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1. Introduction

Kernel methods received attention originally as a “trick”
to introduce non-linearity into support vector machines
(SVM) [21]. Evaluating a kernel function between two data
is equivalent to computing the scalar product of their im-
ages in a non-linearly mapped space (usually termed as fea-
ture space). It is realized later that kernel methods are more
general. Similar to SVM, many linear algorithms (e.g., PCA
and Fisher linear discriminant) depend on data through their
scalar products. By substituting the scalar products with
kernel evaluations, these algorithms can discover non-linear
patterns in data. At the same time, they are still computa-
tionally efficient, as the kernel function is evaluated in the
input space [20]. Instead of using general-purpose kernels
(e.g., Gaussians), recent effort has been put on designing
kernels tailored to the requirements of a specific applica-
tion. Such kernels better reflect the similarities between
data and thus incorporate more domain knowledge into the
algorithm.

One important application of kernel method is appear-
ance based object recognition. Object recognition remains
one of the most challenging problems in computer vision.
Changes in illumination, pose, viewing angle, occlusion,
clutters and non-rigid deformations are just a few of the
complicated problems a recognition system has to face.
Many applications of kernel methods to object recognition
are based on global image features (e.g., global grayvalue
histograms) [14, 4, 15]. Though promising performance
has been reported, these methods are plagued by the defi-
ciencies of the global features, such as being sensitive to
image degradations (e.g., noise, occlusion and background
clutters) and not robust under changes in object configura-
tions (e.g., translation and scaling).

Recent years have seen impressive developments in us-
ing local features computed at interest points for matching
and recognition [9, 17, 16, 10, 2]. Such approaches lead to
robust and compact image representations that lend them-
selves to powerful pattern analysis algorithms. However,
the local feature representations pose several challenges to
kernel design. First, it requires the kernel to work efficiently
on inputs of variable lengths, as images may have a differ-
ent number of local features. Secondly, the kernel should
measure similarity of two unordered sets of local features,
where no explicit correspondence is available. Furthermore,
several different types of local features are usually collected
and they need to be fused into the kernel. For better per-
formance, semilocal spatial and geometrical constraints be-
tween interest points should also be incorporated. Finally,
to guarantee unique global optimal solutions for the SVM
algorithm, the kernel must also satisfy the Mercer condition.
Unfortunately, existing methods (e.g., [1, 22, 23, 12, 8]) are
not satisfactory in that they do not meet all of these require-

ments.

The major contribution of this paper is the definition of
a new class of kernels for object recognition, based on local
feature representations. Formal proofs are given to show
that this class of kernels satisfy the Mercer condition and
reflect similarities between sets of local features. In addi-
tion, multiple local feature types and semilocal constraints
are incorporated to reduce mismatches between local fea-
tures, thus further improve the classification performance.
Results are shown on testing the proposed kernels, cou-
pled with SVM classification, on recognition tasks with the
COIL-100 database.

2. Methods

In this section, after a brief review of Mercer kernels and
local features, the proposed kernel is described and com-
pared with previous approaches. Then kernels using multi-
ple types of local features and semilocal constraints are in-
troduced, followed by an algorithm summarizing the overall
process.

2.1. Mercer kernd

Admissible kernel functions satisfy the Mercer condition
(hence usually termed as Mercer kernels). For an input
space X, if there is a mapping ¢ : X — H that maps any
x,z € X into a Hilbert space H, then a Mercer kernel, K :
X x X — R, is constructed as K (z, z) = (¢(x), #(2))x,
where (-, )3 is the scalar product operator in 7. Such a
function K satisfy the Mercer condition, an equivalent de-
scription of which is stated formally in the following propo-
sition:

Proposition 1 (Theorem 3.11, [20]) Let X' be any input
space and K : X x X — R a symmetric function, K is a
Mercer kernel if and only if the kernel matrix formed by re-
stricting K to any finite subset of X" is positive semi-definite
(having no negative eigenvalues).

The Mercer condition is essential to kernel design, as it is
the key requirement for a unique global optimal solution
to the kernel-extended pattern analysis algorithms based on
convex optimization (e.g., SVM) [20].

Instead of using its definition, a Mercer kernel is usu-
ally constructed in other more convenient ways. For data in
a vector space, one can choose from standard off-the-shelf
kernels, a common choice being a Gaussian:

Kr(z,z) = exp(—lz=ll), L)

There are also Mercer kernels designed specifically for
structured data types, such as strings, trees or graphs [20].
In addition, new Mercer kernels can be built on existing
ones. Several properties of Mercer kernels relevant to this
aspect are summarized in the following proposition:



Proposition 2 For Mercer kernels, the following facts hold

(i) (Proposition 2.22, [20]) The product of two Mercer
kernels is a Mercer kernel. Thus, a monomial of any
degree of a Mercer kernel is a Mercer kernel.

(i) (Lemmal, [7]) Let K be a Mercer kernel defined on
X x X, for any finite A, B C X, define K(A, B) =
> wea 2oyen K(2,y). Then K is a Mercer kernel on
2% x 2%\ {0}.

(iii) (Propostion 11.75, [20]) For a data space X that
can be decomposed as X = X; x --- x Xy and
x = (z1, - ,xn) € X, for which z; € X}, denote
Mercer kernels K; on X; x X;, ¢ = 1,--- ,N. For
©,2 € X, K(x,2) = [[IL, Ki(xi, z), is a Mercer
kernel on X’ x X. Such a kernel is a special case of the
‘R-convolution kernel [7].

Besides satisfying the Mercer condition, many applica-
tions also require the designed kernel to reflect similarities
between the data being studied. As kernels are elicited from
scalar products, they are expected to have larger values for
data that are more similar to each other.® Admissible ker-
nel functions satisfy the Mercer condition (hence usually
termed as Mercer kernels). For an input space X, if there
is a mapping ¢ : X — H that maps any z,z € X into a
Hilbert space H, then a Mercer kernel, K : X x X — R,
is constructed as K (, z) = (¢(z), p(2))x, where (-, )4 is
the scalar product operator in . Such a function K satisfy
the Mercer condition, an equivalent description of which is
stated formally in the following proposition:

Proposition 1 (Theorem 3.11, [20]) Let X be any input
space and K : X x X — R a symmetric function, K is a
Mercer kernel if and only if the kernel matrix formed by re-
stricting K to any finite subset of X is positive semi-definite
(having no negative eigenvalues).

The Mercer condition is essential to kernel design, as it is
the key requirement for a unique global optimal solution
to the kernel-extended pattern analysis algorithms based on
convex optimization (e.g., SVM) [20].

Instead of using its definition, a Mercer kernel is usu-
ally constructed in other more convenient ways. For data in
a vector space, one can choose from standard off-the-shelf
kernels, a common choice being a Gaussian:

Kgr(z,z) = exp(—%). 2

There are also Mercer kernels designed specifically for
structured data types, such as strings, trees or graphs [20].
In addition, new Mercer kernels can be built on existing
ones. Several properties of Mercer kernels relevant to this
aspect are summarized in the following proposition:

Proposition 2 For Mercer kernels, the following facts hold

1strictly speaking, normalized kernel evaluates the cosine similarity of
two mapped data in the feature space.

(i) (Proposition 2.22, [20]) The product of two Mercer
kernels is a Mercer kernel. Thus, a monomial of any
degree of a Mercer kernel is a Mercer kernel.

(ii) (Lemma 1, [7]) Let K be a Mercer kernel defined on
X x X, for any finite A, B C X, define K (A, B) =
> vea 2 yep K(x,y). Then K is a Mercer kernel on
2% % 2%\ {0}

(iii) (Proposition 11.75, [20]) For a data space X' that
can be decomposed as X = X1 x --- x Xy and
z = (z1, -+ ,zn) € X, for which z; € Xj, denote
Mercer kernels K; on X; x X;, ¢ = 1,--- ,N. For
©,2 € X, K(x,2) = [[IL, Ki(xi, ), is a Mercer
kernel on X x X. Such a kernel is a special case of the
‘R-convolution kernel [7].

Besides satisfying the Mercer condition, many applica-
tions also require the designed kernel to reflect similarities
between the data being studied. As kernels are elicited from
scalar products, they are expected to have larger values for
data that are more similar to each other.?

2.2. Local featurerepresentation

Local features are localized descriptors that provide distinct
information about a specific location of an image. Many
local features (e.g., [9, 17, 16, 10, 2]) are designed to be
invariant under certain image transformations, such as rota-
tion and scaling, so that they are relatively stable to changes
in object configurations. Local features have proved to be
very successful in appearance based object matching and
recognition, as they are distinctive, robust to image degrada-
tion and transformation, and require no segmentation [11].

Local features are usually collected at or in the neigh-
boring region around interest points, which are specific po-
sitions in an image that carry distinctive features of the ob-
ject being studied. Interest points are found by an interest
point detector, popular choices for which are the Harris de-
tector [6] and multi-resolution based detectors [19].

In this paper, we denote p; = (x;,y;) as the coordinate
(in the image plane) of the i-th interest point detected in the
image, and vector F; as the local feature computed at or
around p;. An image I, is represented by the set of local
features corresponding to all interest points detected, de-
noted as 7, = {F{",--- . F|7 }.

2.3. Related work

With local feature representation, an image is concisely rep-
resented by its set of local feature vectors. Accordingly, ker-
nels that match images could be defined between two sets
of local feature vectors. We start by enumerating some de-
sirable properties of such kernels:

2gtrictly speaking, normalized kernel evaluates the cosine similarity of
two mapped data in the feature space.



e The kernel should satisfy the Mercer condition;

e The computation of the kernel should be efficient in
both time and space;

e The kernel should be able to handle inputs with vari-
able lengths, as the number of interest points may vary
across different images;

e The kernel should reflect similarities between two sets
of local feature vectors.

It should be noted that the local feature representation does
not provide correspondence between local features of two
images, while only the correctly matched local features
carry meaningful discriminant information. However, find-
ing the optimal matching of local features is not always fea-
sible in practice and many algorithms are based on heuris-
tics. One important assumption common to most matching
algorithms is that the correctly matched local features are
more similar to each other than otherwise.

These properties void the use of off-the-shelf kernels,
such as a Gaussian, as the underlying data (sets of vectors)
are not from a vector space. One can normalize the length
of inputs by padding zeros. Whereas the inputs can be as-
sumed in a vector space now, the computed quantity is of
little interest to recognition. Notice, however, that it is rel-
atively easy to build a kernel Kz on the local features, as
they are vectors with identical dimensions. A natural idea is
to construct composite kernels on the basis of such kernels,
which work with sets of local features.

One simple example of such an approach is the sum-
mation kernel.  On two local feature sets, F, =
{F{", - K7 Yand Fy = {F}", - Ff}) }, of two im-
ages, I, and b the summation kernel is defined as
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Simple application of Proposition 2, part (ii), shows that the
summation kernel satisfies the Mercer condition. However,
its discriminative ability is compromised by the fact that
all possible matchings between local features are combined
with equal bias. The good matchings, highly out-numbered,
could be easily swamped by the bad ones.

In [22], a kernel function based on matching local fea-
tures was proposed

11
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Function K, has the desired property of reflecting similar-
ities of two sets of local feature vectors, as it only considers

the similarities of the best matched local features. Unfortu-
nately, despite the claim in [22], K5, is not a Mercer kernel,
for which a detailed proof is given in Appendix A. In [1], a
similar non-Mercer kernel based on a sub-optimal matching
between local features is used but measures are provided so
that the probability of the kernel not being positive semi-
definite is bounded. However, as pointed out earlier, the
Mercer condition is essential to reliable recognition, Mer-
cer kernels are still preferable in practice.

In [23], a Mercer kernel is proposed for sets of vectors
based on the concept of principal angles between two linear
subspaces. However, this kernel showed poor recognition
performance as reported in [5]. In [8], the Bhattacharyya
kernel is introduced where a set of vectors is represented
as a multivariate Gaussian. Though provably satisfying the
Mercer condition, evaluating this kernel is cubic in the num-
ber of local features. Furthermore, good matchings do not
necessarily distinguish themselves in such a setting. In[12],
a kernel based on Kullback-Leibler divergence is proposed.
However, as the authors pointed out, it is not clear if such a
kernel satisfies the Mercer condition.

2.4. A Mercer kernel between local feature sets

As discussed earlier, only the correctly matched local fea-
tures with large similarity measures provide meaningful dis-
criminant information for recognition. This indicates that
such matched pairs should dominate in the kernel evalua-
tion, if we expect the kernel to measure similarities between
two sets of local feature vectors. However, directly sum-
ming the maximum similarities as in the case of K, results
in inadmissible kernels that violate the Mercer condition.

In this paper, a new class of kernels are proposed that
measure similarity between local feature sets and that prov-
ably satisfy the Mercer condition. The proposed kernel
function is defined as
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where integer p > 1 is the kernel parameter. Withp = 1, the
proposed kernel includes the summation kernel as a special
case. Similar to the summation kernel, all possible match-
ings between local features in the two sets are considered
in Kz, but with different bias. It is through the kernel pa-
rameter p that the correct matched local features are given
dominant bias in K£. This is made more clear if K £ is
rewritten as

(-7:(17—7:17
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Now K £ has a similar form as K ;: both are sums of some
similarity measures over each local feature vector. Only
the max function in K, is replaced here with a summa-
tion of monomials. Consider a local feature F\* of F,
(though the following results are also true for members of
F), and its | Fp| kernel evaluations with each member of
Foy Kp(F F"), - 7KF(F;”>,FI%). The similarity
between Fi(“) and local feature set F;, is measured in Equa-
tion (6) as

S [Kp (B E)] @)

Without loss of generality, let us assume K p(F(”, F{") >
> Kp(F, F|(f”)b|). The contribution of the best
matched local feature in 7, with F* in the sum of Equa-

tion (7) is:
o — [KF(Fi<a>’F{b))]P/EL};bJ [KF(F;a)’F;b))y" (8)

The larger the value of p is, the more dominant is the best
matched pair. As p approaches infinity, all but the maximal
values will have a negligible fraction in the sum.

Furthermore, if we require that the similarity of the best
matched pair in the sum has a fraction above a given thresh-
old p, a lower bound of p can be computed as:

g K (B )
(|Fb| _ 1)p/ 0og KF (Fvi(a)7F1(b))7

p > log 9)

where F}” is the second best matching local feature in 7,
for £ (a detailed proof is given in Appendix B). A proper
p can be chosen as the maximum of such lower bounds over
all training data.

The proposed kernel satisfies the Mercer condition,

which is formally stated in the following proposition:
Proposition 3 Function Kz defined in Equation (5) is a
Mercer kernel, if function K r is a Mercer kernel defined on
the local feature vectors.
Proof First, note that K~ is symmetric by definition. Also
[Kr(-,-)]" is a monomial of a Mercer kernel. With Propo-
sition 2, part (i), it is also a Mercer kernel. Finally, K = is
constructed in way of Proposition 2, part (ii), therefore, it
satisfies the Mercer condition.

2.5. Multiplelocal feature types

So far, in constructing kernels on local feature sets, only one
type of local feature is considered . However, it is usually
possible to compute multiple types of local features at an
interest point. As each individual type of local feature may
carry distinctive information about the underlying object,
it is desirable to have them fused into the designed kernel.
Hereafter, we will refer to each type of local feature as a
base local feature.

Assume L different base local features are employed,
and denote f/¥ € R% as the d;-dimensional vector of
the [-th base local feature computed at an interest point
Pa, for i = 1,--- L. Also assume that the similarity
of the [-th base local feature is properly measured by a

Mercer kernel, Kj(f)? The local feature of p, is a vec-
tor of dimension Zle d;, formed by stacking all f{“'s as

F, = (f{‘”T, . g”T)T. A kernel between two such lo-

cal features, F, and Fj, is define as
Kr(F. F) = L K(l) (a) (b) 10
F(Fa, Fy) Hl:l ! (fl Il )- (10)

The function K satisfies the Mercer condition, Proposition
2, part (iii). It can then be substituted into the definition of
K £, Equation 5, which now incorporates multiple types of
local features.

2.6. Semilocal constraints

One problem of representing an image as an unordered set
of local feature vectors is that such a representation is inde-
pendent to the spatial locations of the interest points. Dif-
ferent objects, therefore, with similar local feature vectors
laid out differently in the image plane are indistinguishable.
On the other hand, as supported by the experimental results
in [17], there are strong spatial correlations between the in-
terest points and their corresponding local features in an
image. Such correlations are termed semilocal constraints
in [17]. For better recognition performance, it may be desir-
able to enforce such semilocal constraints in kernel design.
Following the method in [17], we use the local shape
configuration to enforce semilocal constraints.* Specifi-
cally, an image is represented as a set of semilocal groups,
which bundle together image information around spatially
close interest points. One semilocal group is formed around
each interest point (its central interest point) detected in an
image. Each semilocal group is defined as a two compo-
nent tuple, denoted as ¢ = {F,©}. The first component,
F ={Fy, F1,--- , F}},isaset of local features collected at
the central interest point as well as its k-nearest neighbors,
P, -+, p). The second component, © = (6y,--- ,6y), is
a vector containing neighboring angles in the constellation
spanned by the central interest point and its k-nearest neigh-
bors, Figure 1. These neighboring angles convey the lo-
cal geometrical constraints within the semilocal group. As
pointed out in [17], if we suppose that the transformations
of objects can be locally approximated by a similarity trans-
formation, then these angles have to be locally consistent.

3Such kernels are termed as minor kernelsin [5]. In[22], several minor
kernels for some state-of -the-art local feature representations are listed.

4We are reluctant to use positions of interest points directly in the ker-
nel, asin [22]. Such a setting makes the kernel vulnerable to changes in
the spatial confi gurations of the object (e.g., translation).



Figure 1: An example of semilocal group formed by an in-
terest point (central filled dot) and its five nearest neighbors,
P}, ,ps. Hypothetical lines are added to show the neigh-
boring angles.

An image I, is now represented by a set of semilocal
groups, G, = {g\", - - ,g%) }. Correspondingly, the ker-
nel matching images are now efined on two sets of semilo-
cal groups. Similar to the approach taken in constructing
kernel K £, we define a kernel between two sets of semilo-
cal groups as

(Gaa Gb

|Gal |Gsl
Z Z gia)vgj(b) ] (11)

where K, is a Mercer kernel between two semilocal groups
to be specified later, and integer p is the kernel parameter. A
similar proof as that of Proposition 3 will show that kernel
K satisfies the Mercer condition. Correct correspondence
is still an important issue, as in the case of local features,
only correctly matched semilocal groups are meaningful for
recognition. The kernel parameter p in K¢ has a similar
role as its counterpart in kernel K =, which gives preference
to good matchings between semilocal groups.

2.7. A circular-shift invariant kernel

In constructing K ¢, Equation (11), kernel K, between two
semilocal groups is left unspecified. As a semilocal group
consists of two parts, a natural way to design K is to use
the product of two kernels individually defined on the two
composing parts of g as:

Ky(gas ) =

where Kz is defined as in Equation (5). Kernel
Kg is defined between two vectors of neighboring an-
gles in the semilocal constellation. Special care is re-
quired to design such a kernel, as © is invariant under
circular-shifts. For instance, consider again the exam-
ple shown in Figure 1. A vector of neighboring angles
as (0s, 04, 65, 61, 02) represents the same geometrical con-
figuration as (61,62, 65,04,05). For this reason, kernel
Kg, which measures the similarity between two vectors of

Kr(Fo, F5)Kg(O4, Op), (12)

neighboring angles, should not treat such two vectors as dif-
ferent (i.e., it should also be invariant under circular-shifts).

In the most general setting, for two n-dimensional
vectors * = (2, -+ ,z,_1) € R"™ and y =
(Yo, -+ ,yn_1)T € R™, formally we define function ¢ :
R™ x {0,---,n — 1} — R™ to be the circular-shift op-
erator as (c(y,1))i = (¥)(i+1)mod n, Where (y); is the i-th
component of y and 0 < I, < n — 1. Now consider func-
tion

Kg(z,y) = Y5 [K(zcy.D)”  (13)

where K : R™ x R™ — R is a Mercer kernel and satisfies
that K(z,y) = K(c(x,d),c(y,d)) for0 < d < n — 1.
Many commonly used kernel functions (e.g., Gaussian) are
valid candidates for K and in our case, we simply choose it
to be the vector scalar productin R™ as K (z,y) = xTy.
Proposition 4 Function K¢ as defined in Equation (13) has
the following properties:

(i) itisa Mercer kernel on R™ x R™;
(ii) it is invariant under circular-shifts, as for z,y € R",
Kg(z,y) = Kg(c(x,d1),c(y,d2)), for 0 < di,ds <

n — 1.

A full proof of these results is given in Appendix C.

Notice that in constructing kernel K¢, we again employ
a kernel parameter p to give dominant bias to good match-
ings. Finally, as both K+ and K¢ satisfy the Mercer condi-
tion, according to Proposition 2, part (iii), their product £,
Equation (12), is also a Mercer kernel.

2.8. Summary

The process of constructing a kernel for object recognition,
as proposed in this paper, built with multiple types of lo-
cal features and semilocal constraints, is summarized in the
following algorithm:

1. With minor kernels K; defined on base local fea-
tures, construct kernel K on local features with Equa-
tion (10);

2. Construct kernel K = on local feature sets with Equa-
tion (5);

3. Obtain a vector of neighboring angles in a semilocal
group, and construct kernel K¢ with Equation (13);

4. Combine kernels Kz and K¢ into kernel K, with
Equation (12);

5. Compute kernel K between two sets of semilocal
groups with Equation (11);

3. Experiments

In this section, we present experimental results on recog-
nition tasks using local features and SVM classification,



bridged together by the proposed kernels. In principle, the
proposed kernels can work with any pattern analysis algo-
rithm that is able to be “kernelized”, i.e., depending on data
through their scalar products. SVM was chosen for its per-
formance and generalization ability.

3.1. Experimental setup

We performed our experiments on the COIL-100
database [13], a standard test benchmark for object
recognition. The COIL-100 database contains 7200 color
images of 100 different objects. All images are 128 x 128
pixels in size. They were obtained by placing the objects on
a turntable and taking a picture every 5° of viewing angle
of a 360° rotation.

In our experiments, the training set of all SVM classifiers
consisted of 3600 images, 36 for each of the 100 objects
that correspond to a 10° difference in the viewing angles.
Shown in the top row of Figure 2 are five images from the
training set. From the remaining images, five different test-
ing sets were formed:

e Set 1. 3600 images with viewing angles other than
those used in the training set.

e Set 2: 3600 images generated by randomly scaling,
rotating and translating images in set 1.

e Set 3: 3600 images generated by adding Gaussian
noise of average 12 dB to the images in set 1.

e Set 4: 3600 images generated by embedding the im-
ages in set 1 into randomly chosen backgrounds.®

e Set 5. 3600 images generated by artificially adding
partial occlusions (stripes from randomly chosen im-
ages) to the images in set 1.

Set 1 and 2 test the generalization ability of the kernels
and classifiers to changes in viewing angles and object
positions. Set 3-5 are devised to test their resilience to
common image degradations, namely additive noise, back-
ground clutters and partial occlusions.

On each image, three types of local features along with
their corresponding minor kernels were computed:

1. Local jets [17] are differential grayvalue invari-
ants computed around an interest point. Each lo-
cal jet is a vector of dimension 9 containing up to
the third order derivatives. A Mercer kernel be-

tween two local jet features, = and z, is K(x,z) =
(z—2)TA" 1 (z—2) . .

exp ( ———5—>——>), where A is the covariance

matrix and /(z — z)TA~1(z — z) is the Mahalanobis

distance between z and z.

5Images used for backgrounds and partial occlusions in set 4 and set 5
are downloaded fromht t p: / / www. f r eef ot 0. com

train

setl

set 2

set 3

set 4

set5

Figure 2: Examples of images used in our experiments. The
first row are images from the training set. The remaining
rows are examples from each of the five testing sets.

2. Local histograms [16] are local features consisting
of histogram at different scales around interest points.
Using 32 bins in computing the histogram and con-
sidering up to 3 scales, each feature is a 96 dimen-
sional vector. A kernel based on the y?2-similarity
between two feature vectors, = and z, K(z,z) =

exp (— XQ(“)) is introduced in [22] and proved to
202 ’

satisfy the Mercer condition [4].

3. Local phase-based features [2] are comprised by lo-
cal phases of a complex pyramid decomposition of
the image. The features are 36-dimensional complex-
valued vectors, and their similarity is measured by
Clx,z) = ‘% , from which a Mercer kernel is

constructed as K (z, z) = (C(z,z) + 1)%.

For each of these local features, interest points were found
by a Harris corner detector, showed to have high repeatabil-
ity and robust performance [18]. Interest points too close
to the boundary were ignored to avoid image border ef-
fects. The parameters of the interest point detector were
set so that, on average, approximately 100 interest points
were found in an image. Semilocal groups, as described in
section 2.6, were formed on each interest point using its five
nearest neighbors.

To have a basis of comparison, we also collected a global



feature from each image. The global feature we used is the
raw pixel representation [15], which was obtained by first
convertinga 128 x 128 color image into grayscale and resiz-
ing it to 32 x 32 pixels. A 1024-dimensional feature vector
was formed by stacking the grayvalues of the resized image.

For the local feature representations, composite kernels
as described in Section 2.8 were formed from the local fea-
tures and their kernels. The kernel parameter, p, was set to
9 in all cases. For the global features, a Gaussian kernel,
Equation (2) was employed. The SVM classifiers were im-
plemented with package LIBSVM [3], which was enhanced
to work with kernels on local feature representations. As
a standard preprocessing step in the literature, we used the
normalized kernel evaluation in building the SVM classifier,
as K(z,y) « K(z.y) We employed a simple

VE(@.2)\/K(yy)

multi-class protocol for classification, namely a one-versus-
the-rest scheme in training and a winner-takes-all strategy
in testing. The regularization parameter of SVM was set to
103 in all classifiers.

3.2. Results

Shown in Table 1 is the performance of different types of
kernels with the local jets on all testing sets. For compari-
son, the performance of the global feature (raw pixel repre-
sentation) with a Gaussian kernel is also included. Perfor-
mance is evaluated in error rates, which is the percentage
of all misclassification cases in all testing examples. Sev-
eral points are worth noting about this set of results. First,
the local jet features out-performed the global features on
all testing sets. The difference is more significant with the
presence of image transformations and degradations (set
2-5). Furthermore, notice that the proposed kernel, K z,
achieved competitive performance to that of the matching
kernel K. As Ky is less sensitive to mismatches in local
features, it had lowest error rate in some cases (set 3,4).
However, its drawback is that there is no guarantee of a
unique global optimal solution to the SVM training.

Shown in Figure 3 is a plot of the contribution of the best
matched local feature pairs in the evaluation of kernel K £,
Equation (8), with regards to the kernel parameter p. For
stability, we reported here the average over kernel evalua-
tions of all training image pairs. Notice that after p > 9,
this ratio is plateaued to be more than 99%, indicating that
the best matched pairs of local features has dominated in
the kernel evaluation. This fact is further supported by the
corresponding classification error rates of K » on test set 1,
Figure 4. With p chosen greater than 9, the performance
does not improved significantly.

In the second series of experiments, we tested the pro-
posed kernel combined with different types of local fea-
tures. Shown in Table 2 are the results of this experiment.
Note that the local jets work well under noise, but suf-
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Figure 3: Contribution of the best matched local feature
pairs, , Equation (8), in kernel K x with local jet features
as a function of the kernel parameter p.
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Figure 4: Classification performance of kernel K ~ with lo-
cal jet features on set 1 as a function of the kernel parameter

p-

fer from background clutter and occlusion. The local his-
tograms, on the other hand, are more robust in the face of
partial occlusions. The local phase-based features perform
worst in all the experiments.

We further combined all types of local features as in
Equation (10), and reported its performance in the first row
of Table 3. It seems that fusion of local features does not
necessarily improve the performance (set 1). However, in
cases of image degradations, this approach achieved bet-
ter results, possibly because multiple types of local fea-
tures provide complementary information that helps to re-
duce ambiguity in classification. Finally, we constructed an
SVM classifier using the kernel defined in Equation (11), to
further incorporate the semilocal constraints. Such a ker-
nel, equipped with the most comprehensive domain knowl-
edge, was expected to work best. Shown in the second row
of Table 3 is the performance of this kernel on all testing
sets. Compared to other kernels, it indeed achieved the low-
est error rate, which suggests the efficacy of semilocal con-
straints.

4. Discussion

In this paper, we have introduced a new class of kernels for
appearance based object recognition with local feature rep-



setl | set2 | set3 | set4 | seth
Kgr | 11.3 | 539 | 384 | 57.3 | 49.6
Kg | 109 | 294 | 239 | 39.7 | 36.4
Ky | 1.8 | 272 | 169 | 205 | 28.8
Kr | 14 | 238 | 17.7 | 253 | 24.6

Table 1: Error rates (in percentage) of the Gaussian kernel
(Equation (2)) with a global feature (raw pixels) and differ-
ent kernels, K r (Equation (3)),K s (Equation (4)) and K,
(Equation (5)), with the local jet features.

setl | set2 | set3 | set4 | set5
local jets 14 | 238 | 17.7 | 253 | 24.6
local histograms | 7.6 | 34.1 | 22.8 | 28.6 | 21.2
local phases 10.2 | 39.4 | 285 | 29.1 | 27.9

Table 2: Error rates (in percentage) of different local fea-
tures with kernel K £, Equation (5).

setl | set2 | set3 | set4 | setb
Kr | 61 | 235 | 144 | 199 | 21.2
Ke | 1.2 | 176 | 83 | 12.7 | 10.9

Table 3: Error rates (in percentage) of kernels using multi-
ple types of local features, Equation (10) and with semilocal
constraints, K¢, Equation (11).

resentations. The proposed kernels work on sets of local
features with variable lengths, satisfy the Mercer condition
and reflect similarities between sets of local features. In
addition, multiple types of local features and semilocal con-
straints were combined into the kernel design, which help to
further improve the performance. We presented preliminary
experimental results where the proposed kernels, coupled
with SVM classification, showed promising performance in
recognition tasks and is robust to image transformations and
degradations.
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Appendix A: K,; isnot a Mercer ker-
nel

Proposition 5 Function K, defined in Equation (3) is not
a Mercer kernel, given that Ky is a Mercer kernel defined
on the local features.

Proof To prove that K is not a Mercer kernel, according
to Proposition 1, it is sufficient to show that there is a subset
of the input space on which the matrix evaluated with K,
is not positive semi-definite.

To this end, consider F; = {f1, fa}, F2 = {f3, fa}, and
Fs = {f5, fo}. Assume a kernel matrixonset { f1,--- , fo}
constructed by some kernel function as

127 127 141 60 159 128
127 287 215 127 236 135
141 215 206 101 223 157
60 127 101 73 134 79
159 236 223 134 281 191
128 135 157 79 191 160

Matrix Gy is positive semi-definite, evident from its sin-
gular value decomposition. From G/, the kernel matrix of
K s can be constructed using Equation (3) as

207.00 174.50 191.50
174.50 153.50 184.25
191.50 184.25 236.00

Gy =

For example, the element of G, at row 1 and column 3 is
computed as

(Gms = i[max((Gf)lsa (Gf)16) + max((Gy)as, (G)26)

max((Gy)s1, (Gr)s2) + max((Gy)et, (Gr)ez]
— (159 + 236 + 236 + 135)/4 = 191.50.

+

Matrix G is not positive semi-definite, as its eigenval-
ues are —1.77, 29.61, and 568.65. Therefore, using K,
can not always form positive semi-definite matrix and this
means K, is not a Mercer kernel.

Appendix B: Proof of Equation (8)

Without loss of generality, let us assume K g (E(”, F{") >

- > Kp(F{",Fz) and F{” is the unique best match

feature to .’ in 73,°. The contribution of the best matched
local feature in F, with F* in the sum of Equation (6) is:

j=1

o — [KF(Fi(a)7F1(b)):|p/Z|fb| [KF(Fi(a)’F;b))]? (b.1)

6This constraint is held for most of the cases, but when multiple best
matches exist, asimilar result can be obtained in the same way.



We require that the similarity of the best matched pair in the
sum has a fraction above a given threshold p as:

[Kp(F®, )" /2] (K

Note that

P(EDEO)Y > p. (b2)

[K (F(a) F(b))]p
> Z‘]:b [

Therefore, if we have

+ (7] = 1) [Kp(F, 7))
p(F FM]” (b.3)

[Kr(F, F{")]"
[Kr(F”, F7)]"

p

Equation (b.3) will be satisfied. Rearranging terms yields

o Ke(EORP)
1 .
S AGENTE

1
> ]
N

(b.4)

Appendix C: Proof of Proposition 4

Proof  Consider two n-dimensional vectors x =
(an o, Tp— l) and Yy = (yoa s Yn— l) define X and
Y to be subsets of R as X = {c¢(z,0),--- ,c(z,n — 1)}
and Y = {c(y,0), - ,c(y,n — 1)}, Where c: R" x
{0,--,n—1} - R" is the circular-shift operator in R™.
Now define

N n—1n—1

K(X)Y) = > Y [K(c(x,i),c(y. ) (c.1)

i=0 j=0

With a similar proof as that of Proposition 3, we con-
clude that K'(-,-) is a Mercer kernel. With the definition
of Mercer kernels, this suggests that there exists a mapping
#2 : 2*" — H, where H is a Hilbert space, such that

K( ) (P2(X ) ¢2( ))- (c.2)
Expanding the evaluation of kernel K as
K(X.Y) =310 Y05 K ((m i), ey, )1
= Yo K ()" + X0y i (K e(y, g — )]

+ Y T K (e, g — i), )

= nK(x y)P ¥ S S T K ey D)) +
S i Kz ey, D))

= nK(z,y)" + Y1) K (@, clyn—i— 1)) +
S S K ( ey, D)

= nK (z,9)" + Y15 (K (z,c(y. 1)) +

D) Y K (2 ey, 1))

=n Y1y [K (@, c(y, 1))’ = nKg(x,y).

(n —

+ (|7 = 1) [Kp(F, FS]™

10

Therefore, we have K¢g(z,y) = %IN((XJ/). Notice that in
proving this equality, we used a property of the circular shift
operator as « = ¢(x, n) and our assumption about the base
kernel, ie., K(z,y) = K(c(z,d),c(y,d)) for0 < d <

n — 1.
We can now define another mapping ¢, : R" — 2R"
such that ¢4 (z) = {c(«,0),- -+, e(x,n — 1)}. Substituting

the definitions of mapping gbl and gbg into the evaluation of
Kg yields

1

Kg(I,y) Eg(XvY) =

%(@(X), $2(Y))
%<¢2(¢)1(:c))7 P2(1(y)))

(=oor(o), T=on(on)).
If a new mapping ¢ : R™ — H is defined as ¢(z) =
%@(@ (z)), we then have

Kg(z,y) = (6(x), o)),

which shows that Kg(-,-) is a Mercer kernel and hence
proves the first part of Proposition 4.

The second part of Proposition 4 can be proved by
first noticing that ¢ () = {c(z,0), -+ ,c(z,n — 1)} =

(c.3)

¢1(c(x,d)) forany0 < d <n—1. Therefore
Kg(w,y) = ~K(61(2), 61(y)
= R(61(clw ) (c(y,d2)))
= Kg(c(z, dl)v C(yv dQ))

forany given 0 < d;,ds <n — 1.
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