
Using Finite–Linear Temporal Logic for
Specifying Database Dynamics

Gunter Saake

IBM Wissenschaftliches Zentrum Heidelberg, Tiergartenstr. 15, 6900 Heidelberg

Udo W. Lipeck

FB Informatik (VI), Universität Dortmund, Postfach 500500, 4600 Dortmund 50

1 Introduction

The specification of a database system consists of the description of its static information
structure as well as of its dynamic behaviour. Whereas in classic conceptual database
design the main interest was on the static part, specification of database dynamics became
an important topic in the last few years.

The specification of dynamic database behaviour has to describe the correct evolutions
of the stored information. This can be done in terms of allowed user actions, which
update database states, or in a descriptive manner by specifying the correct sequences of
database states. Here, we concentrate on the latter aspect and present a corresponding
logical specification calculus.

Starting with [Se80], the use of a temporal logic framework for specifying database
dynamics was proposed by several working groups, among them [CF84, Ku84, SFNC84,
ELG84, LEG85, KMS85, CS87]. In these approaches, the semantical interpretation of
database states by first order logic models is extended in a natural way to the inter-
pretation of database dynamics by sequences of database states. This enables the use of
classical first order logic for specifying static databases structure together with a temporal
logic description of the desired database behaviour in a single specification framework.

Similar to [SFNC84, CS87], we use a layered approach for database specification. A
conceptual database schema is described by the following four specification levels :

1. The Data Level describes the basic data structures, for examples the domains
integer or point, in terms of abstract data types. These are usually given by
means of algebraic (equational) specifications.

2. On the Object Level the information stored in the database is described. Typical
examples are object classes like PERSON or CITY. The object level corresponds to the
conceptual data model in popular database design methodologies.

In contrast to the data items of the data level, the object population as well as the
object properties are varying in time.

3. The Behaviour Level describes the allowed databases evolutions in a descriptive
fashion. Temporal logic is used as specification language.

1

4. As last level, the Action Level describes the basic database manipulations to be used
in applications. These actions are often specified using pre- and postconditions.

A multi-levelled conceptual database schema reflects two complementary views of data-
base dynamics. The first view globally describes the correct database evolutions by tem-
poral integrity constraints. An example is the requirement “Salaries may never decrease”.
Temporal integrity constraints are usually long-term restrictions on allowed object mod-
ifications. The second view locally specifies the allowed database state changes by action
specifications. A typical example is “Increase salary of employee ‘Smith’ by x percent”.

Both views together prescribe correct database behaviour : Correct database evolutions
have to satisfy the temporal integrity constraints and must be induced by a sequence of
actions. For the examples above, in a correct database evolution the salary of an employee
cannot be modified by a negative value for x.

As mentioned earlier, we concentrate on the behaviour level. Using the temporal logic
formalism, the example constraint “The salary of employees may never decrease.” looks
as follows :

FOR ALL x : EMPLOYEE
FOR ALL y : integer
ALWAYS ((sal(x)=y) ⇒ ALWAYS(sal(x)≥y))

In contrast to other applications of temporal logics, we have specific requirements for their
use in database theory. Database states correspond to models of a many–sorted first order
logic. This enables the use of logic oriented data retrieval languages as well as constraints
formulated in usual first order logic. The logic oriented approach is necessary also if one
wants to extend databases by deductive capabilities. It follows that we need a first order
temporal logic.

Semantic models for database dynamics must be able to express the usual database
operations

• insertion of database objects,

• deletion of database objects and

• update of database object properties.

We choose the obvious approach, that different database states correspond to differ-
ent models having changing object sort domains. Other first order temporal logics
[MP81, Krö87] use a constant model at all points of time and are not suited for modelling
database semantics. This makes it necessary to define a new first order temporal logic to
handle this specific requirements. In this paper we concentrate on the usage of this logic
in database specification, a more detailed overview on first order temporal logics with
changing domains can be found in [Sa88b].

The rest of the paper is organized as follows. The next chapter formally defines the in-
terpretation structures used in our specification framework. It is followed by the definition
of syntax and semantics for the temporal logic used in behaviour specifications. There a
few useful properties of this logic are explained, too. Finally, by means of transition graphs
basic techniques for the analysis and implementation of temporal logic specifications are
discussed.

This paper is based on a detailed elaboration in the recent thesis [Sa88a].

2

2 Semantic Models

The formal semantics of a database state is a model of a many–sorted first order logic.
This allows the use of logic based retrieval and constraint languages: Static database
constraints are expressed as first order formulae restricting the possible database states.
The sorts and the non–logical symbols of the many–sorted first order logic are determined
by the database schema. A signature Σ = (S,Ω,Π) consists of

• a set of sorts S = {s, r, . . .},

• a set of functions Ω = {f : s1 × . . .× sn → s0, g: r1 × . . .× rm → r0, . . .}

• and a set of predicates Π = {p: s1 × . . . × sn, q: r1 × . . . × rm, . . .} containing a
binary equality predicate =s: s× s for each s ε S.

An interpretation structure AΣ for Σ maps each sort s ε S to a set AΣ(s) and interprets
the function and predicate symbols by functions AΣ(f) and predicates AΣ(p) over the sort
carriers AΣ(s). If unambiguity is provided, we simply write A instead of AΣ. Further,
we use interpretation structures as mathematical models of database states and use these
notations alternatively. Together with a set X = {x: s, y: r, . . .} of typed variables, a
signature determines the formulae of a predicate logic.

A variable x of sort s takes elements from the sort carrier AΣ(s) as possible values.
For a given database state, a substitution ϑ is a mapping from the variables in X into the
related sort carriers. The value of terms and atomic formulae for a given interpretation
structure and for a given substitution is uniquely determined by the above definitions and
the well known term evaluation methods. As usual, syntax and semantics of first order
predicate logic formulae can be defined using these conventions.

The semantic extension to state sequences is achieved by using Kripke structures. A
Kripke structure consists of a set W of worlds, a mapping of these worlds into database
states and a reachability relation R between the worlds. Additionally, one of the worlds is
marked as the initial one. In formal terms, a Kripke structure KΣ wrt a given signature
Σ is defined by

• a set W = {α, β, . . .} of worlds,

• a reachability relation R ⊆ W ×W ,

• an interpretation function I mapping each world α to an interpretation structure
I(α) for the signature Σ and

• an initial world α0.

Our intention is to use Kripke structures as interpretation models for a logic dealing
with temporal properties. To this end, the tense ordering of database states has to be
reflected by the reachability relation. In modal logic oriented approaches to temporal
logics, see for example [Se80], the reachability relation directly defines the tense ordering.
This approach does not allow to state temporal properties of direct temporal successors,
because all future worlds are handled exactly the same way.

3

In contrast to the pure modal logic approach, the temporal logic proposed herein
makes use of the direct temporal succession as well as of the global tense ordering. To
this end, the reachability relation R defines the direct temporal successions whereas the
transitive closure of R fixes the tense order.

A temporal structure is a Kripke structure where the reachability relation R correctly
reflects the temporal successions, i.e. the transitive closure of R has to be antisymmetric.
A Kripke structure is called a temporal structure, if it satisfies the following condition :

R∗(α, γ) ∧R∗(γ, α) ⇒ (α = γ)

In temporal structures, the world set W and the reachability relation R define a directed
acyclic graph. Of special interest are linear temporal structures of finite length. A tem-
poral structure is called

• finite iff |W | ε IN

• linear iff |{γ|R(α, γ)}| ≤ 1 for all α ε W

A temporal structure is linear, if each world has at most one direct temporal successor.
Linear temporal structures are models for (finite and infinite) database state sequences.
In linear temporal structures, the set W is isomorphic to an interval (0, 1, . . . , n) of the
natural numbers or isomorphic to IN 0 for infinite sequences, respectively. Further, we use
the notations linear temporal structures and database state sequences alternatively.

We denote the i–th database state by σi and the whole database state sequence by
σ̂ = 〈σ0, σ1, . . . , σn〉 without explicit reference to the fixed signature Σ. The reachability
relation R is implicitly determined by the succession of natural numbers (i.e., R(i, j) ⇐⇒
i + 1 = j). The tense order of the database states is expressed by the ≤–relation in IN .
The i–th tail sequence 〈σi, σi+1, . . .〉 of a state sequence σ̂ is denoted by σ̂i.

The notion of substitutions in database states is straightforward extended to global
substitutions in Kripke structures. For simplicity, we introduce global substitutions only
for state sequences. A global substitution ϑ̂ is a sequence of substitutions ϑi for each
database state σi in σ̂. Global substitutions bind elements to variables as long as the
objects exist in σ̂. So, if a variable x of sort s is substituted in state i by a value ϑi(x: s)
and this value exists in a later state j, the variable x must be substituted in σj by the
same value :

(

ϑi(x: s) ε σj(s) ∧ i ≤ j
)

⇒
(

ϑi(x: s) = ϑj(x: s)
)

Of course, this definition requires a tense independent identification mechanism for the
substituted elements. For typical database objects this can be achieved by database keys
or object surrogates. In the above formula, the equality sign ‘=’ denotes identity with
respect to the tense independent identification mechanism.

Now, correctness of database state sequences can be specified by dynamic constraints
in a temporal logic which uses linear temporal structures for interpreting formulae.

3 Finite–Linear Temporal Logic

The linear temporal logic as introduced by, e.g., Manna and Pnueli (1981) offers power-
ful temporal operators like always or before, which are defined by quantification over

4

subsequences of a linear temporal structure. At the same time, each of these temporal
operators is characterized by a temporal recursion rule enabling a stepwise formula eval-
uation. An example is alwaysϕ ⇐⇒ ϕ ∧ next alwaysϕ, where the temporal operator
always is splitted into a current part and into a future part bounded by the nexttime
operator. In our specification context, a considerable lack of this logic is the restriction
to state sequences of infinite length. This restriction follows from the definition of the
nexttime operator, which assumes the existence of a unique successor for each state.

The problems arising from a linear temporal logic having only one nexttime operator
especially appear while using the temporal recursion rules in finite sequences. In [MP81],
the recursion rules for sometime and always are

alwaysϕ ⇐⇒ ϕ ∧ next alwaysϕ

sometimeϕ ⇐⇒ ϕ ∨ next sometimeϕ

In the last state of a finite sequence, however, the following equivalences should be valid :

alwaysϕ ⇐⇒ ϕ

sometimeϕ ⇐⇒ ϕ

Both together, we would have following equivalences for the nexttime operator in the last
state :

true ⇐⇒ next alwaysϕ

false ⇐⇒ next sometimeϕ

This looks odd, because the semantics of the nexttime operator seems to depend on the
bounded subformulae — moreover, it depends on the recursion rule introducing the next.

In arbitrary, finite as well as infinite and linear as well as branching temporal struc-
tures, a temporal logic should contain two nexttime operators, which correspond to quan-
tifiers over the set of immediate temporal successors. In linear structures, their semantics
differs only in the case of terminating sequences in the last state. We use these nexttime
operators, notated as existsnext and allnext, in our finite–linear temporal logic to dis-
tinguish between formulae requiring sequence continuation and those allowing sequence
termination.

Syntax and semantics of finite–linear temporal logic formulae are defined as follows :

(σ̂, ϑ̂) |= ϕ′ iff (σ0, ϑ0) |= ϕ′ for each first order logic formula ϕ′.

(σ̂, ϑ̂) |= ¬ϕ iff not (σ̂, ϑ̂) |= ϕ.

(σ̂, ϑ̂) |= ϕ ∧ ψ iff (σ̂, ϑ̂) |= ϕ and (σ̂, ϑ̂) |= ψ.

(σ̂, ϑ̂) |= existsnextϕ iff |σ̂| > 1 and (σ̂1, ϑ̂1) |= ϕ.

(σ̂, ϑ̂) |= allnextϕ iff |σ̂| > 1 implies (σ̂1, ϑ̂1) |= ϕ.

(σ̂, ϑ̂) |= alwaysϕ iff (σ̂i, ϑ̂i) |= ϕ for all 0 ≤ i < |σ̂|.

(σ̂, ϑ̂) |= sometimeϕ iff there exists i, 0 ≤ i < |σ̂|, such that (σ̂i, ϑ̂i) |= ϕ

(σ̂, ϑ̂) |= ϕ until ψ iff (σ̂i, ϑ̂i) |= ϕ for all 0 ≤ i < j where j is defined by
j = min{{k | (σ̂k, ϑ̂k) |= ψ} ∪ {|σ̂| − 1}}.

(σ̂, ϑ̂) |= ϕ before ψ iff there exists i, 0 ≤ i < j, such that (σ̂i, ϑ̂i) |= ϕ, where
j is defined by
j = min{{k | (σ̂k, ϑ̂k) |= ψ} ∪ {|σ̂| − 1}}.

5

As known from the usual first order logic quantifiers ∀ and ∃, the temporal quantifiers
are paired by the following duality rules :

allnext¬ϕ ⇐⇒ ¬ existsnextϕ

always¬ϕ ⇐⇒ ¬ sometimeϕ

(¬ϕ) until ψ ⇐⇒ ¬(ϕ before ψ)

The temporal operators quantifying over whole state sequences (like always or until)
are related to the so–called nexttime operators existsnext and allnext by the following
equivalences called temporal recursion rules. The use of the different nexttime operators
in these recursion rules reflects the intended semantics for terminating state sequences
and avoids the mentioned anomalies occurring in classical linear temporal logic (as can
be seen by repeating the above argumentation with this rules).

alwaysϕ ⇐⇒ ϕ ∧ allnext(alwaysϕ)

sometimeϕ ⇐⇒ ϕ ∨ existsnext(sometimeϕ)

ϕ until ψ ⇐⇒ ψ ∨ (ϕ ∧ allnext(ϕ until ψ))

ϕ before ψ ⇐⇒ (¬ψ ∧ ϕ) ∨ (¬ψ ∧ existsnext(ϕ before ψ))

In database specifications, finite state sequences occur as formal descriptions of finite
object life cycles. Insertion and deletion of database objects lead to changing sort carriers
during the evolution of the state sequence. An object life cycle results from changing
properties of a database object between its insertion and its deletion. Such an object life
cycle determines the subsequence of the global state sequence where the object exists.

Special problems occur with the extension of propositional temporal logic to a first
order temporal logic. The intended semantics of a temporal formula with free variables
is that this formula is valid for each possible substitutions of the variables with database
objects during their life cycle. This leads to the notion of reduct quantification, where the
quantification ranges over complete object life cycles instead of ranging over the object
sort carrier.

First we formalize the notion of ‘life cycle’. Let Θ be the set of substitutions, which
maps variables of a set Y of variables to objects actual in the current state σ0. For a given
state sequence σ̂ and a substitution ϑ ε Θ, the ϑ–reduct σ̂ |ϑ is defined as the maximum
prefix sequence of σ̂ where ϑ maps the variables to the same values as in σ0. The ϑ–reduct
is always of length greater than zero, because at most the state σ0 itself is included. If
the set Y contains only one variable y, we say that the ϑ–reduct is the life cycle of ϑ(y).
Otherwise we call it the common life cycle of the substituted objects.

Based on ϑ–reducts, we can define variable quantification for state sequences [Sa88b].
Here, we use them only for the definition of substitution independent validity having the
desired semantics.

Intuitively, the substitution independent validity requires the quantification over all
objects occurring during system life time. Given the set of free variables of a formula, we
need the set of all substitutions of these variables having at some time actual objects as
substituted values. For a given formula ϕ with free variables Y ⊂ X the validity can be
defined independently by varying over all appearing substitutions. Let ΘY (σ̂) be the set

6

of all at some state defined substitutions ϑ of variables in Y with elements of the related
sort carriers :

ΘY (σ̂) =
⋃

i

{

ϑ
∣

∣

∣ ϑ:Y →
⋃

sεS

σi(s)

}

With α.ϑ we denote the index of the first state of a state sequence σ̂ where ϑ is defined
for all y ε Y . Then (σ̂α.ϑ |ϑ) is the (first) interval of states in σ̂ where ϑ is defined for all
y ε Y . The index of its last state (wrt σ̂) is denoted by β.ϑ, so that

σ̂ϑ := (σ̂α.ϑ |ϑ) = 〈σα.ϑ, σα.ϑ+1, . . . , σβ.ϑ〉

The substitution independent validity of ϕ is defined by

σ̂ |= ϕ iff
(

σ̂ϑ, ϑ̂
)

|= ϕ for all ϑ ε ΘY (σ̂) ,

which expresses the desired semantics. In informal terms, we inspect the validity of
ϕ for all common life cycles of object combinations occurring during system life time.
The natural extension of the local substitution ϑ to a global substitution ϑ̂ is uniquely
determined by ϑ for the sequence σ̂µ.ϑ|ϑ.

4 Analysis of Temporal Logic Specifications

Finite–linear temporal logic lays the foundation of a specification calculus for database
dynamics. In particular, it allows formal analysis of specifications, e.g. wrt consistency
of integrity constraints.

A useful tool for that purpose is the construction of evaluation schemes for temporal
formulae, so–called transition graphs. Using the temporal recursion rules, a temporal
formula can be evaluated stepwise, i.e. state by state of the sequence. An evaluation
scheme is a graph that consists of nodes labelled by those temporal formulae which occur
as intermediate results during evaluation, and of edges labelled by static formulae and
thus describing the correct state transitions.

Such graphs were already known for classic linear temporal logic extending proposi-
tional logic only: Manna and Wolper (1984) used them for deciding satisfiability of formu-
lae. Here, we discuss an alternative construction which is based on formula transformation
into a disjunctive normalform, and which is adapted to our finite–linear temporal logic.
This construction will lead to a new satisfiability criterion for formulae in finite state
sequences.

Formally, a transition graph T = (G, ν, η,m0, F) over a signature Σ and a set X of
variables consists of

• a directed graph G = (N,E) with nodes N and edges E,

• a node labelling ν mapping each node to a formula in finite–linear temporal logic
over Σ and X,

• an edge labelling η mapping each edge to a nontemporal formula (i.e. a formula in
first order predicate logic) over Σ and X,

7

• a non-empty initial marking m0 ⊆ N

• and a set of final nodes F ⊆ N .

Such a graph T can be used to accept or reject a finite state sequence σ̂ = 〈σ0, . . . , σn〉

for a given substitution ϑ by computing the nodes reached (”marked”) along that se-
quence. The current marking mT at time i for σ̂ and ϑ is defined by:

mT (0, σ̂, ϑ) = m0 for 0 ≤ i ≤ α.ϑ

mT (i+ 1, σ̂, ϑ) = trans(mT (i, σ̂, ϑ), σi, ϑ) for α.ϑ ≤ i ≤ β.ϑ

mT (i+ 1, σ̂, ϑ) = mT (i, σ̂, ϑ) for β.ϑ ≤ i ≤ n

where
trans(K, σ, ϑ) = {l ε N | (∃k ε k) : (k, l) ε E ∧ (σ, ϑ) |= η((k, l))}
for an arbitrary subset K of nodes

The definition of trans is called transition rule; it formalizes that every next state in a
sequence must satisfy the label of at least one edge outgoing from the current marking in
order to get a new non-empty marking. Accordingly, (σ̂, ϑ̂) is accepted by T , iff the last
marking mT (n + 1, σ̂, ϑ̂) contains at least one final node. Thus there must have been a
path from the initial marking to a final node, such that the edge labels on that path have
been valid in the corresponding states of the sequence (to be precise: of the subsequence
σ̂ϑ from α.ϑ to β.ϑ representing the ”life cycle” of the substituting objects).

In order to evaluate a temporal formula ϕ in a finite state sequence σ̂ by means of a
transition graph T , two further conditions are needed:

• For each node k ε N holds

ν(k) ⇐⇒









∨

lεF
(k,l)εE

(η((k, l)) ∧ allnext ν(l))









∨











∨

lε(N−F)
(k,l)εE

(η((k, l)) ∧ existsnext ν(l))











• ϕ is represented by the disjunction of initial node labels, i.e.:

ϕ ⇐⇒
∨

kεm0

ν(k)

Then T is called an evaluation scheme for ϕ. This definition guarantees that the
currently marked nodes are labelled with that temporal formula which remains to be
evaluated in the rest of the sequence. By induction on the length of state sequences, the
following relationships can be shown [Sa88a]:

• [σ̂, ϑ] |= ϕ iff (σ̂, ϑ) is accepted by an evaluation scheme for ϕ

8

• σ̂ |= ϕ iff σ̂ is accepted for arbitrary substitutions ϑ by an evaluation scheme for ϕ

The following figures show evaluation schemes for ϕ ≡ A before B and ψ ≡

always(A⇒ sometimeB) :

�
�

�
�A beforeB

� �
�

¬B

-

��	

m0

�
�

�
�

�
�

�
�true

true

�-A ∧ ¬B

�
�

�
�

�
�

�
�ψ

� �
�

¬A ∨B

-

��	
m0 �

�
�
�ψ ∧ sometimeB

� �
�

true

�-true

� �B6

Such evaluation schemes can indeed be constructed from arbitrary temporal formulae
by transforming the formulae into disjunctions corresponding to the pattern above. A
formula ϕ is in disjunctive normalform if it has the form

∨

k

(ζk ∧ allnext γk [∧ existsnext δk])

where:

• each ζk is a conjunction of basic subformulae of ϕ (see below) or their negations and

• each γk is a conjunction of formulae γkj
or ¬γkj

such that each γkj
is either a basic

formula of ϕ or bound by temporal operator. (βk by analogy.)

Basic subformulae of ϕ are exactly those minimal nontemporal constituents of ϕ which
occur as operands of logical connectives outside ∀/∃-quantifications.

A formula can be transformed into an equivalent disjunctive normalform by iterated
application of the temporal recursion rules and of the laws of propositional logic. For
example,

ϕ ≡ always(A⇒ sometimeB)

is equivalent to

(¬A ∨ sometimeB) ∧ allnext(always(A⇒ sometimeB))

because of the recursion rule for always, and can further be transformed into the nor-
malform

(¬A ∧ allnext(always(A⇒ sometimeB)))
∨ (B ∧ allnext(always(A⇒ sometimeB)))
∨ ([true ∧] allnext(always(A⇒ sometimeB))

∧ existsnext(sometimeB))

9

The quite analogous normalization procedure for infinite–linear temporal logic, which
is a first–order extension of classic Manna–Pnueli–logic, has been presented in [LS87] with
more details.

Now a transition graph Tϕ is constructed from ϕ according to the following algorithm :

(1) start with the empty graph G as Tϕ;
(2) insert a node k labelled with ϕ into N ;

m0 := {k};
F := {};

(3) for each node n ε N in Tϕ

do transform the node label ν(n) into disjunctive normalform DNF (ν(n);
for each constituent (ζ ∧ allnext γ) of DNF (ν(n))
do if ν(m) 6= γ for all m ε F

then insert a new node m labelled with γ into N
F := F ∪ {m};

endif;
let m be the node in F with ν(m) = γ;
insert an edge (n,m) with η((n,m)) = ζ into E;

enddo;
for each (ζ ∧ allnext γ ∧ existsnext δ) in DNF (ν(n))
do if ν(m) 6= γ ∧ δ for all m ε N − F

then insert a new node m with ν(m) = γ ∧ δ into N − F ;
endif;
let m be the node in N − F with ν(m) = γ ∧ δ;
insert an edge (n,m) with η((n,m)) = ζ into E;

enddo;
if several edges lead from n to the same node

then replace them by one edge labelled with the disjunction
of the given labels;

endif;
enddo.

For instance, the graphs given above have resulted from this construction.
It can easily be seen that Tϕ is an evaluation scheme for ϕ, since the initial node is la-

belled with ϕ and the edge/node labels have been derived from corresponding constituents
of disjunctive normalforms. Please note that

allnext γ ∧ existsnext δ ⇐⇒ existsnext(γ ∧ δ)

Such a scheme gives a decision criterion for consistency, i.e. satisfiability, of the tem-
poral formula wrt finite state sequences. Since satisfiability of predicate logic formulae
is undecidable, we have to assume that all unsatisfiable edge labels have been removed
already.

• Then a temporal formula ϕ is satisfiable for a given substitution of its free variables
in some finite state sequence if there is a path from an initial to a final node in Tϕ.

10

Together with the construction above we have got a relative decision procedure for finite
satisfiability of our temporal formulae. Despite its dependence on satisfiability in predicate
logic it can be expected to be a helpful tool for analyzing temporal constraints; practical
database specifications will often not utilize the full power of predicate logic for their basic
subformulae.

Concerning satisfiability in infinite state sequences, the reader is referred to [LS87]
extending [Wo83, MW84]. For that purpose, the difference between final and non–final
nodes has to be ignored, but graphs have to be reduced by deleting infinitely unsatisfiable
node labels; this can be done by a reduction algorithm which also treats the temporal
structure of formulae relative to their predicate logic parts.

In other papers, we have studied other benefits resulting from the application of transi-
tion graphs. Although that work was done mainly in the context of infinite-linear temporal
logic, the following statements will hold for an adaptation to finite–linear logic, too.

• Basically, the construction of transition graphs translates long-term constraints on
entire state sequences into short-term conditions on single state transitions. These
conditions are connected within graphical representations that describe life cycle
patterns of database objects. They can help a database designer to validate his
originally descriptive specification of database dynamics.

• Transition graphs form a basis for monitoring temporal constraints at runtime in
the database evolution up to a current state [LS87, SL87, Sa88a]. The monitor has
to compute current marking for all substitutions according to the transition rule.
A constraint violation is reported as soon as a marking has become empty or does
not contain a final node after a deletion (of the respective substituting objects). All
paths not leading to final nodes should be deleted in order to detect errors as early
as possible.

• The graphs can be used also to transform specifications of database actions, so
that they respect the temporal constraints [Li88]. To this end, refined pre– and
postconditions have to consider the stepwise computation and checking of markings
on each specification. Then each state sequence executable by actions becomes
admissible wrt the constraints, too. A related application is verification of actions
against constraints [FS88].

5 Conclusions

This paper has introduced a new kind of linear temporal logic which can adequately be
interpreted in infinite as well as in finite state sequences. Moreover, it allows arbitrary
subformulae in first order predicate logic. Classical approaches had considered only infi-
nite sequences for interpretation and had extended only propositional logic by temporal
structures. Our proposal is motivated by the wish to specify temporal integrity constraints
on the dynamic behaviour of a database. Database dynamics, however, is composed of
typically finite life cycles of objects reaching from their insertion to their deletion, so that
constraints have to deal with finite state sequences and with changing domains.

11

The central modification of classic temporal logic lies in introducing two dual versions
of the next-operator which correspond to the universal and existential temporal quantifi-
cation by always / sometime. These new operators have been integrated in such a way
that the central recursion rules and the construction of transition graphs using these rules
could be established again. It is expected that an axiomatization of this logic similiar
[Ma82] can be given in an analogous way utilizing the new recursion rules.

An important topic of future research will be the development of a strictly object-
oriented specification calculus in the framework of [SSE87], where all attributes, con-
straints, and actions are defined locally to the objects affected. The logic presented is
an important step in that direction since it helps to express properties of finite state se-
quences, in particular those bound by the lifetime of an object in the database. The next
step concerning adequate interpretation structures should be a decomposition of states
and state sequences into single objects and their separated, but interacting life cycles.

References

[CF84] Casanova, M. A., Furtado, A. L.: On the Description of Database Transition
Constraints Using Temporal Languages. Advances in Database Theory, Vol. II
(H. Gallaire et al., eds.), Plenum Press, New York 1984, 211–236.

[CS87] Carmo, J., Sernadas, A.: A Temporal Logic Framework for a Layered Approach
to Systems Specification and Verification. Proc. IFIP WG 8.1 Conf. on “Tem-
poral Aspects of Information Systems”. Sophia–Antipolis 1987, 31–46.

[ELG84] Ehrich, H.-D., Lipeck, U.W., Gogolla, M.: Specification, Semantics and En-
forcement of Dynamic Database Constraints. Proc. Int. Conf. on Very Large
Databases. Singapore 1984, 301–308.

[FS88] Fiadeiro, J., Sernadas, A.: Specification and Verification of Database Dynamics.
Acta Informatica. Vol. 25, Fasc. 6, 1988, 625–661.

[KMS85] Khosla, S., Maibaum, T.S.E., Sadler, M.: Database Specification. Proc. IFIP
Conf. on Database Semantics (DS–1) 1985 (T.B.Steel, R.Meersmann, eds.).
North Holland, Amsterdam 1986, 141–158.

[Krö87] Kröger, F.: Temporal Logic of Programs. Springer–Verlag, Berlin 1987.

[Ku84] Kung, C.H.: A Temporal Framework for Database Specification and Verification.
Proc. Int. Conf. on Very Large Databases. Singapore 1984, 91–99.

[LEG85] Lipeck, U.W., Ehrich, H.-D., Gogolla, M.: Specifying Admissibility of Dynamic
Database Behaviour Using Temporal Logic. Proc. IFIP Work. Conf. on The-
oretical and Formal Aspects in Information Systems (A.Sernadas et al., eds.)
North–Holland, Amsterdam 1985, 145–157.

[Li88] Lipeck, U.W.: Transformation of Dynamic Integrity Constraints into Transac-
tion Specifications. Proc. 2nd Int. Conf. on Database Theory. (M. Gyssens et al.,
eds.)LNCS 326 Springer–Verlag, Berlin 1988, 322–337.

12

[LS87] Lipeck, U.W., Saake, G.: Monitoring Dynamic Integrity Constraints Based on
Temporal Logic. Information Systems. Vol. 12, No. 3, 1987, 255–269.

[Ma82] Manna, Z.: Verification of Sequential Programs: Temporal Axiomatization. The-
oretical Foundations of Programming Methodology (M.Broy, G.Schmidt, eds.)
Reidel Publ. Co., Dordrecht 1982, 53–101.

[MP81] Manna, Z., Pnueli, A.: Verification of Concurrent Programs : The Tempo-
ral Framework. The Correctness Problem in Computer Science (R.S.Boyer,
J.S.Moore, eds.). Academic Press, London 1981, 215–273.

[MW84] Manna, Z., Wolper, P.: Synthesis of Communicating Processes from Temporal
Logic Specifications. ACM Transactions on Programming Languages and Sys-
tems. Vol. 6, 1984, 68–93.

[Sa88a] Saake, G.: Specification, Semantics and Monitoring of Object Lifecycles in
Databases (in German). Doctoral Thesis . Techn. Universität Braunschweig 1988.

[Sa88b] Saake, G.: On First Order Temporal Logics with Changing Domains for Infor-
mation System Specification. Submitted for Publication, 1988.

[Se80] Sernadas, A.: Temporal Aspects of Logical Procedure Definition. Information
Systems. Vol. 5, 1980, 167–187.

[SFNC84] Schiel, U., Furtado, A.L., Neuhold, E.J., Casanova, M.A.: Towards Multi–Level
and Modular Conceptual Schema Specifications. Information Systems. Vol. 9,
1984, 43–57.

[SL87] Saake, G., Lipeck, U.W.: Foundations of Temporal Integrity Monitoring. Proc.
IFIP Work. Conf. on “Temporal Aspects in Information Systems”, 1987. (C.
Rolland et al., eds.), North–Holland Publ. Co., Amsterdam 1988, 235–249.

[SSE87] Sernadas, A., Sernadas, C., Ehrich, H.–D.: Object–Oriented Specification of
Databases : An Algebraic Approach. Proc. Int. Conf. on Very Large Databases,
1987, 107–116.

[Wo83] Wolper, P.: Temporal Logic Can Be More Expressive. Information and Control
56, 1983, 72–99.

13

