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ABSTRACTAIthough the computational properties of the Region Cotioe€alculusRCC-8 are
well studied, reasoning witRCC-8 entails several representational problems. This includes
the problem of representing arbitrary spatial regions in @mputational framework, leading
to the problem of generating a realization of a consistenhto§&CC-8 constraints. A further
problem is thatRCC-8 performs reasoning about topological space, which doeshaot a
particular dimension. Most applications of spatial reasgar however, deal with two- or three-
dimensional space. Therefore, a consistent s&®@C-8 constraints might not be realizable
within the desired dimension. In this paper we address thest@dems and develop a canonical
model ofRCC-8 which allows a simple representation of regions with respea set oRCC-8
constraints, and, further, enables us to generate reabnatin any dimensiod > 1. For three-
and higher-dimensional space this can also be done formaiér connected regions.

KEYWORDS:qualitative spatial representation, RCC-8, topologicalations, spatial regions,
modal logic.

1. Introduction

The Region Connection CalculuBCC) [RAN 92b] is a topological approach to
qualitative spatial representation and reasoning [COHv@Wre spatial regions are
regular subsets of a topological space. Of particular @stefior application purposes
is RCC-8, a constraint language that uses eight mutually exhauatidepairwise
disjoint base relations definable in tlRCC-theory. The computational properties
of RCC-8 have been studied thoroughly [NEB 95, REN 99b, REN 99a] aficiexft
reasoning mechanisms were identified [REN 01].

Despite these advantages, there are still several problitinsepresenting spatial
regions withinRCC-8. As the calculus is based on topology, spatial regions niight
arbitrary subsets of a topological space which are not saciésanalytically describ-
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able; therefore, it appears to be difficult to representighagions in a computational
framework.

Another representational drawback of usiR@C-8 is that a topological space
does not have a particular dimension, whereas most agplicadf qualitative spatial
reasoning deal only with two- or three-dimensional spacmidht, thus, be possible
that a set ofRCC-8 constraints is consistent but not realizable within a patar
dimension. Lemon [LEM 96] gave an example of a seRGfC-8 constraints which is
realizable in three dimensional space but not in two dinmraispace if regions must
be internally connected. Lemon used this result to arguesthettial logics likeRCC
are not an adequate formalism for representing space.

A further problem, which also depends on the ability to repre spatial regions,
is finding a realization of a consistent and realizable séR©GLC-8 constraints in a
particular dimension, instead of just knowing whether tbieisrealizable or not.

In this paper, we will refer to these representational tepia order to represent
arbitrary spatial regions, it is necessary to haveanonical modebf RCC-8, i.e.,
a structure that allows to model any consistent sentencheotalculus. Topolog-
ical spaces are of course a canonical model, but, as dedative, this does not
seem to be very useful for representing regions. Therefeeewill present a new
canonical model oRCC-8 that permits a simple representation of spatial regions by
reducing them to their necessary topological features wigipect to their spatial re-
lations. Based on this model, we will prove that for any cetesit set ofRCC-8
constraints there are realizations in any dimengign 1 when regions are not forced
to be internally connected. This is still true even whenaagiare constrained to be
sets of polytopes. Actually, internal connectedness obregis not at all forced in
theRCC-theory, sdRCC can still be seen as an adequate representation formalism of
space. We will also argue that forcing internal connectegiod all regions is too re-
strictive when dealing with spatial regions. Neverthelegswill prove that in three-
and higher dimensional space every consistent sSRGIE-8 constraints can always
be realized with internally connected regions. Using the c@nonical model for rep-
resenting spatial regions, it becomes possible to detern@alizations of consistent
sets 0ofRCC-8 constraints. We will give algorithms for generating realians of both
internally connected and disconnected regions.

The remainder of the paper is structured as follows: In $ack we introduce
RCC-8 and some basic topological notions. Section 3 sketches titahencoding
of RCC-8 and presents the new canonical modeRa@C-8. In Section 4 we give a
topological interpretation of this model which is used irt& 5 to prove the results
about realizations in particular dimensions. Section @dlees how models of sets of
spatial relations can be determined and how realizatiombe@enerated. In Section 7
we will discuss our results.
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2. Qualitative Spatial Representation with the Region Connection Calculus

The Region Connection CalculufRCC) developed by Randell, Cui, and
Cohn [RAN 92b] is a topological approach to spatial repréas#gn and reasoning
where spatial regionsare non-empty regular subsets of some topological splace
Spatial regions do not have to bmternally connectedi.e., they might consist of
(multiple) disconnected pieces. Since all spatial regiaresregular subsets of the
same topological space, all spatial regions have the same dimension, namely, the
dimension of/ (provided that{ has a particular dimension).

RCC is based on a single primitive relation between spatiabmgjithe “connect-
edness” relatioi€. The intended topological interpretation ©fa, b), wherea andb
are spatial regions, is thatandb are connected if and only if their topological closures
share a common point. With this interpretation it is notidgtiished between open,
semi-open, and closed regions which is different from presiapproaches by Ran-
dell and Cohn [RAN 92a, RAN 89] and Clarke [CLA 85, CLA 81]. Wdgithe con-
nectedness relatio@, a large number of different relations can be defined (cfi$Got
[GOT 94, GOT 96b]. Of particular interest are those relaitirat form a set of jointly
exhaustive and pairwise disjoint relations, which are dksmotedase relationsBase
relations have the property that exactly one of them holtiséen any two spatial re-
gions. If these relations are closed under composition gleenerate a relation algebra
[LAD 94], thus, reasoning about these relations can be deimguonstraint satisfac-
tion methods (cf. [MAC 77, MON 74, BEE 92]). Randell et al. [RA®2b] suggested
such a set of eight base relations, later denote@@8-8: DC (DisConnecte}] EC
(Externally ConnectédPO (Partial Overlap, EQ (EQual), TPP (Tangential Proper
Part), NTPP (Non-Tangential Proper Paytand their converséBPP~* andNTPP .
This set of relations is interesting for a number of reastins the smallest set of base
relations which allows topological distinctions rathearhjust mereological (being
expressible by using the part-whole relationship) and tifdems a relation algebra.
Most other relations definable in tHCC theory are refinements of these relations.
Furthermore, the semantics of these relations can be deddsy using propositional
logics rather than first-order logics [BEN 94, BEN 96b], agety which allows us
to prove decidability.

2.1. The Region Connection Calculus RCC-8

The Region Connection Calcul&CC-8 is the constraint language formed by the
eight jointly exhaustive and pairwise disjoint base relasiDC, EC, PO, EQ, TPP,
NTPP, TPP~!, andNTPP~! and by all possible unions of the base relations. Unions
of possible base relations are used to represent indefini@lkedge. Since the base
relations are pairwise disjoint, this results3ph = 256 different RCC-8 relations
altogether (including the empty relation and the univershdtion). In some papers
the set of base relations is denoted=43C-8 while the set of all possible unions of
base relations is denoted a8““8. We will, however, useRCC-8 to refer to the
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RCC-8 Relation Topological Constraints
DC(X,Y) XNY=190
EC(X,Y) iX)Ni(Y) =0, XNy #0
PO(X,Y) iX)Ni(Y) #0,XZ Y, YZX
TPP(X,Y) XCY,XZi(Y)
TPP(X,Y) YCXYZi(X)
NTPP(X,Y) X Ci(Y)
NTPP1(X,Y) Y Ci(X)
EQ(X,Y) X=Y

Table 1. Topological interpretation of the eight base relationdREC-8. All spatial
regions are regular closed, i.eX = c(i(X)) andY = ¢(i(Y)). i(-) specifies the
topological interior of a spatial regior;(-) the topological closure.

set of all possible disjunctions of the base relations Artd refer to the set of base
relations. Analogous to the geneRCC-theory, spatial regions iRCC-8 are non-
empty regular subsets of some topological space that doaw@ to be internally
connected, and do not have a particular dimension. Witlosst bf generality (due to
the intended interpretation of ti relation) we require spatial regions to be regular
closedsubsets of a topological space.

The RCC-8 relations can be given a straightforward topological iptetation in
terms of point-set topology (see Table 1), which is almoststhime as for the topolog-
ical relations given by Egenhofer [EGE 91] (though Egenhpfaces stronger con-
straints on the domain of regions, e.g., regions must bepigee and are not allowed
to have holes). Examples for tlRCC-8 base relations are given in Figure 1.

5 8 @ )

DC(X, Y) EC(X,Y) TPP(X, Y) TPP™1(X,Y)
PO(X, Y) EQ(X, Y) NTPP(X, Y) NTPP~ (X, Y)

Figure 1. Two-dimensional examples for the eight base relatioiR@E-8.

A spatial configuration can be described by specifying adisiét®© of RCC-8
constraints, written asRy or R(x,y), whereR is anRCC-8 relation andz, y are
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spatial variableover the infinite domain of all possible spatial regions. Aportant
reasoning problem is decidingonsistencyf ©, i.e., deciding whether there is an as-
signment of non-empty, regular closed regions of some tmpchl space to variables
of © in a way that all constraints are satisfied. Computationaperties of reasoning
with RCC-8 were studied in [NEB 95, REN 99b, REN 99a].

In this paper we deal with representational propertieRG{C-8 for which it is
necessary to go further into topology. In the next subseatie define some common
topological terms and concepts which are used in the reraaofdhe paper.

REMARK 1. — Throughout this work we will use the following conventitor re-
ferring to spatial regions, spatial variables, and prapmsil atoms corresponding to
spatial regions or spatial variables:

— Spatial variables are written asy, z.
— Spatial regions are written &sY, Z.

— Propositional atoms corresponding to spatial regionpatial variables are writ-
tenasX,Y,Z.

If the same letter is used in different fonts in the same cdnierepresents the same
region. For instance is a possible instance af Y a possible instance gf andX is
the propositional atom correspondingit@r to X.

2.2. Topological Background

In this subsection we introduce and define the topologigatepts that are used in
this paper. This includes the notion of a topological spddérent kinds of regions
such as open, closed, regular open, and regular closechezgiee notion of interior,
exterior and boundary of a region, as well as neighborhawelghborhood systems,
and points with different properties. These concepts arg vasic and can be found
in this or in a similar form in any book on general topology aimi-set topology
(e.g., [MUN 74, BAU 91]). We start with the formal definitiorf a topology and a
topological space:

DEFINITION 2 (TOPOLOGY, TOPOLOGICAL SPACH. — Letl{ be a non-empty set,
the universe A topologyon/ is a familyT of subsets dff that satisfies the following
axioms:

1) U/ and() belong toT’,

2) the union of any number of setsihbelongs tdr’,

3) the intersection of any two setsBbelongs tar'.

A topological spaces a pair (, T). The members dF are called opensets.

In a topological spacé/, T'), a subsex of I/ is called aclosedset if its comple-
mentX¢ is an open set, i.e., ¢ belongs tdl'. By applying the DeMorgan laws, we
obtain the following dual properties of closed sets:
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1) U and( are closed sets,
2) the intersection of any number of closed sets is a cloged se
3) the union of any two closed sets is a closed set.

If the particular topology/” on a set/ is clear or not important, thed can also denote
the topological space.

Closely related to the concept of an open set is that of a beigjiood.

DEFINITION 3 (NEIGHBORHOOD, NEIGHBORHOOD SYSTEN. — Letl/ be a topo-
logical space angh € U/ be a point in/.

— N C U is said to be aneighborhooaf p if there is an open subsét C U/ such
thatp € O C N.

— The family of all neighborhoods ¢fis called the neighborhood systerof p,
denoted asV,.

A neighborhood systenV,, has the property that every finite intersection of mem-
bers of\,, belongs taV,,. Based on the notion of neighborhood it is possible to define
some important notions.

DEFINITION 4 (INTERIOR, EXTERIOR, BOUNDARY, CLOSURE). — Letl{ be atopo-
logical spaceX C U be a subset dff andp € U be a pointin.

—p is said to be aninterior pointof X if there is a neighborhood of p contained
in X. The set of all interior points df is called theinterior of X, denoted (X).

—p is said to be anexterior pointof X if there is a neighborhoodv of p that
contains no point ok. The set of all exterior points &f is called the exteriorof X,
denoteck(X).

—p is said to be aboundary pointf X if every neighborhood of p contains at
least one point irX and one point not iX. The set of all boundary points #fs called
the boundaryof X, denoted(X).

— The closureof X, denoted:(X), is the smallest closed set which contains

The closure of a set is the union of its interior and its boupd&avery open set is
its own interior, every closed set is its own closure.

DEFINITION 5 (REGULAR OPEN REGULAR CLOSED. — LetX be a subset of a
topological spacé/.

— X is said to beregular operif X is the interior of its closure, i.eX = i(c¢(X)).

— X is said to beregular closedf X is the closure of its interior, i.eX = ¢(i(X)).

Topological spaces can be categorized according to theddgat points or closed
sets can be separated by open sets. Different possibditgegiven by theseparation

axiomsT;. A topological spacé/ that satisfies axior; is called al’; space. Three
of these separation axioms which are important for this vewekthe following:
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Ty : Given any two distinct pointg, ¢ € U, each point belongs to an open set which
does not contain the other point.

T, : Given any two distinct pointg, ¢ € U, there exist disjoint open set¥,, O, C U
containingp andq respectively.

T5 : If Xis a closed subset &f andp is a point not inX, there exist disjoint open sets
Ox, 0, C U containingX andp respectively.

A connected spack is a topological space which cannot be partitioned into two
disjoint open sets, i.e., i/ is the union of two non-empty subsetisand B, then
either the closure ofl intersected wittB or the closure oB3 intersected withd is non-
empty. A topological space isegular, if it satisfies axiomds and75. Two subsets

of a topological space are calledeparatedf the closure of one subset is disjoint
from the closure of the other subset. A subset of a topolbgjEace isconnectedor
internally connecteds it is called in th€CC community) if it cannot be written as a
union of two separated sets.

It is possible to use any topological space which is a modahieRCC axioms
as specified in [RAN 92b]. Gotts [GOT 96a] has shown that evegylar connected
topological space is a model for tiRRECC axioms (see also Section 7). So, whenever
we refer to a topological space in the remainder of the papermean a regular
connected topological space.

3. Modal Encoding & Canonical Models

After making a brief introduction to modal logic, we will imtduce the modal
encoding ofRCC-8 and a canonical model for this encoding.

3.1. Modal Logic & Kripke Semantics

Propositional modal logic [FIT 93, CHE 80] extends classprapositional logic
by additional unarymodal operator§d;. A common semantic interpretation of modal
formulas is the Kripke semanticsvhich is based on &Kripke frameF = (W, R)
consisting of a set ofworlds W and a sefR of accessibility relationdetween the
worlds, whereR C W x W for every accessibility relatiolz € R. A different
accessibility relatiomRg, € R is assigned to every modal operatoy. If u,v € W,

R € R, anduRv holds, we say that is R-accessiblérom v or v is an R-successor
of u.

A Kripke modelM = (W, R, w) uses an additional valuatienthat assigns each
world and each propositional atom a truth va{ueue, false}. Using a Kripke model,
a modal formula can be interpreted with respect to the sebolds, the accessibility
relations, and the valuation. For example, a propositiat@ha holds in a worldw
of the Kripke modelM (written asM, w |- a) if and only if 7(w,a) = true. An
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RCC-8 constrainf Model Constraints Entailment Constraints
DC(l’, y) —|(X VAN Y) =X, =Y
EC(xz,y) S(IXALY) “(XAY), =X, =Y
PO(z,y) — (IXALY), X =Y,
Y — X, =X, =Y
TPP(z,y) X—=Y X —=1IY,Y = X, =X, Y
TPP~!(x,v) Y — X Y - IX, X —=Y,=X,=Y
NTPP(m, y) X —1Y Y — X7 —|X7 Y
NTPP~!(z,y) Y — IX X —Y,=X, =Y
EQ(.T7 y) X — Y,Y — X —\X, Y

Table 2. Encoding of thdRCC-8 base relations in modal logic.

arbitrary modal formula is interpreted according to itsuntive structure. A modal
formulad; ¢, e.g., holds in a worldv of the Kripke modelM, i.e., M, w |- O;, if
and only ify holds in allRp,-successors af. M, w |- -0,y if and only if there is an
Rg,-successor ofv wherep does not hold. The operators A andV are interpreted
in the same way as in classical propositional logic.

Different modal operators can be distinguished accordiryeir different accessi-
bility relations. In this paper we are using a so-caBdeoperator and aB5-operator.
The accessibility relation of e$4-operator is reflexive and transitive, the accessibility
relation of arS5-operator is reflexive, transitive, and Euclidean (i.ew v andu Rw
holds, therv Rw holds as well).

3.2. Modal Encoding of RCC8

The encoding oRCC-8 in propositional modal logic was introduced by Bennett
[BEN 96b] and extended in [REN 99b]. In both cases the enapdirrestricted to
regular closed regions. The encoding is based on a senhofleland entailment
constraintsfor each base relation, where model constraints must beatndeentail-
ment constraints must not be true. Bennett encoded thestrais in modal logic
by transforming every spatial variable to a propositiottaimand introducing af4-
operatorI which he interpreted as an interior operator [BEN 96b]. Idewrto dis-
tinguish between spatial variables and the correspondinggsitional atoms we will
write propositional atoms as, Y. Table 2 displays the constraints for the eight base
relations. In order to combine them to a single modal formB&nnett introduced an
S5-operatot O, whereOy is written for every model constraigtand—0r) for every
entailment constraint [BEN 96b]. All constraints of a single base relation are then
combined conjunctively to a single modal formula. In ordereépresent unions of
base relations, the modal formulas of the corresponding tedations are combined

1. Bennett called this astrong S5-operator as all worlds arBg-accessible from each other,
i.e.,R[J =W x W.
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disjunctively. In this way everiRCC-8 constraintR(x, y) can be mapped to a modal
formulam;(R(z,y)). Additional constraintsnz(x) are necessary to guarantee that
only regular closed regions are used [REN 99b]: every regiast be equivalent to
the closure of its interior, and the complement of a regiostning equivalent to its
interior.

TTLQ(:C) = D(X “— —\I—|IX) A\ D(—|X — I—\X)

So, any set oRCC-8 constraint® can be written as a single modal formuld©)

R(X,Y)€O X EReg(©)

whereReg(0) is the set of spatial variables 6X.

3.3. A Canonical Model of RCC-8

The modal encoding d2CC-8 can be interpreted by Kripke models. As the modal
encoding ofRCC-8 is equivalent to a set d2CC-8 constraints [BEN 96b, NUT 99],
a canonical model dRCC-8 is a structure that allows a Kripke model for the modal
encoding of any consistent setREC-8 constraint®. In order to obtain a canonical
model, we distinguish different levels of worlds Bf [REN 99b]. A worldw is of
level Oif there is no worldv # w with vRyw. A world w is of level lif there is a
world v of levell — 1 with v Rjw and there is no world # w of a level higher than
[ — 1 with uRyw. Based on this hierarchy of worlds, we will define the canahic
model of RCC-8.

DEFINITION 6 (RCC-8-STRUCTURE RCC-8-CLUSTER, RCC-8-MODEL). — An
RCC-8-structure of sizes S} s = (W, { Ra, R}, 7) has the following properties:

1) W contains only worlds of levél and 1.

2) For every worldu of level0 there are exactlgn worldsv of levell with uRyv.
Thesen + 1 worlds form anRCC-8-clusterof size2n + 1 (cf. Figure 2).

3) For every worldv of levell there is exactly one world of level0 with u Ryv.
4) For all worldsw, v € W: wRyw andwRgwv.

S? o containsRCC-8-clusters of siz&n + 1 with all possible valuatiorfswith
respect toR;. The RCC-8-structureSrccs = |U,,>1 Skecs iS the union of all
RCC-8-structures of sizer. A set ofRCC-8-clustersM = (W,{Rn, Ri},7) C
Stoes is an RCC-8-modelof m(0) if M, w|-m(©) foraworldw € W andn is
the number of variables i®. In a polynomialRCC-8-modelthe number of worlds
is polynomially bounded by the number of regions

In [REN 99b] it was proven that ifn(©) is satisfiable, there is a polynomial
RCC-8-model M with M, w |- m(©) that useD(n?) different worlds of leveh —

2. As the number of spatial variables is countable, the nurobRCC-8-clusters with different
valuations is also countable.
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one world of leveD for every entailment constraint. So tR&€C-8-structureSrccs
is a canonical modébf the modal encoding ®®CC-8. In order to obtain a “topolog-
ical” canonical model for the topological calculREC-8, we give in the next section
a topological interpretation ®@CC-8-models.

4. Topological Interpretation of the Canonical Model

The modal encoding oRCC-8 was obtained by introducing a modal operator
I corresponding to the topological interior operator andgfarring the topological
properties and axioms to modal logic. In this section we gmea way of topologi-
cally interpretingRCC-8-models such that all parts of the models can be interpreted
consistently on a topological level.

Becausd is anS4-operator and because of the additional constraint§e), ex-
actly one of the following formulas is true for every wordof M and every propo-
sitional atomX (see Figure 2).

)M, w|-IX

2) M, w |FI-X

3) M, w |- XA -IX
Consider a particular world. Then the set of all spatial variables can be divided into

three disjoint sets of spatial variables according to wbidhe three possible formulas
is true inw (see Figure 2). Let,,, £,, andB,, be the sets of spatial variables where

Figure 2. Three possibl®CC-8-clusters of thdRCC-8-structureSgccs.

the first, the second, and the third formula is tru@irrespectively, i.e M, w |- IX A
I-Y A (ZA-1Z)forall z € Z,,,y € Ew, andz € B,,.

When looking at points in a topological space, for every aaghere are three
different kinds of points: interior points, exterior pantand boundary points of a

3. The RCC-8-structure does not cover all possible Kripke modelsrd®). The goal of a
canonical model is just to provide a model for any consisgamtence of a calculus, not to
cover all possible models.
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region. If a point is an interior or exterior point of a regjahere is a neighborhood
of the point such that all points of the neighborhood arediasir outside the region,
respectively. If a point is a boundary point of a region, guegighborhood contains
points inside and points outside the region (see Definitjon 4

There seems to be a correspondence between worlds and pbantspological
space, and between the accessibility relaftpiand topological neighborhoods. In the
following lemma we further investigate this correspondehyg deriving topological
constraints from the modal formulas.

LEMMA 7. — Letz andy be two spatial variables ab. Depending on which sets
Zw, Ew, OF By, they are contained in for a world, the following relations between
andy are impossible. This has some topological consequencesssilye instantia-
tionsXx, Y:

x y | Impossible Relation®(z,y) | Consequences
Zo | Zw | DC,EC i(X) Ni(Y) # 0
Zw | Ew | TPP,NTPP,EQ i(X)Ne(Y)#0
T, | B, | DC,EC, TPP,

NTPP,EQ i(X)Nb(Y) #0

Ew | Ew | — -

Ew | By | TPPTLNTPP EQ e(X)Nb(Y) # 0
By | B, | DC,NTPP,NTPP ! b(X) Nb(Y) # 0

Proof. Most entries in the table follow immediately from the encaglof the relations
in modal logic. The only more difficult entry is the relati&t(z, y) in the third line
of the table. This relation is not possible because of thegnty O(Y — —I-1IY)
which states that for any world that satisfiesy there is a worldy with wRyv that
satisfiesIY. As v also satisfiedX, the model constraint diC(z, y) is violated, so
this relation is not possible. The topological consequsmesult from distinguishing
the impossible from the possible relations. u

It can be seen that when, e.@X andIY hold in a worldw, thenX andy must
have a common interior. So, there is a common interior pdidtandY wherew can
be mapped to. In the following theorem we give a mapping ofyewerld to a point
in the topological space.

THEOREM8. — Let© be a consistent set &CC-8 constraintsyn(©) be the modal
encoding of®, M = (W,{Rg, Ri},7) be anRCC-8-model ofm(0), andU/ a
topological space. Then there is a functipn W — U/ that maps each world) € W
to a pointp(w) € U and a functionV : W +— 2¥ that assigns each world € W
a neighborhoodV (w) of p(w) such thatp(w) is in the interior ofX if M, w |FIX

4. If PO(z, y) holds,X andY do not necessarily have a common boundary point if one of them
is not internally connected. However, assumik) N b(Y) # @ in this case does not contradict
any RCC-8 constraint, sinc&RCC-8 is not expressive enough to distinguish different kinds of
partial overlap.
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holds,p(w) is in the exterior ok if M, w |- I-X holds,p(w) is on the boundary af
if M, w |FX A =IX holds, andp(u) € N(w) if and only ifw Ryu holds?

Proof. Letw be a world ofi¥” andZ,,, £,,, andB,, be the corresponding sets of spatial
variables. We assume that there is a realizatiad sfich that there is at least one point
in the topological space that is in the interior of ev&ryn the exterior of every, and
on the boundary of everg simultaneously4 € Z,,, y € &y, z € By). It follows
from Lemma 7 that this is true for every pair of regions. REC-8 permits only
binary constraints between spatial variables and regiomsléowed to be internally
disconnected, this assumption holds. We further assunbg thapsw to one of these
points.

Because of Definition 4, there must be neighborha¥g$w) andNy (w) of p(w)
for everyxz € 7, and everyy € &, such thatNx (w) is in the interior ofX and
Ny (w) is disjoint with Y. Also, for everyz € B,,, every neighborhoo®z(w) of
p(w) contains points inside and outside All these neighborhoods are members of
the neighborhood system pfw), so their intersectioV (w) is also a neighborhood
of p(w) where allRy-successors af can be mapped to. L

Using the above defined functiopsand N, M, w |-IX can be interpreted as
“there is a neighborhoofy (w) of p(w) such that all points ofV(w) are inX". This
obeys the intended interpretationlodis an interior operator, ast, w |- X means that
p(w) is inX and M, w |- IX means thap(w) is in the interior ofX.

The functionN, as defined in Theorem 8, can be replaced by any function
W — 24, with N’(w) € N(w) forallw € W, if N’(w) is amember of the neighbor-
hood system of(w). p has to be changed accordingly. In particular, we will regard
in the following all neighborhoods asdimensional spheres whedés the dimension
of the underlying topological space.

In order to make the following argumentation more readadMporld mapped to
an interior point ofX is denotedinterior world of x, a world mapped to an exterior
point ofX exterior worldof z, and a world mapped to a boundary poinkaboundary
world of z. Accordingly, a region is callednterior, exterioror boundary regiorof a
world. In particular, a worldv with M, w |- IX is an interior world ofz, a worldw
with M, w |- I-X is an exterior world ofr, and a worldw with M, w |- X A —IX is
a boundary world of:.

5. RCC-8 Maodels and the Dimension of Space
In the previous section we have shown howR@C-8-models introduced in Sec-
tion 3.3 can be mapped to topological space, but we still Imvmformation about

the dimension of the topological space. In this section westigate the influence

5. The properties foRn (p(u) € U if wRou holds andp(w) € U) can be omitted as we
already definedv andp such that only points dff are used.
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of dimension on the possibility to map tfRCC-8-models to the topological space,
i.e., which dimension is required in order to find a realizatof a consistent set of
RCC-8 constraint®. We will start with proving that for anRCC-8-model there is

a realization in two-dimensional space. It is sufficient toye this only for sets of
base relations as every realization@fses only base relatiofisFor this proof it is
important to keep in mind that regions do not have to be iyrconnected, i.e., they
might consist of different disconnected pieces. It willtwut that our proof leads to
realizations in any dimensiah> 1. Finally, for three- and higher-dimensional space
we will prove that every consistent $@tcan also be realized with internally connected
regions.

For the following analysis we restrict regions to be sets -gfirdensional poly-
topes. Sets are required since regions might consist ofaledisconnected pieces
where each piece is a single polytope. This restriction belllifted later and the
results can be generalized to arbitrary regular regions.

Let © be a consistent set ®#CC-8 constraints and\f be anRCC-8-model of
m(0), the modal encoding o®. Suppose that only two-dimensional regions are
permitted, i.e., the topological space is a two-dimendiptemel{. All worlds of M
are mapped to points @f as specified in Theorem 8. The general intuition of the
proof is that everyRCC-8-cluster, i.e., every world of levdl together with itsRy-
successors is mapped to an independent neighborhood satakaith neighborhood
can be placed on an arbitrary but distinct position on thegld&ach neighborhood
will then be extended to different closed sets that form ibegs of the spatial regions.
In the following we will study the requirements neighborbedave to meet in order
to guarantee two-dimensional realizations.

For every spatial variable; (1 < i < n) and every worldv of level 0, we define
a region vectorry’ = (r{,...,r{%,) that represents the affiliation of ti¥e Rj-
successors ab to X;, i.e.,r’; = 1if M, v; |- X; andr}’; = 0if M, v; |7 X; where
v; is thejth Ry-successor ofv. Since in the two-dimensional case the neighborhood
N(w) is a circle, we suppose that the poip{s; ) corresponding to th&;-successors
v; of w are ordered clock-wise within the circle accordingtdf p(w) is a boundary
point of X;, some values of;” arel and some aré. Otherwise all values of;” are

either1 (if p(w) is contained irX;) or 0 (if p(w) is not contained irx;).

LEMMA 9. — If for every worldw of level O there is a permutatioR,, of the values

of i such that(ri’p, (1), 7\p, (2n)) IS @ bitonic sequencefor all 1 < i < n,
then the neighborhood¥ (w) can be placed in a two-dimensional plane such that all
spatial relations are satisfied within the neighborhoods.

6. The relatiorEQ can be omitted as any pair of spatial variableandy with EQ(z, y) can be
combined to a single spatial variable.

7. The values of abitonic sequence are in a forfif 1709 or 1°0719 for e, f, g > 0 [COR 90,
p. 642].
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Proof. If 7} is a bitonic sequence andw) is a boundary point of;, then the map-
pings of the worlds of level corresponding to the values @f can be separated into
points insideX; and points outsid&; by at most two line segments meetingréty)
(see Figure 3).

Gy

\

@s

1o

Figure 3. PermutationP,, of the Ry-successors of a world. The solid line indicates
the boundary of, the hashed region the interior &f

These line segments can be regarded as the part of the bgwfdgrwhich is
inside N (w). So, neighborhoods can be separated in an interior and enaogart of
a region by a one-dimensional boundary. Therefore all rimdinods can be placed
in a two-dimensional plane. As the permutation of fyesuccessors has no influence
on the relations between the regions, all spatial relattwtaeen the regions hold
within the neighborhoods. u

Actually, a permutation as described in the previous lemsnaot necessary to
guarantee two-dimensional realizations. A region miglklas shown on the left
of Figure 3, but in this case we restrict the shape and thenakeonnection of the
regions by the neighborhoods we are using which is not atesiirdble. However, a
permutation as described in Lemma 9 is necessary for onerdiional realizations
and realizations with internally connected regions.

Since a permutatioR,, is only necessary for boundary worlds, we will in the fol-
lowing try to keep the number of boundary worlds as small aside. Therefore, we
consider onlyRCC-8-models for which all boundary worlds are explicitly forcex
be boundary worlds by the constraints. In order to do so, we tatake a closer look
at which worlds are introduced as boundary worlds of som®nady the entailment
constraints, and which worlds are forced to be boundarydsaf regions by the con-
straints. As a worldv of level 0 is forced to be a boundary world afif M, w |- X
and M, v |# X hold for a worldv with wRyv, we have to find out which of the model
and entailment constraints fordel, w |- X if M, v [/ X holds or forceM, v | X if
M, w |- X holds.
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PrROPOSITION10. — Boundary worlds are introduced only by the following redeits
(see Table 2):

1) EC(z,y): -O(=(X AY)) introduces a boundary world of andy because of
O(=(IX A TY)).

2) TPP(z,y): -O(X — IY) introduces a boundary world af andy because of

3) TPP~!(z,y): —~O(Y — IX) introduces a boundary world af andy because
of O(Y — X).

Apart from the above worlds that are introduced as boundarnds of particular
regions, worlds can also be forced to be boundary worldstadratgions.

ProPOSITION11. — A world w is forced to be a boundary world afonly with the
following constraints:

1) O(X — Y): If wis a boundary world of; and X is true inw, thenw must also
be a boundary world of:.

2) O(Y — X): If w is a boundary world ofy and —X is true in anRy-successor
of w, thenw must also be a boundary world of

3) O(=(IX ALY)): If XandY are true inw, thenw must be a boundary world of
x andy.

For the constraints1(X — Y) andO(Y — X), w must already be a boundary
world of some other region, so must be introduced by one of the relatid(3(z, y),
TPP(z,y), or TPP™'(z,y). If w is forced to be a boundary world efandy with
the constrainta(—(IX A IY)), thenX andY must both be true imv. This can only
be forced when there is & € Reg(©) with TPP(z1,z) andZ; is true inw, a
z9 € Reg(©) with TPP(z2,y) andZ; is true inw, andw is a boundary world of
z1 andzq introduced byEC(z1, z2). SO0, in any case when a world is forced to be a
boundary world of some region it must already be a boundandwad other regions
introduced as described in Proposition 10.

We will now have a look at how regions must be related in ordéoitce a world to
be a boundary world of these regions using the constrairRsagfosition 11. Suppose
thatw is a boundary world of andy introduced by eitheEC(z, y) or TPP(z,y).8
We will write |y in order to express that we can either us® y but always the same.
With one of the following constraints it can be forced thais also a boundary world
of z # x,y (v is an Ry-successor ofv):

0(Z — (X]Y)) andM,w |- Z (~ TPP(z,zly))
O(—~(IZ AI(X|Y))) and M, w |- Z (~ EC(z, z|y))
O((X|]Y) — Z) andM, v |- =Z (~ TPP~ (2, z]y))

M, w |- Z is forced with the following constraint:

8. We omitTPP~!(x,y) asTPP ! (x,y) = TPP(y, ) and the order is not important.
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o — Z)andM,w|-U (~ TPP(u, 2))
M, v |- —Z is forced with the following constraints:

0(Z — U) and M, v |- -U (~ TPP ' (u, 2))
O(-(IZ ATIU)) and M, v |- U (~ EC(u, 2))

When we compose these relations, we obtain the possibtereddetween andx|y.

R(u,z) | S(z zly) | (RoS)(u zly)

TPP TPP TPP,NTPP
TPP EC DC,EC

TPP~Y | TPP™! | TPPL, NTPP!
EC TPP! DC,EC

As w is a boundary world of: andy, DC(u, z|y) and NTPP(u, x|y) are not pos-
sible together withM, w |- U, andNTPP~*(u, z|y) is not possible together with
M, v |-=U. In order to forceM, w |- U, there must be a sequence of spatial vari-
ablesu; with TPP(uy,w), TPP(u;y1,u;), until there is au,, that is equal tar or
y, SOTPP(z, z) or TPP(y, z) must hold. In order to forceM, v |- -U, there must
be a sequence of spatial variableswith TPP~ " (uy,u), TPP™*(u;y1,u;), and
EC(u;,u;—1) and M, v |- U; must hold. In order to force\, v |- U;, there must
be a sequence dfPP-related spatial variables, as described above, until bitteem

is equal tar or y, SOEC(z, ) or EC(z, y) must hold. This results in only three differ-
ent possibilities of how is forced to be a boundary world efif w was introduced
as a boundary world of andy.

a. TPP(x,y), TPP(x, z), andTPP(z, y) hold.
b. EC(z,y), TPP(z, z), andEC(z, y) hold.
c. EC(z,y), TPP(y, z) andEC(z, =) hold.

As different spatial variables;, z;, for whichw is forced to be a boundary world of,
all have the boundary world in common, only the relatiorsC, PO, TPP, or TPP !
can hold between them.

We have shown that only those worlds are boundary worldswéiie introduced
as boundary worlds of some regions by the entailment cantdrand, further, that
other regions are only forced to be boundary regions of thestds when they are
related in a particular way. This will be used in the follogrilemma.

LEMMA 12. — Let M be anRCC-8-model. Then two different types &fi-
successors are sufficient for every woadf level 0.

Proof. If w is not a boundary world of some region, &if-successors of satisfy
exactly the same formulas as Otherwisew is introduced as a boundary world by
eitherEC(z, y) or TPP(z, y) (see Proposition 10). Let be forced to be a boundary
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world of the spatial variables,. ForEC(x, y), some of theRr-successors ab satisfy
X but notY, and some satisfy but notX, the others neither satis¢ norY. For
all z; with TPP(z, z;) andEC(z,,y) and allz; with TPP(y, z;) andEC(z;, ), all
Ri-successors ab satisfyZ; if they satisfyX and satisfyZ; if they satisfyY. So all
Ry-successors ab that satisfyX satisfy the same formulas, and &l}-successors of
w that satisfyY satisfy the same formulas. For tlig-successors of w which do not
satisfyX or Y, there are only two requirements: PPz, z;) holds thenZ;, must
be true irv wheneveiZy is true inv; if EC(zx, zx/) holds thenZ,, andZ, must not
both be true irv. However, there is no constraint that forces the existefickese
worlds, so it can be assumed that &f-successors ab satisfy eitheiX orY. As the
respective worlds all satisfy the same formulas, two d#ifeikinds of Rj-successors
of the boundary worldv introduced byEC(z, y) are sufficient.

ForTPP(x,y), all Ri-successors ab that satisfyX also satisfyy, all Ri-successors
of w that do not satisfy also do not satisfX, and someR;-successors af satisfyY
but notX. For all z; with TPP(z, z;) andTPP(z;,y), all Ri-successors ab satisfy
Z; if they satisfyX. For theRy-successors af that satisfyY but notX, there is only
one requirement, namely, thaj, must be true whenevé;, is true in these worlds
for any two spatial variables,, z;- with TPP(z, z), TPP (21, y) andTPP(z, zi/).
However, there is again no constraint that forces the exgstef these worlds, so it
can be assumed that #k-successors ab satisfyX if they satisfyY. n

Whether a boundary worla is introduced byEC(z, y) or by TPP(x, ), in both
cases two different kinds d®r-successors are sufficient. Thus, by grouping together
the respectivézr-successors for every world of level 0 of M, we can always find a
permutation of the worlds of level 1 such thét is a bitonic sequence for all regions.

Instead of havin@n Ri-successors for every world of level O from which we
know that they belong to only two different types, it is su#fitt two use only two
Ry-successors for every world of level 0. This leads to a venps canonical model
which is defined in the same way as in Definition 6 except thahaxe exactly two
worlds of level 1 instead dfn worlds.

DEFINITION 13 (REDUCEDRCC-8-STRUCTURH -CLUSTER/ -MODEL). — A re-
ducedRCC-8-structureSy; s = (W, {Rn, R1}, ) has the following properties:
1) W contains only worlds of levél and 1.

2) For every worldu of level0 there are exactly two worldsof levell with uRyv.
These three worlds form eeducedRCC-8-cluster(see Figure 4a).

3) For every worldv of levell there is exactly one world of level0 with u Ryv.
4) For all worldsw, v € Wg: wRyw andwRgwv.

Skocos containsRCC-8-clusters with all possible valuations. The corresponding
models are denoted aeducedRCC-8-models

It follows from Lemma 12 that the reduc&{LCC-8-structure is a canonical model
for RCC-8. Note that the reduceRCC-8-structure is equivalent to aRCC-8-
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structure of sizé and that a reducd@CC-8-cluster is equivalent to aRCC-8-cluster
of size3.

oG o0

(a) (b)

Figure 4. (a) shows a reduceBCC-8-cluster of the reduce®CC-8-structure. (b)
shows how a neighborhood can be placed in one-dimensioaaés{I he two brackets
indicate a one-dimensional regichwhere the neighborhood represents a boundary
point ofX.

We can now apply Lemma 9 and place all neighborhoods indegtydon the
plane while all relations between spatial regions hold initthe neighborhoods.
Thereby, neighborhoods corresponding to non-boundarid&@re homogeneous in
the sense that all points within one of these neighborhoads the same topological
properties. Neighborhoods corresponding to a boundaridwoerconsist of two ho-
mogeneous parts corresponding to the fesuccessors ab. These two parts are
divided by the common boundary of the boundary regions ¢dee Figure 5a).

In order to obtain a realization, we have to find regions sinett the relations
between them hold in the whole plane and not just within thighi®rhoods. Since
regions do not have to be internally connected, it is posdibcompose every region
out of pieces resulting from the corresponding neighbodspaoe., for every neigh-
borhood a region is affiliated with, we generate a piece dfrigion. As the neigh-
borhoods are open sets and regions as well as their pieceébenegular closed sets,
we have tocloseevery neighborhood, i.e., find a closed $&tfor every regiork and
every neighborhood (w) with M, w |- X such that all relations hold between the
regions composed of the pieces. As all neighborhoods aepantent of each other,
we only have to make sure that the relations of the differgatgs corresponding to
a single neighborhood do not violate the relations of themmumd regions. This can
be done independently for every neighborhood.

Consider a particular neighborhodt{w). If w is not a boundary world, then only
the relationsO, TPP, NTPP, and their converse are possible between the regions
affiliated with N (w), since they shar&(w) as their common interior. For closing
the neighborhoodV (w), all pieces must fulfill the “part of” relations whereas the
PO relations cannot be violated as long as the correspondetgepihave a common
interior.

One possibility to fulfill the “part of” relations is using admarchy of the regions,
defined as follows.
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DEFINITION 14 (HIERARCHY OF REGIONY. — A hierarchy of regiondig is a
mapping of regions to levels, where a regibiis of level Hg (X) = 1 if there is no
regionY which is part ofX. A regionX is of levelHg(X) = k if there is a regiory of
level Ho(Y) = k — 1 which is part ofX and if there is no regiorZ which is part ofx
and has a higher level thaf g (z) = k — 1.°

Ho Heo He
a
f ala
b e
C [
b,d a| ¢ ¢
e bd e
a Cf
(@) (b) (©

Figure5. (a) shows the two-dimensional neighborhood of a boundanjdwehich is
divided into two parts by the common boundary of the boundagipnsb, d, e, and

f- (b) shows a possible hierarchiyo of regions. In (c) the neighborhood is closed
with respect taH .

The pieces of all regions affiliated with' (w) must then be chosen according to
He, i.e., pieces of regions of the same level are equal for gnisqular neighborhood
and are non-tangential proper part of all pieces of regibashigher level. We choose
the single pieces to be rectangles.

If w is a boundary world, the boundary regionsuwfare only affiliated with one
part of N (w) and their pieces must share the common boundary. Theréfutteparts
of N(w) must be closed separately accordindftg (see Figure 5c). In the same way
as for two-dimensional space, neighborhoods can be placadjihigher dimensional
space and closed therein accordingHg. As the three points corresponding to a
world w of level 0 and its twoRy-successors can always be aligndt(w) can also
be placed on a line. Thus, all neighborhoods can be placespérdiently in a one-
dimensional space and closed as intervals accordifstgsee Figure 4b).

THEOREM 15. — Every consistent set ®/CC-8 constraints can be realized in any
dimensiond > 1 where regions are (sets of) d-dimensional polytopes.

9. This corresponds to the finish time of depth-first searcteémh vertex of a grapi'e where
regions are vertice¥s and “part of” relations are directed edgé%, computable in time
O(V@ + E@) [COR 90, p.4771f]
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So far all regions consist of as many pieces as there are mmigbods affiliated
with them, i.e.,O(n?) many pieces for every region. We can further show that for
three- and higher-dimensional space all regions can alsedbeed as internally con-
nected. For this we constructiat- 1-dimensional realization of internally connected
regions by connecting all pieces of the same regionsdflamensional realization of
internally disconnected regions.

THEOREM 16. — Every consistent s& of RCC-8 constraints can be realized with
internally connected regions in any dimensibir 3 where regions are polytopes.

Proof. Suppose tha© is consistent. With the following construction we obtain a
three-dimensional realization of internally connectegiaoas starting from a two-
dimensional realization. We begin with constructing a ipatar two-dimensional
realization in the plane determined by theandy-axes. (1a) Place all neighborhoods
on a circle with cente€ such that the common boundary of each neighborhood cor-
responding to a boundary world points@b(see Figure 6a). (1b) Close all neighbor-
hoods according to the hierarchf such that all pieces of regions are rectangles. We
now extend this two-dimensional realization to a threedtisional realization. The
third dimension is determined by theaxis. (2a) Proceed from the two-dimensional
realization according télo by first choosing pairwise distinct intervals on the posi-
tive z-axis for every region withHg = 1, i.e., for the regions that do not contain any
other region. (2b) Build a pipe parallel to theaxis for every piece of these regions
starting from the planezE0) up to the endpoint of the corresponding interval. (2c)
Connect the pipes of the same region within the range of thegponding interval
using pipes pointing to the center (see Figure 6b). (3) Nexrégions withHg = 2

s ° o ([ (1]
L )|
O o © )

@ (b) (©

Figure 6. Construction of the three-dimensional realization. (ajqhg the two-
dimensional neighborhoods on a circle. (b) connecting tieegs of a region on a
particular level. (c) connecting the pipes of a region (bdiltk) that contains the
vertically and the horizontally hashed regions.

are connected, i.e., those regions that only contain ajfreadnected regions. To do
this, (3a) choose intervals on the z-axis for these regiank that the intervals con-
tain all intervals of the contained regions but do not oyerédth any other interval.
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(3b) Build a pipe for every piece up to the endpoint of the esponding interval with
the largestz-value, and (3c) connect the pipes of every region withinrdregge of
all corresponding intervals (see Figure 6¢). (4) Repeat 3tsuccessively for every
level of Hg until all regions are connected. (5) Finally, close all idsigrhoods on the
negativez-axis according tdHe .

Obviously, with this construction all regions are inteipabnnected. Furthermore
all internally connected three-dimensional regions hbkldame base relations as the
two-dimensional realizations from which we started thestarction. This is because
all intervals on thez-axis are either contained in each other or are distincy, tiaee
no common boundary points. All intervals correspondingdgionX are contained
in the intervals of regiory if and only if NTPP(z,y) or TPP(x,y). When two re-
gions are disconnected they remain disconnected as thayoaufTiliated with the
same neighborhoods. Two externally connected regionsineemgernally connected
because every neighborhood was placed on the circle sucthéheommon boundary
points to its center. Therefore, if two of these regions ath laffiliated with the same
neighborhood, their pipes are externally connected andhdinegontal connection of
the single pipes is distinct. All other requirements of tielas as, e.g., a common
boundary point are already met by the pipes.

With a similar construction, @ + 1-dimensional realization of internally con-
nected regions can be obtained front-dimensional realization of internally discon-
nected regions. In this case, thalimensional neighborhoods must be placed on a
d-dimensional sphere and the intervals must be chosen dt-the dimensional axis.

All constructions kept the polytopic shape of the regionsegery region can be real-
ized as a (d-dimensional) polytope. u

The restriction of regions to be polytopes can immediatelygbneralized to an
arbitrary shape of regions.

6. Applicability of the Canonical Model

In the previous sections we reported about the existenceedii¢ed)RCC-8-
models and how they can be mapped to topological spacedefatit dimensions. In
this section we study hoRCC-8-models can be determined and how a realization can
be generated from them. As there is a (redu&d-8-modelM for every consistent
set of spatial relation®, and as it is always possible to generate a realization of
M, RCC-8 models are suitable for representing spatial regions veisipect to their
relations. RCC-8-models represent the characteristic points and infoonadbout
their neighborhoods of a possible realization. As in thevipies section we assume
that® contains only constraints over the base relations.
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6.1. Determination of RCC-8 models

Given a set oRCC-8 constraint®d which contains only base relations, we have
to find a reduce®RCC-8-model M for the modal encoding dRCC-8 such that only
those worlds are boundary worlds of regions which are fotodx by the constraints.
The Kripke frame ofM, i.e., the number of worlds and their accessibility relasio
are already known from the entailment constraints, but we ha find a valuation
for every world and every region. For some worlds and som®naghe valuation
is already given by the constraints, for some it can be irfkusing the constraints,
for others it can be chosen. In order to make the inferengeagesasy as possible,
we use the propositional encoding RCC-8 with respect to a Kripke frame where
every worldw and every spatial variableis transformed to a propositional atofy,
which is true if and only ifX holds inw [REN 99b]. The valuation oM can then be
obtained from the satisfying assignment of the proposiidormula. Although the
encoding of the reduceg®CC-8-models is not a Horn formul, unit-resolution plus
additional choices is sufficient for finding a satisfyingigasnent. As all clauses of the
propositional encoding use worlds of the saREC-8-cluster, the inference step is
independent for every cluster. From Proposition 10 it isdamavhichRCC-8-clusters
contain a boundary world. Suppose thaR®C-8-cluster contains a boundary world,
then the valuation of the two regions which introduced tharatary world can be
chosen in all worlds of thRCC-8-cluster according to the relation of the two regions.
The valuations of the other regions are either determinedhiityresolution or can be
chosen according to their other valuations: If the valuatiba particular region in
some world of theRCC-8-cluster is true, then the other valuations are also chosen a
true, otherwise all valuations are chosen as false. R@€-8-cluster does not contain
a boundary world, all worlds of thRCC-8-cluster have the same valuation. If the
valuation of a region is not determined by unit-resolutibis ichosen as false. With
these choices a satisfying assignment is always found, teeigh the propositional
formulais not Horn. As there ar@(n?) worlds andr regions, there ar®(n*) clauses
[REN 99b], so a reduce®CC-8-model can be determined in tindg(n?).

6.2. Generating a realization

Suppose we have given a redude@C-8-model of a consistent set &CC-8
constraint¥d. We have to distinguish the tasks of generating a realizaifanter-
nally connected and disconnected regions. A realizatiodiszgfonnected regions in
d-dimensional space can be obtained by placing@®te?) different neighborhoods
in the d-dimensional space and close each neighborhood as spdniffaettion 5.
For this, the hierarchydo of regions must be known, which can be computed in
time O(n + Po) wherePg € O(n?) is the number of “part of” relations i® (see

10. This is because of the constrainfX — —I-IX) which is transformed tg\
X%, v X2) in the notation of [REN 99b].

weWy (_‘Xw v
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Definition 14). LetAg € O(n) be the maximal number of regions affiliated with a
neighborhood, then the closure of a neighborhood can be ateun timeO(Ao).

THEOREM 17. — Given a reducedRCC-8 model of a set dRCC-8 relationsO, a
realization of® in d-dimensional spacei(> 1) can be generated in tim@(n?Ag)
when regions are allowed to be disconnected.

In order to generate a realization of internally connectagians we can use the
construction of the proof to Theorem 16. For every region aeehto find the corre-
sponding intervals on the-axis. The number of intervals of a particular regiors
equal to the number of regions wifig = 1 that are contained iR. Let Io € O(n)
be the maximal number of regions witly = 1 that are contained in a region.

THEOREM 18. — Given a reducedRCC-8 model of a set oRCC-8 relations©, a
realization of© with internally connected regions iftrdimensional spacei(> 3) can
be generated in tim@®(n?Ag o).

If Po € O(n?) is the maximal number of neighborhoods affiliated with acagi
every region can be realized as a polytope WiPe Io ) vertices.

7. Discussion

In this paper we identified a canonical modeRIEEC-8 based on Kripke seman-
tics. In order to obtain a “topological” canonical model, gave a topological in-
terpretation of the Kripke models such that regions can peegented by points in
the topological space and information about the neighbmtod these points with re-
spect to the spatial relations holding between the regidaig this canonical model,
we proved that every consistent setRIEC-8 constraints has a realization in any di-
mension when regions are not forced to be internally comteathich is the case
for regions as used bRCC-8. If regions are forced to be internally connected, we
proved that a realization can always be found for three- @it dimensional space.
Furthermore, we give for the first time algorithms for getiagarealizations of either
internally connected or disconnected regions.

There is some work on identifying canonical models for R€C axioms, i.e.,
determining what mathematical structures fulfill all fREC axioms, as, e.g., every
region has a non-tangential proper part [RAN 92b]. GottsT®®a] found that every
connected and regular topological space is a model foRIBE axioms. Stell and
Worboys [STE 97] identified a whole class of models based oytikig structures.
Both approaches only describe models for&C axioms, i.e., what kind of regions
can be used at all. When additional constraints expressiatjonships between re-
gions are added, these results do not say anything aboutsraxdanore-! They are

11. Consider the hypothetical case of a seR&C-8 constraints which is realizable in two-
but not in one-dimensional space. Then, a one-dimensiqaaesis still a model of the RCC
axioms, but not oRCC-8.
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also by no means constructive, as they do not provide a wafeatizely representing
regions or generating realizations.

Previous approaches to dealing with dimension and intexmrahectedness of re-
gions tried to specify predicates and suitable axioms irt@lrestrict dimension and
connectedness of regions [BEN 96a, GOT 94]. As all regulgiores have the same
dimension as the underlying space, using our results ittin@cessary for consistency
purposes to specify the dimension of regions explicithnternally disconnected re-
gions are permitted. If internally connected regions amuired, these predicates
only have an influence on the consistency of a set of spatatioas in one- or two-
dimensional applications. In three- and higher-dimeraigpace all regions may be
either internally connected or disconnected. Forcingrirteconnectedness of re-
gions in two-dimensional space leads to difficult compotai problems as there are
no algorithms for dealing with this task. As Grigni et al. [3¥5] pointed out, a well-
known open problem in graph theory which is NP-hard but not#mto be decidable
[KRA 91a, KRA 91b] can be reduced to the consistency problenfo-dimensional
internally connected regions.

It is certainly the better approach to have an additionahestedness predicate
than forcing all regions to be internally connected whicdase, e.g., by the similar
calculus of Egenhofer [EGE 91], as there are many applicatichere regions are in
fact disconnected. Within the area of geographical infdiomesystems, e.g., which
offer a great variety of possible applications, many cdaestor other geographical
entities are not internally connected regions. In areasdidmputer vision one often
deals with two-dimensional projections of the three-disienal space where many
connected objects are perceived as disconnected objeet® dcclusion. In robot
navigation, maps are often two-dimensional cuttings ofedfdimensional space.
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