
Symbolic Representation and Retrieval of

Moving Object Trajectories ∗

Lei Chen, M. Tamer Özsu
University of Waterloo

School of Computer Science
Waterloo, Canada

{l6chen,tozsu}@uwaterloo.ca

Vincent Oria
New Jersey Inst. of Technology

Dept. of Computer Science
Newark, New Jersey, USA
{vincent.oria@njit.edu}

Technical Report CS-2003-30 Sept 2003

∗submitted to EDBT2004

1

Abstract

Similarity-based retrieval of moving object trajectory is useful to
many applications - GPS systems, sport and surveillance video analy-
sis. However, due to sensor failures, errors in detection techniques, or
different sampling rates, noises, local shifts and scales may appear in
the trajectory records. Hence, it is difficult to design a robust and fast
similarity measure for similarity-based retrieval in a large database.
In this paper, normalized edit distance (NED) is proposed to measure
the similarity between two trajectories. We evaluate the efficacy of
NED and compare it with those of Euclidean distance, Dynamic Time
Warping (DTW), and Longest Common Subsequences (LCSS), show-
ing that NED is more robust and accurate for trajectories that contain
noise and local time shifting. Furthermore, in order to improve the
retrieval efficiency, we propose a novel representation of trajectories,
called movement pattern strings, which convert the trajectories into a
symbolic representation. Movement pattern strings encode both the
movement direction and the movement distance information of the
trajectories. The distances that are computed in a symbolic space
are lower bounds of the distances of original trajectory data, which
guarantees that no false dismissals will be introduced using movement
pattern strings to retrieve trajectories. Finally, we define a modified

frequency distance for frequency vectors that are obtained from move-
ment pattern strings to reduce the dimensionality of movement pattern
strings and computation cost of NED. The experimental results show
that the cost of retrieving similar trajectories can be greatly reduced
when the modified frequency distance is used as a filter.

1 Introduction

With the growth of mobile computing and the development of computer vi-
sion techniques, it has become possible to trace the trajectories of moving
objects in real life and in videos. A number of interesting applications have
been developed based on the analysis of trajectories. For example, using a
GPS system, and by mining the trajectories of animals in a large farming
area, it is possible to determine migration patterns of certain groups of ani-
mals. In sports videos, such as hockey, it is quite useful for coaches or sports
researchers to know the movement patterns of top players. In a store surveil-
lance video monitoring system, finding the customers’ movement patterns
may help in the arrangement of merchandise. All of these applications re-
quire the definition of an accurate and robust similarity measure to determine
similarity among trajectories.

The trajectory of a moving object is defined as the successive positions
of the moving object over a period of time. Therefore, trajectories can be
considered as two (X−Y plane) or three (X−Y −Z plane) dimensional time
series data. Considerable research has been conducted on similarity-based

2

retrieval on one dimensional time series data, such as stock or commodity
prices, sales volume, weather data and biomedical measurements [1, 13, 14,
18, 19, 23, 24, 30]. A question that can be easily raised is: “Can we apply
these techniques for one dimensional time series data to trajectories?” The
answer is unfortunately, negative; directly applying these techniques will not
get satisfactory results. The reason is that trajectories of moving objects have
their own characteristics, which will be briefly introduced in next section.

1.1 Characteristics of Trajectories

Compared to one dimensional time series data, trajectories of moving objects
have the following differences:

• Trajectories are always two or three dimensional. Since each point of
a trajectory is represented as a vector in two or three dimensions, di-
mensionality reduction techniques for one dimensional time series data,
such as Discrete Fourier Transform (DFT) [1], Discrete Wavelet Trans-
form (DWT) [19, 23], Single Value Decomposition (SVD) [13, 18] and
Piece-Wise Aggregate Approximation (PAA) [14, 30], cannot be applied
to trajectories. Naively treating each dimension of the moving object
positions independently, the trajectories can be considered as two or
three one-dimensional time series data. However applying dimension-
ality reduction techniques independently on each of the dimensions will
lead to the loss of valuable information on the interdependency among
the dimensions embedded in the positions of a trajectory.

• Trajectories may have many outliers. Unlike stock, weather, or com-
modity price data, trajectories of moving objects are captured by record-
ing the positions of the objects from time to time (or tracing the moving
object from frame-to-frame in video data). Therefore, due to sensor
failures or errors in detection techniques, many outliers may appear.
The similarity measures for one dimensional time series data, such as
Euclidean distance [1] and Dynamic Time Warping (DTW) [31] are
very sensitive to noise and can not be applied to trajectories [26].

• Similar movement patterns may appear in different spatial regions of
trajectories. Different sampling rates of tracking and recording devices
combined with different speeds of the moving objects may introduce
various local scaling and shifting factors into trajectories. Several tech-
niques have been proposed to remove the shifting and scaling effects by
introducing shifting and scaling functions [5, 6]. Unfortunately, these
techniques work fine for global shifting and scaling but not for the local
shifting and scaling in movement patterns that appear in the trajecto-
ries.

After reviewing the complex characteristics of trajectory data, a question
comes to our mind is “can we find a suitable similarity measure which takes

3

these characteristics into consideration when we compare trajectories?” Fur-
thermore, with the proposed similarity measure, “how can we improve the
retrieval efficiency?” We will address these two questions in our paper.

1.2 Accurate and Robust Similarity Measures for Tra-

jectories

0 200 400 600 800 1000 1200 1400 1600
−600

−400

−200

0

200

400

600

LCSS
normalized

(T
A
, T

B
) = 0.36

T
B

T
A

(a)

0 500 1000 1500 2000 2500
−600

−400

−200

0

200

400

600

LCSS
normalized

(T
A
, T

C
) = 0.36

gap

T
A

T
C

(b)

Figure 1: A comparison of trajectories with the same normalized LCSS but
different gap sizes

Recently, Longest Common Subsequence (LCSS) has been proposed to
measure the similarity between trajectories [26]. Compared to DTW and
Euclidean distance, LCSS allows the matching sequence to stretch and some
elements to be unmatched, which makes it robust to noise [26]. However,
LCSS has difficulties in differentiating the sequences that have the longest
common subsequences of the same length but different sizes of gaps in be-
tween. Figure 1 shows an example of this case1, where the normalized LCSS

1The original trajectory data are two dimensional. For clarity, in the figures, we only

4

score [26] between trajectories TA and TB (Figure 1(a)) is the same as that
between TA and TC (Figure 1(b)). However, by comparing the three trajec-
tories (the horizontal grey lines are used to show the common subsequences
between two trajectories), it quite clear that TA is more similar to TB than
to TC .

In this paper, we define a distance measure called Normalized Edit Dis-
tance (NED) to measure the similarity between two trajectories. NED is
based on Edit Distance (ED) [20], which is widely used in bio-informatics
and speech recognition to measure the similarity between two strings. In
contrast to LCSS, NED considers the gaps in between subsequences as well
as the subsequences themselves. For example, for the trajectories shown in
Figure 1, the value of NED between TA and TB is 0.7 and 0.78 for TA and
TC (the detailed definition of NED is given in Section 2), which conform to
the perceptual similarity that TA is similar to TB than to TC .

However, the space and time cost of computing NED is very high, in-
creasing the retrieval cost as a consequence. Since edit distance is originally
defined for strings, it seems possible to convert the real-valued trajectory data
into strings and utilize the well defined algorithms and embedded distance
functions of strings to improve the retrieval efficiency. Thus, we propose a
novel trajectory representation, called movement pattern strings (MPS). A
MPS is derived from a trajectory by quantizing the (movement direction,
distance ratio) space into a set of distinct equal-sized subregions and rep-
resenting each subregion by a symbol. Most importantly, the NED that is
computed from two MPSs establishes the lower bound of the NED of two
original sequences of movement direction and distance pairs, which guaran-
tees that no dismissals will be introduced using the symbolic representation.
Furthermore, we define a modified frequency distance (MFD) between two
frequency vectors (FV) of movement pattern strings to reduce the cost of
CPU time on computing NED of two movement sequences. A normalized
MFD (NMFD) between two FVs is also the lower bound of NED between
two trajectories. Therefore, we can directly use FV as a filter to remove the
false candidates during the retrieval.

1.3 Our Main Contributions

The main contributions of our paper are the following:

1. We define a distance measure, NED, based on ED, to measure the
similarity between two trajectories. NED is more robust than DTW
and Euclidean distance and more accurate than LCSS.

2. We develop a transformation scheme to convert a trajectory into a
symbolic representation, called movement pattern strings, and prove
that the NED that is computed over a symbolic space is the lower

show one dimension.

5

bound of the NED of real trajectory data. A movement pattern string
is transformed from a sequence of (movement direction, distance ratio)
pairs, which makes this representation invariant to spatial rotation,
scaling and shifting.

3. We propose a modified frequency distance, MFD, as a distance measure
of frequency vectors that are obtained from movement pattern strings.
We also prove that the normalized MFD of frequency vectors is the
lower bound of NED of real movement sequences, which reduces the
computation cost of NED.

1.4 Organization of the Paper

The rest of the paper is arranged as follows: Section 2 introduces our dis-
tance measure NED, and also briefly presents some definitions. In Section 3,
we present our symbolic representation of trajectories and prove the lower
bound property. Section 4 introduces the modified frequency distances fol-
lowed by experimental results comparing NED with three other similarity
measures in terms of their efficacy and robustness in classification and clus-
tering trajectories and the retrieval efficiency of our symbolic representation
and frequency vectors in Section 5. Section 6 provides a in depth comparison
with the related work. We conclude in Section 7 and indicate some further
work.

2 Normalized Edit Distance

In this section, we first give the formal definitions of trajectories, sequences of
(movement direction, distance ratio) pairs, we then introduce our similarity
model, the Normalized Edit Distance between two trajectories.

2.1 Preliminaries

In the following, we assume that objects are points that move in a two-
dimensional space (x − y plane) and that time is discrete.

Definition 1 Given a moving object A, its trajectory trajectory, TA, is
defined as a sequence of pairs with each pair showing the position of object
A in the x − y plane:

TA = [(xa,1, ya,1), . . . , (xa,n, ya,n)]

Here n, the number of positions in TA, is defined as the length of TA.
We refer to TA as the raw representation of the trajectory, since this is

the most likely data format that we can get from tracing sensor or extrac-
tion techniques. However, directly using this raw representation to compare

6

trajectories will not find the trajectories with similar movement but differ-
ent spatial rotation, shifting, or scaling factors. For example, in Figure 2,
three trajectories are shown: TB can be derived from TA by scaling its x
and y positions by a factor of 2, while TC is translated from TB by shift-
ing its x and y positions by 1. Three trajectories have similar movement
patterns, however, comparing their raw representations, (which are: TA =
[(3.5, 4.5), (1.5, 2.5), (2.5, 3.5), (2, 3), (3, 4)], TB = [(7, 9), (3, 5), (5, 7), (4, 6), (6, 8)],
and TC = [(8, 10), (4, 6), (6, 8),
(5, 7), (7, 9)].) can not lead to a conclusion that they are similar unless scal-
ing or shifting factors are introduced in the similarity measures. However,
this will increase the cost for computing the similarity measure (e.g. in [26],
by only introducing the shifting factors in LCSS, the computation cost is
increased by O(n), where n is the length of the trajectory).

0 1 2 3 4 5 6

0

2

4

6

8

10
0

2

4

6

8

10

time

X position

Y
 p

os
iti

on

T
A

T
B

T
C

Figure 2: The trajectories with different scaling and shifting factors share
similar movement pattern

Thus, instead of directly using raw representation of trajectories, we rep-
resent them by means of a sequence of (movement direction, distance ratio)
pairs. This representation is not affected by rotation, shifting or scaling [22].

Definition 2 Given a moving object A and its trajectory TA of length
n (n > 1), the sequence of (movement direction, distance ratio) pair MA is
defined as a sequence of pairs:

MA = [(θa,1, σa,1), . . . , (θa,m, σa,m)]

where m = n − 1 and n is the length of TA. The movement direction θa,i is

7

θa,i =

arctan(
ya,(i+1)−ya,i

xa,(i+1)−xa,i
) xa,(i+1) − xa,i ≥ 0,

arctan(
ya,(i+1)−ya,i

xa,(i+1)−xa,i
) − π ya,(i+1) − ya,i ≤ 0 and

xa,(i+1) − xa,i < 0,

arctan(
ya,(i+1)−ya,i

xa,(i+1)−xa,i
) + π ya,(i+1) − ya,i > 0 and

xa,(i+1) − xa,i < 0.

The movement distance ratio σa,i is

σa,i =

{

√
(ya,(i+1)−ya,i)2+(xa,(i+1)−xa,i)2

TD(TA)
TD(TA) 6= 0

0 0

where the total movement distance of TA is

TD(TA) =
∑

1≤j≤n−1

√

(ya,(j+1) − ya,j)2 + (xa,(j+1) − xa,j)2

Base on this definition, we know that θa,i ranges from −π to π and σa,i

ranges from 0 to 1. We use MA(n) to denote the sequence [(θa,1, σa,1), . . . , (θa,n, σa,n)]
where n is the length of the sequence. All three example trajectories in Fig-
ure 2 have the same sequence of (movement direction, distance ration) pairs,
which conforms to the fact that they have similar movement patterns.

In the rest of this paper, we use the terms “movement sequence” or “se-
quence” interchangeably to refer to the sequence of (movement direction,
distance ratio) pairs unless specified otherwise.

2.2 Normalized Edit Distance Definition

We introduce a similarity measure, called normalized edit distance (NED),
which considers gaps within sequences. It does this by counting similar sub-
sequences and assigning penalties to the gaps in between these subsequences.
Since movement sequences are not strings but numerical value pair sequences,
we first have to define the cases which element pairs of different movement
sequences match. We introduce two thresholds εdir and εdis to that end: εdir

is used to determine whether two movement directions match and εdis is for
determining the similarity of two movement distance ratios.

Definition 3 Two (movement direction, distance ratio) pairs (θa,i, σa,i)
and (θb,j, σb,j) are said to match if and only if |θa,i − θb,j| ≤ εdir and |σa,i −
σb,j| ≤ εdis. This is specified as predicate match((θa,i, σa,i), (θb,j, σb,j)).

Based on the definition of match, we define edit distance between two
movement sequences.

8

Definition 4 Given two moving objects A and B and their movement
sequences MA of length n and MB of length m, respectively, the edit distance
(ED) between MA and MB is the number of insert, delete, or replace oper-
ations that is needed to change MA into MB. ED(MA(n),MB(m)) can be
computed as follows:

n if m = 0;

m if n = 0;

ED(MA(n − 1),MB(m − 1))

if match((θa,i, σa,i), (θb,j, σb,j))

min[ED(MA(n − 1),MB(m − 1)) + 1,

ED(MA(n − 1),MB(m)) + 1,

ED(MA(n),MB(m − 1)) + 1]

otherwise

In Definition 4, we assume that the cost of replace, insert, or delete oper-
ations is only 1, which corresponds to the original definition of edit distance
[20]. The value of ED depends on the length of compared sequences, which
is a dependency that we wish to remove. Therefore, we define normalized
edit distance, which is the distance measure that we use in this paper.

Definition 5 The normalized edit distance (NED) between two movement
sequences MA and MB is defined as:

NED(MA(n),MB(m)) =

{

0 if m = n = 0;
ED(MA(n),MB(m))

max(m,n)
otherwise

since the maximum number of operations to transfer MA to MB is the max-
imum length of the two sequences.

DTW also be assigns penalties to gaps in between subsequences (requires
all the elements in the matching sequences to match and sums the differ-
ences), however, in case of NED, the penalties are only related to the length
of the gap (each penalty scores 1), while the penalties computed from DTW
are related to both the values of the matched elements and the length of the
gap (each penalty scores the difference between two matched elements). This
causes DTW to be very sensitive to noise data. For example, given three
one dimensional sequences (for simplicity, we use one dimensional data),
s1 = [0.1, 0.2, 0.3], s2 = [0.1, 0.2, 2.3, 0.3] and s3 = [0.1, 0.2, 0.4, 0.4, 0.4.0.3],
the perceptual similarity is that s1 is more similar to s2 than it is to s3 (the
value 2.3 is a possible noise point). The DTW distance between s1 and s2 is
4, and 0.03 for s1 and s3, implying that s1 is more similar to s3 than to s2,
which contradicts the perceptual similarity. The distances measured by NED
between these pairs are 1

7
for s1, s2 and 1

3
for s1, s3, which is closer to the

perceptual similarity. Incidentally, the LCSS distances between two example

9

pairs of sequences are same, which is better than DTW, but less accurate
than NED in reflecting the perceptual similarity. In Section 5, we experi-
mentally show that, in terms of efficacy, NED is much better than LCSS,
Euclidean distance, and DTW.

Although NED is more accurate, its computation still costs O(n×m) time
and space [9] with dynamic programming, where n and m are the lengths of
the two sequences MA and MB, respectively. The time cost becomes critical
when the database of sequences is large. Moreover, NED is not a metric
because it does not follow the triangle inequality. For example, given three
movement sequences: MA = [(0, 0.4), (π

4
, 0.6)], MB = [(π

4
, 0.4), (π

2
, 0.6)], and

MC = [(π
2
, 0.4), (3π

4
, 0.6)] and εdir = π

4
, εdis = 0.125, NED(MA,MC) >

NED(MA,MB) + NED(MB,MC). As a consequence, traditional access
methods which assume that triangle inequality holds for the distance measure
can not be used to index NED without introducing false dismissals. There-
fore, in next two sections, we will discuss how to reduce the computation cost
of NED to improve the retrieval efficiency and without loosing the accuracy.

3 Symbolic Representation of Trajectories

Since edit distance was originally defined on strings for which many algo-
rithms, data structures, and embedded edit distance functions have been
developed, it is intuitive to think about the possibility of converting real
valued movement sequences into symbolic representation and applying the
string dimensionality reduction techniques to reduce the computation and
retrieval cost. Therefore, we propose a symbolic representation of movement
sequences. The basic idea is to quantize the (movement direction, distance
ratio) space and represent each subregion by a distinct symbol.

Figure 3: Probability distribution of movement directions of hokey players

As defined in Section 2, the values of (movement direction, distance ratio)
of an object range from −π to π and 0 to 1, respectively. We investigated
the movement direction distribution of three trajectory data sets, which are:

10

hockey players’ trajectories that are extracted from National Hockey League
(NHL) videos, the “Cameramouse”, and Australian Sign Language data sets
(the last two data sets are explained in detail in Section 5). We found that
movement directions of all three data sets are uniformly distributed. Figure
3 shows the values of the probability density function of movement directions
of NHL data, which shows that the movement direction of a hockey player
at each sampled position follows an uniform distribution. Based on these
observations, we divide the (movement direction, distance ratio) space into
equal sized subregions.

Figure 4: An example of (movement direction, distance ratio) quantization
map

Given εdir and εdis
2, we equally divide the two dimensional (movement

direction, distance ratio) space into (2π/εdir)
× (1.0/εdis) subregions and assign each subregion a distinct symbol. The
whole set of symbols makes up the movement pattern alphabet, which we de-
note as A = A1, A2, . . . , As, where the size of the movement pattern alphabet
is s = (2π/εdir) × (1.0/εdis). Once the two threshold values εdir and εdis are
given for the trajectory data, the size of movement pattern alphabet is fixed.
Ai is a distinct symbol that represents a subregion SBi of size εdir × εdis

(1 ≤ i ≤ s). Each subregion SBi is represented by two (movement direction,
distance ratio) pairs: (θbl,i, σbl,i) and (θur,i, σur,i), which are the bottom left
and upper right coordinates of SBi.

A quantization map (QM) that contains all the subregions and associated

2The values of εdir and εdis are application dependent. They must be given beforehand
to determine weather two elements match when we use NED or LCSS as a similarity
measure to query the trajectory data set.

11

Algorithm 1 The algorithm for mapping a (movement direction, distance
ratio) pair to a symbol

Require: /*input: (θ, σ), quantization map QM */
Ensure: /*output: mapped symbol*/
1: if σ == 1.0 /* boundary case, the movement distance ratio is 1.0*/

then

2: for each subregion SBi do

3: if θbl,i < θ ≤ θur,i and σbl,i ≤ σ ≤ σur,i then

4: return Ai

5: end if

6: end for

7: else

8: for each subregion SBi do

9: if θbl,i < θ ≤ θur,i and σbl,i ≤ σ < σur,i then

10: return Ai

11: end if

12: end for

13: end if

symbols is stored as a lookup table, and is used to convert (movement di-
rection, distance ratio) pairs into symbols and to obtain the neighbors for a
given symbol. The second function is used to compute the distance in the
converted symbolic space (Definitions 7 and 8). Figure 43 gives an example
quantization map, which divides (movement direction, distance ratio) space
into 64 subregions, each subregion corresponding to a movement symbol.

Once we quantize the (movement direction, distance ratio) space into
subregions and derive the movement alphabet A, we use Algorithm 1 to map
a (movement direction, distance ratio) pair (θ, σ) into a symbol. For exam-
ple, according to the quantization map in Figure 4, (π

3
, 0.16), (π

4
, 0.1), and

(−π
4
, 1.0) are mapped into symbols ‘N’, ‘E’, and ‘7’, respectively.

Definition 6 Given a movement sequence MA = [(θa,1,
σa,1), . . . , (θa,n, σa,n)] of length n and movement pattern alphabet A, a move-
ment pattern string (MPS) is defined as a sequence of symbols: Sa,1Sa,2 . . . Sa,n,
where each symbol Sa,i (1 ≤ i ≤ n) is mapped from the movement direction
and distance pair (θa,i, σa,i) according to A.

MPS retains the order of movement sequences by arranging the corre-
sponding symbols from left to right. We use MPSA(n) to denote the string
Sa,1Sa,2 . . . Sa,n. Figure 5 gives an example of converting a movement se-
quence MA = [(π

3
, 0, 16), (−π

4
, 0, 16), (π

6
, 0.33), (−π

3
, 0.33)] of TA to the move-

ment pattern string “NKUS” using movement pattern alphabet as given in
Figure 4.

3In Figure 4,εdir = π/4 and εdis = 0.125.

12

Figure 5: An example of converting a trajectory to a movement pattern
string

After converting movement sequences to MPSs, we can directly compute
the NED between two MPSs. Using the standard edit distance [20] does
not provide correctness. since the NED that is computed in this way is not
the lower bound of the NED of the original movement sequences. This is be-
cause the (movement direction, distance ratio) pairs that are located near the
boundary of quantization subregions may be assigned different symbols and
require a replace operation that is not needed in the original sequence compar-
ison. For example, given two movement sequences MA = [(0, 0.4), (π

4
, 0.6)],

MB = [(π
4
, 0.4), (π

2
, 0.6)] and εdir = π

4
, εdis = 0.125, the corresponding MPSs

are: MPSA = “bk” and MPSB = “cl”. NED between original movement
sequences MA and MB is 0, whereas the NED between MPSA and MPSB

that is computed based on the standard edit distance [20] is 1, which is not
the lower bound of 0. As a consequence, trajectory retrieval by using this
NED will introduce false dismissals, which is not allowed in applications that
require high accuracy. Therefore, we define a NED for MPSs, which is the
lower bound of the NED between original movement sequences. We need to
define the cases that two symbols approximately match.

Definition 7 Two symbols Ai and Aj are said to approximately match
(denoted by predicate ap match(Ai, Aj)), if and only if Ai == Aj or Ai is the
neighbor of Aj. Ai is a neighbor of Aj if the subregions that they represent
in the quantization map are directly connected. For example, according to
the quantization map in Figure 4, the neighbors of T are K, L, M, S, U, a,
b, c and the neighbors of A are H, B, P, I, J (note that movement directions
are in polar space).

Definition 8 The ED between two movement pattern strings MPSA and
MPSB of length n and m, respectively, is defined as the number of insert,
delete, or replace operations that is needed to change MPSA into MPSB:

13

(denoted as ED(MPSA(n),MPSB(m)))

n if m = 0;

m if n = 0;

ED(MPSA(n − 1),MPSB(m − 1))

if ap match(Sa,n, Sb,m)

min[ED(MPSA(n − 1),MPSB(m − 1)) + 1,

ED(MPSA(n − 1),MPSB(m)) + 1,

ED(MPSA(n),MPSB(m − 1)) + 1]

otherwise

The computation of NED on MPS is the same as that given in Definition
5. Now we need to prove that this NED of MPS is the lower bound to NED
of original movement sequences.

Lemma 1 Given two movement sequences MA and MB and their cor-
responding movement pattern strings MPSA and MPSB, let (θa,i, σa,i) and
(θb,j, σb,j) be two (movement direction, distance ratio) pairs of MA and MB,
respectively, and Sa,i and Sb,j be their corresponding symbols from MPSA

and MPSB. If match((θa,i, σa,i), (θb,j, σb,j)) = true, then ap match(Sa,i, Sb,j) =
true and if ap match(Sa,i,
Sb,j) = false, then match((θa,i, σa,i), (θb,j, σb,j)) = false.

Proof: During the process of mapping (movement direction, distance
ratio) pairs into symbols, there are only three cases that could happen:

1. Sa,i and Sb,j are the same symbol;

2. Sa,i and Sb,j are neighbors;

3. Sa,i and Sb,j are not neighbors;

If match((θa,i, σa,i), (θb,j, σb,j)) = true, Sa,i and Sb,j must be the same symbol
or neighbors. Otherwise there are at least one subregion gap between them
in the quantization map. From the definition of movement pattern alphabet,
the size of each subregion is εdir ∗ εdis. Thus, we have: |θa,i − θb,j| > εdir and
|σa,i − σb,j| > εdis, which contradict to match((θa,i, σa,i), (θb,j, σb,j)) = true.
Therefore, according to Definition 7, ap match(Sa,i, Sb,j) = true.

If ap match(Sa,i, Sb,j) = false, then Sa,i and Sb,j are not the same symbol
or neighbors. As above, we have: |θa,i − θb,j| > εdir and |σa,i − σb,j| > εdis.
According to Definition 7, match((θa,i, σa,i), (θb,j, σb,j)) = false. 2

Theorem 1 Given two movement sequences MA and MB, and their corre-
sponding movement pattern strings MPSA and MPSB, NED(MPSA,MPSB) ≤
NED(MA,MB).

14

Proof: Since the conversion from movement sequence to MPS will not
change the length, we only need to show: ED(MPSA,MPSB) ≤ ED(MA,MB).

Let #ap match denote the number of pairs of symbols in MPSA and
MPSB that approximately match (i.e., #ap match
= count(ap match(Sa,i, Sb,j) = true), Sa,i ∈ MPSA, Sb,j ∈ MPSB).

Let #match denote the number of (movement direction, movement dis-
tance ratio) pairs in MA and MB that match (i.e.,#match = count(match((θa,i, σa,i), (θb,j, σb,j)) =
true), (θa,i, σa,i) ∈ MA, (θb,j, σb,j) ∈ MB).

Define #ap match and #match as converses of these (i.e., count where
predicates are false). Then, according to Lemma 1, #ap match ≥ #match
and #ap match ≤ #match. Therefore the cost (in terms of number of edit
operations) of changing MPSA to MPSB is less than that of changing MA

to MB. 2

Converting movement sequences into MPS has several advantages:

1. MPSs require much less storage space compared to the original move-
ment sequences. For example, if each symbol in a MPS is stored as a
character, a movement pattern string only needs 1byte

8bytes
= 12.5% of the

storage space needed to store the original movement sequence (assum-
ing a character type needs 1 byte and floating type (real value) needs
4 bytes). As a consequence, the retrieval cost of a movement pattern
string should be less than its corresponding movement sequence.

2. According to Theorem 1, the NED of the two movement patterns
strings is the lower bound of the NED of this original sequences, which
guarantees that no false dismissals will be introduced when we use
movement patterns strings as a filter in answering queries such as k-
nearest neighbors. As mentioned in Section 1, two factors affect the
efficiency of retrieval: I/O cost and CPU cost. Using MPS as filter is
based on the assumption that the retrieval cost may be reduced due to
the smaller size of MPS compared to movement sequences. Algorithm 2
describes how MPS is used to answer 1-nearest neighbor query (1-NN).

3. Compared to movement sequences, movement pattern strings are one
dimensional strings, so the dimensionality reduction techniques for
strings can be applied to them. This is addressed in detail in the
next section.

4 Modified Frequency Distances

Even though we reduce the storage requirements by converting movement
sequences into movement pattern strings, the cost of computing the NED
between two MPSs is still O(n∗m), since the length of a movement sequence
and that of its corresponding movement pattern string are the same. There-
fore, directly using movement pattern strings as filter in retrieval trajectories

15

Algorithm 2 The algorithm for answering 1-NN query using MPS

Require: /*input: a query movement sequence MQ and its corresponding
movement pattern string MPSQ, quantization map QM*/

Ensure: /*output: the movement sequence that is the nearest neighbor of
MQ */

1: smallest distance = maxDistance
2: for each movement sequence Mi and its corresponding movement pattern

string MPSi in the database do

3: compute NED(MPSi,MPSQ)
4: if NED(MPSi,MPSQ) < smallest distance then

5: compute NED(Mi,MQ);
6: if NED(Mi,MQ) < smallest distance then

7: smallest distance = NED(Mi,MQ);
8: result = Mi

9: end if

10: end if

11: end for

12: return result

will not reduce the computation cost. In [12], Kahveci and Singh propose a
transformation of strings into a multidimensional integer space by mapping
them to their frequency vectors (FV). They prove that the frequency distance
(FD) between the FVs of two strings is the lower bound of the actual edit
distance. The definitions of the frequency vector, the frequency distance and
the their theorem are as following [12]:

Definition 9 Given a string S from the alphabet A = A1, A2, . . . , As, let
ni be the number of occurrences of character Ai in S for 1 ≤ i ≤ s. The
frequency vector f(s) of s is: f(s) = [n1, n2, . . . , ns].

Definition 10 Let u and v be integer points in s dimensional space,
The frequency distance FD(u, v) between u and v is defined as the minimum
number of steps that is required to go from u to v (or equivalently from v to
u) by moving to a neighbor point at each step. u and v are neighbors if one
of them can be obtained from the other using a single edit operation.4

Theorem 2 Let SA and SB be two strings from the alphabet A =
A1, A2, . . . , As, then FD(f(SA), f(SB)) ≤ ED′(SA, SB).

Their proof uses standard edit distance [20] between strings (Let us de-
noted by ED′ for simplicity of expositor). In contrast to ED of two MPS

4In [12], the frequency distance is defined on first one or two wavelet coefficients and
the dimensionality of corresponding transformed integer space is s or 2s. We select the
frequency distance that is defined on first one wavelet coefficient (frequency vector) because
of its low dimensionality.

16

that is based on the concept of approximately match (Definition 7), ED′

is computed based on the equality of two symbols. Therefore their results
can not be directly applied to MPS. In order to reduce the dimensionality
of MPS, we define a modified frequency distance (MFD) as an extension of
frequency distance.

Definition 11 Let u and v be integer points in s- dimensional space.
The modified frequency distance MFD(u, v) between u and v is defined as
the minimum number of steps required to go from u to v (or equivalently
from v to u) by moving to a next-to-neighbor point at each step. u and v
are next-to-neighbors if one of them can be obtained from the other using
two single edit operations (one to become a neighbor and a second one for a
match). Similar to NED’s definition (Definition 5), we define the normalized
MFD (NMFD) by dividing MFD by the sum of lengths of two compared
sequences.

Compared to FD, MFD takes boundary cases into consideration, which
corresponds to the approximately match concept defined in Definition 7.

Theorem 3 If MPSA and MPSB are two strings from the movement
pattern alphabet A = A1, A2, . . . , As, then MFD(f(MPSA), f(MPSB)) ≤
ED(MPSA,MPSB), where f(Si) is the FV of string Si as defined in Defi-
nition 10.

Proof A straightforward extension of proof of Theorem 2 in [12].
Based on Theorem 2 and Theorem 3, we have:

Corollary 1 Given two movement sequences MA and MB of length n and
m and their corresponding movement pattern strings MPSA and MPSB,
NMFD(f(MPSA), f(MPSB))
≤ NED(MA,MB).

Corollary 1 is exciting, because it proves that the NMFD between two
FVs of MPSA and MPSB is the lower bound of the NED between the corre-
sponding movement sequences. Therefore, in order to answer queries such as
k-nearest neighbor queries, instead of directly computing the NED of move-
ment sequences, we can compute the NMFD to prune out false candidates
from the database. Most importantly, the computation cost of NMFD is
linear! Algorithm 3 computes NMFD between two FVs. The nested for
loops in the algorithm may suggest that the computation time of NMFD is
non-linear. However, as the number of neighbors of each integer point in the
frequency space is limited (at most 8), the computation time of Algorithm 3
is still linear. Our experimental results also confirm this. Using FV as filter
further reduces the retrieval cost since the dimensionality of FV is usually
smaller compared to that of movement sequences. Algorithm 4 answers 1-NN
query using FV.

17

Algorithm 3 The algorithm for computing the NMFD

Require: /*input: s dimensional integer points u and v, lengths of compared
sequences len1 and len2, quantization map QM*/

Ensure: /*output: the value of NMFD */
1: posDist=0, negDist=0
2: for each i=1 to s do

3: ui = ui − vi;
4: end for

5: for i=1 to s do

6: if ui 6= 0 then

7: for each neighbor uj of ui do

8: if (ui ∗ uj < 0) then

9: if abs(ui) > abs(uj) then

10: ui = ui + uj, uj = 0
11: else

12: uj = uj + ui, ui = 0
13: end if

14: end if

15: end for

16: end if

17: end for

18: for i=1 to s do

19: if ui > 0 then

20: posDist+ = ui

21: else

22: negDist+ = (−ui)
23: end if

24: end for

25: if posDis > negDist then

26: return posDist/(len1 + len2)
27: else

28: return negDist/(len2 + len2)
29: end if

5 Experiments

In this section, we present the experimental results on testing the efficacy and
robustness of NED and retrieval efficiency using MPS and frequency vectors.
All experiments were run on a Sun-Blade-1000 workstation with 1G memory
under Solaris 2.8.

18

Algorithm 4 The algorithm for answering 1-NN query using FV

Require: /*input: a query movement sequence MQ and its corresponding
feature vector uQ, quantization map QM*/

Ensure: /*output: the movement sequence that is the nearest neighbor of
MQ */

1: smallest distance = maxDistance
2: for each movement sequence Mi and its corresponding feature vector ui

in the database do

3: compute NMFD(ui, uQ)
4: if NMFD(ui, uQ) < smallest distance then

5: compute NED(Mi,MQ);
6: if NED(Mi,MQ) < smallest distance then

7: smallest distance = NED(Mi,MQ);
8: result = Mi

9: end if

10: end if

11: end for

12: return result

5.1 Efficacy and Robustness of NED

We conduct experiments to test the efficacy of NED compared to DTW [22],
LCSS [26] and Euclidean Distance [29]. According to a recent survey on
time series data [16], the efficacy of a similarity measure can be evaluated
by clustering and classification results on labelled data sets. Therefore, in
our first experiment, we perform hierarchy clustering using four similarity
measures on two labelled data sets.

In order to test the robustness of the four similarity measures, two la-
belled trajectory data sets are generated from the “Cameramouse” [8] and
the Australian Sign Language (ASL)5 data sets by adding interpolated Gaus-
sian noise (about 10-15% of the length of trajectories) and time warping [27].
The “Cameramouse” data set contains 15 trajectories of 5 words (3 for each
word) obtained by tracking the tip of finger when people “write” various
words. The ASL data set from UCI data archive consists of samples of Aus-
tralian Sign Language signs. 95 signs are collected for 5 different writers.
We extract 5 recording for each of following 10 words: “Norway”, “cold”,
“crazy”, “eat”, “forget”, “happy”, “innocent”, “later”, “lose”, and “spend”,
which are used in [17, 26]. The raw trajectories in both data sets are con-
verted into movement direction and distance sequences. For each data set,
we take all possible pairs of words and use the “complete linkage” hierarchy
clustering algorithm [11], which produces the best clustering results [26] to
partition them into two clusters. We draw the dendrogram of each clustered
result to see whether it correctly partitions the trajectories.

5http://kdd.ics.uci.edu

19

Since εdir and εdis are data and application dependent, we run the exper-
iments with different values of εdir and εdis for two data sets. We find that
for ASL data, we get best results for LCSS and NED when εdir = 0.167π and
εdis = 0.1 ∗ σmax, where σmax is the maximum value of movement distance
ratio in the data set, which can be obtained when we convert raw trajecto-
ries to movement sequences. For “Cameramouse” data set, εdir = 0.1π and
εdis = 0.1 ∗ σmax. Since the Euclidean distance requires compared sequences
with the same length, we use the same strategy that is used in [26], where the
shorter of the two trajectories is slid along the longer one and the minimum
distance is recorded. We report the best result of each measure in Table 1.

Correct
clustering
results

Euclidean
dis-
tance

DTW LCSS NED NED
(mps)

Cameramouse
(total 10
correct)

2 7 8 10 10

ASL (total
45 correct)

4 8 15 22 21

Table 1: Clustering results of four similarity measures

As we expect, the results show that NED outperforms the other three
measures on both data sets. Since Euclidean distance is very sensitive to
local time warping and noise, it has the poorest performance among four
measures. DTW performs better than Euclidean distance, because it allows
for the local time warping. However, it requires all the data in the sequence
to match-even the noise data-leading to a number of wrong clusterings. LCSS
is better than DTW, since it only counts the longest common subsequence,
which removes the noise effect. However, because LCSS does not assign
penalties to the gaps in between similar subsequences, trajectories from dif-
ferent words to be clustered together. NED overcomes the shortcomings of
LCSS. The NED(mps) column in Table 1 shows the clustering results using
MPS that are obtained from the corresponding movement sequences. Due to
the lower bound property of NED on MPS, clustering on it achieves nearly
the same number of correct results as that of clustering on original movement
sequences.

From Table 1, we also find that, compared to LCSS, the improvement
obtained by NED on “Cameramouse” data is less than that on ASL data
(8-10 v.s. 15-22). This is due to the different lengths of trajectories. The
longer the length of the trajectory, the less effect that gap penalties have in
computing the similarity. The average length of “cameramouse” and ASL
data are 1103 and 65, respectively. Regardless of the similarity measure we
used, the number of correctly found clusters in ASL data set is less than half
of the total clusterings (45). This is because the data length of ASL data is

20

relatively small and some trajectories from different words are quite similar
to each other.

In our second experiment, we carry out simple classification using 1-
Nearest Neighbor with four similarity measures and test the classification
results using the “leave one out” verification mechanism [16]. The error rate
is the ratio of number of wrong classifications to the total number of tra-
jectories in the data set. We used the same program as in Experiment 1 to
generate more sample data based on ASL and “Cameramouse”. The data set
that is generated from “Cameramouse” contains 5 classes and 30 examples
of each class, and the one from ASL data contains 10 classes where each
class has 50 examples. The values of εdir and εdis are the same as in the first
experiment. Table 2 reports the results. NED again performs best among
the four similarity measures. The classification results on MPS using NED
(NED(mps) column) are also better than the other three.

Error
Rate (%)

Euclidean
dis-
tance

DTW LCSS NED NED
(mps)

Cameramouse57 34 25 14 18

ASL 67 42 24 18 21

Table 2: Error rates of classification results of four similarity measures

To summarize, compared to Euclidean distance, DTW, and LCSS, NED
is more effective and robustness for measuring the similarity between two
trajectories that contain noise and local time shifts. The gap penalties of
NED have less effect on the longer trajectories. MPS can effectively capture
movement pattern of real movement sequences.

5.2 Efficiency of MPS and FV in Retrieval

As shown in Algorithms 2 and 4, both MPS and FV can be used as filters to
remove false candidates before computing NED on real movement sequences.
The aim of filtering is to remove as many false candidates as possible to re-
duce the retrieval and computation cost. Therefore, in our third experiment,
we use pruning power as a measure of the filtering effect of MPS and FV.
The pruning power is measured by P , which is defined as the fraction of the
data set that must be examined before we can guarantee that the answer to
1-NN is found [15].

P = number of movement sequence that required to compute NED
total number of movement sequences in the data set

Besides ASL and “Cameramouse” data sets that are used in Experiment
2, we add three more data sets. The first two are synthetic trajectories
that are generated by the program used in [29]. The first synthetic data set

21

(SYN1) contains 500 trajectories and the length of each trajectory is 128.
The second synthetic data set (SYN2) has 500 trajectories and the length of
each trajectory is 512. The program generates the trajectories by simulating
the change in moving speeds and directions when people walk freely on a
plane. The frequencies of the changes in these values are altered randomly
in order to generate complex moving shapes. The trajectories are limited to
an area of fixed size (500x500) and the movement directions follow a uniform
distribution. The third data set contains 589 trajectories of hockey players,
which were extracted from NHL videos. The length of each trajectory is 256.

For each data set, we randomly select 10% of the sequences as query data.
A randomly selected movement sequence and its MPS and FV are used to
conduct a 1-NN query using Algorithms 2 and 4. Results are averaged over
50 queries. For SYN1, SYN2, NHL and “Cameramouse” data sets, we use
εdir = 0.1π and εdis = 0.1 ∗ σmax, and εdir = 0.167π and εdis = 0.1 ∗ σmax

for ASL data set. Figure 6 reports the pruning power of MPS and FV on
different data sets. The x-axis is used to denote different data sets that are
arranged from left to right according to their average data length.

ASL SYN1 NHL SYN2 CAM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P

MPS
FV

Figure 6: The pruning power of MPS vs. FV using data sets with different
lengths

As shown in Figure 6, the pruning power of MPS is much higher than FV
for all data sets, because MPS keeps the sequence order information of the
original movement sequence while FV does not (only count the frequency).
This also explains why the pruning power of FV drops much faster than
MPS with increasing trajectory length. MPS has quite stable pruning power
over trajectory length, because it maintains in the strings, the order of the
corresponding (movement direction, distance ratio) pairs, and its ability to
remove a lot of false candidates due to its consideration of neighbors of each
symbol.

Based on pruning power, it seems that MPS is better than FV; however,
the computation cost of NED on MPS is the same as that on movement

22

sequences, which is quadratic, while the computation of NMFD is linear!
Therefore, we conduct a fourth experiment to check the retrieval efficiency of
MPS and FV in terms of total time that is spent on answering 1-NN queries.
Here the total time refers to the time that is spent on data retrieval and the
time that is spent on computing the distance measures. Because the real data
set we obtained is quite small, we use the same program as in Experiment
3 to generate 5 synthetic data sets with trajectory lengths ranging from 64
to 1024. Each data set contains 10,000 trajectories. As in experiment 3, we
randomly select 10% of the sequences as query data and conduct 1-NN queries
using MPS and FV (mps-scan and fv-scan), respectively. We also run the
queries using linear-scan, which sequentially scans the movement sequences
and computes NED. All the results are averaged over 50 queries. The same
values are used for εdir and εdis as those for synthetic data in Experiment 3.
Figure 7 shows the total time of different methods on different data sets.

64 128 256 512 1024
10

0

10
1

10
2

10
3

10
4

trajectory length

to
ta

l t
im

e(
se

c)
 (l

og
 s

ca
le

 w
ith

 b
as

e
10

)

linear−scan
mps−scan
fv−scan

Figure 7: Comparison of total time of three methods using synthetic data
sets with different lengths

From Figure 7, we can see that mps-scan is the worst among the three!
This is quite reasonable, because NED is not a metric; thus, the mps-scan has
to scan all the MPSs in the databases and compute the NED between them
in addition to computing the NED for the candidate movement sequences,
since the cost of computing NED on MPS and NED on movement sequences
are the same (even though in terms of comparing each element data of the
sequences, MPS only requires one and a movement sequence requires two,
with respect to the total computation cost, this one comparison saving can be
ignored), the total time that is spent by mps-scan is more than that of linear-
scan. Even though fv-scan also has to scan all the FVs and compute NMFD
between them, the computation cost of NMFD is only linear which leads
fv-scan to save significant CPU time. This is reflected very well in Figure 7.
Especially when the trajectory length is shorter, the higher pruning power

23

of FV results in bigger improvements over linear-scan. We observe the same
phenomena as in Experiment 3: when the trajectory length becomes longer,
the improvement brought by fv-scan degrades quickly.

In the last experiment, we test the scalability of fv-scan with different
sizes of data sets. We run 1-NN queries using fv-scan and linear-scan on 5
synthetic data sets with sizes ranging from 1,000 to 100,000. The trajectory
lengths in all data sets are the same, which is 256. Since mps-scan always
performs worse than linear-scan, we do not include it in this experiment. We
use the same set up for εdir and εdis as in Experiment 4. The results are
shown in Figure 8.

1000 5000 10000 50000 100000
10

1

10
2

10
3

10
4

database size

to
ta

l t
im

e(
se

c)
 (l

og
 s

ca
le

 w
ith

 b
as

e
10

)

linear−scan
fv−scan

Figure 8: Comparison of total time of fv-scan and linear-scan using synthetic
data sets with different sizes

In Figure 8, we can see that fv-scan scales smoothly with the increasing
database size and it always takes nearly half of the total time of linear-scan
(note that the y-axis scale is logarithmic).

Based on the experiments on retrieval efficiency of MPS and FV, we draw
the following conclusions:

1. In terms of pruning power, MPS is more efficient than FV to remove
false candidates, since MPS keeps the relative temporal order of ele-
ments in the movement sequence.

2. In terms of total retrieval efficiency, FV is much better than MPS due
to the linearity of the computation cost of FV as opposed to quadratic
cost for MPS.

3. Using FV as a filter can save nearly 2-10 (trajectory length ranges
from 60-600) times of the retrieval cost compared to that of linear scan
without the filter.

24

4. For trajectory data sets with longer length (e.g. the length is greater
than 1,000), the pruning power of FV decreases. One possible way to
address this issue is to segment the movement sequences of the data set
into disjoint subsequences that can be handled by the FV filter. The
query sequence is also segmented in the same way. We search the data
set with each subsequence using FV as a filter and merge the results
from each subsequence.

5. The pruning power of FV scales well with the increasing of database
size.

6 Related Work

Very limited work has been done on multidimensional time-series data. Bozkaya
et al. [3] present a modified version of longest common subsequences to com-
pute the distance between two sequences. In order to answer the similarity-
based queries efficiently, an index scheme was designed based on the lengths
of the sequences and relative distances between sequences. However, they
focused on retrieving sequences of feature vectors extracted from image se-
quences. Lee et al. [25] used the distance of minimum bounding rectangle
to compute the distance between two multidimensional sequences. Even
though they could achieve very high recall, the distance measure could not
avoid false dismissals. Euclidean distances were used as the similarity metric
in [25, 29], but, as argued earlier, this metric is not robust to noise or time
shifting which often appear in trajectory data. Chen and Chang [4] used
wavelet transform to decompose raw object trajectories (position sequences)
into components at different scale. Global motion was described by coarsest
scale components and finer components were used to partition the trajec-
tory into sub-trajectories. Each sub-trajectory was characterized by a set of
spatial and temporal attributes. However, the matching precision of their
approach highly depends on the segmentation results.

Recently, Little and Gu [22] used the path and speed curves to represent
the motion trajectories and measured the distance between two trajectories
using DTW. However, DTW requires continuity along the wrapping path,
which makes it sensitive to noise data and it is unable to find trajectories
with similar shapes but with dissimilar gaps in between. Vlachos et al. [26]
used LCSS to compare two trajectories. Compared with DTW, LCSS allows
gaps to exist between similar shapes in the sequences. The similarity measure
that we propose takes the longest common subsequences, gap penalties and
compared sequence lengths into consideration.

Several approaches have been proposed to represent one dimensional time
series data in symbolic form. Agrawal et al. [2] proposed SDL, which was a
language for describing and retrieving the “shape” of one dimensional time
series. The “shape” was defined based on the difference of every two con-

25

secutive values, which was quantized and represented by a distinct symbol.
Huang and Yu [10] proposed IMPACT algorithm to transform time series
data into symbol strings using change ratios between consecutive values. Lin
et al. [21] proposed a symbolic representation of one dimensional time series
data by first transforming it into piecewise aggregate approximation. They
defined a new distance function between the symbolic representation which
is the lower bound of the Euclidean distance between original time series
data. A few approaches have been proposed in computer vision [7, 28] to
represent trajectories by chain code. However, they only encoded the move-
ment direction into the string, and discarded the information on movement
distances.

Compared to the previous work on symbolic representation, our approach
focuses on two dimensional trajectory data. MPSs are obtained from se-
quences of (movement direction, distance ratio), which encode both move-
ment direction and distance into strings and are invariant to spatial scaling,
rotation and translation. Most importantly, we prove that the NED com-
puted on MPS is the lower bound of the NED that is computed on original
movement sequences, which guarantees that no false dismissals will be in-
troduced during the retrieval. Furthermore, we define NMFD between two
frequency vectors and use frequency vectors as filters to save the cost of CPU
time on computing NED.

7 Conclusions and Future Work

In this paper, we argue that an accurate and robust similarity measure is
needed for searching similar trajectories in the database. Towards this end,
we define a new similarity measure, called normalized edit distance (NED)
to measure the similarity between trajectories of moving objects. Then, we
propose a novel symbolic representation of object trajectories in order to re-
duce the computing cost of NED. Finally, we define the modified frequency
distance (MFD) between two frequency vectors and prove that normalized
MFD (NMFD) is the lower bound of NED between original sequences. This
results means that, during the similarity-based retrieval, we can use the fre-
quency vector as a filter to prune out the false candidates before we compute
the NED between movement sequences. Our experimental results confirm
that NED is a suitable and superior similarity measure for trajectory data
and feature vector with NMFD can effectively reduce the false candidates in
trajectory retrieval.

Future work includes the following problems:

1. Finding an embedding method, which keeps both the lower bound prop-
erty and the temporal order of elements in the strings.

2. Defining a new metric distance function in the embedded space.

26

3. Developing an indexing structure for the new metric distance.

4. Investigating the mechanisms to handle sub-trajectory matching effi-
ciently.

Acknowledgements: Thanks to Michalis Vlachos, Yutaka Yanagisawa,
and Eamonn Keogh for providing their source codes or data sets. This re-
search is funded by Intelligent Robotics and Information Systems (IRIS), a
Network of Center of Excellence of the Government of Canada.

References

[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search
in sequence databases. In Proc. 4th Int. Conf. of Foundations of Data
Organization and Algorithms, pages 69–84, 1993.

[2] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zäıt. Querying shapes
of histories. In Proc. 21th Int. Conf. on Very Large Data Bases, pages
502–514, 1995.

[3] T. Bozkaya, N. Yazdani, and Z. M. Ozsoyoglu. Matching and indexing
sequences of different lengths. In Proc. 6th Int. Conf. on Information
and Knowledge Management, pages 128–135, 1997.

[4] W. Chen and S-F. Chang. Motion trajectory matching of video objects.
In Proc. 12th Int. Symp. on Storage and Retrieval for Image and Video
Databases (SPIE), pages 544–553, 2000.

[5] K. K-W Chu and M. H. Wong. Fast time-series searching with scaling
and shifting. In Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, pages 237–248, 1999.

[6] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series. In
Proc. 1st European Symp. on Principles of Data Mining and Knowledge
Discovery, pages 88–100, 1997.

[7] N. Dimitrova and F. Golshani. Motion recovery for video content clas-
sification. ACM Transactions on Information Systems, 13(4):408–439,
1995.

[8] J. Gips, M. Betke, and P. Fleming. The camera mouse: Preliminary in-
vertigation of automated visaul tracking for computer access. In In Proc.
Conf. on Rehabilitation Engineering and Assistive Technology Society of
North America, pages 98–100, 2000.

[9] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridage University Press, 1997.

27

[10] Y. Huang and P. S. Yu. Adaptive query processing for time-series data.
In Proc. 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 282–286, 1999.

[11] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, 1988.

[12] T. Kahveci and A. Singh. Variable length queries for time series data.
In Proc. 17th Int. Conf. on Data Engineering, pages 273–282, 2001.

[13] K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction
for similarity searching in dynamic databases. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 166–176, 1998.

[14] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimension-
ality reduction for fast similarity search in large time series databases.
Knowledge and Information Systems, 3(3):263–286, 2000.

[15] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adap-
tive dimensionality reduction for indexing large time series databases.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 151–
162, 2001.

[16] E. Keogh and S. Kasetty. On the need for time series data mining
benchmarks: a survey and empirical demonstration. In Proc. 8th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages
102–111, 2002.

[17] E. Keogh and M. Pazzani. Scaling up dynamic time warping for
datamining applications. In Proc. 6th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 285–289, 2000.

[18] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc
queries in large datasets of time sequences. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 289–300, 1997.

[19] K.P.Chan and A.W-C Fu. Efficient time series matching by wavelets.
In Proc. 15th Int. Conf. on Data Engineering, pages 126–133, 1999.

[20] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Cybernetics and Control Theory, 10(8):707–710,
1966.

[21] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series.
In Proc. 2nd Int. Workshop Temporal Data Mining, pages 370–377, 2002.

[22] J. L. Little and Z. Gu. Video retrieval by spatial and temporal sturcture
of trajectories. In Proc. 13th Int. Symp. on Storage and Retrieval for
Image and Video Databases (SPIE), pages 544–553, 2001.

28

[23] I. Popivanov and R. J. Miller. Similarity search over time series data
using wavelets. In Proc. 17th Int. Conf. on Data Engineering, pages
212–221, 2001.

[24] D. Rafiei and A. O. Mendelzon. Efficient retrieval of similar time se-
quences using DFT. In Proc. 9th Int. Conf. of Foundations of Data
Organization and Algorithms, 1998.

[25] S.-J. Chun S.-L. Lee, D.-H. Kim, J.-H. Lee, and C.-W. Chung. Similarity
search for multidimensional data sequences. In Proc. 16th Int. Conf. on
Data Engineering, pages 599–608, 2000.

[26] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multi-
dimensional trajectories. In Proc. 18th Int. Conf. on Data Engineering,
pages 673 – 684, 2002.

[27] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A wavelet-based any-
time algorithm for k-means clustering of time series. In Proc. Workshop
on Clustering High Dimensionality Data and Its Applications, 2003.

[28] T. T. Y. Wai and A. L. P. Chen. Retrieving video data via motion
tracks of content symbols. In Proc. 6th Int. Conf. on Information and
Knowledge Management, pages 105–112, 1997.

[29] Y. Yanagisawa, J. Akahani, and T. Satoh. Shape-based similarity query
for trajectory of mobile objects. In Proc. 4th Int. Conf. on Mobile Data
Management, pages 63–77, 2003.

[30] B-K Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
Lp norms. In Proc. 26th Int. Conf. on Very Large Data Bases, pages
385–394, 2000.

[31] B-K Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar
time sequences under time warping. In Proc. 14th Int. Conf. on Data
Engineering, pages 23–27, 1998.

29

