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ABSTRACT It is well known that computing shortest paths over a network is an important task in many
network and transportation related analyses.  Choosing an adequate algorithm from the numerous
algorithms reported in the literature is a critical step in many applications involving real road networks.  In
a recent study, a set of three shortest path algorithms that run fastest on real road networks has been
identified.  These three algorithms are: 1) the graph growth algorithm implemented with two queues, 2) the
Dijkstra algorithm implemented with approximate buckets, and 3) the Dijkstra algorithm implemented
with double buckets.  As a sequel to that study, this paper reviews and summarizes these three algorithms,
and demonstrates the data structures and procedures related to the algorithms.  This paper should be
particularly useful to researchers and practitioners in transportation, GIS, operations research and
management sciences.
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1. Introduction
With the development of geographic information systems (GIS) technology, network and transportation analyses
within a GIS environment have become a common practice in many application areas.  A key problem in network
and transportation analyses is the computation of shortest paths between different locations on a network. 
Sometimes this computation has to be done in real time.  For the sake of illustration, let us have a look at the case
of a 911 call requesting an ambulance to rush a patient to a hospital.  Today it is possible to determine the fastest
route and dispatch an ambulance with the assistance of GIS.  Because a link on a real road network in a city tends
to possess different levels of congestion during different time periods of a day, and because a patient's location
can not be expected to be known in advance, it is practically impossible to determine the fastest route before a 911
call is received.  Hence, the fastest route can only be determined in real time.  In some cases the fastest route has
to be determined in a few seconds in order to ensure the safety of a patient.  Moreover, when large real road
networks are involved in an application, the determination of shortest paths on a large network can be
computationally very intensive.  Because many applications involve real road networks and because the
computation of a fastest route (shortest path) requires an answer in real time, a natural question to ask is: Which
shortest path algorithm runs fastest on real road networks?
        Although considerable empirical studies on the performance of shortest path algorithms have been reported
in the literature (Dijkstra 1959; Dial et al. 1979; Glover et al. 1985; Gallo and Pallottino 1988; Hung and Divoky
1988; Ahuja et al. 1990; Mondou et al. 1991; Cherkassky et al. 1993; Goldberg and Radzik 1993), there is no
clear answer as to which algorithm, or a set of algorithms runs fastest on real road networks.  In a recent study
conducted by Zhan and Noon (1996), a set of three shortest path algorithms that run fastest on real road networks
has been identified.  These three algorithms are: 1) the graph growth algorithm implemented with two queues, 2)
the Dijkstra algorithm implemented with approximate buckets, and 3) the Dijkstra algorithm implemented with
double buckets.  As a sequel to that study, this paper reviews and summarizes these three algorithms, and
demonstrates the data structures and implementation strategies related to the algorithms.
        The rest of the paper is organized as follows.  Recent evaluations, particularly the evaluation of 15 shortest
path algorithms using real road networks, are briefly reviewed in Section 2.  Network representation, the labeling
method and data structures related to shortest path algorithms in general are reviewed in Section 3.  The graph
growth algorithm implemented with two queues is described in detail in Section 4.  The approximate and double
bucket implementations of the Dijkstra algorithm are reviewed in Section 5.  Concluding remarks are given in
Section 6.

2. Recent Evaluations of Shortest Path Algorithms

A network is defined as a directed graph G = (N, A) consisting of a set N of nodes and a set A of arcs with
associated numerical values, such as the number of nodes, n=|N|, the number of arcs, m=|A|, and the length of an
arc connecting nodes i and j, denoted as l(i,j).  The shortest path problem can be stated as follows: given a
network, find the shortest distances (least costs) from a source node to all other nodes or to a subset of nodes on
the network.  These shortest paths represent a directed tree T rooted from a source node s with the characteristic
that a unique path from s to any node i on the network is the shortest path to that node (Ahuja et al. 1993).  The
length of the shortest path from s to any node i is denoted as d(i).  This directed tree is called a shortest path tree. 
For any network with n nodes, one can obtain n distinctive shortest path trees.  Shortest paths from one (source)
node to all other nodes on a network are normally referred as one-to-all shortest paths.  Shortest paths from one
source node to a subset of the nodes on a network can be defined as one-to-some shortest paths.  Shortest paths
from every node to every other node on a network are normally called all-to-all shortest paths.
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2.1 Cherkassky et al.'s Evaluation

Although there have been a number of reported evaluations of shortest path algorithms in the literature (e.g.,
Glover et al. 1985; Gallo and Pallottino 1988; Hung and Divoky 1988), a recent study by Cherkassky et al. (1993)
is one of the most comprehensive evaluations of shortest path algorithms to date.  They evaluated a set of 17
shortest path algorithms.  In their experiment, Cherkassky et al. coded the 17 algorithms using the C programming
language, and tested the C programs on a SUN Sparc-10 workstation.  One-to-all shortest paths can be computed
by these C programs.  Readers are referred to the Cherkassky et al. (1993) paper for more detailed descriptions
about the implementation of the algorithms.  Cherkassky et al. used a number of simulated networks with various
degrees of complexity for evaluating the algorithms.  The results of their studies suggest that no single algorithm
performs consistently well on all simulated networks.

2.2 Zhan and Noon's Evaluation

More recently, Zhan and Noon (1996) tested 15 of the 17 shortest path algorithms using real road networks.  In
their evaluation, Zhan and Noon dropped two of the 17 algorithms tested by Cherkassky et al.  They did not
consider the special-purpose algorithm for acyclic networks because an arc on real road networks can be treated
bi-directional, and hence real road networks contain cycles.  They also dropped the implementation using a stack
to maintain labeled

Table 1  Summary of the 15 Algorithms Evaluated

 Abbreviation              Implementation

     BFM Bellman-Ford-Moore

     BFP Bellman-Ford-Moore with Parent--checking

     DKQ Dijkstra's Naive Implementation

     DKB Dijkstra's Buckets -- Basic Implementation

     DKM Dijkstra's Buckets -- Overflow Bag

     DKA Dijkstra's Buckets -- Approximate

     DKD Dijkstra's Buckets -- Double

     DKF Dijkstra's Heap -- Fibonacci

     DKH Dijkstra's Heap -- k--array

     DKR Dijkstra's Heap -- R--Heap

     PAP Graph Growth -- Pape

     TQQ Graph Growth with Two Queues -- Pallottino

     THR Threshold Algorithm

     GR1 Topological Ordering -- Basic

     GR2 Topological Ordering -- Distance Updates

 
nodes (see the next section for descriptions about stack and labeled nodes) because they found that this algorithm
is many times slower than the rest of the algorithms on real road networks during their preliminary testing.  These
15 algorithms are summarized in Table 1.  It is not the intention of this paper to review these 15 algorithms
thoroughly.  Detailed description of the algorithms can be found in Cherkassky et al. (1993) and the references
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therein.
        In their evaluation, Zhan and Noon used 21 real road networks for evaluating the shortest path algorithms. 
These 21 networks included the U.S. National Highway Planning Network (NHPN) covering the continental U.S.
and 20 state-level road networks generated from road networks in 10 states in the Midwest and Southeast of the
United States.  The 10 states are Alabama (AL), Florida (FL), Georgia (GA), Iowa (IA), Louisiana (LA),
Minnesota (MN), Missouri (MO), Mississippi (MS), Nebraska (NE), and South Carolina (SC).  The 20 state-level
road networks are composed of 10 low-detail road networks and 10 high-detail road networks.  The 10 low-detail
networks contain three levels of roads, including interstate highways, principal arterials and major arterials.  The
10 high-detail networks consist of one additional level of more detailed roads in addition to the three levels of
roads contained in the low-detail networks.  The 21 networks were stored and maintained in Arc/Info GIS running
on a SUN Sparc-20 workstation under the Solaris 2.4 environment.  The nodes, arcs and arc lengths were
downloaded from Arc/Info into ASCII files.  Before downloading, a check was made to ensure that the networks
were fully connected.
        A summary of the 21 networks used in Zhan and Noon's evaluation is given in Table 2. One important
characteristic of a real road network is the degree of connectivity measured by the arc-to-node ratios.  It can be
seen in Table 2 that the arc-to-node ratios range from 2.66 to 3.28 in the 21 networks.  The degree of connectivity
in these 21 networks differ considerably from that of simulated networks where the arc-to-node ratios can be as
high as 10 (cf., Gallo and Pallottino 1988).  In addition, there is no notable difference in the degrees of
connectivity in all 21 networks.  Because the number of scans in constructing a shortest path tree is directly
related to arc-to-node ratios, it is very important to observe this difference between the arc-to-node ratios in real
road networks and simulated networks.
        The 15 algorithms were coded in the C programming language. The C programs were based on the set of
one-to-all shortest path C programs provided by Cherkassky et al. (1993).  The set of one-to-all shortest path C
codes were modified to automatically generate all-to-all shortest paths.  The C programs were compiled with the
gcc compiler version 2.5.6 using the O4 optimization option.  Zhan and Noon's experiments were conducted on a
SUN Sparc-20 workstation (model HS21 with a 125MHz Hypersparc processor and 64 Megabytes of RAM
running under the Solaris 2.4 environment).  More detailed description about the experiments can be found in
Zhan (1995) and Zhan and Noon (1996).

2.3 Three Fastest Algorithms on Real Road Networks

Based on their evaluation, Zhan and Noon suggested that the best performing implementation for solving the
one-to-all shortest path problem is Pallottino's graph growth algorithm implemented with two queues (TQQ). 
They further suggested that when the goal is to obtain a one-to-one shortest path or one-to-some shortest paths,
the Dijkstra algorithm offers some advantages because it can be terminated as soon as the shortest path distance to
the destination node is obtained (see Section 5).  Zhan and Noon recommended two of Dijkstra implementations. 
The choice between the two implementations depends on the maximum network arc lengths.  They recommended
the approximate buckets implementation of the Dijkstra algorithm (DKA) for computing one-to-some shortest
paths over networks whose maximum arc length is less than 1500.   For networks whose maximum arc length is
greater than 1500, they recommended that the double buckets implementation of the Dijkstra algorithm (DKD)
should also be considered.
 

Table 2  Summary of the 21 real road networks used in the evaluation

No. state number    of nodes number of arcs arc/node ratio maximum arc lengt mean arc length stnd. dev. of arc lengths

 1 NE  523   1646 3.14 0.874764 0.215551 0.142461

 2 AL  842   2506 2.98 0.650305 0.128870 0.114031

 3 MN  951   2932 3.08 0.972436 0.175173 0.132083

 4 IA 1003   2684 2.68 0.573768 0.119900 0.113719

 5 MS 1156   3240 2.80 0.498810 0.095443 0.100703
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 6 SC 1784   5128 2.88 0.413163 0.062156 0.064389

 7 FL 2155   6370 2.96 0.923088 0.075247 0.076590

 8 MO 2391   7308 3.06 0.494730 0.090977 0.064761

 9 LA 2437   6876 2.82 1.021526 0.060662 0.067557

10 GA 2878   8428 2.92 0.478579 0.068333 0.005668

11 LA 35793  98880 2.76 0.360678 0.013874 0.015297

12 MS 39986 120582 3.02 0.232062 0.015412 0.014000

13 NE 44765 146476 3.28 0.528283 0.018039 0.015652

14 FL 50109 133134 2.66 0.416212 0.011207 0.015264

15 SC 52965 149620 2.82 0.163557 0.009975 0.010198

16 IA 63407 208134 3.28 0.269823 0.015733 0.009220

17 MN 65491 209340 3.20 0.410925 0.017202 0.014107

18 AL 66082 185986 2.82 0.298232 0.011383 0.012410

19 MO 67899 204144 3.00 0.212470 0.015542 0.013266

20 US 75417 205998 2.74 1.500361 0.066084 0.094758

21 GA 92792 264392 2.84 0.174245 0.010511 0.000107

Note:   The first 10 networks are low-detail road networks (three levels of roads) from the ten states.  The remaining 11 networks are the 10 high-detail road networks (four levels
of roads) from the ten states plus the US National Highway Planning Network (US).  The networks are ordered by the number of nodes (After Zhan and Noon 1996).

3. Network Representations, the Labeling Method and Data Structures Related to Shortest Path
Algorithms

3.1 Network Representation

The way in which an input network is represented and implemented in a shortest path algorithm is vital to the
performance of the algorithm.  Past research has proven that the forward star representation is the most efficient
data structure for representing networks (Gallo and Pallottino 1988; Ahuja et al. 1993 p.35-36; Cherkassky et al.
1993).  Two sets of arrays are used in the forward star data structure.  The first array is used to store data
associated with arcs, and the second array is used to store data related to nodes.  All arcs of a network in question
are maintained in a list and are ordered in a specific sequence.  That is, arcs emanating from nodes 1, 2, 3, ..., are
ordered sequentially.  Arcs emanating from the same node can be ordered arbitrarily, however.  All information
associated with an arc, such as starting node, ending node, cost, arc length and capacity are stored with the arc in
some way (e.g., corresponding arrays or linked lists).
        For the array of nodes, a total of n+1 elements are needed. The i-th element associated with node i,
pointer(i), stores the sequential number (in the above arc list) of the first arc emanating from node i.  There are a
few exceptions: 1) for a node i that has no outgoing arc, pointer(i) is set equal to the content of the next element in
the array, i.e., pointer(i) = pointer(i+1); and 2) for consistency, the following convention is adopted, i.e.,
pointer(1)=1 and pointer(n+1)=m+1.

3.2 The Labeling Method

The labeling method is a central procedure in most shortest path algorithms (Gallo and Pallottino 1988; Ahuja et
al. 1993, p.96).  The output of the labeling method is an out-tree from a source node, s, to a set of nodes.  This
out-tree is constructed iteratively, and the shortest path from s to i is obtained upon termination of the method. 
Three pieces of information are maintained for each node i in the labeling method while constructing a shortest
path tree: the distance label, d(i), the parent node, p(i), and the node status, S(i).  The distance label, d(i), stores the
upper bound of the shortest path distance from s to i during iteration.  Upon termination of an algorithm, d(i)
represents the unique shortest path from s to i.  The parent node p(i) records the node that immediately precedes
node i in the out-tree.  The node status, S(i), can be one of the following: unreached, temporarily labeled and
permanently labeled.   When a node is not scanned during the iteration, it is unreached.  Normally the distance
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label of an unreached node is set to positive infinite.  When it is known that the currently known shortest path of
getting to node i is also the absolute shortest path we will ever be able to attain, the node is called permanently
labeled.  When further improvement is still expected to be made on the shortest path to node i, node i is
considered only temporarily labeled.  It follows that d(i) is an upper bound on the shortest path distance to node i
if the node is temporarily labeled; and d(i) represents the final and optimal shortest path distance to node i if the
node is permanently labeled.
        At the beginning of the iterations in the labeling method, a directed out-tree is initialized and the initial
values of the above parameters d(i), p(i) and S(i) are set for source node s and every other node i accordingly
(Ahuja et al. 1993).  During the scanning process, when a node i is scanned, the distance label of a successor node
j is checked and an attempt is made to lower the distance label, d(j),  of node j.  If d(j) can be lowered, the out-tree
is updated by changing the parent node of j to i, that is, p(j) = i.  Because d(j) is lowered, node j should ultimately
become permanently labeled.  The iteration continues until all nodes become permanently labeled.  Upon
termination of the iterations, the out-tree becomes a shortest path tree.  Formally, the scanning operation for node i
can be described below.
           Procedure ScanningOperation(i)
             begin
               for all successor nodes of i do
                 if d(i) + l(i,j) < d(j) then
                   begin
                      d(j) = d(i) + l(i,j);
                      p(j) = i;
                      S(j) = labeled;
                   end
                S(i) = permanently labeled;
             end

3.3 Selection Rules and Data Structures

The performance of a particular shortest path algorithm partly depends on how the basic operations in the labeling
method are implemented.  Two aspects are particularly important to the performance of a shortest path algorithm:
1) the strategies used to select the next temporarily labeled node to be scanned, and 2) the data structures utilized
to maintain the set of labeled nodes.  We briefly review these two aspects in this subsection.  Readers can refer to
Gallo and Pallottino (1988) and Ahuja et al. (1993) for more detailed discussions on these topics.
        Strategies commonly used for selecting the next temporarily labeled node to be scanned are "First In First
Out" (FIFO), "Last In First Out" (LIFO) and  "Best-First-Search" (Gallo and Pallottino 1988).  It is fairly easy to
see from the names of the first two search strategies that the oldest node in the set of temporarily labeled nodes is
selected first in a FIFO search strategy and the newest is selected first in a LIFO strategy at each iteration. In the
best-first-search strategy, the node with the minimum distance label from the set of temporarily labeled nodes is
considered as the best node.
        A number of data structures can be used to manipulate the set of temporarily labeled nodes in order to
support these strategies.  These data structures include arrays, singly and doubly linked lists, stacks, buckets and
queues.  Detailed definitions and operations related to these data structures are standard knowledge and are well
documented in the literature (e.g., Sedgewick 1990; Ahuja et al. 1993, pp.765-787).  Therefore, we only
selectively review some of them.  A  singly linked list contains a collection of elements.  Each element has a data
field and a link field.  The data field contains information to be stored, and the link field contains a pointer
pointing to the next element in the list.  A doubly linked list differs from a singly linked list in that each element
in a doubly linked list contains two pointers.  One pointer points to the previous element in the list, and another
pointer points to the next element in the list.  Stack is another special type of list which only allows removal and
addition of an element at one end of the list.  This end of the list is normally called the top of a stack.  The bucket
data structure is described in detail in Section 5 because it is related to two of the three recommended algorithms,
namely, the approximate and double bucket implementations of the Dijkstra algorithms.
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        A queue is a special type of list which allows the addition of an element at the tail and the deletion of an
element at the head. A priority queue is a special type of queue.  Each element in a priority queue contains a label
(normally a numerical value) that can be used to determine the priority of the element in the queue.  Three
operations are normally defined in a priority queue: adding a new element, removing the element that has the
highest priority in the queue, and correcting the label of an element whose location in the queue is known.  When
the label of an element in a priority queue is set to the distance label of a node, a priority queue can be used to
maintain the set of temporarily labeled nodes efficiently.  Therefore, a priority queue is often used to implement
the best-first search strategy.  A priority queue can be implemented by linked lists, binary-heaps, d-heaps and
Fibonacci heaps (Ahuja et al. 1993).  The deque and two queue data structures described in the next section are
particular types of priority queues which are related to the graph growth algorithm implemented with two queues.

4. The Graph Growth Algorithm Implemented With Two Queues

We describe the data structures and basic procedures related to the graph growth algorithm implemented with two
queues in this section.  The two bucket implementations of the Dijkstra algorithm are described in the next
section.  The graph growth algorithm implemented with two queues (TQQ) was introduced by Pallottino in 1984. 
TQQ is an improved version of the growth graph implementation developed by Pape (PAP) in 1974.  Before we
discuss these two implementations, let us review the basic procedure in constructing a shortest path tree as shown
below (see, e.g., Pallottino 1984, p.259).
           Procedure ShortestPathTreeConstruction(s)
               begin
                 Queue_Initialization(Q);
                  for i=1 to n do
                    d(i) = + infinite;
                    d(s) = 0;
                     while (Q != Null) do
                         Queue_Removal(Q, i);
                         for each successor node j of node i do
                           if d(j) > d(i) + l(i, j) then
                              begin
                                 d(j) = d(i) + l(i, j)
                                 Queue_Insertion(Q, j)
                              end
                end

The four basic operations involved in this procedure are:
    Queue_Initialization(Q)   initialize queue Q;

    Queue_Removal(Q, i)       remove node i from queue Q;

    Queue_Insertion(Q, j)     insert node j into queue Q; and

    Q = Null?                 check whether queue Q is empty.

        The major difference between TQQ and PAP is in the Queue_Insertion(Q, j) operation.  In the
implementations of PAP and TQQ, nodes are partitioned into two sets: the first set of nodes are those nodes whose
current distance labels have not already been used to find a shortest path and the second set contains the remaining
nodes.  The first set of nodes is maintained by a priority queue Q.   Nodes in the second set are further split into
two categories: 1) the unreached nodes which have never entered Q, i.e., nodes whose distance labels are still
infinite, and 2) labeled nodes, i.e., the nodes that have passed through Q at least once, and the nodes whose current
distance labels have already been used.
        Pape (1974) used a data structure called deque (Q) to maintain the first set of nodes in Q. A deque is
illustrated in Figure 1 (Pallottino 1984, p.261).  A deque allows insertions at either end of the queue.  In the PAP
implementation, the deque consists of a LIFO stack (S) and a FIFO queue (Q').  For any node that is not already in
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Q, the node is inserted at the end of Q' if it is unreached; or the node is inserted at the beginning of S if it is
temporarily labeled.  Therefore, the basic operations in the PAP implementation can be summarized below:

    Queue_Initialization(Q)   initialize queue Q;

    Queue_Removal(Q, i)       remove node i from the beginning of queue Q,
                              i.e., the top of stack S;

    Queue_Insertion(Q, j)     For any node j that is not already in Q,
                              insert the node at the end of Q' if the
                              node is unreached, i.e., if S(j) = unreached
                              or insert the node at the beginning of S
                              if the node is temporarily labeled; and

    Q = Null?                 check whether queue Q is empty.
 

Figure 1 The deque Q as a pair of stack (S) and queue (Q') (after Pallottino 1984, p.261).

        Because a stack is used as a priority queue in the PAP implementation, PAP has an exponential worst-case
complexity with respect to the number of nodes, i.e., O(n2^n).  A logical enhancement of the PAP algorithm is to
replace the LIFO stack with a FIFO queue and construct a new data structure.  This new data structure is called
two-queue (Figure 2).  Because both Q' and Q" are queues in the two-queue data structure, nodes can be inserted
at the end of Q' and Q", and they can be removed from the head of Q' and Q".
 

 

Figure 2  The two-queue data structure (Q) consisting of Q" and Q'  (after Pallottino 1984, p.264).

        It follows that for any node that is not already in Q, the node is inserted at the end of Q' if it is unreached, or
the node is inserted at the end of Q" if it is temporarily labeled.  This leads to the following change in the
Queue_Insertion(Q, j) operation of the PAP implementation (Pallottino 1984, p.264).  Other operations remain the
same.
    Queue_Insertion(Q, j)     For any node j that is not already in Q,
                                                insert the node at the end of Q' if the
                                                node is unreached, i.e., if S(j) = unreached
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                                                or insert the node at the end of Q"
                                                if the node is temporarily labeled.
 

5. The Dijkstra's Algorithm Implemented With Approximate and Double Buckets

The original Dijkstra algorithm partitions all nodes into two sets: temporarily and permanently labeled nodes.  At
each iteration, it selects a temporarily labeled node with the minimum distance label as the next node to be
scanned (Dijkstra 1959; Ahuja et al. 1993, p.109).  Once a node is scanned, it becomes permanently labeled.  The
Dijkstra algorithm terminates when all nodes become permanently labeled.  The Dijkstra algorithm is similar to
the procedure for constructing a shortest path tree described in Section 4 except for the differences mentioned
above.  Therefore, detailed procedure of the Dijkstra algorithm is not described further in this paper.
        In Dijkstra's original algorithm, temporarily labeled nodes are treated as a nonordered list.  This is equivalent
to treating the priority queue Q in the above general procedure for shortest path tree construction as a nonordered
list.  This is of course a bottleneck operation because all nodes in Q have to be visited at each iteration in order to
select the node with the minimum distance label.  A natural enhancement of the original Dijkstra algorithm is to
maintain the labeled nodes in a data structure in such a way that the nodes are sorted by distance labels.  The
bucket data structure is just one of those structures. Buckets are sets arranged in a sorted fashion (Figure 3).
Bucket k stores all temporarily labeled nodes whose distance labels fall within a certain range.  Nodes contained
in each bucket can be represented with a doubly linked list.  A doubly linked list only requires O(1) time to
complete an operation in each distance update in the bucket data structure.  These operations include: 1) checking
if a bucket is empty, 2) adding an element to a bucket, and 3) deleting an element from a bucket.
 

Figure 3  An example of the bucket data structure (after Ahuja et al 1993, p.114).

        Dial (1969) was the first to implement the Dijkstra algorithm using buckets.  In Dial's implementation, bucket
k contains all temporarily labeled nodes whose distance labels are equal to k.  Buckets numbered 0, 1, 2, 3, ..., are
checked sequentially until the first nonempty bucket is identified.  Each node contained in the first nonempty
bucket has the minimum distance label by definition.  One by one, these nodes with the minimum distance label
become permanently labeled and are deleted from the bucket during the scanning process.  The position of a
temporarily labeled node in the buckets is updated accordingly when the distance label of a node changes.  For
example, when the distance label of a temporarily labeled node is changed from d(1) to d(2), this node is moved
from bucket d(1) to bucket d(2).  This process is repeated until all nodes are permanently labeled.  Dial's original
implementation of the Dijkstra algorithm (DKB) requires nC+1 buckets in the worst case, where C is the
maximum arc length of a network.  However, it has been proven that for a network with a maximum arc length of
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C, only C+1 buckets are needed to maintain all temporarily labeled nodes (Ahuja et al. 1993, pp.113-114).
        It can be seen that the memory requirement in DKB can be prohibitively large when both C and n are large. 
However, the memory requirement in DKB can be reduced using either the overflow bag implementation (DKM)
or the approximate buckets implementation (DKA) as described by Cherkassky et al. (1993, p.7).  The overflow
bag implementation maintains only a<(C+1) buckets where a is an input parameter.  Only temporarily labeled
nodes whose distance labels fall within the range of [a(i), a(i)+a-1] are contained in the buckets at the i-th stage of
the algorithm.  Other nodes are maintained in a separate set referred to as the overflow bag.  Initially, the values of
i and a(i) are set to 0.  When there is no labeled node left in the given range, i is incremented by one and a(i) is set
equal to the minimum of the distance label of the temporarily labeled nodes.  The nodes with distance labels
within the new range of [a(i), a(i)+a-1] are moved into their corresponding buckets from the overflow bag, and
another cycle of the scanning process begins.
        The Dijkstra's algorithm implemented with approximate buckets (DKA):  In the approximate bucket
implementation of the Dijkstra algorithm (DKA), a bucket i contains those temporarily labeled nodes with
distance labels within the range of [i*b, (i+1)* b-1], where b is a chosen constant.  Here approximate means that
the values of the distance labels in a bucket are not exactly the same as in the case of DKB, but are within a
certain range.  Nodes in each bucket are maintained in a FIFO queue.  Algorithm DKA requires a total of
largerInteger(C/b)+1 buckets.  The worst case complexity of DKA is O(mb+n(b+C/b)).  It can be seen that this
algorithm trades speed for space.  Each node can be scanned more than once, but a node cannot be scanned more
than b times.
        The Dijkstra's algorithm implemented with double buckets (DKD): The double bucket implementation of the
Dijkstra's algorithm (DKD) combines the ideas of the above two algorithms DKM and DKA.  Two levels of
buckets, high-level and low-level, are maintained in the DKD implementation.  A total of d buckets in the
low-level buckets are used.  A bucket i in the high-level buckets contains all nodes whose distance labels are
within the range of [i*d, (i+1)* d-1].  In addition, a nonempty bucket with the smallest index L is also maintained
in the high-level buckets.  A low-level bucket d(j)-L*d maintains nodes whose distance labels are within the range
of [L*d, (L+1)* d-1].  Nodes in the low-level buckets are examined during the scanning process.  After all nodes
in the low-level buckets are scanned, the value of L is increased.  When the value of L increases, nodes in the
nonempty high-level buckets are moved to its corresponding low-level buckets, and the next cycle of scanning
process begins.

6. Concluding Remarks

In recent years, we have witnessed an increasing popularity of transportation related decision analysis within a
GIS environment (see, e.g., Ralston et al. 1994; Erkut 1996 and Noon et al. 1996). In this type of analysis, the
computation of shortest paths is often a central task because shortest path distances are often needed as input for
"higher level" models in many transportation analysis problems such as facility location, network flows, vehicle
routing and product delivery, just to name a few. In addition, the shortest path problem usually captures the
essential elements of more complicated transportation analysis problems. Hence, it can often be used as a
benchmark or a starting point for solving more complicated problems in transportation analysis. With the
advancement of GIS technology and the availability of high quality road network data, it is possible to conduct
transportation analysis concerning large geographic regions within a GIS environment. Sometimes, this type of
analysis has to be completed in real time. As a consequence, these analysis tasks demand high performance
shortest path algorithms that run fastest on real road networks.
        Although there has been considerable reported research related to the evaluation of the performance of
shortest path algorithms, there has been no clear answer as to which algorithm or a set of algorithms runs fastest
on real road networks in the literature. A recent evaluation of shortest path algorithms using real road networks
has identified a set of three algorithms that run fastest. These three algorithms are: 1) The Graph Growth
Algorithms implemented with two queues (TQQ), 2) The Dijkstra's algorithm implemented with approximate
buckets (DKA), and 3) The Dijkstra's algorithm implemented with double buckets (DKD). As a sequel to that
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earlier evaluation, this paper has reviewed and summarized the data structures and procedures related to the three
algorithms. This paper provides a direct source that summarizes a set of shortest path algorithms that run fastest
on real road networks. This source should be particularly useful for researchers and practitioners whose research
and practice are related to the use of shortest path algorithms.
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