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ABSTRACT.Although the computational properties of the Region Connection CalculusRCC-8 are
well studied, reasoning withRCC-8 entails several representational problems. This includes
the problem of representing arbitrary spatial regions in a computational framework, leading
to the problem of generating a realization of a consistent set of RCC-8 constraints. A further
problem is thatRCC-8 performs reasoning about topological space, which does nothave a
particular dimension. Most applications of spatial reasoning, however, deal with two- or three-
dimensional space. Therefore, a consistent set ofRCC-8 constraints might not be realizable
within the desired dimension. In this paper we address theseproblems and develop a canonical
model ofRCC-8 which allows a simple representation of regions with respect to a set ofRCC-8
constraints, and, further, enables us to generate realizations in any dimensiond ≥ 1. For three-
and higher-dimensional space this can also be done for internally connected regions.

KEYWORDS:qualitative spatial representation, RCC-8, topological relations, spatial regions,
modal logic.

1. Introduction

The Region Connection Calculus (RCC) [RAN 92b] is a topological approach to
qualitative spatial representation and reasoning [COH 97]where spatial regions are
regular subsets of a topological space. Of particular interest for application purposes
is RCC-8, a constraint language that uses eight mutually exhaustiveand pairwise
disjoint base relations definable in theRCC-theory. The computational properties
of RCC-8 have been studied thoroughly [NEB 95, REN 99b, REN 99a] and efficient
reasoning mechanisms were identified [REN 01].

Despite these advantages, there are still several problemswith representing spatial
regions withinRCC-8. As the calculus is based on topology, spatial regions mightbe
arbitrary subsets of a topological space which are not necessarily analytically describ-

Journal of Applied Non-Classical Logics.Volume 12 – n◦ 3-4/2002, pages 469 to 494.



470 JANCL – 12/2002. Spatial Logics

able; therefore, it appears to be difficult to represent spatial regions in a computational
framework.

Another representational drawback of usingRCC-8 is that a topological space
does not have a particular dimension, whereas most applications of qualitative spatial
reasoning deal only with two- or three-dimensional space. It might, thus, be possible
that a set ofRCC-8 constraints is consistent but not realizable within a particular
dimension. Lemon [LEM 96] gave an example of a set ofRCC-8 constraints which is
realizable in three dimensional space but not in two dimensional space if regions must
be internally connected. Lemon used this result to argue that spatial logics likeRCC
are not an adequate formalism for representing space.

A further problem, which also depends on the ability to represent spatial regions,
is finding a realization of a consistent and realizable set ofRCC-8 constraints in a
particular dimension, instead of just knowing whether the set is realizable or not.

In this paper, we will refer to these representational topics. In order to represent
arbitrary spatial regions, it is necessary to have acanonical modelof RCC-8, i.e.,
a structure that allows to model any consistent sentence of the calculus. Topolog-
ical spaces are of course a canonical model, but, as described above, this does not
seem to be very useful for representing regions. Therefore,we will present a new
canonical model ofRCC-8 that permits a simple representation of spatial regions by
reducing them to their necessary topological features withrespect to their spatial re-
lations. Based on this model, we will prove that for any consistent set ofRCC-8
constraints there are realizations in any dimensiond ≥ 1 when regions are not forced
to be internally connected. This is still true even when regions are constrained to be
sets of polytopes. Actually, internal connectedness of regions is not at all forced in
theRCC-theory, soRCC can still be seen as an adequate representation formalism of
space. We will also argue that forcing internal connectedness of all regions is too re-
strictive when dealing with spatial regions. Nevertheless, we will prove that in three-
and higher dimensional space every consistent set ofRCC-8 constraints can always
be realized with internally connected regions. Using the new canonical model for rep-
resenting spatial regions, it becomes possible to determine realizations of consistent
sets ofRCC-8 constraints. We will give algorithms for generating realizations of both
internally connected and disconnected regions.

The remainder of the paper is structured as follows: In Section 2 we introduce
RCC-8 and some basic topological notions. Section 3 sketches the modal encoding
of RCC-8 and presents the new canonical model ofRCC-8. In Section 4 we give a
topological interpretation of this model which is used in Section 5 to prove the results
about realizations in particular dimensions. Section 6 describes how models of sets of
spatial relations can be determined and how realizations can be generated. In Section 7
we will discuss our results.
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2. Qualitative Spatial Representation with the Region Connection Calculus

The Region Connection Calculus (RCC) developed by Randell, Cui, and
Cohn [RAN 92b] is a topological approach to spatial representation and reasoning
where spatial regionsare non-empty regular subsets of some topological spaceU .
Spatial regions do not have to beinternally connected, i.e., they might consist of
(multiple) disconnected pieces. Since all spatial regionsare regular subsets of the
same topological spaceU , all spatial regions have the same dimension, namely, the
dimension ofU (provided thatU has a particular dimension).

RCC is based on a single primitive relation between spatial regions, the “connect-
edness” relationC. The intended topological interpretation ofC(a, b), wherea andb
are spatial regions, is thata andb are connected if and only if their topological closures
share a common point. With this interpretation it is not distinguished between open,
semi-open, and closed regions which is different from previous approaches by Ran-
dell and Cohn [RAN 92a, RAN 89] and Clarke [CLA 85, CLA 81]. Using the con-
nectedness relationC, a large number of different relations can be defined (cf. Gotts
[GOT 94, GOT 96b]. Of particular interest are those relations that form a set of jointly
exhaustive and pairwise disjoint relations, which are alsodenotedbase relations. Base
relations have the property that exactly one of them holds between any two spatial re-
gions. If these relations are closed under composition theygenerate a relation algebra
[LAD 94], thus, reasoning about these relations can be done using constraint satisfac-
tion methods (cf. [MAC 77, MON 74, BEE 92]). Randell et al. [RAN 92b] suggested
such a set of eight base relations, later denoted asRCC-8: DC (DisConnected), EC

(Externally Connected), PO (Partial Overlap), EQ (EQual), TPP (Tangential Proper
Part), NTPP (Non-Tangential Proper Part), and their conversesTPP

−1 andNTPP
−1.

This set of relations is interesting for a number of reasons.It is the smallest set of base
relations which allows topological distinctions rather than just mereological (being
expressible by using the part-whole relationship) and which forms a relation algebra.
Most other relations definable in theRCC theory are refinements of these relations.
Furthermore, the semantics of these relations can be described by using propositional
logics rather than first-order logics [BEN 94, BEN 96b], a property which allows us
to prove decidability.

2.1. The Region Connection Calculus RCC-8

The Region Connection CalculusRCC-8 is the constraint language formed by the
eight jointly exhaustive and pairwise disjoint base relationsDC, EC, PO, EQ, TPP,
NTPP, TPP

−1, andNTPP
−1 and by all possible unions of the base relations. Unions

of possible base relations are used to represent indefinite knowledge. Since the base
relations are pairwise disjoint, this results in28 = 256 different RCC-8 relations
altogether (including the empty relation and the universalrelation). In some papers
the set of base relations is denoted asRCC-8 while the set of all possible unions of
base relations is denoted as2RCC8. We will, however, useRCC-8 to refer to the
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RCC-8 Relation Topological Constraints
DC(X, Y) X ∩ Y = ∅
EC(X, Y) i(X) ∩ i(Y) = ∅, X ∩ Y 6= ∅
PO(X, Y) i(X) ∩ i(Y) 6= ∅, X 6⊆ Y, Y 6⊆ X

TPP(X, Y) X ⊂ Y, X 6⊆ i(Y)

TPP
−1(X, Y) Y ⊂ X, Y 6⊆ i(X)

NTPP(X, Y) X ⊂ i(Y)

NTPP
−1(X, Y) Y ⊂ i(X)

EQ(X, Y) X = Y

Table 1. Topological interpretation of the eight base relations ofRCC-8. All spatial
regions are regular closed, i.e.,X = c(i(X)) and Y = c(i(Y)). i(·) specifies the
topological interior of a spatial region,c(·) the topological closure.

set of all possible disjunctions of the base relations andB to refer to the set of base
relations. Analogous to the generalRCC-theory, spatial regions inRCC-8 are non-
empty regular subsets of some topological space that do not have to be internally
connected, and do not have a particular dimension. Without loss of generality (due to
the intended interpretation of theC relation) we require spatial regions to be regular
closedsubsets of a topological space.

TheRCC-8 relations can be given a straightforward topological interpretation in
terms of point-set topology (see Table 1), which is almost the same as for the topolog-
ical relations given by Egenhofer [EGE 91] (though Egenhofer places stronger con-
straints on the domain of regions, e.g., regions must be one-piece and are not allowed
to have holes). Examples for theRCC-8 base relations are given in Figure 1.
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Figure 1. Two-dimensional examples for the eight base relations ofRCC-8.

A spatial configuration can be described by specifying a finite setΘ of RCC-8
constraints, written asxRy or R(x, y), whereR is anRCC-8 relation andx, y are
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spatial variablesover the infinite domain of all possible spatial regions. An important
reasoning problem is decidingconsistencyof Θ, i.e., deciding whether there is an as-
signment of non-empty, regular closed regions of some topological space to variables
of Θ in a way that all constraints are satisfied. Computational properties of reasoning
with RCC-8 were studied in [NEB 95, REN 99b, REN 99a].

In this paper we deal with representational properties ofRCC-8 for which it is
necessary to go further into topology. In the next subsection we define some common
topological terms and concepts which are used in the remainder of the paper.

REMARK 1. — Throughout this work we will use the following convention for re-
ferring to spatial regions, spatial variables, and propositional atoms corresponding to
spatial regions or spatial variables:

– Spatial variables are written asx, y, z.

– Spatial regions are written asX, Y, Z.

– Propositional atoms corresponding to spatial regions or spatial variables are writ-
ten asX,Y,Z.

If the same letter is used in different fonts in the same context, it represents the same
region. For instance,X is a possible instance ofx, Y a possible instance ofy, andX is
the propositional atom corresponding tox or toX.

2.2. Topological Background

In this subsection we introduce and define the topological concepts that are used in
this paper. This includes the notion of a topological space,different kinds of regions
such as open, closed, regular open, and regular closed regions, the notion of interior,
exterior and boundary of a region, as well as neighborhoods,neighborhood systems,
and points with different properties. These concepts are very basic and can be found
in this or in a similar form in any book on general topology or point-set topology
(e.g., [MUN 74, BAU 91]). We start with the formal definition of a topology and a
topological space:

DEFINITION 2 (TOPOLOGY, TOPOLOGICAL SPACE). — LetU be a non-empty set,
the universe. A topologyonU is a familyT of subsets ofU that satisfies the following
axioms:

1) U and∅ belong toT ,

2) the union of any number of sets inT belongs toT ,

3) the intersection of any two sets ofT belongs toT .

A topological spaceis a pair 〈U , T 〉. The members ofT are called opensets.

In a topological space〈U , T 〉, a subsetX of U is called aclosedset if its comple-
mentXc is an open set, i.e., ifXc belongs toT . By applying the DeMorgan laws, we
obtain the following dual properties of closed sets:
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1) U and∅ are closed sets,

2) the intersection of any number of closed sets is a closed set,

3) the union of any two closed sets is a closed set.

If the particular topologyT on a setU is clear or not important, thenU can also denote
the topological space.

Closely related to the concept of an open set is that of a neighborhood.

DEFINITION 3 (NEIGHBORHOOD, NEIGHBORHOOD SYSTEM). — LetU be a topo-
logical space andp ∈ U be a point inU .

–N ⊂ U is said to be aneighborhoodof p if there is an open subsetO ⊂ U such
thatp ∈ O ⊂ N .

– The family of all neighborhoods ofp is called the neighborhood systemof p,
denoted asNp.

A neighborhood systemNp has the property that every finite intersection of mem-
bers ofNp belongs toNp. Based on the notion of neighborhood it is possible to define
some important notions.

DEFINITION 4 (INTERIOR, EXTERIOR, BOUNDARY, CLOSURE). — LetU be a topo-
logical space,X ⊂ U be a subset ofU andp ∈ U be a point inU .

– p is said to be aninterior pointof X if there is a neighborhoodN of p contained
in X. The set of all interior points ofX is called the interiorof X, denotedi(X).

– p is said to be an exterior pointof X if there is a neighborhoodN of p that
contains no point ofX. The set of all exterior points ofX is called the exteriorof X,
denotede(X).

– p is said to be aboundary pointof X if every neighborhoodN of p contains at
least one point inX and one point not inX. The set of all boundary points ofX is called
the boundaryof X, denotedb(X).

– The closureof X, denotedc(X), is the smallest closed set which containsX.

The closure of a set is the union of its interior and its boundary. Every open set is
its own interior, every closed set is its own closure.

DEFINITION 5 (REGULAR OPEN, REGULAR CLOSED). — Let X be a subset of a
topological spaceU .

– X is said to beregular openif X is the interior of its closure, i.e.,X = i(c(X)).

– X is said to beregular closedif X is the closure of its interior, i.e.,X = c(i(X)).

Topological spaces can be categorized according to the degree that points or closed
sets can be separated by open sets. Different possibilitiesare given by theseparation
axiomsTi. A topological spaceU that satisfies axiomTi is called aTi space. Three
of these separation axioms which are important for this workare the following:
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T1 : Given any two distinct pointsp, q ∈ U , each point belongs to an open set which
does not contain the other point.

T2 : Given any two distinct pointsp, q ∈ U , there exist disjoint open setsOp, Oq ⊆ U
containingp andq respectively.

T3 : If X is a closed subset ofU andp is a point not inX, there exist disjoint open sets
OX , Op ⊆ U containingX andp respectively.

A connected spaceU is a topological space which cannot be partitioned into two
disjoint open sets, i.e., ifU is the union of two non-empty subsetsA andB, then
either the closure ofA intersected withB or the closure ofB intersected withA is non-
empty. A topological space isregular, if it satisfies axiomsT2 andT3. Two subsets
of a topological space are calledseparatedif the closure of one subset is disjoint
from the closure of the other subset. A subset of a topological space isconnected(or
internally connectedas it is called in theRCC community) if it cannot be written as a
union of two separated sets.

It is possible to use any topological space which is a model for theRCC axioms
as specified in [RAN 92b]. Gotts [GOT 96a] has shown that everyregular connected
topological space is a model for theRCC axioms (see also Section 7). So, whenever
we refer to a topological space in the remainder of the paper,we mean a regular
connected topological space.

3. Modal Encoding & Canonical Models

After making a brief introduction to modal logic, we will introduce the modal
encoding ofRCC-8 and a canonical model for this encoding.

3.1. Modal Logic & Kripke Semantics

Propositional modal logic [FIT 93, CHE 80] extends classical propositional logic
by additional unarymodal operators2i. A common semantic interpretation of modal
formulas is the Kripke semanticswhich is based on aKripke frameF = 〈W,R〉
consisting of a set ofworldsW and a setR of accessibility relationsbetween the
worlds, whereR ⊆ W × W for every accessibility relationR ∈ R. A different
accessibility relationR2i

∈ R is assigned to every modal operator2i. If u, v ∈ W ,
R ∈ R, anduRv holds, we say thatv is R-accessiblefrom u or v is an R-successor
of u.

A Kripke modelM = 〈W,R, π〉 uses an additional valuationπ that assigns each
world and each propositional atom a truth value{true, false}. Using a Kripke model,
a modal formula can be interpreted with respect to the set of worlds, the accessibility
relations, and the valuation. For example, a propositionalatoma holds in a worldw
of the Kripke modelM (written asM, w |⊢ a) if and only if π(w, a) = true. An
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RCC-8 constraint Model Constraints Entailment Constraints
DC(x, y) ¬(X ∧ Y) ¬X,¬Y

EC(x, y) ¬(IX ∧ IY) ¬(X ∧ Y),¬X,¬Y

PO(x, y) — ¬(IX ∧ IY), X → Y,

Y → X,¬X,¬Y

TPP(x, y) X → Y X → IY, Y → X,¬X,¬Y

TPP−1(x, y) Y → X Y → IX, X → Y,¬X,¬Y

NTPP(x, y) X → IY Y → X,¬X,¬Y

NTPP
−1(x, y) Y → IX X → Y,¬X,¬Y

EQ(x, y) X → Y, Y → X ¬X,¬Y

Table 2. Encoding of theRCC-8 base relations in modal logic.

arbitrary modal formula is interpreted according to its inductive structure. A modal
formula2iϕ, e.g., holds in a worldw of the Kripke modelM, i.e.,M, w |⊢2iϕ, if
and only ifϕ holds in allR2i

-successors ofw. M, w |⊢ ¬2iϕ if and only if there is an
R2i

-successor ofw whereϕ does not hold. The operators¬,∧ and∨ are interpreted
in the same way as in classical propositional logic.

Different modal operators can be distinguished according to their different accessi-
bility relations. In this paper we are using a so-calledS4-operator and anS5-operator.
The accessibility relation of anS4-operator is reflexive and transitive, the accessibility
relation of anS5-operator is reflexive, transitive, and Euclidean (i.e., ifuRv anduRw
holds, thenvRw holds as well).

3.2. Modal Encoding of RCC8

The encoding ofRCC-8 in propositional modal logic was introduced by Bennett
[BEN 96b] and extended in [REN 99b]. In both cases the encoding is restricted to
regular closed regions. The encoding is based on a set ofmodeland entailment
constraintsfor each base relation, where model constraints must be trueand entail-
ment constraints must not be true. Bennett encoded these constraints in modal logic
by transforming every spatial variable to a propositional atom and introducing anS4-
operatorI which he interpreted as an interior operator [BEN 96b]. In order to dis-
tinguish between spatial variables and the corresponding propositional atoms we will
write propositional atoms asX,Y. Table 2 displays the constraints for the eight base
relations. In order to combine them to a single modal formula, Bennett introduced an
S5-operator1 2, where2ϕ is written for every model constraintϕ and¬2ψ for every
entailment constraintψ [BEN 96b]. All constraints of a single base relation are then
combined conjunctively to a single modal formula. In order to represent unions of
base relations, the modal formulas of the corresponding base relations are combined

1. Bennett called this astrongS5-operator as all worlds areR2-accessible from each other,
i.e.,R2 = W × W .
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disjunctively. In this way everyRCC-8 constraintR(x, y) can be mapped to a modal
formulam1(R(x, y)). Additional constraintsm2(x) are necessary to guarantee that
only regular closed regions are used [REN 99b]: every regionmust be equivalent to
the closure of its interior, and the complement of a region must be equivalent to its
interior.

m2(x) = 2(X ↔ ¬I¬IX) ∧ 2(¬X ↔ I¬X).

So, any set ofRCC-8 constraintsΘ can be written as a single modal formulam(Θ)

m(Θ) =
∧

R(X,Y )∈Θ

m1(R(x, y)) ∧
∧

X∈Reg(Θ)

m2(x),

whereReg(Θ) is the set of spatial variables ofΘ.

3.3. A Canonical Model of RCC-8

The modal encoding ofRCC-8 can be interpreted by Kripke models. As the modal
encoding ofRCC-8 is equivalent to a set ofRCC-8 constraints [BEN 96b, NUT 99],
a canonical model ofRCC-8 is a structure that allows a Kripke model for the modal
encoding of any consistent set ofRCC-8 constraintsΘ. In order to obtain a canonical
model, we distinguish different levels of worlds ofW [REN 99b]. A worldw is of
level 0 if there is no worldv 6= w with vRIw. A world w is of level l if there is a
world v of level l − 1 with vRIw and there is no worldu 6= w of a level higher than
l − 1 with uRIw. Based on this hierarchy of worlds, we will define the canonical
model ofRCC-8.

DEFINITION 6 (RCC-8-STRUCTURE, RCC-8-CLUSTER, RCC-8-MODEL). — An
RCC-8-structure of sizen Sn

RCC8 = 〈W, {R2, RI}, π〉 has the following properties:

1)W contains only worlds of level0 and1.

2) For every worldu of level0 there are exactly2n worldsv of level1 with uRIv.
These2n+ 1 worlds form anRCC-8-clusterof size2n+ 1 (cf. Figure 2).

3) For every worldv of level1 there is exactly one worldu of level0 with uRIv.

4) For all worldsw, v ∈ W : wRIw andwR2v.

Sn
RCC8 containsRCC-8-clusters of size2n + 1 with all possible valuations2 with

respect toRI. The RCC-8-structureSRCC8 =
⋃

n≥1 S
n
RCC8 is the union of all

RCC-8-structures of sizen. A set ofRCC-8-clustersM = 〈W, {R2, RI}, π〉 ⊂
Sn

RCC8 is an RCC-8-modelofm(Θ) if M, w |⊢m(Θ) for a worldw ∈ W andn is
the number of variables inΘ. In a polynomialRCC-8-modelthe number of worlds
is polynomially bounded by the number of regionsn.

In [REN 99b] it was proven that ifm(Θ) is satisfiable, there is a polynomial
RCC-8-modelM with M, w |⊢m(Θ) that usesO(n2) different worlds of level0 –

2. As the number of spatial variables is countable, the numberof RCC-8-clusters with different
valuations is also countable.
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one world of level0 for every entailment constraint. So theRCC-8-structureSRCC8

is a canonical model3 of the modal encoding ofRCC-8. In order to obtain a “topolog-
ical” canonical model for the topological calculusRCC-8, we give in the next section
a topological interpretation ofRCC-8-models.

4. Topological Interpretation of the Canonical Model

The modal encoding ofRCC-8 was obtained by introducing a modal operator
I corresponding to the topological interior operator and transferring the topological
properties and axioms to modal logic. In this section we present a way of topologi-
cally interpretingRCC-8-models such that all parts of the models can be interpreted
consistently on a topological level.

BecauseI is anS4-operator and because of the additional constraintsm2(x), ex-
actly one of the following formulas is true for every worldw of M and every propo-
sitional atomX (see Figure 2).

1) M, w |⊢ IX

2) M, w |⊢ I¬X

3) M, w |⊢X ∧ ¬IX

Consider a particular worldw. Then the set of all spatial variables can be divided into
three disjoint sets of spatial variables according to whichof the three possible formulas
is true inw (see Figure 2). LetIw, Ew, andBw be the sets of spatial variables where

X XX

X

¬X

X

¬X¬X

¬X¬X

¬X

¬X

¬XX

X

X

X

X

Figure 2. Three possibleRCC-8-clusters of theRCC-8-structureSRCC8.

the first, the second, and the third formula is true inw, respectively, i.e.,M, w |⊢ IX∧
I¬Y ∧ (Z ∧ ¬IZ) for all x ∈ Iw, y ∈ Ew, andz ∈ Bw.

When looking at points in a topological space, for every region there are three
different kinds of points: interior points, exterior points, and boundary points of a

3. The RCC-8-structure does not cover all possible Kripke models ofm(Θ). The goal of a
canonical model is just to provide a model for any consistentsentence of a calculus, not to
cover all possible models.
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region. If a point is an interior or exterior point of a region, there is a neighborhood
of the point such that all points of the neighborhood are inside or outside the region,
respectively. If a point is a boundary point of a region, every neighborhood contains
points inside and points outside the region (see Definition 4).

There seems to be a correspondence between worlds and pointsof a topological
space, and between the accessibility relationRI and topological neighborhoods. In the
following lemma we further investigate this correspondence by deriving topological
constraints from the modal formulas.

LEMMA 7. — Let x andy be two spatial variables ofΘ. Depending on which sets
Iw, Ew, or Bw they are contained in for a worldw, the following relations betweenx
andy are impossible. This has some topological consequences on possible instantia-
tionsX, Y:

x y Impossible RelationsR(x, y) Consequences
Iw Iw DC,EC i(X) ∩ i(Y) 6= ∅
Iw Ew TPP,NTPP,EQ i(X) ∩ e(Y) 6= ∅
Iw Bw DC,EC,TPP,

NTPP,EQ i(X) ∩ b(Y) 6= ∅
Ew Ew – –
Ew Bw TPP

−1,NTPP
−1,EQ e(X) ∩ b(Y) 6= ∅

Bw Bw DC,NTPP,NTPP
−1 b(X) ∩ b(Y) 6= ∅4

Proof. Most entries in the table follow immediately from the encoding of the relations
in modal logic. The only more difficult entry is the relationEC(x, y) in the third line
of the table. This relation is not possible because of the property2(Y → ¬I¬IY)
which states that for any worldw that satisfiesY there is a worldv with wRIv that
satisfiesIY. As v also satisfiesIX, the model constraint ofEC(x, y) is violated, so
this relation is not possible. The topological consequences result from distinguishing
the impossible from the possible relations.

It can be seen that when, e.g.,IX andIY hold in a worldw, thenX andY must
have a common interior. So, there is a common interior point of X andY wherew can
be mapped to. In the following theorem we give a mapping of every world to a point
in the topological space.

THEOREM 8. — LetΘ be a consistent set ofRCC-8 constraints,m(Θ) be the modal
encoding ofΘ, M = 〈W, {R2, RI}, π〉 be anRCC-8-model ofm(Θ), and U a
topological space. Then there is a functionp : W 7→ U that maps each worldw ∈ W

to a pointp(w) ∈ U and a functionN : W 7→ 2U that assigns each worldw ∈ W

a neighborhoodN(w) of p(w) such thatp(w) is in the interior ofX if M, w |⊢ IX

4. If PO(x, y) holds,X andY do not necessarily have a common boundary point if one of them
is not internally connected. However, assumingb(X)∩ b(Y) 6= ∅ in this case does not contradict
anyRCC-8 constraint, sinceRCC-8 is not expressive enough to distinguish different kinds of
partial overlap.
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holds,p(w) is in the exterior ofX if M, w |⊢ I¬X holds,p(w) is on the boundary ofX
if M, w |⊢X ∧ ¬IX holds, andp(u) ∈ N(w) if and only ifwRIu holds.5

Proof. Letw be a world ofW andIw, Ew, andBw be the corresponding sets of spatial
variables. We assume that there is a realization ofΘ such that there is at least one point
in the topological space that is in the interior of everyX, in the exterior of everyY, and
on the boundary of everyZ simultaneously (x ∈ Iw, y ∈ Ew, z ∈ Bw). It follows
from Lemma 7 that this is true for every pair of regions. AsRCC-8 permits only
binary constraints between spatial variables and regions are allowed to be internally
disconnected, this assumption holds. We further assume that pmapsw to one of these
points.

Because of Definition 4, there must be neighborhoodsNX(w) andNY (w) of p(w)
for everyx ∈ Iw and everyy ∈ Ew such thatNX(w) is in the interior ofX and
NY (w) is disjoint with Y. Also, for everyz ∈ Bw, every neighborhoodNZ(w) of
p(w) contains points inside and outsideZ. All these neighborhoods are members of
the neighborhood system ofp(w), so their intersectionN(w) is also a neighborhood
of p(w) where allRI-successors ofw can be mapped to.

Using the above defined functionsp andN , M, w |⊢ IX can be interpreted as
“there is a neighborhoodN(w) of p(w) such that all points ofN(w) are inX”. This
obeys the intended interpretation ofI as an interior operator, asM, w |⊢X means that
p(w) is in X andM, w |⊢ IX means thatp(w) is in the interior ofX.

The functionN , as defined in Theorem 8, can be replaced by any functionN ′ :
W 7→ 2U , withN ′(w) ⊆ N(w) for allw ∈W , if N ′(w) is a member of the neighbor-
hood system ofp(w). p has to be changed accordingly. In particular, we will regard
in the following all neighborhoods asd-dimensional spheres whered is the dimension
of the underlying topological space.

In order to make the following argumentation more readable,a world mapped to
an interior point ofX is denoted interior world of x, a world mapped to an exterior
point ofX exterior worldof x, and a world mapped to a boundary point ofX boundary
world of x. Accordingly, a region is calledinterior, exterioror boundary regionof a
world. In particular, a worldw with M, w |⊢ IX is an interior world ofx, a worldw
with M, w |⊢ I¬X is an exterior world ofx, and a worldw with M, w |⊢X ∧ ¬IX is
a boundary world ofx.

5. RCC-8 Models and the Dimension of Space

In the previous section we have shown how theRCC-8-models introduced in Sec-
tion 3.3 can be mapped to topological space, but we still haveno information about
the dimension of the topological space. In this section we investigate the influence

5. The properties forR2 (p(u) ∈ U if wR2u holds andp(w) ∈ U) can be omitted as we
already definedN andp such that only points ofU are used.
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of dimension on the possibility to map theRCC-8-models to the topological space,
i.e., which dimension is required in order to find a realization of a consistent set of
RCC-8 constraintsΘ. We will start with proving that for anyRCC-8-model there is
a realization in two-dimensional space. It is sufficient to prove this only for sets of
base relations as every realization ofΘ uses only base relations.6 For this proof it is
important to keep in mind that regions do not have to be internally connected, i.e., they
might consist of different disconnected pieces. It will turn out that our proof leads to
realizations in any dimensiond ≥ 1. Finally, for three- and higher-dimensional space
we will prove that every consistent setΘ can also be realized with internally connected
regions.

For the following analysis we restrict regions to be sets of d-dimensional poly-
topes. Sets are required since regions might consist of several disconnected pieces
where each piece is a single polytope. This restriction willbe lifted later and the
results can be generalized to arbitrary regular regions.

Let Θ be a consistent set ofRCC-8 constraints andM be anRCC-8-model of
m(Θ), the modal encoding ofΘ. Suppose that only two-dimensional regions are
permitted, i.e., the topological space is a two-dimensional planeU . All worlds of M
are mapped to points ofU as specified in Theorem 8. The general intuition of the
proof is that everyRCC-8-cluster, i.e., every world of level0 together with itsRI-
successors is mapped to an independent neighborhood such that each neighborhood
can be placed on an arbitrary but distinct position on the plane. Each neighborhood
will then be extended to different closed sets that form the pieces of the spatial regions.
In the following we will study the requirements neighborhoods have to meet in order
to guarantee two-dimensional realizations.

For every spatial variablexi (1 ≤ i ≤ n) and every worldw of level 0, we define
a region vectorrw

i = (rw
i,1, . . . , r

w
i,2n) that represents the affiliation of the2n RI-

successors ofw to Xi, i.e.,rw
i,j = 1 if M, vj |⊢Xi andrw

i,j = 0 if M, vj |6⊢ Xi where
vj is thejthRI-successor ofw. Since in the two-dimensional case the neighborhood
N(w) is a circle, we suppose that the pointsp(vj) corresponding to theRI-successors
vj of w are ordered clock-wise within the circle according toj. If p(w) is a boundary
point of Xi, some values ofrw

i are1 and some are0. Otherwise all values ofrw
i are

either1 (if p(w) is contained inXi) or 0 (if p(w) is not contained inXi).

LEMMA 9. — If for every worldw of level 0 there is a permutationPw of the values
of rw

i such that(rw
i,Pw(1), . . . , r

w
i,Pw(2n)) is a bitonic sequence7 for all 1 ≤ i ≤ n,

then the neighborhoodsN(w) can be placed in a two-dimensional plane such that all
spatial relations are satisfied within the neighborhoods.

6. The relationEQ can be omitted as any pair of spatial variablesx andy with EQ(x, y) can be
combined to a single spatial variable.
7. The values of abitonic sequence are in a form0e1f0g or 1e0f1g for e, f, g ≥ 0 [COR 90,
p. 642].



482 JANCL – 12/2002. Spatial Logics

Proof. If rw
i is a bitonic sequence andp(w) is a boundary point ofXi, then the map-

pings of the worlds of level1 corresponding to the values ofrw
i can be separated into

points insideXi and points outsideXi by at most two line segments meeting atp(w)
(see Figure 3).

v2

Pw

v3

v2

v2n v1

vj

⇒
w

v1

v3

vj

v2n

w

¬Xi¬Xi

¬Xi

Xi

Xi

Xi

Xi

Xi

Xi

Xi

Xi

¬Xi

Figure 3. PermutationPw of theRI-successors of a worldw. The solid line indicates
the boundary ofX, the hashed region the interior ofX.

These line segments can be regarded as the part of the boundary of Xi which is
insideN(w). So, neighborhoods can be separated in an interior and an exterior part of
a region by a one-dimensional boundary. Therefore all neighborhoods can be placed
in a two-dimensional plane. As the permutation of theRI-successors has no influence
on the relations between the regions, all spatial relationsbetween the regions hold
within the neighborhoods.

Actually, a permutation as described in the previous lemma is not necessary to
guarantee two-dimensional realizations. A region might look as shown on the left
of Figure 3, but in this case we restrict the shape and the internal connection of the
regions by the neighborhoods we are using which is not at all desirable. However, a
permutation as described in Lemma 9 is necessary for one-dimensional realizations
and realizations with internally connected regions.

Since a permutationPw is only necessary for boundary worlds, we will in the fol-
lowing try to keep the number of boundary worlds as small as possible. Therefore, we
consider onlyRCC-8-models for which all boundary worlds are explicitly forcedto
be boundary worlds by the constraints. In order to do so, we have to take a closer look
at which worlds are introduced as boundary worlds of some regions by the entailment
constraints, and which worlds are forced to be boundary worlds of regions by the con-
straints. As a worldw of level 0 is forced to be a boundary world ofx if M, w |⊢X

andM, v |6⊢ X hold for a worldv with wRIv, we have to find out which of the model
and entailment constraints forceM, w |⊢X if M, v |6⊢ X holds or forceM, v |6⊢ X if
M, w |⊢X holds.
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PROPOSITION10. — Boundary worlds are introduced only by the following relations
(see Table 2):

1) EC(x, y): ¬2(¬(X ∧ Y)) introduces a boundary world ofx andy because of
2(¬(IX ∧ IY)).

2) TPP(x, y): ¬2(X → IY) introduces a boundary world ofx andy because of
2(X → Y).

3) TPP
−1(x, y): ¬2(Y → IX) introduces a boundary world ofx andy because

of 2(Y → X).

Apart from the above worlds that are introduced as boundary worlds of particular
regions, worlds can also be forced to be boundary worlds of other regions.

PROPOSITION11. — A worldw is forced to be a boundary world ofx only with the
following constraints:

1) 2(X → Y): If w is a boundary world ofy andX is true inw, thenw must also
be a boundary world ofx.

2) 2(Y → X): If w is a boundary world ofy and¬X is true in anRI-successor
ofw, thenw must also be a boundary world ofx.

3) 2(¬(IX ∧ IY)): If X andY are true inw, thenw must be a boundary world of
x andy.

For the constraints2(X → Y) and2(Y → X), w must already be a boundary
world of some other region, sow must be introduced by one of the relationsEC(x, y),
TPP(x, y), or TPP

−1(x, y). If w is forced to be a boundary world ofx andy with
the constraint2(¬(IX ∧ IY)), thenX andY must both be true inw. This can only
be forced when there is az1 ∈ Reg(Θ) with TPP(z1, x) and Z1 is true inw, a
z2 ∈ Reg(Θ) with TPP(z2, y) andZ2 is true inw, andw is a boundary world of
z1 andz2 introduced byEC(z1, z2). So, in any case when a world is forced to be a
boundary world of some region it must already be a boundary world of other regions
introduced as described in Proposition 10.

We will now have a look at how regions must be related in order to force a world to
be a boundary world of these regions using the constraints ofProposition 11. Suppose
thatw is a boundary world ofx andy introduced by eitherEC(x, y) or TPP(x, y).8

We will write x|y in order to express that we can either usex or y but always the same.
With one of the following constraints it can be forced thatw is also a boundary world
of z 6= x, y (v is anRI-successor ofw):

2(Z → (X|Y)) andM, w |⊢Z (; TPP(z, x|y))
2(¬(IZ ∧ I(X|Y))) andM, w |⊢Z (; EC(z, x|y))
2((X|Y) → Z) andM, v |⊢ ¬Z (; TPP

−1(z, x|y))

M, w |⊢Z is forced with the following constraint:

8. We omitTPP
−1(x, y) asTPP

−1(x, y) = TPP(y, x) and the order is not important.



484 JANCL – 12/2002. Spatial Logics

2(U → Z) andM, w |⊢U (; TPP(u, z))

M, v |⊢ ¬Z is forced with the following constraints:

2(Z → U) andM, v |⊢ ¬U (; TPP
−1(u, z))

2(¬(IZ ∧ IU)) andM, v |⊢U (; EC(u, z))

When we compose these relations, we obtain the possible relations betweenu andx|y.

R(u, z) S(z, x|y) (R ◦ S)(u, x|y)
TPP TPP TPP,NTPP

TPP EC DC,EC

TPP
−1

TPP
−1

TPP
−1,NTPP

−1

EC TPP
−1

DC,EC

As w is a boundary world ofx andy, DC(u, x|y) andNTPP(u, x|y) are not pos-
sible together withM, w |⊢U, andNTPP

−1(u, x|y) is not possible together with
M, v |⊢ ¬U. In order to forceM, w |⊢U, there must be a sequence of spatial vari-
ablesui with TPP(u1, u), TPP(ui+1, ui), until there is aum that is equal tox or
y, soTPP(x, z) or TPP(y, z) must hold. In order to forceM, v |⊢ ¬U, there must
be a sequence of spatial variablesui with TPP

−1(u1, u), TPP
−1(ui+1, ui), and

EC(uj , uj−1) andM, v |⊢Uj must hold. In order to forceM, v |⊢Uj , there must
be a sequence ofTPP-related spatial variables, as described above, until one of them
is equal tox or y, soEC(z, x) or EC(z, y) must hold. This results in only three differ-
ent possibilities of howw is forced to be a boundary world ofz if w was introduced
as a boundary world ofx andy.

a.TPP(x, y),TPP(x, z), andTPP(z, y) hold.

b. EC(x, y),TPP(x, z), andEC(z, y) hold.

c. EC(x, y),TPP(y, z) andEC(z, x) hold.

As different spatial variableszi, zj , for whichw is forced to be a boundary world of,
all have the boundary worldw in common, only the relationsEC,PO,TPP, orTPP

−1

can hold between them.

We have shown that only those worlds are boundary worlds which are introduced
as boundary worlds of some regions by the entailment constraints, and, further, that
other regions are only forced to be boundary regions of theseworlds when they are
related in a particular way. This will be used in the following lemma.

LEMMA 12. — Let M be an RCC-8-model. Then two different types ofRI-
successors are sufficient for every worldw of level 0.

Proof. If w is not a boundary world of some region, allRI-successors ofw satisfy
exactly the same formulas asw. Otherwise,w is introduced as a boundary world by
eitherEC(x, y) or TPP(x, y) (see Proposition 10). Letw be forced to be a boundary
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world of the spatial variableszi. ForEC(x, y), some of theRI-successors ofw satisfy
X but notY, and some satisfyY but notX, the others neither satisfyX nor Y. For
all zi with TPP(x, zi) andEC(zi, y) and allzj with TPP(y, zj) andEC(zj , x), all
RI-successors ofw satisfyZi if they satisfyX and satisfyZj if they satisfyY. So all
RI-successors ofw that satisfyX satisfy the same formulas, and allRI-successors of
w that satisfyY satisfy the same formulas. For theRI-successorsv of w which do not
satisfyX or Y, there are only two requirements: ifTPP(zk′ , zk) holds thenZk must
be true inv wheneverZk′ is true inv; if EC(zk, zk′) holds thenZk andZk′ must not
both be true inv. However, there is no constraint that forces the existence of these
worlds, so it can be assumed that allRI-successors ofw satisfy eitherX or Y. As the
respective worlds all satisfy the same formulas, two different kinds ofRI-successors
of the boundary worldw introduced byEC(x, y) are sufficient.

ForTPP(x, y), allRI-successors ofw that satisfyX also satisfyY, all RI-successors
ofw that do not satisfyY also do not satisfyX, and someRI-successors ofw satisfyY

but notX. For allzi with TPP(x, zi) andTPP(zi, y), all RI-successors ofw satisfy
Zi if they satisfyX. For theRI-successors ofw that satisfyY but notX, there is only
one requirement, namely, thatZk must be true wheneverZk′ is true in these worlds
for any two spatial variableszk, zk′ with TPP(x, zk),TPP(zk′ , y) andTPP(zk, zk′ ).
However, there is again no constraint that forces the existence of these worlds, so it
can be assumed that allRI-successors ofw satisfyX if they satisfyY.

Whether a boundary worldw is introduced byEC(x, y) or byTPP(x, y), in both
cases two different kinds ofRI-successors are sufficient. Thus, by grouping together
the respectiveRI-successors for every worldw of level0 of M, we can always find a
permutation of the worlds of level 1 such thatrw is a bitonic sequence for all regions.

Instead of having2n RI-successors for every world of level 0 from which we
know that they belong to only two different types, it is sufficient two use only two
RI-successors for every world of level 0. This leads to a very simple canonical model
which is defined in the same way as in Definition 6 except that wehave exactly two
worlds of level 1 instead of2n worlds.

DEFINITION 13 (REDUCEDRCC-8-STRUCTURE/ -CLUSTER/ -MODEL). — A re-
ducedRCC-8-structureS∗

RCC8 = 〈W, {R2, RI}, π〉 has the following properties:

1)W contains only worlds of level0 and1.

2) For every worldu of level0 there are exactly two worldsv of level1 withuRIv.
These three worlds form areducedRCC-8-cluster(see Figure 4a).

3) For every worldv of level1 there is exactly one worldu of level0 with uRIv.

4) For all worldsw, v ∈ WS : wRIw andwR2v.

S∗
RCC8 containsRCC-8-clusters with all possible valuations. The corresponding

models are denoted asreducedRCC-8-models.

It follows from Lemma 12 that the reducedRCC-8-structure is a canonical model
for RCC-8. Note that the reducedRCC-8-structure is equivalent to anRCC-8-
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structure of size1 and that a reducedRCC-8-cluster is equivalent to anRCC-8-cluster
of size3.

X ¬X

(b)(a)

Figure 4. (a) shows a reducedRCC-8-cluster of the reducedRCC-8-structure. (b)
shows how a neighborhood can be placed in one-dimensional space. The two brackets
indicate a one-dimensional regionX where the neighborhood represents a boundary
point ofX.

We can now apply Lemma 9 and place all neighborhoods independently on the
plane while all relations between spatial regions hold within the neighborhoods.
Thereby, neighborhoods corresponding to non-boundary worlds are homogeneous in
the sense that all points within one of these neighborhoods have the same topological
properties. Neighborhoods corresponding to a boundary world w consist of two ho-
mogeneous parts corresponding to the twoRI-successors ofw. These two parts are
divided by the common boundary of the boundary regions ofw (see Figure 5a).

In order to obtain a realization, we have to find regions such that the relations
between them hold in the whole plane and not just within the neighborhoods. Since
regions do not have to be internally connected, it is possible to compose every region
out of pieces resulting from the corresponding neighborhoods, i.e., for every neigh-
borhood a region is affiliated with, we generate a piece of that region. As the neigh-
borhoods are open sets and regions as well as their pieces must be regular closed sets,
we have tocloseevery neighborhood, i.e., find a closed setX

w for every regionX and
every neighborhoodN(w) with M, w |⊢X such that all relations hold between the
regions composed of the pieces. As all neighborhoods are independent of each other,
we only have to make sure that the relations of the different pieces corresponding to
a single neighborhood do not violate the relations of the compound regions. This can
be done independently for every neighborhood.

Consider a particular neighborhoodN(w). If w is not a boundary world, then only
the relationsPO, TPP, NTPP, and their converse are possible between the regions
affiliated withN(w), since they shareN(w) as their common interior. For closing
the neighborhoodN(w), all pieces must fulfill the “part of” relations whereas the
PO relations cannot be violated as long as the corresponding pieces have a common
interior.

One possibility to fulfill the “part of” relations is using a hierarchy of the regions,
defined as follows.
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DEFINITION 14 (HIERARCHY OF REGIONS). — A hierarchy of regionsHΘ is a
mapping of regions to levels, where a regionX is of levelHΘ(X) = 1 if there is no
regionY which is part ofX. A regionX is of levelHΘ(X) = k if there is a regionY of
levelHΘ(Y) = k − 1 which is part ofX and if there is no regionZ which is part ofX
and has a higher level thanHΘ(Z) = k − 1.9
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Figure 5. (a) shows the two-dimensional neighborhood of a boundary world which is
divided into two parts by the common boundary of the boundaryregionsb, d, e, and
f . (b) shows a possible hierarchyHΘ of regions. In (c) the neighborhood is closed
with respect toHΘ.

The pieces of all regions affiliated withN(w) must then be chosen according to
HΘ, i.e., pieces of regions of the same level are equal for this particular neighborhood
and are non-tangential proper part of all pieces of regions of a higher level. We choose
the single pieces to be rectangles.

If w is a boundary world, the boundary regions ofw are only affiliated with one
part ofN(w) and their pieces must share the common boundary. Therefore,both parts
ofN(w) must be closed separately according toHΘ (see Figure 5c). In the same way
as for two-dimensional space, neighborhoods can be placed in any higher dimensional
space and closed therein according toHΘ. As the three points corresponding to a
world w of level 0 and its twoRI-successors can always be aligned,N(w) can also
be placed on a line. Thus, all neighborhoods can be placed independently in a one-
dimensional space and closed as intervals according toHΘ (see Figure 4b).

THEOREM 15. — Every consistent set ofRCC-8 constraints can be realized in any
dimensiond ≥ 1 where regions are (sets of) d-dimensional polytopes.

9. This corresponds to the finish time of depth-first search foreach vertex of a graphGΘ where
regions are verticesVΘ and “part of” relations are directed edgesEΘ, computable in time
O(VΘ + EΘ) [COR 90, p.477ff]
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So far all regions consist of as many pieces as there are neighborhoods affiliated
with them, i.e.,O(n2) many pieces for every region. We can further show that for
three- and higher-dimensional space all regions can also berealized as internally con-
nected. For this we construct ad + 1-dimensional realization of internally connected
regions by connecting all pieces of the same regions of ad-dimensional realization of
internally disconnected regions.

THEOREM 16. — Every consistent setΘ of RCC-8 constraints can be realized with
internally connected regions in any dimensiond ≥ 3 where regions are polytopes.

Proof. Suppose thatΘ is consistent. With the following construction we obtain a
three-dimensional realization of internally connected regions starting from a two-
dimensional realization. We begin with constructing a particular two-dimensional
realization in the plane determined by thex- andy-axes. (1a) Place all neighborhoods
on a circle with centerC such that the common boundary of each neighborhood cor-
responding to a boundary world points toC (see Figure 6a). (1b) Close all neighbor-
hoods according to the hierarchyHΘ such that all pieces of regions are rectangles. We
now extend this two-dimensional realization to a three-dimensional realization. The
third dimension is determined by thez-axis. (2a) Proceed from the two-dimensional
realization according toHΘ by first choosing pairwise distinct intervals on the posi-
tive z-axis for every region withHΘ = 1, i.e., for the regions that do not contain any
other region. (2b) Build a pipe parallel to thez-axis for every piece of these regions
starting from the plane (z=0) up to the endpoint of the corresponding interval. (2c)
Connect the pipes of the same region within the range of the corresponding interval
using pipes pointing to the center (see Figure 6b). (3) Next the regions withHΘ = 2

(a) (b) (c)

z
z

Figure 6. Construction of the three-dimensional realization. (a) placing the two-
dimensional neighborhoods on a circle. (b) connecting the pieces of a region on a
particular level. (c) connecting the pipes of a region (boldline) that contains the
vertically and the horizontally hashed regions.

are connected, i.e., those regions that only contain already connected regions. To do
this, (3a) choose intervals on the z-axis for these regions such that the intervals con-
tain all intervals of the contained regions but do not overlap with any other interval.
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(3b) Build a pipe for every piece up to the endpoint of the corresponding interval with
the largestz-value, and (3c) connect the pipes of every region within therange of
all corresponding intervals (see Figure 6c). (4) Repeat step 3 successively for every
level ofHΘ until all regions are connected. (5) Finally, close all neighborhoods on the
negativez-axis according toHΘ.

Obviously, with this construction all regions are internally connected. Furthermore
all internally connected three-dimensional regions hold the same base relations as the
two-dimensional realizations from which we started the construction. This is because
all intervals on thez-axis are either contained in each other or are distinct, they have
no common boundary points. All intervals corresponding to regionX are contained
in the intervals of regionY if and only if NTPP(x, y) or TPP(x, y). When two re-
gions are disconnected they remain disconnected as they arenot affiliated with the
same neighborhoods. Two externally connected regions remain externally connected
because every neighborhood was placed on the circle such that the common boundary
points to its center. Therefore, if two of these regions are both affiliated with the same
neighborhood, their pipes are externally connected and thehorizontal connection of
the single pipes is distinct. All other requirements of relations as, e.g., a common
boundary point are already met by the pipes.

With a similar construction, ad + 1-dimensional realization of internally con-
nected regions can be obtained from ad-dimensional realization of internally discon-
nected regions. In this case, thed-dimensional neighborhoods must be placed on a
d-dimensional sphere and the intervals must be chosen at thed+ 1 dimensional axis.
All constructions kept the polytopic shape of the regions, so every region can be real-
ized as a (d-dimensional) polytope.

The restriction of regions to be polytopes can immediately be generalized to an
arbitrary shape of regions.

6. Applicability of the Canonical Model

In the previous sections we reported about the existence of (reduced)RCC-8-
models and how they can be mapped to topological spaces of different dimensions. In
this section we study howRCC-8-models can be determined and how a realization can
be generated from them. As there is a (reduced)RCC-8-modelM for every consistent
set of spatial relationsΘ, and as it is always possible to generate a realization of
M, RCC-8 models are suitable for representing spatial regions with respect to their
relations. RCC-8-models represent the characteristic points and information about
their neighborhoods of a possible realization. As in the previous section we assume
thatΘ contains only constraints over the base relations.
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6.1. Determination of RCC-8 models

Given a set ofRCC-8 constraintsΘ which contains only base relations, we have
to find a reducedRCC-8-modelM for the modal encoding ofRCC-8 such that only
those worlds are boundary worlds of regions which are forcedto be by the constraints.
The Kripke frame ofM, i.e., the number of worlds and their accessibility relations
are already known from the entailment constraints, but we have to find a valuation
for every world and every region. For some worlds and some regions the valuation
is already given by the constraints, for some it can be inferred using the constraints,
for others it can be chosen. In order to make the inference step as easy as possible,
we use the propositional encoding ofRCC-8 with respect to a Kripke frame where
every worldw and every spatial variablex is transformed to a propositional atomXw

which is true if and only ifX holds inw [REN 99b]. The valuation ofM can then be
obtained from the satisfying assignment of the propositional formula. Although the
encoding of the reducedRCC-8-models is not a Horn formula,10 unit-resolution plus
additional choices is sufficient for finding a satisfying assignment. As all clauses of the
propositional encoding use worlds of the sameRCC-8-cluster, the inference step is
independent for every cluster. From Proposition 10 it is known whichRCC-8-clusters
contain a boundary world. Suppose that anRCC-8-cluster contains a boundary world,
then the valuation of the two regions which introduced the boundary world can be
chosen in all worlds of theRCC-8-cluster according to the relation of the two regions.
The valuations of the other regions are either determined byunit-resolution or can be
chosen according to their other valuations: If the valuation of a particular region in
some world of theRCC-8-cluster is true, then the other valuations are also chosen as
true, otherwise all valuations are chosen as false. If anRCC-8-cluster does not contain
a boundary world, all worlds of theRCC-8-cluster have the same valuation. If the
valuation of a region is not determined by unit-resolution it is chosen as false. With
these choices a satisfying assignment is always found, eventhough the propositional
formula is not Horn. As there areO(n2) worlds andn regions, there areO(n4) clauses
[REN 99b], so a reducedRCC-8-model can be determined in timeO(n4).

6.2. Generating a realization

Suppose we have given a reducedRCC-8-model of a consistent set ofRCC-8
constraintsΘ. We have to distinguish the tasks of generating a realization of inter-
nally connected and disconnected regions. A realization ofdisconnected regions in
d-dimensional space can be obtained by placing theO(n2) different neighborhoods
in the d-dimensional space and close each neighborhood as specifiedin Section 5.
For this, the hierarchyHΘ of regions must be known, which can be computed in
timeO(n + PΘ) wherePΘ ∈ O(n2) is the number of “part of” relations inΘ (see

10. This is because of the constraint2(X → ¬I¬IX) which is transformed to
∧

w∈W0
(¬Xw ∨

X
1
w ∨ X

2
w) in the notation of [REN 99b].
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Definition 14). LetAΘ ∈ O(n) be the maximal number of regions affiliated with a
neighborhood, then the closure of a neighborhood can be computed in timeO(AΘ).

THEOREM 17. — Given a reducedRCC-8 model of a set ofRCC-8 relationsΘ, a
realization ofΘ in d-dimensional space (d ≥ 1) can be generated in timeO(n2AΘ)
when regions are allowed to be disconnected.

In order to generate a realization of internally connected regions we can use the
construction of the proof to Theorem 16. For every region we have to find the corre-
sponding intervals on thez-axis. The number of intervals of a particular regionX is
equal to the number of regions withHΘ = 1 that are contained inX. Let IΘ ∈ O(n)
be the maximal number of regions withHΘ = 1 that are contained in a region.

THEOREM 18. — Given a reducedRCC-8 model of a set ofRCC-8 relationsΘ, a
realization ofΘ with internally connected regions ind-dimensional space (d ≥ 3) can
be generated in timeO(n2AΘIΘ).

If PΘ ∈ O(n2) is the maximal number of neighborhoods affiliated with a region,
every region can be realized as a polytope withO(PΘIΘ) vertices.

7. Discussion

In this paper we identified a canonical model ofRCC-8 based on Kripke seman-
tics. In order to obtain a “topological” canonical model, wegave a topological in-
terpretation of the Kripke models such that regions can be represented by points in
the topological space and information about the neighborhood of these points with re-
spect to the spatial relations holding between the regions.Using this canonical model,
we proved that every consistent set ofRCC-8 constraints has a realization in any di-
mension when regions are not forced to be internally connected, which is the case
for regions as used byRCC-8. If regions are forced to be internally connected, we
proved that a realization can always be found for three- and higher dimensional space.
Furthermore, we give for the first time algorithms for generating realizations of either
internally connected or disconnected regions.

There is some work on identifying canonical models for theRCC axioms, i.e.,
determining what mathematical structures fulfill all theRCC axioms, as, e.g., every
region has a non-tangential proper part [RAN 92b]. Gotts [GOT 96a] found that every
connected and regular topological space is a model for theRCC axioms. Stell and
Worboys [STE 97] identified a whole class of models based on Heyting structures.
Both approaches only describe models for theRCC axioms, i.e., what kind of regions
can be used at all. When additional constraints expressing relationships between re-
gions are added, these results do not say anything about models anymore.11 They are

11. Consider the hypothetical case of a set ofRCC-8 constraints which is realizable in two-
but not in one-dimensional space. Then, a one-dimensional space is still a model of the RCC
axioms, but not ofRCC-8.



492 JANCL – 12/2002. Spatial Logics

also by no means constructive, as they do not provide a way of effectively representing
regions or generating realizations.

Previous approaches to dealing with dimension and internalconnectedness of re-
gions tried to specify predicates and suitable axioms in order to restrict dimension and
connectedness of regions [BEN 96a, GOT 94]. As all regular regions have the same
dimension as the underlying space, using our results it is not necessary for consistency
purposes to specify the dimension of regions explicitly if internally disconnected re-
gions are permitted. If internally connected regions are required, these predicates
only have an influence on the consistency of a set of spatial relations in one- or two-
dimensional applications. In three- and higher-dimensional space all regions may be
either internally connected or disconnected. Forcing internal connectedness of re-
gions in two-dimensional space leads to difficult computational problems as there are
no algorithms for dealing with this task. As Grigni et al. [GRI 95] pointed out, a well-
known open problem in graph theory which is NP-hard but not known to be decidable
[KRA 91a, KRA 91b] can be reduced to the consistency problem for two-dimensional
internally connected regions.

It is certainly the better approach to have an additional connectedness predicate
than forcing all regions to be internally connected which isdone, e.g., by the similar
calculus of Egenhofer [EGE 91], as there are many applications where regions are in
fact disconnected. Within the area of geographical information systems, e.g., which
offer a great variety of possible applications, many countries or other geographical
entities are not internally connected regions. In areas like computer vision one often
deals with two-dimensional projections of the three-dimensional space where many
connected objects are perceived as disconnected objects due to occlusion. In robot
navigation, maps are often two-dimensional cuttings of a three-dimensional space.
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