
USING MCD-DVS FOR DYNAMIC THERMAL MANAGEMENT PERFORMANCE

IMPROVEMENT

Pedro Chaparro, Grigorios Magklis, José González and Antonio González
Intel Barcelona Research Center

Intel Labs - UPC
Ed. Nexus II, Jordi Girona 29 3a

08034 Barcelona (SPAIN)
Phone: +34 93413 77 63
Fax: +34 93 413 77 55

Email: {pedro.chaparro.monferrer, grigorios.magklis, pepe.gonzalez, antonio.gonzalez}@intel.com

ABSTRACT

With chip temperature being a major hurdle in microprocessor
design, techniques to recover the performance loss due to
thermal emergency mechanisms are crucial in order to sustain
performance growth. Many techniques for power reduction in
the past and some on thermal management more recently have
contributed to alleviate this problem. Probably the most
important thermal control technique is dynamic voltage and
frequency scaling (DVS) which allows for almost cubic
reduction in power with worst-case performance penalty only
linear. So far, DVS techniques for temperature control have
been studied at the chip level. Finer grain DVS is feasible if a
Globally-Asynchronous Locally-Synchronous (GALS) design
style is employed. GALS, also known as Multiple-Clock
Domain (MCD), allows for an independent voltage and
frequency control for each one of the clock domains that are
part of the chip. There are several studies on DVS for GALS
that aim to improve energy and power efficiency but not
temperature. This paper proposes and analyses the usage of
DVS at the domain level to control temperature in a clustered
MCD microarchitecture with the goal of improving the
performance of applications that do not meet the thermal
constraints imposed by the designers.

KEY WORDS: Multiple clock domain architectures, GALS,
DTM, dynamic frequency and voltage scaling

INTRODUCTION

Power directly translates into heat which must be removed
from the processor die in order to keep the silicon temperature
inside a “safe” range. Power density is increasing due to the
fact that frequency and leakage current are scaling up so much
that their effect on power cannot be offset by decreasing the
supply voltage. Such trend makes the cost of the cooling
system grow and challenges the performance benefits that can
be obtained by the ever growing transistor density. This results
in a cooling system cost in the order of $1-$3 or more per
Watt when the average power exceeds 40W [1][2], which
represents a significant part of the total cost of the chip. This is
especially important for data centers where air conditioning is
a main contributor in the total cost [3]. In addition, circuit
reliability depends exponentially on operating temperature.
Temperature variations account for over 50% of electronic
failures [4].

Another problem is due to the scaling down of supply voltage
to reduce dynamic power consumption. To counteract the
effect on gate delay, the threshold voltage is also scaled down.
However, lowering the threshold voltage impacts leakage
exponentially. Furthermore, leakage power is also
exponentially dependent on temperature. This is the reason
that projections show leakage power reaching the same levels
as dynamic power [1][5].
Traditionally the cooling system of a processor has been
designed to support the worst case temperature so that peak
performance is guaranteed. Because of both the increasing
cost of the cooling solution and form factor constraints—
especially in mobile computers—the cooling system is
nowadays designed for common case power dissipation. In
case of a temperature rise, a thermal emergency mechanism is
in charge of restoring the processor to its operating
temperature. Despite the penalty of this mechanism, this
solution has been adopted because the processor spends most
of the time running at much lower temperatures than the
worst-case scenario. Additional proactive techniques try to get
some of the performance back by avoiding triggering the
emergency mechanism.
Dynamic voltage and frequency scaling (DVS for short) has
long been used to deal with thermal emergencies [6].
Whenever the processor starts heating up, a controller decides
to slow the processor down to avoid triggering the emergency
mechanism.
Globally Asynchronous Locally Synchronous (GALS)
systems have the unique ability to operate different parts of
the chip (called domains) at different frequency and voltage,
which allows applying DVS independently to different parts
of the processor [7]. It has been shown that per-domain
adaptation is significantly more energy efficient compared to
global adaptation [8][6][9][10]. GALS architectures also
reduce complexity and save power dissipation of the clock
distribution, which constitutes a large part of the total
processor power [11][12].
On the other hand, it has been shown that clustering reduces
the complexity of large structures, such as issue queues and
register files. This allows for faster clock frequency and
reduced power dissipation [13][14][15][16][17]. Clustering
also facilitates run-time power control through fine-grained
adaptation of resources and achieves a significant reduction of
temperature due to an effective distribution of the activity

among the different clusters both in the frontend [18] and the
backend [19][20].
Combining clustering with GALS results in a highly energy-
efficient design with the capability of fine-grain
adaptation [21]. So far, DVS techniques for temperature
control have been studied at the chip level [6]. This work aims
to improve performance for thermally constrained designs. In
particular it takes advantage of the fine-grain DVS capabilities
of GALS microarchitectures to avoid thermal crisis situations
and their associated performance penalty.

CLUSTERED GALS MICROARCHITECTURE

Figure 1 shows the details of our clustered GALS
microarchitecture. The processor has three clock domains,
shaded light grey in Figure 1: frontend, backend and memory.
The frontend domain contains the fetch and dispatch logic.
Fetch utilizes a branch predictor, a trace cache, and an IA32
decoder that decodes complex x86 instructions into simple
micro-ops. Dispatch renames register operands, allocates
resources for new instructions and steers micro-ops to one of
the backend execution clusters [17]. The frontend also
includes the reorder buffer and the commit logic of the
processor. The reorder buffer and the rename table have been
partitioned in order to make them more thermal efficient [18].
The backend domain contains the out-of-order execution and
the first-level data cache of the microprocessor. It follows a
clustered design, with two execution clusters. Each cluster
includes the integer and floating-point issue queues, their
corresponding register files, and the integer and floating-point
execution units. The clusters share both the load-store queue
and the first-level data cache. Address calculations occur at
the execution clusters. Special copy micro-ops communicate
register values among the clusters using point-to-point
links [16][22].
GALS systems, by design, assume unrestricted clock skew
among domains. This allows utilizing local-only clocking in
the first place and gives us the ability to run each domain at a
different frequency. The disadvantage is that inter-domain
communication must be correctly synchronized to avoid meta-
stability [23]. In our microarchitecture, we use the mixed-
clock FIFO design of Chelcea and Nowick [24], with the
synchronizer circuit by Nyström and Martin [25].
Figure 2 shows the timing of the synchronizer for a mixed-
clock FIFO with write-clock CLKIN and read-clock CLKOUT.
A data value is written at clock edge 1. If the time difference
between edges 1 and 2 is greater than the synchronizer’s delay
then the data will be visible at the read interface at edge 2.
Otherwise, the synchronizer will not allow the data to be
visible until edge 4. In our simulations, this delay is set to 30%
of CLKOUT, following Sjogern and Myers [26].
Due to the clustered nature of our design, all the mixed-clock
FIFOs utilized in the GALS design (dark grey queues in
Figure 1) already existed, as regular FIFOs, in the fully
synchronous design. This allows for a natural separation with
minimal changes in the microarchitecture. Moreover, since
FIFOs provide natural buffering and usually reside off the
critical path of the microprocessor, our GALS modifications
result in minimal performance loss due to synchronization.

In addition, each one of the domains has independent voltage
and frequency control. Similar to previous studies, we assume
domains can execute through voltage and frequency
changes [12][26][27][28]. Our microprocessor has a limited
range of voltages and frequencies, shown in Table 1.

DYNAMIC THERMAL MANAGEMENT

Skadron et al. evaluate in [6] different thermal control
mechanisms with the goal of maximizing performance in the
presence of potential thermal threshold violations. In their
evaluation, the best performing technique was Temperature-
Tracking Frequency Scaling (TTDFS). In TTDFS the
processor is clocked above the conservative frequency that

Figure 1. Clustered GALS Microarchitecture

Figure 2. Synchronizer timing

Table 1 Voltage and frequency levels

Level mV MHz Level mV MHz

0 700 3100 7 934 4900

1 734 3400 8 967 5100

2 767 3700 9 1000 5400

3 800 3900 10 1034 5600

4 834 4200 11 1067 5800

5 867 4400 12 1100 6000

6 900 4700

guarantees no timing errors. The algorithm detects when the
temperature is growing excessively so that correct timing
cannot be guaranteed and scales frequency down to a safe
level. This technique is unique in the sense that can exceed the
thermal threshold as long as the frequency is scaled to meet
the timing constraints.
TTDFS is orthogonal to thermal management techniques. It is
a performance-improvement technique based on relaxing the
maximum frequency limit due to the circuit timing. This
technique is not aimed at guaranteeing reliability and is not
designed to manage thermal crisis situations.
The rest of the techniques from the same study are aimed at
guaranteeing physical reliability. The best of them is
Migrating Computation, which consists of using of spare units
to migrate the activity if the temperature of a unit grows
excessively [6][18][19][29]. This is not a viable technique if
there are no spare units to migrate the activity.
A third technique, with less slowdown is DVS with an “ideal”
PID controller [30]. In that scheme, it is assumed that the
processor can continue executing while changing the voltage
and frequency levels. It seems a valid assumption based on
already existing data and products [12][26][27][28]. The
authors claim that the DVS scheme they study is penalized
because of slowing down the full chip compared to other
techniques that are fine-grained.

FINE-GRAIN DVS FOR THERMAL MANAGEMENT

In this work we propose to use GALS microarchitectures to
reduce the granularity at which DVS is applied, in order to
achieve fine grain adaptation. In particular, it is assumed that
the frontend and the backend can run simultaneously at
different frequency and voltage levels and that both can
continue executing while changing the voltage/frequency
levels.
The algorithm for GALS uses an independent PID controller
for each domain to decide the proper voltage-frequency level
to run at, depending on the proximity of the peak temperature
to a given threshold. The same PID configuration is used in all
the domains—the one used in the global DVS.
A configuration with different PIDs per domain requires the
presence of several thermal sensors. This is needed in order to
measure the temperature in different functional blocks. This
way, both the frontend and the backend can decide which the
peak temperature in each domain is. This is a reasonable
assumption since existing microprocessors already include
several of these thermal sensors [32].
The DVS algorithm is invoked every 100K cycles. At that
time, the information regarding the temperature of each block
of the processor is gathered and is sent to the PID controller.
The PID computes the frequency-voltage execution level for
the next interval (independently for the frontend and the
backend) and the changes are applied to the upcoming
execution interval. It takes some cycles for the processor to
reach the new frequency and voltage but execution is never
stopped.
A backup mechanism is assumed in case the PID is unable to
contain the temperature inside the safe margins. The
mechanism consists of an operating system (O.S.) context
saving mechanism that resumes execution after a cool-down

interval. This mechanism is used to “penalize” the
mechanisms when they are not able to guarantee execution
under the thermal threshold. However, the goal is to avoid
reaching that situation.

EVALUATION

Experiments have been conducted using an execution-driven
simulator that runs IA32 binaries. Table 2 summarizes the
main parameters of the architecture. The simulator includes a

Table 2. Processor configuration

Frontend

Fetch
24K micro-op trace cache,
6 micro-ops/cycle,
5 cycle fetch-to-dispatch

Dispatch: decode,
rename and steer

6 micro-ops/cycle,
1 cycle latency, plus 1 cycle wire delay
to mixed-clock FIFOs

Reorder Buffer
512 entries,
commit 6 micro-ops/cycle

Backend (configuration shown per cluster)

Mixed-clock FIFOs
1 FIFO per issue queue,
24 entries each

Issue queues

48-entry INT, 2 micro-ops/cycle
48-entry FP, 2 micro-ops/cycle
96-entry MOB, 1 micro-ops/cycle
24-entry COPY, 1 micro-ops/cycle

Register file
256-entry INT register file
256-entry FP register file

Inter-cluster
communication

bi-directional point-to-point link,
1 cycle latency, 1 copy/cycle

First level cache
32KB, 4-way, 3 cycle hit,
2 read ports, 1 write port,
256-entry Load/Store Queue

Memory

Second level cache
2MB, 16-way,
13 cycle hit, ≥ 500 cycle miss
1 read port, 1 write port

Figure 3. Processor floorplan

dynamic power model similar to Wattch [35], a leakage model
(including the exponential relationship with temperature) and
a full-system thermal model similar to some others proposed
in the literature [6][20].
As far as the thermal model is concerned, at the beginning of
the simulation we assume that the processor has been running
for a long time, dissipating its nominal average dynamic
power (obtained for 50M instructions) and the leakage
corresponding to its temperature, until temperature converges.
In this way, simulations are started with the processor already
warm. During normal execution, every 100K cycles the
temperature is recomputed using the per-block dissipated
power.
Figure 3 shows the floorplan of the processor. We assume a
processor designed at 45nm. Areas were computed using an
enhanced version of Cacti [31] for cache-like structures, and
scaling down the rest of the structures from current designs.
The thermal solution attached to the die of the processor
consists of a copper heat spreader, in contact with the die,
whose size is 3.1x3.1x0.23cm (similar to the one used in the
Pentium® 4 Northwood processor [33]). On top of it there is a
copper heat sink of 7x8.3x4.11cm [33].
For the evaluation process, 25 SPEC2000, 6 MediaBench and
6 MineBench applications are run. Standard reference input
sets are used to select a trace from the middle of the execution.

Traces are run up to a billion instructions when available
(always at least 400M instructions are run).
For each thermal limit, benchmarks are classified according to
the performance loss incurred when using only the backup
mechanism. The 1/3 with the highest loss is classified in the
“Very High” category. The 1/3 with the smallest loss is
classified in the “Low” category. The intermediate
benchmarks are classified in the “High” category. Note that
this classification depends on the thermal limit selected. It is
not a static classification depending on the properties of each
application but depends instead on its response to the thermal
limit and the backup mechanism. A configuration that only
uses the backup mechanism (O.S. context saving) is also
simulated for comparison purposes and in order to do the
benchmark classification previously indicated.
To select the limits, all benchmarks were run with no thermal
constraints to obtain the different profiles to be able to set a
proper thermal threshold. In addition, this reports the peak
performance each benchmark can provide. Different thermal
limits are studied to obtain a representative evaluation. Figure
4 details the percentage of time the suite would run beyond the
threshold if there were no thermal constraints. Also, the
number of applications that reach each one of the limits is
depicted.

Local vs. Global DVS

Figure 5 depicts the performance of the different applications
and sets of applications normalized to the peak performance
(with no thermal constraints). Results are only shown for the
intermediate thermal threshold. Results for the other thermal
thresholds are consistent with the ones in Figure 5.
Different conclusions can be extracted from these results.
First, it can be observed that the O.S. mechanism penalizes
performance a lot (more than 20% in some applications).
Second, it can be seen that global DVS is able to recover most
of this performance loss (for the limited applications, only
11% of the performance is lost). Third, Local DVS
outperforms global DVS both on average and for every single
application (as well as the O.S. context saving-only scheme).

0

10

20

30

40

50

60

70

80

90

100

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Applications 10 17 22 29 37

ºC 93.5 88.5 86.5 80 70

% time 10% 20% 25% 61% 95%

Relaxed Intermediate Limiting Very limiting Extreme

Figure 4. Experiment details

70%

75%

80%

85%

90%

95%

100%

fa
c
e
re
c

lu
c
a
s

g
a
p

c
ra
ft
y

b
z
ip
2

v
o
rt
e
x

m
p
e
g
2
d
e
c
-2

a
p
s
i

s
w
im

g
z
ip

p
e
rl
b
m
k

e
o
n

m
e
s
a

a
p
ri
o
ri

p
a
rs
e
r

w
u
p
w
is
e

tr
a
in
-g
a
lg
e
l

v
p
r

m
g
ri
d

k
m
e
a
n
s
-c
o
lo
r

tw
o
lf

g
c
c

k
m
e
a
n
s
-e
d
g
e

g
7
2
1
e
n
c
-2

g
7
2
1
e
n
c
-1

g
7
2
1
d
e
c
-2

m
p
e
g
2
e
n
c
-1

m
p
e
g
2
e
n
c
-2

p
a
ra
_
h
o
p

A
ll

L
o
w

H
ig
h

V
e
ry
 h
ig
h

Low High Very High Averages

O.S. Global Local

Figure 5. Performance normalized to peak performance for the Very Limiting threshold

For the most limited applications the average performance lost
compared to the peak is only 5%. Obviously, the less limited
an application is the higher its performance is and the smaller
the room for performance improvement.
In addition, the thermal emergency threshold is violated
neither in the global nor in the local version of the controller.

Thermal Threshold Sensitiveness

Figure 6 shows the performance improvement of local DVS
compared to global DVS for each one of the thermal limits
and benchmark groups. It can be observed that the lower the
thermal threshold the higher the performance improvement,
for constrained applications. Note that this does not apply
when comparing the “Relaxed” and the “Intermediate”
threshold performance. Remember that the applications tested
vary according to the thresholds. In particular, there are few
applications that violate the thermal threshold in the
“Relaxed” threshold so that the averages are less meaningful
than for the rest of the limits. If this analysis is done in
particular applications that are tested for different thresholds,
the relationship between thermal threshold and performance is
valid.
As pointed out before, the stated trends are maintained for the
different thermal thresholds. Only when the threshold is set
extremely high (“Relaxed”) or extremely low (“Extreme”) can
we find some particular applications showing strange
behavior. This is not representative since it occurs for very
few applications under very particular conditions.
Our proposed technique exhibits good performance
improvement across the whole range of applications and
performs especially well for the most constrained ones. For
example, in the “Very limiting” threshold although the
average performance improvement of all applications that
spend some time beyond the threshold is 2.5%, for
applications really constrained this average grows up to 7%
with some applications improving by more than 10%.

RELATED WORK

Dynamic thermal management and temperature control is a
hot topic presently. Huang et al. [34] propose a framework to
maximize energy savings and to guarantee that temperature

remains under a certain threshold. The framework combines a
number of energy-management techniques, such as voltage-
frequency scaling and sub-banking of the data cache among
others. Brooks and Martonosi [35] propose a set of control
techniques evaluated on top of different triggering
mechanisms aiming at reducing thermal emergencies. They
use the average power in an interval as a proxy for
temperature.
Skadron et al. [6][30] propose a thermal simulator based on
the duality between heat transfer and electrical phenomena.
Several techniques are proposed to control peak temperature
and to reduce thermal emergencies. Lim et al. [36] propose a
secondary ultra-low power pipeline that is used when a given
temperature threshold is exceeded. Heo et al. [29] study the
impact of activity migration, among replicated units, on power
density. Donald et al. [37] address design issues for SMT and
CMP architectures, and Ghiasi et al. [38] for dual-core
processors. Current commercial processors such as the
Pentium® M [39] or the PowerPC [32] implement thermal
monitors to control the temperature of the chip.
Globally Asynchronous Locally Synchronous systems were
first introduced by Chapiro [7]. Since then there have been
several published works on GALS and dynamic voltage and
frequency scaling. Iyer and Marculescu [12] propose a
superscalar microprocessor with five domains: fetch, decode
and rename, integer pipeline, floating-point pipeline, and
memory pipeline (includes first level cache). Semeraro
et al. [27][40] propose a Multiple Clock Domain (MCD)
processor, with four domains: frontend (fetch and dispatch),
integer, floating-point, and memory (with first and second
level cache).
Zhu et al. [10] propose an enhanced MCD microarchitecture.
Magklis et al. [21] combine clustering with GALS into a
Clustered Multiple Clock Domain (CMCD) design. The
CMCD consists of four backend clusters (each with a local
first level cache), a shared frontend, and a shared second level
cache each in a separate domain. They also propose a
mathematical model that relates the fetch queue utilization, the
branch prediction accuracy, the frontend frequency and the
application performance. They use this model to construct a
control mechanism to adapt the voltage and frequency of only
the frontend domain, achieving close to optimal results.

4.7%
4.1%

5.3%
6.0%

7.2%

1.3%
0.3%

1.9% 2.3%

6.0%

3.0%

1.0%

3.2%

6.2%

8.8%

2.5%

0.5%

2.0%

7.0%

10.4%

3.2%

0.6%

2.0%

9.6%

18.3%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%
A
ll

L
o
w

H
ig
h

V
e
ry
 H
ig
h

M
a
x
im
u
m

A
ll

L
o
w

H
ig
h

V
e
ry
 H
ig
h

M
a
x
im
u
m

A
ll

L
o
w

H
ig
h

V
e
ry
 H
ig
h

M
a
x
im
u
m

A
ll

L
o
w

H
ig
h

V
e
ry
 H
ig
h

M
a
x
im
u
m

A
ll

L
o
w

H
ig
h

V
e
ry
 H
ig
h

M
a
x
im
u
m

Relaxed Intermediate Limiting Very limiting Extreme

P
e
rf
o
rm
a
n
c
e
 im
p
ro
v
e
m
e
n
t

Figure 6. Performance improvement of local DVS compared to global DVS

Semeraro et al. propose an interval-based microarchitecture-
level control mechanism for the domains of the MCD (all but
the frontend), called the Attack/Decay [40]. Wu et al. [42]
model the MCD domains as queue systems and propose a
feedback control DVS system based on a Proportional-Integral
(PI) controller. The controller uses the occupancy of the
domain input queue over some interval of time and responds
with a frequency for the upcoming interval. The goal is to
maintain occupancy close to a pre-defined nominal value. The
authors also provide a rigorous analysis of their control system
and its stability. We et al. [28] propose an event-driven DVS
mechanism for the MCD that reacts to workload changes
instead of making decisions at fixed time intervals. The
controller utilizes both the queue occupancy and the rate of
change of the occupancy.
All of the above designs separate the pipeline very differently
from our work. We separate the pipeline in between logical
pipeline stages. The above studies divide a logical pipeline
stage according to the type of operation performed (integer,
floating-point, memory). The latter separation results in non-
deterministic latency in the issue/wake-up loop of operations
of different types (e.g. an integer operation depending on a
load).

CONCLUSIONS

Fine-grain DVS is feasible if a Globally-Asynchronous
Locally-Synchronous (GALS) design style is employed.
GALS allows for an independent voltage and frequency
control for each one of the clock domains that are part of the
chip. Several studies on DVS for GALS aim to improve
energy and power efficiency but not temperature. This paper
proposes and analyses the usage of DVS at the domain level to
control temperature in a clustered MCD microarchitecture
with the goal of improving the performance of applications
that do not meet the thermal constraints imposed by the
designers.
To the best of our knowledge, this is the first work that
proposes the usage of GALS microarchitectures for thermal
control. This is also the first work that quantifies the
performance improvement of doing fine-grain DVS over
global DVS. Our experiments show that local DVS achieves
better results compared to global DVS: some high-power
applications have a performance improvement ranging from
6% to 18% depending on thermal threshold.
In this work, the same PID configuration is employed per-
domain to quantify the benefit of applying localized DVS.
This mechanism although it achieves good performance it,
may not be best one since a better tuning of the PIDs could
result in even better performance. In the future we plan to
investigate designs where the PIDs are tuned per domain or
per thermal threshold.

REFERENCES

[1] S. Borkar. “Design Challenges of Technology Scaling”.
IEEE Micro, 19(4), pp. 23-29, 1999.

[2] S. Gunther et al. “Managing the Impact of Increasing
Microprocessor Power Consumption”. Intel Technology
Journal, Q1 2001.

[3] J. Moore et al. “Going beyond CPUs: The Potential of
Temperature-Aware Solutions for the Data Center”.

Proceedings of the First Workshop of Temperature-
Aware Computer Systems at ISCA, 2004.

[4] L.-T. Yeh and R.C. Chu. “Thermal Management of
Microelectronic Equipment: Heat Transfer Theory,
Analysis Methods and Design Practices”. ASME Press,
New York, NY, 2002.

[5] V. De and S. Borkar. “Technology and Design
Challenges for Low Power and High Performance”.
Proceedings of the International Symposium on Low
Power Electronics Design pp. 163-168, 2000.

[6] K. Skadron et al. “Temperature-Aware
Microarchitecture”. Proceedings of the 30th Annual
International Symposium on Computer Architecture,
April 2003.

[7] D. M. Chapiro. “Globally Asynchronous Locally
Synchronous Systems”. PhD thesis, Stanford University,
1984.

[8] G. Magklis et al.. “Profile-based Dynamic Voltage and
Frequency Scaling for a Multiple Clock Domain
Processor”. Proceedings of the 30th Annual International
Symposium on Computer Architecture, June 2003.

[9] Q. Wu et al. “Voltage and Frequency Control with
Adaptive Reaction Time in Multiple-Clock-Domain
Processors”. Proceedings of the 11th International
Symposium on High-Performance Computer
Architecture, February 2005.

[10] Y. Zhu et al. “A High Performance, Energy Efficient,
GALS Processor Microarchitecture with Reduced
Implementation Complexity”. Proceedings of the
International Symposium on Performance Analysis of
Systems and Software, March 2005.

[11] A. Hemani et al. “Lowering Power Consumption in
Clock by Using Globally Synchronous Locally
Synchronous Design Style”. Proceedings of the 36th
Conference on Design Automation, June 1999.

[12] A. Iyer and D. Marculescu. “Power and Performance
Evaluation of Globally Asynchronous Locally
Synchronous Processors”. Proceedings of the 29th Annual
International Symposium on Computer Architecture.
May 2002.

[13] V. Agarwal et al. “Clock Rate versus IPC: the End of the
Road for Conventional Microarchitectures”. Proceedings
of the 27th International Symposium on Computer
Architecture, 2000.

[14] M. Bohr. “Interconnect Scaling - the Real Limiter to
High-Performance ULSI”. Proceedings of the
International Electron Devices Meeting, pp. 241-244,
December 1995.

[15] D. Matzke. “Will Physical Scalability Sabotage
Performance Gains?” Computer Magazine, Vol. 30, No.
9, pp 37-39.

[16] R. Canal et al. “A Cost-Effective Clustered Architecture”.
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, 1999.

[17] K.-I. Farkas et al. “The Multicluster Architecture:
Reducing Cycle Time through Partitioning”. Proceedings
of the International Symposium on Microarchitecture,
2000.

[18] P. Chaparro et al. “Distributing the Frontend for
Temperature Reduction”. Proceedings of the eleventh
International Symposium on High Performance
Computer Architecture, February 2005.

[19] P. Chaparro et al. “Thermal-Aware Clustered
Microarchitectures”. Proceedings of the 22nd International
Conference on Computer Design, October 2004.

[20] P. Chaparro et al. “Thermal-Effective Clustered
Microarchitectures”. Proceedings of the First Workshop
of Temperature-Aware Computer Systems at ISCA 04.

[21] G. Magklis et al. “Frontend Frequency-Voltage
Adaptation for Optimal Energy-Delay2”. Proceedings of
the 22nd International Conference on Computer Design,
October 2004.

[22] J.-M. Parcerisa et al. “Efficient Interconnects for
Clustered Microarchitectures”. Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 2002.

[23] T. J. Chaney and C. E. Molnar. “Anomalous Behavior of
Synchronizer and Arbiter Circuits”. IEEE Transactions
on Computers, C-22(4), April 1973.

[24] T. Chelcea and S. M. Nowick. “Robust Interfaces for
Mixed-Timing Systems with Application to Latency-
Insensitive Protocols”. Proceedings of the 38th Design
Automation Conference, June 2001.

[25] M. Nyström and A. J. Martin. “Crossing the Syn-
chronous-Asynchronous Divide”. Proceedings of the
Workshop on Complexity-Effective Design, May 2002.

[26] A. E. Sjogern and C. J. Myers. “Interfacing Synchronous
and Asynchronous Modules within a High-Speed
Pipeline”. Proceedings of the 17th Conference on
Advanced Research in VLSI, Sept. 1997.

[27] G. Semeraro et al. “Hiding Synchronization Delays in a
GALS Processor Microarchitecture”. Proceedings of the
10th International Symposium on Asynchronous Circuits
and Systems, April 2004.

[28] Q. Wu et al. “Voltage and Frequency Control with
Adaptive Reaction Time in Multiple-Clock-Domain
Processors”. Proceedings of the 11th International
Symposium on High-Performance Computer
Architecture, February 2005.

[29] S. Heo et al. “Reducing Power Density through Activity
Migration”. Proceedings of the International Symposium
on Low Power Electronics and Design, 2003.

[30] K. Skadron et al. “Control-Theoretic Techniques and
Thermal-RC Modeling for Accurate and Localized
Dynamic Thermal Management”. Proceedings of the

International Symposium on High Performance
Computing, 2002.

[31] P. Shivakumar and N. P. Jouppi. “CACTI 3.0: An
Integrated Cache Timing, Power and Area Model”. WRL
Research Report 2001/2.

[32] B. Sinharoy. “POWER5 Architecture and Systems”.
Keynote presentation, International Symposium on High
Performance Computer Architecture, February 2004.

[33] Intel Corporation Intel® Pentium ® 4 Processor in the
423-pin Package Thermal Solution Functional
Specification http://www.intel.com/design/pentium4
/guides/249204.htm.

[34] M. Huang et al. “A Framework for Dynamic Energy
Efficiency and Temperature Management”. Proceedings
of the International Symposium on Microarchitecture, pp.
202-213, 2000.

[35] D. Brooks et al. “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations”,
in Proceedings of the 27th International Symposium on
Computer Architecture, pp. 83-94, 2000.

[36] C. H. Lim et al. “A Thermal-Aware Superscalar
Microprocessor”. Proceedings. International Symposium
on Quality Electronic Design, 18-21, March 2002.

[37] J. Donald and M. Martinosi. “Temperature-Aware Design
Issues for SMT and CMP Architectures”. WCED
Workshop at ISCA-31, June 2004.

[38] S. Ghiasi and D. Grunwald. “Design Choices for Thermal
Control in Dual-Core Processors”. WCED Workshop at
ISCA-31, June 2004.

[39] E. Rotem et al. “Analysis of Thermal Monitor Features of
the Intel Pentium M Processor”, TACS Workshop at
ISCA-31, June 2004.

[40] G. Semeraro et al. “Energy Efficient Processor Design
Using Multiple Clock Domains with Dynamic Voltage
and Frequency Scaling”. In Proceedings of the 8th
International Symposium on High-Performance
Computer Architecture. February 2002.

[41] G. Semeraro et al. “Dynamic Frequency and Voltage
Control for a Multiple Clock Domain Microarchitecture”.
In Proceedings of the 35th Annual International
Symposium on Microarchitecture, November 2002.

[42] Q. Wu et al. “Formal Online Methods for
Voltage/Frequency Control in Multiple Clock Domain
Microprocessors”. In Proceedings of the 11th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
October 2004.

