and that puppet U is special; according to the RW procedures, children should say 
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that both puppet Y and puppet U are special (or, less probably, that they are both not 

special).  If children were performing at chance, children should show the expected 

pattern across the two trials 25% of the time.  

On the two trials of the common effects condition, 10 children consistently said 

that Y was not special, significantly more than the 1 child in the Association condition 

who consistently said that U was not special, χ2(1, N=16) = 11.22, p < .001.  Similarly, 

11 children in the association condition consistently said that U was special, significantly 

more than the 5 children in the common effects condition who consistently said that Y 

was special, χ2(1, N = 16)) = 4.5, p < .05.  As predicted by the Bayes net learning 

procedures, but not by the RW procedures, the pattern of responses to the Y puppet in the 

common effects condition differs significantly from the pattern of responses to the U 

puppet in the association condition, χ2(1, N = 160) = 8.43, p < .01.  

 These results suggest that the causal RW learning mechanism cannot fully 

account for children’s inferences about causal structure.  The association between Y and 

X, and between U and V, was identical in the common effects and the association 

conditions. Yet when Y occurred without X in the common effects case, children 

correctly inferred that Y did not cause X while when U occurred without V in the 

association case, children correctly inferred that U did cause V.  

Experiment 3. Unobserved causes.  As we mentioned earlier the causal RW 

learning rules and the learning rule in Cheng 1997 can only be applied correctly when 

there are no unobserved common causes of the cause and the effect (although a 

generalization of Cheng’s rule can be applied in some such cases, see Glymour 2001). In 

particular, associationist causal learning models, such as causal RW, do not permit 
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learners to distinguish between cases in which associations occur because events of one 

type cause events of the other type, and cases in which associations occur because events 

of each type are influenced by events of a third kind, which is unobserved.  The puppet 

machine paradigm provides us with a way to test whether children will attribute causal 

influence to a common unobserved variable.   

Notice that the graphical structure in the three puppet common cause task we 

described above on p.79 is the same as the structure in Figure 9 on p.54 in our discussion 

of unobserved variables.  A simple modification of this task, involving just two puppets, 

allows us to test whether children will infer unobserved common causes. We have 

completed a first preliminary study using this task.   

In this task 16 4 1/2  year old children (mean age 4,10) received the same pretest 

and training trials as those in Experiment 1, with deterministic causal relations (“The 

special puppet always makes the other puppet go”).  However, rather than just asking 

which puppet was special, or asking if each individual puppet was special, children were 

asked to explain the events: we asked “Why are the puppets moving together?”  Then 

children received a “common effects” task.  This task proceeded in exactly the same way 

as the task in Experiment 1, except that children were asked to explain why the puppets 

were moving together, rather than being asked which puppet was special, or if each 

puppet individually was special. (If children refused to answer the explanation question 

spontaneously, we presented them with a choice “Is it X, is it Y, or is it something 

else?”).       

   The children were then presented with an unobserved variable task with two 

new puppets.  The children first saw both puppets move together on four trials, as in the 
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previous tasks.  Then the experimenter visibly intervened to move Y and X remained 

unmoved, as in the common effect experiment.  But this time the experimenter then also 

visibly intervened to move X and Y remained unmoved.  Finally, children again saw both 

puppets move together.  Again, children were simply asked “Why are the puppets 

moving together?” (with the additional choice of three options for the children who 

refused to answer).    

Given the instructions, the Markov and Faithfulness assumptions, and the data, 

this pattern of events is incompatible with any of the three acyclic graphs involving just 

X and Y:  X    Y, X Y, or Y X (see discussion on p.54 above). This means that the 

only way to explain the data is to postulate a graph with an unobserved common cause of 

X and Y,    X  U  Y.  Children should conclude that some other unobserved common 

cause (such as, most obviously, the experimenter behind the screen) is responsible for the 

trials in which the objects move together.  

In the common effects trials all 16 children chose one puppet as the explanation 

for the movement (e.g. “X is pushing Y”, “X is making Y move”).   13 of the 16 children 

chose the correct puppet, similar to their performance in the earlier experiments.  Thus, a 

majority of 4-year-olds solved the common effects task across all three experiments, 

whether they were asked to choose between the puppets, to identify whether each puppet 

was special, or to explain the puppets’ movement.    

However, a majority of children in the unobserved condition posited an 

unobserved common cause. 9 of the 16 children said that some unobserved variable (e.g. 

“your hands”, “you behind there”, “something else”) was responsible for the puppets 

moving together, significantly greater than the zero children who said this in the common 
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effects condition. Only 5 of the 16 children said that one puppet had caused the 

movement, significantly fewer than the 16 children who said this in the common effects 

condition. (The remaining two children refused to answer even after they were presented 

with the three options). These children postulated that observed variables were causes, 

unless no graph was consistent with the dependencies between those variables.  In that 

case, they postulated an unobserved common cause.  

 

Further experiments 

These experiments are only a first step, and our results need to be further 

replicated with additional controls. Two control conditions would be particularly 

compelling. One would be to do the tasks in Experiments 2 and 3 but to have the 

experimenter point to each object as it moves, rather than intervening to make the objects 

move. This task would be almost identical to the original tasks perceptually and in terms 

of salience, and in terms of any measure of associative strength, but we predict that 

children would not judge causal influence in the same way, because of the lack of 

interventions.  A second interesting experiment would be to show children a pattern of 

independence rather than dependence in the non-intervention trials, that is, to show them 

puppets moving at random with respect to one another, followed by either one or two 

failed interventions. We predict that in this case children would conclude that the puppets 

are moving because of two independent unobserved causes, rather than because one is 

moving the other, or because both are moved by an unobserved common cause. We have 

performed these experiments with adults, and our predictions were confirmed (Kushnir et 

al. 2003). Work with children is ongoing.   
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These experiments also do not definitively tell us which causal learning methods 

children use.  They do suggest that these methods extend beyond the causal RW rule or 

Cheng’s learning rule as published, and that they yield results that are normatively 

correct according to the Bayes net formalism. As we said earlier, however, we do not 

believe that children’s actual learning methods are as general as the Bayesian or 

constraint-based algorithms, and we need to discover empirically where the limits lie.  

Perhaps current versions of associationist models or Cheng models could be modified, 

supplemented, and extended to produce comparable results.6 However, such a project 

would prove the value of the Bayes net formalism, and justify the existence of this paper.  

The formalism suggests causal learning problems, such as the simultaneous events 

problem, or the unobserved common cause problem, that have not been explored before, 

and it provides normatively accurate solutions to these problems.  Children’s behavior 

can be assessed in the light of these solutions, and more specialized learning proposals 

can be judged and modified in terms of this more general framework.  

Moreover, dozens of other such experimental questions suggest themselves.  The 

Bayes net formalism allows predictions about the inference of more complex causal 

structures, such as inhibitory causes or interactive causes, and it allows us to make 

inferences about causal chains, where X causes Y which causes Z.  We could explore 

whether children will make accurate inferences in these cases.  Bayes nets are designed 

to deal with probabilistic as well as deterministic data, and Bayes net applications almost 

always involve probabilistic data.  Two of our experiments suggest that children make 

causal inferences even in non-deterministic cases.  In the two-cause condition of Gopnik 

et al. (2001) children think the object that sets the machine off two out of three times is a 
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blicket, and in the association condition of the puppet experiment they say that the puppet 

that activates the other puppet five of six times is special.  We could explore how 

children will reason about probabilistic causal relations as well as deterministic relations.  

The formalism provides ways of combining information about conditional probabilities 

with substantive prior knowledge, such as knowledge of time order.  The “make it stop” 

experiment showed that children can combine formal assumptions about causality with 

substantive prior causal knowledge.  We can see how children combine specific kinds of 

prior knowledge with this kind of reasoning.        

 

Further computational work 

Just as the Bayes net formalism suggests new experiments with children, applying 

Bayes nets to children’s cognition suggests new computational questions.  The formalism 

has mostly been applied in practice to “data-mining” problems.  These problems are 

unlike the problems that children face in many respects.  As it currently stands, the 

learning models that use the formalism do not specify how we decide that particular 

events are instances of a variable, nor how we decide which variables to consider.  Nor 

do they propose exact learning processes that have psychologically plausible memory 

and processing limitations.  

It seems extremely unlikely, for example, that children store vast quantities of 

data in memory and then apply learning procedures to the data.  Instead, they must surely 

form hypotheses, and use them, on the basis of small samples of data, forget the data, or 

most of it, and revise their hypotheses as required by new data. In the course of this 

revision they quite possibly alter not only the causal relations they hypothesize, but also 
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the variables and properties they consider to be useful.  Equally, causal regularities that 

are learned for one context may somehow constrain the causal regularities to be learned 

in other contexts, especially when the domains overlap in objects or properties, allowing 

for a kind of learning by analogy.   

Moreover, it seems possible, and even likely, that children begin the process of 

causal learning with some innately given assumptions about which variables are relevant 

to causal inference, and perhaps with some assumptions about structure, such as 

assumptions that some variables are causally connected to others. Children might be born 

assuming at least some sketchy causal graphs. These would correspond to the innate 

“starting-state” theories proposed by some “theory theorists” (see Gopnik & Wellman, 

1994; Gopnik & Meltzoff, 1997). However, these initial assumptions could be modified 

or overturned in the light of new data about conditional dependencies and interventions. 

Children, then, may be bootstrappers as much as data miners. 

There is computational research under way on all of these issues, but it is as yet 

far from providing a firm understanding of the possibilities. Glymour (2001) suggests a 

number of heuristics for transforming a given set of variables in a network to new ones; 

Spirtes (2001) has shown that certain constraint-based algorithms have the property that 

they give incomplete but correct information if they are stopped (for example, because of 

limits on computational resources or time) at any point in the procedure. Bayesian 

learning algorithms can store the best Bayes net found to explain a data set, and, 

forgetting that data set, use that best hypothesis as a starting point for a greedy search if 

the hypothesis is to be revised in the light of new data.  
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Conclusion 

We will end by returning to the analogy with vision science.  At its beginnings in 

the seventeenth century, science emerged from two separate enterprises, “natural 

history”, which catalogued and described the world, and “natural philosophy”, which 

sought to explain the world in mathematical terms.  For a hundred years, vision science 

was primarily concerned with what we might think of as psychological natural history, 

discovering consistent patterns in our visual experience, and relating those patterns to the 

structure of objects in the world.  These psychological findings were an absolutely 

necessary precursor to the current computational and neurological work.  Without 

psychophysics and perceptual psychology there would be no vision science.  More 

recently, however, we have gained a new and deeper understanding of vision by relating 

these psychological findings to a “natural philosophy” that tells us, in computational 

terms, how it is possible for the perceptual system to recover accurate information about 

the world.    

 The last thirty years has been a golden age for the natural history of children’s 

learning.  We know more than ever before about the consistent patterns in children’s 

conceptions of the world, and the consistent changes in those conceptions.  But there has 

been much less natural philosophy, we have known much less about how it is possible for 

children to learn as much as they do about the world around them.  Our hope is that just 

as perceptual psychology led to vision science, cognitive developmental psychology will 

be the first step towards a new learning science. 
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Laura Schulz. 

2 Notation. We use “correlation” to signify any form of probabilistic dependence, not 

specifically Pearson product moment correlation. We use ordinary capital letters, e.g., X, 

Y, to represent variables of any type, and lower case letters to represent their values, e.g., 

x is a value of X.  We use boldface letters, e.g., S, to represent sets of variables, X ⊥ Y 

denotes that for all values x of X and y of Y, X = x is independent in probability of Y = y.  

W ⊥ {X, Y} | Z denotes that for all values w of W, x of X, y or Y and z of Z, W = w is 

independent in probability of both X = x and Y = y conditional on Z = z.  

3. Independence and conditional independence can also be defined in other ways. For 

variables X, Y, Z taking only two possible values, (denoted for example by Y and ~Y, 

and bearing in mind that Y  is ambiguously a variable and a value of that variable) that X 

is independent of Y conditional on Z can also be defined by a “difference” formula 

Pr(X | Y, Z) = Pr(X |  ~Y, Z) 

for all values of X, Y and Z.  The two definitions are equivalent when all represented 

conditional probabilities exist, but not necessarily otherwise. For technical reasons, the 

definition in the body of the text is customary in Bayes net formalism.  

4. The prior knowledge explanation seems most plausible in this case. However, there is 

also another possible explanation for the uncertainty about B. As we noted in Footnote 3,  

it is possible that children used a “difference” formula for calculating the conditional 

probabilities (this is the method used in Cheng’s theory).  Using this formula, the causal 

influence of B would not be calculable.      

5. Very recently, Steyvers, Wagenmaker & Tenenbaum (2003) have obtained results 

from an adult study, also explicitly inspired by Bayes net learning models, which in some 
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respects parallels the studies we describe below with children.  Their studies and ours 

were completed at the same time but independently.  Adults were presented with 

dependencies among simultaneous events and had to infer causal direction.  Either they 

simply observed the dependencies or they were allowed to experimentally intervene on 

the system.  Adults were able to infer the direction of the relations to some extent just 

from observations, but their performance improved markedly when they were allowed to 

intervene. 

6. fn>5 For example, Patricia Cheng (personal communication, December, 2002) has 

suggested the following account of the common effect puppet experiments: The 

instructions imply that either A--> B  or  B -->  A.  Ruling out the former based on the 

intervention therefore yields the latter by deduction. This conclusion is consistent with 

the retroactive application of the causal power equation at this point (i.e., after the 

intervention trial and the ruling out of the  A-->  B causal direction) to the evaluation of 

B --> A in the nonintervention trials.  The intervention trial is excluded in this focal set 

because with respect to B, the candidate in question, I is an alternative cause and needs to 

be kept constant, constantly absent in this case because that is the only way to satisfy the 

independent-occurrence assumption. If a subject accepts the assumption implied in the 

instructions that no unobserved cause is assumed to exist (so that either A or B is 

special), then in the evaluation of B -->  A, alternative causes occur independently of B 

(trivially, because of the assumption that there are no other causes), and the causal power 

equation gives qBA = (1 - 0) / (1 - 0) = 1.  But, if a subject refuses to accept that 

assumption and instead allows for the possibility of an unobserved cause, then they 

would be uncertain whether B --> A: alternative causes may or may not occur 
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independently of B in the nonintervention trials.  Both answers, she argues, can be 

explained by her theory, depending on how a subject interprets the experimenters' 

instructions.   

 

References

Ahn, W., Gelman, S. A., Amsterlaw, J. A., Hohenstein, J., & Kalish, C. W. (2000).  

Causal status effects in children's categorization. Cognition, 76 (2), 35-43. 

Atran, S. (1990).  Cognitive foundations of natural history: Towards an anthropology of 

science. New York, NY: Cambridge University Press. 

Bartsch, K., & Wellman, H. M. (1995).  Children talk about the mind. New York: Oxford 

University Press. 

Bullock, M., Gelman, R., & Baillargeon, R. (1982). The development of causal 

reasoning. In W. J. Friedman (Ed.), The developmental psychology of time. 

(pp.209-254). New York: Academic Press. 

Campbell, J. (1995). Past, space and self. Cambridge, MA: MIT Press. 

Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press/Bradford 

Books. 

Cartwright, N. (1989). Nature’s capacities and their measurement. New York/Oxford: 

Clarendon Press. 

Cheng, P. W. (1997).  From covariation to causation: A causal power theory. 

Psychological Review, 104, 367-405. 

Cheng, P. W. (1999). Assessing interactive causal influence. Preprint, Dept. of 

Psychology, UCLA.  

 



 CAUSAL MAPS 101

Cheng, P. W., & Novick, L. R. (1992).  Covariation in natural causal induction.  

Psychological Review, 99 (2):365-382. 

Danks, D.  (2003). Equilibria of the Rescorla-Wagner model.   Journal of Mathematical 

Psychology 46, 109-121.

Danks, D. (2001). The epistemology of causal judgment. PhD. Thesis, Dept. of 

Philosophy, University of California, San Diego. 

Danks, D., Tenenbaum, J., &  Griffiths, T. (2003). Dynamical causal learning.  

Proceedings of the 2002 Neural Information Processing Symposium. 

Elman, Jeffrey L., Bates, E. A., Johnson, M. H., & Karmiloff-Smith, A. (1996).   

Rethinking innateness:  A connectionist perspective on development. Cambridge, 

MA.: MIT Press. 

Flavell, J. H., Green, F. L., & Flavell, E. R. (1995). Young children's knowledge about 

thinking. Monographs of the Society for Research in Child Development, 60,  v-

96. 

Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press. 

Gelman, S. A., & Wellman, H. M. (1991). Insides and essence: Early understandings of 

the non-obvious. Cognition, 38, 213-244. 

Glymour, C. (2001). The mind’s arrows: Bayes nets and graphical causal models in 

psychology. Cambridge, MA: MIT Press. 

Glymour, C, & Cooper, G. (1999). Computation, causation, and discovery. Menlo Park, 

CA: AAAI/MIT Press. 

Glymour, C. & Cheng, P. (1999).  Causal mechanism and probability: a normative 

 



 CAUSAL MAPS 102

approach. In K. Oaksford & N. Chater (eds.) Rational models of cognition. 

Oxford: Oxford University Press.  

Gopnik, A. (1988). Conceptual and semantic development as theory change. Mind and 

Language, 3, 163-179. 

Gopnik, A. (2000.) Explanation as orgasm and the drive for causal understanding: The 

evolution, function and phenomenology of the theory-formation system. In F. 

Keil & R. Wilson (Eds.) Cognition and explanation. Cambridge, Mass: MIT 

Press. 

Gopnik, A., & Esterly, J. (1999). Causal inferences about material kinds. Poster 

presented at the Meeting of the Society for Research in Child Development, 

Albuquerque, New Mexico. 

Gopnik, A., & Glymour C. (2002). Causal maps and Bayes nets: A cognitive and 

computational account of theory-formation. In P. Carruthers, S. Stich, M. Siegal 

(Eds.) The cognitive basis of science.  Cambridge: Cambridge University Press. 

Gopnik, A., & Meltzoff, A. (1997). Words, thoughts and theories. Cambridge, MA: MIT 

Press. 

Gopnik, A., & Nazzi, T. (2003). Words, kinds and causal powers: A theory theory 

perspective on early naming and categorization. In D. Rakison, & L. Oakes (Eds.) 

Early categorization. Oxford: Oxford University Press. 

Gopnik, A., & Sobel, D. M. (2000). Detecting blickets: How young children use 

information about causal properties in categorization and induction. Child 

Development, 71, 1205-1222. 

Gopnik, A., Sobel, D. M., Schulz, L. & Glymour, C. (2001). Causal learning mechanisms 

 



 CAUSAL MAPS 103

in very young children: Two, three, and four-year-olds infer causal relations from 

patterns of variation and covariation. Developmental Psychology, 37, 5, 620–629 

Gopnik, A., & Wellman, H. M. (1994). The theory theory. In L. Hirschfield & S. Gelman 

(Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 257-

293). New York: Cambridge University Press. 

Harris, P. L., German, T., & Mills, P. (1996). Children's use of counterfactual thinking in 

causal reasoning. Cognition, 61, 233-259. 

Hausman D. M., Woodward J. (1999). Independence, invariance and the causal Markov 

condition. British Journal for The Philosophy of Science  50 (4): 521-583. 

Heider, F. (1958). The psychology of interpersonal relations.  New York: Wiley. 

Heckerman, D. (1995). A Bayesian approach to learning causal networks. Technical 

Report MSR-TR-95-04, Microsoft Research. 

Heckerman, D., Meek, C. and  Cooper, G. (1999).  A Bayesian approach to causal 

discovery.  In C. Glymour and G. Cooper (Eds).  Computation, Causation, and 

Discovery, pp. 143-67.  Cambridge, MA: MIT Press. 

Hickling, A. K., &Wellman, H. M. (2001).  The emergence of children's causal 

explanations and theories: Evidence from everyday conversation. Developmental 

Psychology,5,  668-683 

Hume, D. (1978). A treatise of human nature. Oxford: Oxford University Press. (Original 

work published 1739). 

Inagaki, K., & Hatano, G. (1993). Young children's understanding of the mind body 

distinction. Child Development, 64, 1534-1549. 

Jordan, M. (Ed.) (1998). Learning in graphical models. Cambridge, MA: MIT Press. 

 



 CAUSAL MAPS 104

Kalish, C. W. (1996).  Preschoolers' understanding of germs as invisible mechanisms. 

Cognitive Development, 11,  83-106. 

Keil, F. C. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: MIT 

Press. 

Kiiveri, H. & Speed, T. (1982). Structural analysis of multivariate data: A review. In S. 

Leinhardt, (Ed.) Sociological methodology, San Francisco: Jossey-Boss. 

Kushnir, T, Gopnik, A. , Schulz, L,, &  Danks, D. (2003, August). Inferring  
 

hidden causes. Proceedings of the Twenty-Fifth Meeting of the Cognitive Science  
 
Society, Boston, MA. 

 

Lagnado, D. & Sloman, S.A. (2002). Learning causal structure. Proceedings of the 

Twenty-Fourth Annual Conference of the Cognitive Science Society. 

Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? 

Cognition, 25, 265-288. 

Leslie, A., & Roth, D. (1993).What autism teaches us about metarepresentation. In: S. 

Baron-Cohen, H. Tager-Flusberg & D. J. Cohen (eds.), Understanding other 

minds: Perspectives from autism. New York: Oxford University Press. 

Marr, D. (1982). Vision: a computational investigation into the human                       

representation and processing of visual information. San Francisco: W.H.  

Freeman.  

Mayhew, J. E., & Longuet-Higgins, H. C. (1982). A computational model of binocular 

depth perception. Nature. (5865), 376-378. 

 



 CAUSAL MAPS 105

Meek, C. (1995). Strong completeness and faithfulness in Bayesian Networks.  In 

uncertainty in artificial intelligence: Proceedings of the eleventh conference. San 

Francisco, CA: Morgan Kaufmann, pp. 411-418. 

Meltzoff, A. N. (1988a).  Infant imitation and memory: Nine-month-olds in immediate 

and deferred tests.  Child Development, 59, 1, 217-225. 

Meltzoff, A. N.  (1988b).  Infant imitation after a 1-week delay:  Long-term 

             memory for novel acts and multiple stimuli.  Developmental Psychology, 24,   

             470-476. 

Meltzoff, A. N., & Prinz W. (Eds.) (2002). The imitative mind:  Development, 

             evolution, and brain bases .  Cambridge:  Cambridge University 

             Press. 

Michotte, A. E. (1962). Causalite, permanence et realite phenomenales; etudes de 

psychologie experimentale. Louvain: Publications universitaires. 

Miller, Ralph R., & Matute, H. (1996). Biological significance in forward and backward 

blocking: Resolution of a discrepancy between animal conditioning and human 

causal judgment. Journal of Experimental Psychology: General. 125 (4) 370-386 

Nazzi, T., & Gopnik, A. (2000).  A shift in children’s use of perceptual and causal cues 

to categorization. Developmental Science, 3, 389-396. 

Novick, L., & Cheng, P.  (in press) Assessing interactive causal influence. Psychological 

Review. 

O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. New York: 

Oxford University Press. 

Oakes, L. M., & Cohen, L. B. (1990). Infant perception of a causal event. Cognitive 

 



 CAUSAL MAPS 106

Development, 5, 193-207. 

Palmer, S. (1999). Vision science: From photons to phenomenology. Cambridge, MA: 

MIT Press. 

Palmerino, C. C., Rusiniak, K. W., & Garcia, J. (1980). Flavor-illness aversions: The 

peculiar roles of odor and taste in memory for poison. Science, 208, 753-755. 

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan 

Kaufman Press. 

Pearl, J. (2000). Causality. New York: Oxford University Press. 

Perner, J. (1991).  Understanding the representational mind.  Cambridge, Ma: MIT Press. 

Piaget, J. (1929). The child's conception of the world. New York: Harcourt, Brace. 

Piaget, J. (1930). The child's conception of physical causality. New York: Harcourt, 

Brace. 

Povinelli, D. J. (2001).  Folk physics for apes. New York: Oxford University Press. 

Ramsey, J., Roush, T., Gazis, P., & Glymour, C. (2002) Automated remote sensing with 

near-infra-red reflectance spectra: Carbonate recognition. Data mining and 

knowledge discovery.  (6): 277-293 

Reichenbach, H. (1956). The direction of time. Berkeley, CA: University of California 

Press. 

Rehder, B., & Hastie, R. (2001). Causal knowledge and categories: The effects of causal 

beliefs on categorization, induction, and similarity. Journal of Experimental 

Psychology: General. (3): 323-360 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations 

in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. 

 



 CAUSAL MAPS 107

F. Prokasy (Eds.), Classical Conditioning II: Current theory and research (pp. 64-

99). New York: Appleton-Century-Crofts. 

Richardson, T. (1996). Discovering cyclic causal structure. Technical Report. CMU Phil 

68, Dept. of Philosophy, Carnegie-Mellon University  

Rogers, B. J., & Bradshaw, M. F. (1993). Vertical disparities, differential  perspective 

and binocular stereopsis. Nature.  (6409) 253-255 

Rovee-Collier, C. (1987)  Learning and memory in infancy. In J.D Osofsky (Ed)  

Handbook of infant development (2nd ed.). Oxford, England:  John Wiley & 

Sons. 

Salmon, W. (1984). Scientific explanation and the causal structure of the world.  

Princeton: Princeton University Press. 

Scheines, R., Spirtes, P., Glymour, C., & Meek, C. (1994). TETRAD II.  Hillsdale, N.J. 

Lawrence Erlbaum. 

Shanks, D. R. (1985). Forward and backward blocking in human contingency judgment. 

Quarterly Journal of Experimental Psychology, 37b, 1-21. 

Shanks, D. R., & Dickinson, A. (1987). Associative accounts of causality judgment. In G. 

H. Bower (Ed.), The psychology of learning and motivation: Advances in 

research and theory, Vol 21 (pp. 229-261). San Diego, CA: Academic Press. 

Schulz, L. (2001). Do-calculus: Inferring causal relations from observations and 

interventions. Paper presented at the Cognitive Development Society Meeting. 

Schulz, L., & Gopnik A. (2001) Inferring causal relations from observations and 

interventions. Paper presented at a Causal Inference Workshop: the Neural 

Information Processing Systems Meeting, Whistler, B.C. 

 



 CAUSAL MAPS 108

Shipley, B. (2000). Cause and correlation in biology.  Oxford: Oxford University Press. 

Shultz, T. R.  (1982).  Rules of causal attribution.  Monographs of the Society for 

Research in Child Development, 47 (Serial No.  194). 

Slaughter, V., & Gopnik, A. (1996). Conceptual coherence in the child’s theory                              

of mind: Training children to understand belief. Child Development, 67,                              

2967-2988. 

Slaughter, V., Jaakkola, R., & Carey, S. (1999). Constructing a coherent theory: 

Children's biological understanding of life and death. In M. Siegal & C. Peterson 

(Eds.), Children’s understanding of biology and health (pp. 71-96). Cambridge 

MA: Cambridge University Press. 

Sobel D. M., & Gopnik, A. (2002). Causal prediction and counterfactual reasoning in 

young children: Separate or similar processes? Manuscript submitted for 

publication. 

Sobel, D. M.,  Tenenbaum, J., & Gopnik, A. (In press). ) Children’s causal inferences 

from indirect evidence: Backwards blocking and Bayesian reasoning in 

preschoolers.  Cognitive Science 

Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of 

knowledge. Psychological Review, 99, 605-632. 

Spellman, B. A. (1996). Acting as intuitive scientists: Contingency judgments are made 

while controlling for alternative potential causes. Psychological Science, 7, 337-

342. 

Spirtes, P. (2001). An anytime algorithm for causal inference. Proceedings of AISTATS.  

 



 CAUSAL MAPS 109

Spirtes, P., Christopher M., & Richardson, T. (1995).  Causal inference in the presence of 

latent variables and selection bias. In Uncertainty in artificial intelligence: 

Proceedings of the eleventh conference. San Francisco, CA: Morgan Kaufmann, 

pp. 499-506. 

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search 

(Springer Lecture Notes in Statistics). New York: Springer-Verlag. 

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, prediction, and search 

(Springer Lecture Notes in Statistics, 2nd edition, revised). Cambridge, MA: MIT 

Press. 

Steyvers, M., Tenenbaum, J.,  Wagenmakers, E. & Blum, B. (2003). Inferring causal 

networks from observations and interventions. Cognitive Science, 27,  (453-489). 

Tenenbaum, J, & Griffiths, T.L. (2003). Theory-based causal inference. Proceedings of 

the 2002 Neural Information Processing Systems Conference. 

Thelen, E., & Smith, L. B. (1994).  A dynamic systems approach to the development of 

cognition and action.    The MIT Press, Cambridge, MA.  

Tolman, E. C. (1932). Purposive behavior in animals and men. New York: The Century 

Co. 

Tomasello, M., & Call, J.  (1997). Primate cognition. New York: Oxford University Press   

Waldmann, M. R., & Hagmayer, Y. (2001). Estimating causal strength: The role of 

structural knowledge and processing effort. Cognition (1) 27-58. 

Waldmann, M. R., & Martignon, L. (1998). A Bayesian network model of causal 

learning. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings of the 

Twentieth Annual Conference of the Cognitive Science Society (pp. 1102-1107). 

 



 CAUSAL MAPS 110

Mahwah, NJ: Erlbaum 

Wasserman, E. A., & Berglan, L. R (1998). Backward blocking and recovery from 

overshadowing in human causal judgment: The role of within-compound 

associations. Quarterly Journal of Experimental Psychology: Comparative & 

Physiological Psychology, 51, 121-138. 

Watson, J. S., & Ramey, C. T. (1987).   Reactions to response-contingent stimulation in 

early infancy.  In J. Oates, S. Sheldon, (Eds.) Cognitive development in infancy    

Hove, England; Lawrence Erlbaum Associates, Inc 

Wellman, H. M. (1990). The child’s theory of mind. Cambridge, MA: MIT Press. 

Wellman, H. M., & Gelman, S. A. (1997). Knowledge acquisition in foundational 

domains. In D. Kuhn & R. Siegler (Eds.), Handbook of child psychology (5th 

Ed). New York: Wiley. 

Wellman, H. M., Hickling, A. K., & Schult, C. A. (1997). Young children’s 

psychological, physical, and biological explanations. In H. M. Wellman & K. 

Inagaki (Eds.), The emergence of core domains of thought: Children’s reasoning 

about physical, psychological, and biological phenomena (pp. 7-25). San 

Francisco, CA: Jossey-Bass. 

 

 

 

 

 



 CAUSAL MAPS 111

One-Cause Condition

Two-Cause Condition

Both objects activate
the detector

(Demonstrated twice)

Children are asked if
each one is a blicket

Figure 10: Procedure used in Gopnik, Sobel, Schulz, & Glymour (2001), Experiment 1

Object A activates the
detector by itself

Object B does not
activate the detector

by itself

Object A activates the
detector by itself

(Demonstrated three
times)

Object B does not
activate the detector

by itself
(Demonstrated once)

Object B activates the
detector by itself

(Demonstrated twice)

Children are asked if
each  one is a  blicket
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Figure 12 

   

One - Cause Condition   

Two - Cause Condition  

Object B is added to the detector with 
Object A.  The detector continues to 
activate.  Children are asked to make 

it stop   

Figure 12: Procedure used in Gopnik et al. (2001), Experiment 3   

Ob ject B is placed on   
the detector and   
nothing happens   

Object A is placed on 
the detector by itself 

and the detector 
activates 

Object B is placed on   
the detector and the   
detector activates   

Object A is placed on 
the detector by itself 

and the detector 
activates 

Object B is removed 

Object B is removed. 
The detector stops 

activating 

Object B is added to the detector with 
Object A.  The detector continues to 
activate.  Children are asked to make 

it stop   
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Inference Condition

Backward Blocking Condition

Both objects activate
the detector

Object A does not
activate the detector

by itself

Children are asked if
each is a blicket
Thenthey are asked to
makmakethe machine go

Object Aactivates the
detector by itself

Both objects activate
the detector

Children are asked if
each is a blicket
Thenthey are asked to
makethe machine go

Figure 13: Procedure used in Sobel et al. (2002), Experiment 2
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Figure 14. The puppet machine.    

   Front View

Back View
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