
SUBMITTED TO INT. CONF ON DOCUMENTS ANALYSIS AND RECOGNITION, 2005 1

Efficient Geometric Algorithms for Parsing in Two
Dimensions

Percy Liang, Mukund Narasimhan, Michael Shilman, and Paul Viola

Abstract—

Grammars are a powerful technique for modeling and ex-
tracting the structure of documents. One large challenge,
however, is computational complexity. The computational
cost of grammatical parsing is related to both the complex-
ity of the input and the ambiguity of the grammar. For
programming languages, where the terminals appear in a
linear sequence and the grammar is unambiguous, parsing
is O(N). For natural languages, which are linear yet have
an ambiguous grammar, parsing is O(N3). For documents,
where the terminals are arranged in two dimensions and the
grammar is ambiguous, parsing time can be exponential in
the number of terminals. In this paper we introduce (and
unify) several types of geometrical data structures which
can be used to significantly accelerate parsing time. Each
data structure embodies a different geometrical constraint
on the set of possible valid parses. These data structures
are very general, in that they can be used by any type of
grammatical model, and a wide variety of document under-
standing tasks, to limit the set of hypotheses examined and
tested. Assuming a clean design for the parsing software,
the same parsing framework can be tested with various ge-
ometric constraints to determine the most effective combi-
nation.

Index Terms—Document Analysis Systems; Software
Methodologies

I. Introduction

GRAMMATICAL approaches for document structure
analysis have a long history. In comprehensive re-

views of the field, a significant percentage of the reported
papers have used grammatical approaches [1], [2], [3].
Grammatical document processing research relies on the
related work in the field of general grammatical parsing.
It is not surprising that these document papers adopt the
state of the art in parsing technology at the time of pub-
lication. For example, the work of Krishnamoorthy et. al.
uses the grammatical and parsing tools available from the
programming language community [4] (see also [5], [6]).
Similarly the work by Hull uses attributed probabilistic
context free grammars [7] (see also [8], [9], [10]). In the
last few years there has been a rapid progress in research
on grammars in the natural language community . These
advances have led to more powerful grammatical models
that can be learned directly from data [11]. Such mod-
els are strictly more powerful than the probabilistic con-
text free grammars used in previous document analysis re-
search. Simultaneously there has been progress on acceler-
ating the parsing process in the presence of ambiguity [12],
[13]. Motivated by these results a new wave of research on
grammatical parsing for documents is likely to result.

A grammar based approach selects a global description
of the page from several competing descriptions based on a

Microsoft Research
Redmond, WA, 98033

Fig. 1. A very simple page with four terminal objects.

global figure of merit. The local interpretation which max-
imizes the global score is selected. This provides a princi-
pled technique for globally integrating local measurements
and handling local ambiguity. The challenges of grammat-
ical approaches include computational complexity, gram-
mar design, and parameter estimation. The focus of this
paper is computational complexity: we introduce a set of
general purpose geometric constraints and data structures
which can be used to accelerate the parsing of two dimen-
sional documents.

In related work Miller and Viola describe a system for
parsing equations which uses geometrical data structures
to control the complexity of the parsing process [9]. We
improve on their algorithms and present a number of new
geometric algorithms as well. Other researchers have used
geometric graph data structures to constrain the set of in-
terpretations on the page [10]. While these papers do not
discuss grammars directly, the segmentation and recogni-
tion problem that they solve can be rephrased as a parsing
problem with a simplified grammar. Our work improves
on these graph structures as well.

II. Document Grammars

One simple example examined in detail may yield some
intuitions regarding the algorithms presented below. Fig-
ure 1 shows a page with 4 terminal objects, which depend-
ing on the application could be connected components, pen
stokes, text lines, etc. In this case, let us assume that the
objects are words on a simple page and the task is to group
the words into lines and lines into paragraphs. A simple
grammar that expresses this process is:

(Page → ParList)
(ParList → Par ParList)
(ParList → Par)
(Par → LineList)

(LineList → Line LineList)
(LineList → Line)
(Line → WordList)
(WordList → Word WordList)
(WordList → Word)

The correct parse in this case is:
(Page (ParList

(Par (LineList

2 SUBMITTED TO INT. CONF ON DOCUMENTS ANALYSIS AND RECOGNITION, 2005

(Line (WordList (Word 1) (WordList (Word 2))))
(LineList (Line (WordList (Word 3)

(WordList (Word 4)))))))))

This parse tree provides a great deal of information
about the document structure: there is one paragraph con-
taining two lines; the first line contains word 1 and word
2, etc.

The grammatical approach can be adopted for many
types of document analysis tasks, including the parsing
of mathematical expressions, text information extraction,
and table extraction.

In general, productions in a grammar have the form (A
→ B C) which states that the non-terminal symbol A can
be replaced by the non-terminal B followed by the non-
terminal C. Following the general conventions for gram-
mars, non-terminals are written in upper case and termi-
nals in lower case. We will restrict our discussion to a
binarized grammar in which each non-terminal has either
one or two elements on the right hand side.1 A simple
weighted grammar, or equivalently a Probabilistic Context
Free Grammar (PCFG), additionally assigns a cost to ev-
ery production. Productions which are applicable expand
the non-terminals with a log probability proportional to
cost.

Most practitioners of computer science are familiar with
the notion of a programming language grammar. These
grammars are specially designed to be both globally and
locally unambiguous. For such grammars very efficient lin-
ear time parsing algorithms can be used. In the case of
English language grammars, where there are unavoidable
ambiguities, there are often hundreds or thousands of valid
parses for any sentence [14]. For a linear sequence of termi-
nals parsing requires O(PN3) time, where P is the number
of productions in the grammar and N are the number of
terminals.

While there are a number of competing parsing algo-
rithms, one simple yet generic framework is called Chart
Parsing [15]. Chart parsing attempts to fill in the entries
of a chart C(A,R) which is the best score of a non-terminal
A as an interpretation of the sub-sequence of terminals R.
The cost of any non-terminal can be expressed as the fol-
lowing recurrence:

C(A, R) = min
A→BC

R1∩R2=∅
R1∪R2=R

C(B, R1) + C(C, R2) + l(A→ BC) (1)

where {BC} ranges over all productions for A, and R is
a subsequence of terminals (what we will call a region),
and R1 and R2 are subsequences which are disjoint and
whose union is R (i.e. they form a partition). Essentially
the recurrence states that the score for A is computed by
finding a low cost decomposition of the terminals into two
disjoint sets. Each production is assigned a cost (or loss or
negative log probability) in a table, l(A→ BC). The entries
in the chart (sometimes called edges) can be filled in any
order, either top down or bottom up. The complexity of

1 Any more general grammar can be converted to a binary grammar
easily.

the parsing process arises from the number of chart entries
that must be filled and the work required to fill each entry.
When analyzing a linear sequence of terminals there are
O(PN2) entries (since there are 1

2

(
N
2

)
∈ O(N2) pairs <

i,j >). Since the work required to fill each entry is O(N),
the overall complexity is O(PN3), where P is the number
of productions.

A. Geometric Parsing Is Exponential

In this paper we will study algorithms for parsing termi-
nals arranged on a two dimensional page. Unfortunately
a direct application of chart parsing to two dimensional
arrangements of terminals requires exponential time. The
key problem is that the terminals no longer have a linear
sequential order. Returning to (1), the region R is now a
subset, and R1 and R2 are subsets which are disjoint and
whose union is R (i.e. they form a partition). As before
we can analyze the size of the chart, which is O(P |P(N)|)
where P(N) is set of all subsets of N terminals. In general
there are an exponential number of subsets, and hence the
algorithm is exponential.

Others have certainly observed this dilemma and have
either assumed that the 2D terminals are linearly ordered
(by some earlier process) or have worked with other lin-
earizations (for example [4] parses linear projections of the
input).

Miller and Viola introduced an effective heuristic which
significantly improved performance. They select sub-
sets R1, R2 such that either chull(R1) ∩ R2 = ∅ or
chull(R2)∩R1 = ∅. Calling these sets regions is now ap-
propriate, since each set lies within a convex region of the
page. It is worth noting that if the terminals lie along a
line (and therefore have a strict linear ordering) the convex
hull criterion yields the O(N2) regions and is equivalent to
the contiguous subsequence constraint used in conventional
parsing. While this constraint is effective in practice, the
worst case complexity is still exponential and the computa-
tion of the convex hulls themselves is somewhat expensive.

The notion of region (and subregion) is quite general. A
region of the input is a set of the terminals, coupled with a
constraint on the set of subsets which are valid for parsing.
For the case of classical parsing the regions are sequential
terminals and are represented by a pair of integers < i,j >.
The subregions are sequential subsets of terminals < i,k >
and < k,j >.

In this paper we propose several new kinds of geometric
regions. We define and motivate each region and we also
present an efficient algorithm for enumerating valid sub-
sets. Each can lead to a significant speed up of parsing.

B. Rectangle Hull Region

The first region is called a Rectangle Hull Region. Subre-
gions are constrained so that rhull(R1)∩rhull(R2) = ∅,
where rhull(X) is smallest axis aligned rectangle which
contains X (known as a rectangle hull). The motivation
for this region comes from the convex hulls used by Miller
and Viola, but it is much easier to compute. For printed
pages which have been deskewed, the constraint implied

Liang et al.: GEOMETRIC ALGORITHMS FOR PARSING 3

by the Rectangle Hull Region is essentially equivalent to
the convex hull constraint.

The number of valid rectangle regions is polynomial (as
in a conventional sequence region). To see this, notice that
the left boundary of rhull(X) is defined by the leftmost
point in the subset of terminals X. This point must be
the leftmost point of some terminal in X. The same ar-
gument applies to the top, bottom, and right boundaries.
Every potential rectangle hull region < t, b, l, r > can be
enumerated by selecting 4 terminals. The left boundary of
the first terminal defines the left boundary of the region,
l; the top of the second defines the top, t; the bottom of
the third defines the bottom, b; the right boundary of the
final terminal defines the right, r. There are no more than(
N
4

)
= O(N4) valid subregions. Note that in practice there

are many fewer regions, since many of the regions may fail
the disjoint test above (since a terminal may be split by
the boundary and will neither lie inside of rhull(R1) nor
entirely outside). In experiments it is often the case that
approximately O(N2) rectangular subregions are admissi-
ble.

For top down parsing the following efficient algorithm is
used to enumerate all valid pairs of rectangle hull subre-
gions (these pairs are used to drive the recursion in Equa-
tion 1). Insert the top, ti, and bottom, bi, of each terminal,
i, into a single sorted list. Given a region < t, b, l, r >, it
can be split into into two valid subregions as < t,s, l, r >
and < s, b, l, r >, if t < s < b and the boundary does not
intersect any terminal in the current region. All admissible
s can be found in a single pass over the sorted list from top
to bottom. As the list is traversed, we keep track both of
the current element, s′ and the set of all terminals which
are split: ti < s′ < bi (the top of terminal i is above the
separator and the bottom is below the separator). The
value s′ is a valid separator if the list of split terminals
is empty. Note that the list of split terminals can be up-
dated rapidly. If the previous element is a top, ti, add i
to the list. If the previous element is a bottom, bi, remove
i from the list. Vertical splits are computed by repeating
the entire process for the left and right bounds of the ter-
minals. Note that the work of sorting can be done once for
the entire page. Thereafter sublists of the full sorted list
are used. Also note that there can be at most 4N pairs of
admissible subsets, though many of these are often pruned
away since they are inadmissible.

III. Convex Hull Region

The convex hull criteria of Miller and Viola is a clear
candidate for use as a type of region. The key challenge
is to enumerate all admissible subsets efficiently. Recall
that subsets R1 and R2 must satisfy the criteria that R1∩
chull(R2) = ∅ or R2 ∩ chull(R1) = ∅. We have found
that a closely related criteria is equally valuable, but has
the advantage that it is very efficiently enumerable. This
new criteria requires that chull(R1) ∩ chull(R2) = ∅.
Note that this new criteria always implies the first.

Recall that valid rectangle hull subregions are enumer-
ated by finding separating lines which are defined by the

Fig. 2. The co-tangent lines for a pair of terminals. The green
rectangles represent the bounding boxes of the terminals while the
grey polygons are a pair of implicitly defined convex hulls.

boundaries of the terminals. Convex hull subregions can
be generated similarly. First note that every pair of admis-
sible subsets chull(R1) ∩chull(R2) = ∅ is separated by
a line which is tangent to both chull(R1)and chull(R2)
(see Figure 2). The proof omitted due to space. Recall
that the goal is to enumerate subsets that satisfy the con-
vex hull criteria efficiently, not to compute convex hulls.
We do so by enumerating all potential co-tangent lines.
Since every co-tangent line is defined by a pair of termi-
nals, all potential co-tangent lines can be enumerated in
O(

(
N
2

)
)

Miller and Viola do not discuss the algorithm used to
enumerate convex hull admissible subsets. It is possible
that their algorithm, while very fast for the smaller prob-
lems they encountered, may well have been exponential.
We believe this is the first description of an algorithm for
enumerating convex hull compatible subregions efficiently.

IV. Graph Region

In his work on the parsing of mathematical expres-
sions, Matsakis proposes the use of a Minimum Spanning
Tree(MST) on the set of terminals [10]. Given some dis-
tance measure between pairs of terminals on the page (per-
haps centroid distance or nearest point distance) on can
compute the MST in O(N2 logN2). Valid regions are sub-
sets of the terminals which are connected in this graph.
This criteria is based on the observation that when two
terminals are near neighbors on the page they are often
near neighbors in the parse tree. Conversely, if a pair of
subsets are far apart they are rarely combined into a single
subtree. Disappointingly, the MST criterion is worse case
exponential, though it is quite effective in practice.

Perhaps a more serious flaw is the fragility of the MST.
One type of problem arises from expressions containing
fractions, since the fraction bar sometimes lies closer to
the symbols in the numerator than other symbols in the
numerator (see Figure 3). Additionally for handwritten in-
puts there are many examples where the MST contradicts
the parse tree.

The fragility of the MST can be addressed by adding
additional edges to the graph. A simple proposal is to
connect the k nearest neighbors on the page. This increases
the number of subsets significantly, but tends to fix many
of the problems with the MST.

4 SUBMITTED TO INT. CONF ON DOCUMENTS ANALYSIS AND RECOGNITION, 2005

Fig. 3. (Left) An arrangement of symbols for which the MST does
not yield the correct subgroups. Note this type of arrangement
also admits an exponential (though manageable) number of parses.
(Right) Additional edges added to the MST which allows the correct
grouping.

One can directly enumerate all connected subsets of a
graph using a variant of breadth first search, being careful
to use a hash table to exclude subsets which are encoun-
tered twice. The search proceeds using a queue of con-
nected subsets. A subset of size n is removed from the
queue and is extended by finding all nodes which are di-
rectly connected to some element of the subset. If there are
k such connected nodes, a collection of k connected sub-
sets of size n+1 are created and placed back in the queue.
Before insertion, a hash table is consulted to determine if
the subset is a duplicate, and if so is discarded.

For graphs where there are an exponential number of
connected subgraphs, all enumeration algorithms are in-
tractable. In practice the constraint that a subregion be
connected is used to prune regions generated by one of the
other region types. In this case the complexity is that of
the enumerating region (though the final number of regions
is often significantly reduced).

V. Partial Order Region

In his work on determining reading order, Breuel define
a partial order on the lines of the pages [16]. Each pair
of lines, a and b, is examined to determine if there is an
ordering between them: (Condition 1), line a comes before
line b if their ranges of horizontal coordinates overlap and
if a is above b on the page; (Condition 2), line a comes
before b if a is entirely to the left of b and if there does
not exist a line c whose vertical coordinates are between a
and b and whose range of horizontal coordinates overlaps
both a and b. Surprisingly these two simple rules yield
sufficient constraint so that the topological sort of the lines
frequently matches the page reading order.

While Breuel’s technique is quite beautiful due to its
simplicity, we have found two types of common failures:
ambiguity and incorrectness. Ambiguity arises whenever
the topological sort is not unique. In this case one of the
valid orderings is correct but many others are not. In-
correctness results when the true ordering is inconsistent
with the partial order. The second rule is the primary
cause of incorrectness, since it sometimes fails in situa-
tions where there are two different two column zones on
the page. In addition, these heuristics often fail for the
headers and footers of pages. It is tempting to modify the
second condition: (Condition 2′) line a comes before b if
a overlaps b vertically and a is to the left of b. This new
condition is consistent with almost all pages of text, but it
often yields a partial order which is ambiguous. Note that
condition 2′ yields a strictly weaker partial order, since if

condition 2′ is satisfied this necessarily implies condition
2.

Breuel’s partial order suggests a new type of region,
which we call the Partial Order Region. In this case re-
gions are selected so that no element in R2 comes before an
element in R1 which is denoted R1 ≤ R2. An efficient al-
gorithm for enumerating such regions is based on a search
of the directed graph implied by the partial order. The
test for an admissible subregion is simply to check that
all children of nodes in R2 lie in R2, or equivalently all
parents of nodes in R1 lie in R1. Begin by performing a
topological sort on the nodes to form a total order. Nodes
are then each assigned either to R1 or R2 using depth first
search. Before a node is assigned a label it is checked for
admissibility.
Recurse(Node[] n, int i)
{

if (n.Length == i)
AddSubsets();

else {
if (NoParentR2(n[i]) {

n[i].SetR1();
Recurse(n, i+1);

}
if (NoChildR1(n[i]) {

n[i].SetR2();
Recurse(n, i+1);

}
n[i].Unset();

}
}

If there are no links in the partial order graph the above
algorithm is exponential. This is the worse case. Breuel’s
graphs are quite dense and he reports that these partial or-
ders often yield a unique topological ordering. In this case
the algorithm is quite efficient and is is computationally
equivalent to parsing a linear sequence.

VI. A Simple Example

The simple example in Figure 1 can be used to demon-
strate the various geometric regions. Given that there are
four terminals, there are 16 proper subsets. A region is
considered compatible with the correct interpretation if
it admits all the subgroups in that parse tree. In this
case the correct regions are [1], [2], [3], [4], [1,
2], [3, 4].

Table I shows the admissible subsets for each type of
region. The sequence region is assumed to have perfect
knowledge of the correct order. The other regions observe
only the geometry of the terminals. The partial order re-
gion is given the following directed edges: 1 < 2, 1 < 3,
2 < 4, 3 < 4. The graph region is given the following
neighborhood edges: 1-2, 1-3, 2-3, 2-4, 3-4. Since
all regions enumerate the subsets of size one, the first dif-
ferences appears among the 10 larger subsets. Both the
“hull” based regions perform perfectly. They only admit
subsets which are compatible the correct answer. All other
subsets are rejected. The Graph Region performs worst,
since in a tight collection of four symbols almost every sub-
set is connected. The Partial Order Region is a bit better,
but it to suffers from the tight placement of the terminals

Liang et al.: GEOMETRIC ALGORITHMS FOR PARSING 5

Seq Graph Partial Rect Convex
Order Hull Hull

1 X X X X X
2 X X X X X
3 X X X X X
4 X X X X X
1 2 X X X X X
1 3 X X
1 4
2 3 X X X
2 4 X X
3 4 X X X X X
1 2 3 X X X
1 2 4 X
1 3 4 X
2 3 4 X X X

Totals:
14 9 13 11 6 6

TABLE I

A table of the valid regions enumerated by the various

types of geometric regions.

as well. Both the “graph” related regions perform much
better when the terminals are strung out in a more linear
arrangement. Note that the sequence region, which has ac-
cess to the terminal ordering of this page, performs worse
than either hull region. In this case the geometric region
constraint has additional value beyond the ordering of the
nodes.

Interestingly, it is the tight placement of the terminals
which leads to the success of the “hull” regions. There
are applications, like the parsing of mathematics, where
the symbols are placed very tightly and the hull regions
are not compatible with the correct parse (i.e. they reject
valid subsets). One simple solution is to erode the ter-
minals slightly, which essentially reduces the tightness of
the placement. In the limit one can erode the terminal to
a single point, for example the centroid. In this case the
hulls are maximally compatible but still provide significant
constraint.

VII. Experiments

In order to support some of the claims of this paper
we have analyzed pages from the UWIII document im-
age database. The UWIII database gives ground truth for
words, lines, and zones, as well as the reading order. In
other work we are constructing a grammatical approach
for the extraction of this and additional information such
as sections and columns. Classification performance on
this problem will be described elsewhere. Here we report
the number of subregions produced for several pages from
the database. The goal here is to show that the geometric
regions produce a reasonable number of subregions. One
valid point of comparison is to compare the number of
regions produced by a sequence region given the ground
truth linear ordering of the page. The other regions op-
erate with only geometric information. Another point of
comparison is the number of subset in the power set. Note
that the Rectangle Hull Region consistent produces the

A04GBIN A04FBIN A004BIN A009BIN

Terminals: 30 49 44 47
Sequence: 465 1225 990 1128
Rect: 316 648 948 1040
Partial Order: 1599 2143 990 1128
PowerSet 1.0E+009 5.6E+014 1.8E+013 1.4E+014

TABLE II

Number of regions generated. First row is the number of

lines in the file (the two right most files are two column

files, the two leftmost are one column files).

fewest subregions.

VIII. Conclusion

Grammatical parsing has proven valuable in a number
of document analysis problems. With recent advances in
grammar learning and parsing, we are likely to see an in-
crease in interest in this area. In this paper we have pre-
sented geometric algorithms which can be used to acceler-
ate parsing for a wide variety of two dimensional parsing
problems. Examples include document structure extrac-
tion, parsing of mathematical expressions (both printed
and handwritten), and document information extraction.

References

[1] S. Mao, A. Rosenfeld, and T. Kanungo, “Document structure
analysis algorithms: A literature survey,” in Proc. SPIE Elec-
tronic Imaging, vol. 5010, January 2003, pp. 197–207.

[2] R. Zanibbi, D. Blostein, and J. R. Cordy, “A survey of table
recognition: Models, observations, transformations, and infer-
ences,” International Journal of Document Analysis and Recog-
nition, vol. 7, no. 1, pp. 1–16, 2004.

[3] K.-F. Chan and D.-Y. Yeung, “Mathematical expression recog-
nition: a survey,” International Journal on Document Analysis
and Recognition, vol. 3, pp. 3–15, 2000.

[4] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan,
“Syntactic segmentation and labeling of digitized pages from
technical journals,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 15, pp. 737–747, 1993.

[5] A. Conway, “Page grammars and page parsing. a syntactic ap-
proach to document layout recognition,” in Proceedings of the
Second International Conference on Document Analysis and
Recognition, Tsukuba Science City , Japan, 1993, pp. 761–764.

[6] D. Blostein, J. R. Cordy, and R. Zanibbi, “Applying compiler
techniques to diagram recognition,” in Proceedings of the Six-
teenth International Conference on Pattern Recognition, vol. 3,
2002, pp. 123–136.

[7] J. F. Hull, “Recognition of mathematics using a two-dimensional
trainable context-free grammar,” Master’s thesis, MIT, June
1996.

[8] P. Chou, “Recognition of equations using a two-dimensional
stochastic context-free grammar,” in SPIE Conference on Vi-
sual Communications and Image Processing, Philadelphia, PA,
1989.

[9] E. G. Miller and P. A. Viola, “Ambiguity and constraint in
mathematical expression recognition,” in Proceedings of the Na-
tional Conference of Artificial Intelligence. American Associ-
ation of Artificial Intelligence, 1998.

[10] N. Matsakis, “Recognition of handwritten mathematical expres-
sions,” Master’s thesis, Massachusetts Institute of Technology,
Cambridge, MA, May 1999.

[11] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning,
“Max-margin parsing,” in Empirical Methods in Natural Lan-
guage Processing (EMNLP04), 2004.

[12] E. Charniak, S. Goldwater, and M. Johnson, “Edge-based best-
first chart parsing,” in Proceedings of the Fourteenth National
Conference on Artificial Intelligence, 1998, pp. 127–133.

6 SUBMITTED TO INT. CONF ON DOCUMENTS ANALYSIS AND RECOGNITION, 2005

[13] D. Klein and C. D. Manning, “A∗ parsing: Fast exact viterbi
parse selection,” Stanford University, Tech. Rep. dbpubs/2002-
16, 2001.

[14] E. Charniak, “Statistical techniques for natural language pars-
ing,” AI Magazine, 1997.

[15] M. Kay, “Chart generation,” in Proceedings of the 34th confer-
ence on Association for Computational Linguistics. Associa-
tion for Computational Linguistics, 1996, pp. 200–204.

[16] T. Breuel, “High performance document layout analysis,” in
2003 Symposium on Document Image Understanding Technol-
ogy, Greenbelt Maryland, 2003.

