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Abstract

A simple model of rational belief holds that: (i) an
instantaneous snapshot of an ideally rational belief system
corresponds to a probability distribution; and (ii) rational
belief change occurs by Bayesian conditionalization. But a
priori probability distributions of the Kolmogorov sort cannot
distinguish between propositions that are simply true from
propositions that are necessarily true. Further, propositions
accepted by Bayesian conditionalization become necessary
truths of the updated distribution. Thus on this model, once
you have accepted a proposition, it is impossible to change
your mind. These problems are not avoided by Jeffrey
conditionalization nor by adopting infinitesimal probability
values.

In contrast, conditional probability distributions are able to
distinguish propositions that are simply true from propositions
that are necessarily true. However, Bayesian
conditionalization as a model of belief change still makes the
newly accepted proposition necessarily true, and hence
immune to future revision. In this paper we develop a different
revision scheme for conditional probability distributions that
does permit one to accept a proposition with probability 1, but
to subsequently change one’s mind.

keywords: logic, probability, belief representation, belief
change, belief revision

I. Belief Revision Using Kolmogorov and Bayes
Our most detailed theory about reasoning under conditions

of uncertainty is formal probability theory. A simple model
of rational belief holds that: (i) an instantaneous snapshot of
an ideally rational belief system corresponds to a probability
distribution; and (ii) rational belief change occurs by
Bayesian conditionalization. 

The most well known account of the classical theory of
elementary probability is due to Kolmogorov  in [5]. The
theory consists of a set of constraints which any function P
must satisfy in order to be a probability function.

KP1 P is defined on a F-field of sets.
KP2 0 < P(")
KP3 P(U) = 1
KP4 If " 1 $ = i, then P(" c $) = P(") + P($)

Kolmogorov takes a priori probability P(") as basic and
defines conditional probability P(", $) in terms of  a priori
probabilities. The expression “P(", $)” is read “the
probability of ", given $” or “the probability of ", on
condition that $.” Conditional probability is defined as
follows:

DF.KCP.1  If P($) … 0 then P(", $) = P(" 1 $)/P($).

Since it is usual to think of beliefs propositionally, it will
be convenient if we think of probability distributions as
defined over a language L. For our purposes we will assume
L to be the language of classical propositional logic with the
usual connectives: v, w, e, and -. Valid inferences in the
language are assumed to be governed by a standard classical
consequence relation; we write “' /) A” for the claim that
sentence A follows from the set of sentences '. Given that we
are dealing with classical logic, we may presume the usual
definition of maximal sets.

DF.MCON The set of sentences ' is maximal with respect
to sentence A iff (i) it is not the case that ' /) A, and (ii) for
all sentences B, if B ó ', then ' c {B} /) A. The set of
sentences ' is maximal iff there is a sentence A such that '
is maximal with respect to A.

We take the sigma field of events of the usual Kolmogorov
theory to be the sigma field of sets of maximal sets. Each
proposition in the language L corresponds to the set of
maximal sets which contain the proposition. The connection
between the Kolmogorov constraints and the language L is
then totally transparent. Thus we may take the probability
distributions to be defined over sentences of the langauge L,
and we can use conjunction, disjunction, and negation instead
of intersection, union, and complement, respectively.

How should the belief system of the ideally rational agent
be revised in light of new information C? According to the
simple view mentioned above, rational belief change should
take place in accord with DF.KCP.1. That is, if one’s belief
state at time t is given as probability distribution P, and at
time t+1 one comes to accept evidence C, then one’s revised
belief state P[C] at t+1 should be given by:

BREV.1 P[C](x) = P(x, C) = P(x v C) / P(C)



This proposal for updating beliefs is sometimes referred to as
Bayesian revision or Bayesian conditionalization. For
convenience, we have adopted the notation “P[C]”, which
carries an indication of the sentence C with respect to which
the distribution P is conditionalized. We remind the reader
that the distribution itself carries no such indication.

One of the most well known difficulties with Bayesian
conditionalization concerns the situation in which the prior
probability assigned by the agent to the newly accepted
evidence was 0. When P(C) = 0, the proposed conditional
probability distribution given by BREV.1 is mathematically
undefined because of division by 0. (This vexing problem has
been discussed widely in the literature, but this is not the
place for a review; perhaps the earliest treatment is [2], but
for more recent discussion see [1], and [14]). Partially in an
attempt to avoid such difficulties, some authors (e.g.
Gärdenfors [3]) extend the Kolmogorov functions to include
the so called “trivial” function which assigns P(A) = 1 for all
sentences A. It is then suggested that the Bayesian updating
scheme be slightly amended as follows:

BREV.2         P[C](x) = P(x, C) = P(x v C) / P(C), if 
P(C) =/  0

          = 1, if P(C) = 0

One serious problem with this prescription is that it does not
correspond to the way in which it seems rational to assign
probabilities in some circumstances.

As a simple example, suppose I am considering the results
of flipping a coin. From my beliefs about physics and my
knowledge of the coin, I assign a probability value to various
outcomes. Typically I only consider the two possibilities of
the coin showing heads (H) or tails (T). But hecklers may
suggest that we should also include the possibility of the coin
coming to rest on edge (E). A perfectly rational agent may
well assign a probability of 0.5 to each of the outcomes H and
T and a probability of 0 to the possibility of E. The fact that
when discussing actual coin tosses, real agents generally do
not even mention E is strong evidence that such agents do not
consider E a “live” possibility and assign it a probability of
0. But note that if the coin were to come to rest on edge, each
of us would be perfectly able to revise our beliefs in a rational
way. Given that the coin has come to rest on edge, we would
assign a 0 probability to the claim that the coin is showing
heads uppermost, and a 0 probability to the claim that the
coin is showing tails uppermost. We may represent these
beliefs as follows:

EX1.prior P(H) = 0.5 P(T) = 0.5 P(E) = 0
EX1.revised P’(H) = 0 P’(T) = 0 P’(E) = 1

The problem is that the belief state given by EX1.revised
cannot be obtained from EX1.prior by using either BREV.1
or BREV.2.

One may regard H w T as true, but not regard it as
necessarily true; an agent might well be willing to consider a
situation in which H w T is false. However, the same agent

might well regard the sentence H w - H as necessarily true;
that is, the agent might be unwilling to revise his/her belief in
the truth of H w - H no matter what additional information
comes to light. Some sentences we think are true, but not
necessarily true. But a Kolmogorov a priori probability
distribution is simply an assignment of values to the
sentences. Any two sentences that both take the value 1 (or
0) will be mathematically indistinguishable, given the
Kolmogoroff constraints. 

Asking me to revise my beliefs in such a way as to accept
a logically false proposition might well push me to the
position of being unable to reject anything; if I have to accept
- (H w - H) then my revised belief state will be the constant
function 1. But asking me to revise my beliefs in such a way
as to accept a sentence I previously believed was simply
false, but not logically false, should not provoke a switch to
the constant function 1.

Another serious problem with the simple view is that the
Bayesian updating scheme provides for no way to change
your mind. Once we have conditionalized a distribution on
some information C, there is no way to re!conditionalize the
distribution using the Bayesian scheme so that - C has a
value other than 0. Once C has been accepted, there is no way
to reverse that acceptance using BREV.1 or BREV.2.

As a simple example, let us return to the coin flipping
experiment, but for now disregard the possibility of the coin
coming up on edge. In this case, there will be only 4 distinct
events. There is the tautological event, here designated by
“t”, the contradictory event, here designated by “f”, and the
two possibilities of heads “H” and tails “T”. All other logical
combinations reduce to one of these four. We want to
consider two probability distributions. The first represents the
state of an agent who does not know which face the coin is
showing; the second represents the revised beliefs of the
agent when he/she comes to accept that the coin is showing
heads. Since the coin may be loaded in some way, we will not
prejudice the issue by assigning probabilities of 0.5 to H and
T in the first distribution; instead, we will use “n” for the
probability of H and “1 ! n” for the probability of T, where
n is some number between 0 and 1.

t H T f
P 1 n 1!n 0
P[H] 1 1 0 0

It is clear that we cannot conditionalize P[H] on T or on f,
since both have probability of 0. But conditionalizing P[H] on
t or on H will leave P[H] unchanged. Thus once we have
conditionalized on H, there is no way to change our minds
and subsequently reject H.

Various attempts to get around these problems using
distributions with infinitesimal values or using Jeffrey
conditionalization have been proposed, but they can easily be
shown to be unsuccessful.



II. Using Popper Instead of Kolmogorov

Simple reflection on real examples shows that our
reasoning about probabilities is never a priori. We are always
making some sort of background assumptions, such as that
there are six faces on a die, the numbers on the faces are
positive integers from 1 through 6, the faces do not change
when the die is thrown, etc. As we have seen, at least part of
the problem with giving a reasonable formal account of how
an agent may rationally change his/her mind is associated
with the adoption of the Kolmogorov account of probability
theory which takes a priori distributions as basic. 

If we use a priori probabilities to define conditional
probabilities as in the Kolmogorov theory, then there is no
way to distinguish contingently false propositions from
necessarily false propositions. If P(C) = 0, then
conditionalizing on C is just like conditionalizing on a logical
falsehood; if P(C) = 0, then as evidence (or as background
assumption) C is treated as no different from a flat
contradiction. But recalling the coin example, we may well
assign a 0 probability to the coin coming to rest on edge, and
yet still distinguish a situation in which the coin does come
to rest on edge from the bizarre situation in which we are
asked to accept that some contradiction allegedly obtains. We
surely should be able to conditionalize our beliefs on
statements that we claim to know are contingently false. Even
if we claim to know a sentence C is false, we may want to
consider how the world might have been had C obtained; or
we may recognize that we are not infallible, and even our
most firmly held beliefs, e.g. that C is false, may
subsequently prove to be mistaken.

There is a simple way of modifying the basic Kolmogorov
theory to make it conditional and to get around the problem
of conditioning on sets of probability 0. I have taken the
central idea for the solution from Popper [13]; I have
previously formulated versions of these constraints in [8] and
[11].
 

PP1 P is defined on ordered pairs from a F-field of sets.
PP2 0 < P(", $) < 1
PP3 P(U, ") = 1
PP4 If " 1 $ = i, then P(" c $, () = P(", () + P($, (),

unless for all *, P(*, () = 1.
PP5 P(" 1 $, () = P(", () × P($, " 1 ()

Using the technique outlined in [11] it is easy to use the
properly conditionalized Kolmogorov theory to extract the
following constraints, based on the formal language.

NP1 0 # P(A, ') # 1
NP2 If A 0 ' then P(A, ') =1.
NP3 P(A w B, ') = P(A, ')+P(B, ')!P(A v B, ')
NP4 P(A v B, ') = P(A, ') C P(B, ' c {A})
NP5 P(- A, ') = 1!P(A, ') unless P(D, ') = 1 for all D.
NP6 P(A v B, ') = P(B v A, ')
NP7 P(C, ' c {A v B}) = P(C, ' c {A, B})
NP8 P(A w - A, ') = 1

NP9 For all sets ' and ), if P(D, ') = 1 for all D, then
P(D, ' c )) = 1 for all D.

It should be noted that conditions NP1!9 do not depend on
any notions from proof theory, and hence they are
autonomous. Thus they are an acceptable basis for
probabilistic semantics. Further, the constraints do not
depend on any notions from classical formal semantics.
Popper in [13] was perhaps first to define fully conditional
probabilities directly on sentences of the formal language,
although he did not derive them in the way just indicated. Our
constraints differ slightly from those originally proposed by
Popper; the most significant difference is that we allow the
background information to be a set of formulas rather than a
single formula. I refer to these constraints as neo!Popperian
classical conditional probability theory, or more simply as
Popper probability theory. Many authors (e.g. [3], [13], and
[14]) have advocated Popper probability functions as better
models for belief representation than Kolmogorov functions..

The notion of abnormality will play a significant role in the
following material, so we will pause here to give a definition.

DF.PA.2 A set ' of sentences is said to be P!abnormal, for
conditional probability function P, just in case for all
sentences D, P(D, ') = 1. A set that is not P!abnormal is said
to be P-normal.

Trying to regard an a priori probability distribution as an
instantaneous snapshot of the belief system of an ideally
rational agent completely overlooks the fact that we hold
many conditional beliefs. It may be possible to account for
some conditional beliefs in an a priori distribution by treating
them in the Bayesian fashion. For example, at this point in
time, I cannot say for certain whether or not I will go out to
dinner tomorrow evening; but, on the condition that I do go
out, I believe that it is more probable that I will eat at Green
Cuisine than at More Fat Food. This example does not
involve probabilities with extreme values. However, from the
coin toss example discussed previously, we know that
starting with a priori distributions, we cannot account for
conditional beliefs in which the background condition has
initial probability 0, e.g. the flipped coin coming to rest on
edge.

At this point it will be useful to clarify our terminology.
When dealing with Popper functions, we will take
“Bayesian” revision to mean the following:

BREV.3 P[C](x, ') = P(x, ' c {C})

Unlike BREV.1, the revised distribution will always be
defined, as there is no division by 0. And, unlike BREV.2,
with BREV.3 and Popper distributions, we can make sense of
belief revision even when the conditioning sentence has an
initial probability of 0, as we shall see below.

Fully conditional probability distributions are much better
candidates than Kolmogorov functions as models for
instantaneous snapshots of rational belief systems. As a



Table 1: Complete Popper Distribution for Coin Toss

P(A, ')
'

t H T E H  w T H w E T w E f

A

t 1 1 1 1 1 1 1 1

H 0.5 1 0 0 0.5 1 0 1

T 0.5 0 1 0 0.5 0 1 1

E 0 0 0 1 0 0 0 1

H w T 1 1 1 0 1 1 1 1

H w E 0.5 1 0 1 0.5 1 0 1

T w E 0.5 0 1 1 0.5 0 1 1

f 0 0 0 0 0 0 0 1

Table 2:Coin Toss, Bayesian Conditioned on E

P[E](A, ')
'

t H T E H w T H w E T w E f

A

t 1 1 1 1 1 1 1 1

H 0 1 1 0 1 0 0 1

T 0 1 1 0 1 0 0 1

E 1 1 1 1 1 1 1 1

H w T 0 1 1 0 1 0 0 1

H w E 1 1 1 1 1 1 1 1

T w E 1 1 1 1 1 1 1 1

f 0 1 1 0 1 0 0 1

simple illustration of such a probability distribution, let us
return to our coin toss example. Our language contains the
three atomic propositions H, T, and E. We will use t for an
arbitrary logical truth and f for an arbitrary logical falsehood.
We presume that the coin must show one and only one of H,
T, or E; e.g., “H” is equivalent to “H v - T v - E”. Under
these circumstances, there will be only three distinct maximal
sets: (i) the set that contains H and all its logical
consequences, (ii) the set that contains T and all its logical
consequences, and (iii) the set that contains E and all its
logical consequences. 

We are dealing with a small finite language, so it will be
possible to lay out a complete conditional probability
distribution on a table. Since there are only three maximal
sets, there will be only 23 = 8 logically distinct propositions,
each proposition being equivalent to a set of maximal sets
and each set of maximal sets being equivalent to a
proposition. If each proposition x corresponds to a set of
maximal sets max(x), then each set of propositions {x1, x2, ...,
xn} also corresponds to a set of maximal sets: {x1, x2, ...,xn}

corresponds to  max(x1) 1 max(x2) 1 ... 1 max(xn). Thus each
set of propositions is equivalent to some single proposition.
So in our tabular representation of probability distributions
for this simple case, we will represent each set of expressions
by the single expression to which it is equivalent.

An example of a simple probability distribution is given in
Table 1. The table corresponds to the case in which the agent
believes that H and T are equally probable but believes the
probability of E to be 0.

Carefully note, however, that Bayesian conditionalizing on
E is not the same as conditionalizing on f, even though
P(E, {t}) = 0. The agent knows that if the coin lands on edge,
then neither heads nor tails will be uppermost. Table 2 gives
the complete distribution obtained for conditionalizing in the
Bayesian way on E; the resulting distribution is certainly
NOT the trivial constant 1 function as would be the case if we
were using Kolmogorov functions. Note that EX1.prior
agrees with the column for P(!, {t}) on Table 1. And further,
EX1.revised agrees with the column for P[E](!, {t}) on Table
2.



Table 3:Coin Toss, Bayesian Conditioned on H

P[H](A, ')
'

t H T E H w T H w E T w E f

A

t 1 1 1 1 1 1 1 1

H 1 1 1 1 1 1 1 1

T 0 0 1 1 0 0 1 1

E 0 0 1 1 0 0 1 1

H w T 1 1 1 1 1 1 1 1

H w E 1 1 1 1 1 1 1 1

T w E 0 0 1 1 0 0 1 1

f 0 0 1 1 0 0 1 1

In our example, an agent whose belief system is given by
P, i.e. Table 1, holds that E is certainly false. However, the
agent does not hold that E is necessarily false. With the
Popper account of probability, it is easy to distinguish
between propositions that are deemed to be simply true or
false from those that are deemed to be necessarily true or
necessarily false. 

DEF.TF For conditional probability function P, we say that
a proposition x is held to be P-true (or simply true) under
assumption ' if and only if P(x, ') = 1. A proposition x is
held to be P!false (or simply false) under assumption ' if - x
is P-true. We say that x is P!true (or P-false) if P(x, {t}) = 1
(or P(x, {t}) = 0), for t a tautology.

DEF.NTF For conditional probability function P, we say that
a proposition x is held to be necessarily P-true (or just
necessarily true) under assumption ' if and only if
P(x, ' c )) = 1 for all sets of sentences ). A proposition x is
held to be necessarily P-false (or just necessarily false) under
assumption ' if and only if - x is necessarily P-true. We say
that x is necessarily P!true if x is necessarily P!true under
assumption {t}, for t a tautology; we say that x is necessarily
P!false if - x is necessarily P!true.

As examples, note that in our coin toss example, the
sentence H w T would be deemed to be true, under
assumption {t}, since P(H w T, {t}) = 1. But H w T would not
be deemed to be necessarily true, under assumption {t}, since
P(H w T, {t} c {E}) = 0.

This distinction between simple truth and necessary truth
in probabilistic terms was elaborated in [6] and there used as
the basis for a probabilistic semantics for the modal logic S5.
The distinction between simply true propositions and
necessarily true propositions cannot be made if we begin with
the Kolmogorov account and define conditional probabilities
in the usual way. The relationship between necessity and
abnormality is elementary.

Theorem NP.2 A proposition C is necessarily P!false, 

given ', if and only if ' c {C} is P!abnormal.

Popper distributions are much better than Kolmogorov
distributions for the representation of instantaneous states of
belief of ideally rational agents. Using Popper functions, we
can represent Bayesian conditionalization on sentences with
initial probability 0 in a much more reasonable way than if
restricted to Kolmogorov functions. In fact, Gärdenfors has
formulated a set of postulates for rational belief revision in
probabilistic terms, and he claims (without proof) that his
postulates are “... essentially equivalent to Popper’s
axiomatization of conditional probability functions” ([3],
p 123).

As encouraging as these results seem to be, there is still a
difficulty with using Bayesian conditionalization as a
representation of belief change. The problem is that even with
Popper functions, Bayesian conditionalization still does not
provide a mechanism for an agent to change his/her mind. Let
us return to the coin toss example. Suppose an agent begins
with the state of belief given by P as specified by Table 1, in
which the agent believes H and T are equally probable but E
is false. Suppose subsequently that the agent comes to accept
H. Then if we adopt the Bayesian model, the agent’s revised
belief state should be represented by P conditionalized on H,
which is given in Table 3.

Now, suppose the agent subsequently decides that it was
a mistake to accept H and that really - H should be accepted.
There is no sentence the agent could use to conditionalize the
distribution in Table 3 to represent such a change of mind
using the Bayesian scheme.

III. A Better Model for Belief Revision

Unlike Kolmogorov distributions, Popper distributions
allow us to distinguish between simple truths and necessary
truths. The ability to make that distinction makes Popper
functions much better models of rational belief than
Kolmogorov functions. However, using Bayesian
conditionalization as a model for belief revision once more



Table 4: Coin Toss, M!conditioned on H

P<H>(A, ')
'

t H T E H w T H w E T w E f

A

t 1 1 1 1 1 1 1 1

H 1 1 0 0 1 1 0 1

T 0 0 1 0 0 0 1 1

E 0 0 0 1 0 0 0 1

H w T 1 1 1 0 1 1 1 1

H w E 1 1 0 1 1 1 0 1

T w E 0 0 1 1 0 0 1 1

f 0 0 0 0 0 0 0 1

confuses simple truths and necessary truths. The primary
problem with Bayesian conditionalization as a model for
belief revision is that propositions accepted using the
Bayesian scheme become necessary true propositions in the
conditionalized distribution. 

We will now introduce a better scheme for belief revision;
we will call the new technique variously “M!revision”,
“M!updating”, or “M!conditionalization”. We will use the
notation P<A> for the result of M!revising distribution P by
accepting sentence A. We will write “P<A,B>” instead of
“P<A><B>”. In general, the notational index  <A1, A2, ...,
An> is to be thought of as an ordered n!tupple, the first
revision being A1 and the most recent revision being An. If P
is a Popper probability distribution, then we define P<A> as
follows.

MREV.P P<A>(x, ') = P(x, ' c {A}), if ' c {A} is 
P!normal

= P(x, '), if ' c {A} is P!abnormal

When we write “P<A>”, the index <A> is simply a notational
convenience, in the same way that we have used [A] as a
notational convenience to represent Bayesian
conditionalization on A. Just as with Bayesian or Jeffrey
revision, a function that results from M!revision carries no
explicit indication of its origins. 

When revising a conditional probability distribution, we
must determine new values for P(x, ') for each sentence x
and each set of background beliefs '. The intuitive idea
behind M!revision is quite simple. When we revise a
conditional probability distribution by accepting A, we
simply add A to our background beliefs if that can be done in
a non!absurd way. If adding A to the background beliefs
produces a probabilistically absurd set, then we just do not
add A but preserve the background set unaltered.

As a simple example, we return once more to our coin toss
experiment. Recall that Table 1 represents the original
function P for the coin toss. In Table 4 we have given P<H>,

i.e. the original distribution M!conditioned on H. It will be
useful to indicate how some representative entries in Table 4
were determined. First, consider the assumption set {t}. Since
{t} c {H} is P!normal, the values for P<H>(x, {t}) are just
the the values P(x, {t} c {H}), for all x. On the other hand,
the set {T} c {H} is P!abnormal, so the values for
P<H>(x, {T}) are the values P(x, {T}), for all x.

Table 4 represents the state of belief of an agent who has
come to accept that heads is uppermost on the coin. In Table
4, it is easy to see that H is P<H>!true. However, H is not a
necessary P<H>!truth; simply note that neither
P<H>(H, {T}) nor P<H>(H, {E}) has the value 1. Recall that
Table 3 represents P[H], which is the result of conditioning
on H in the Bayesian way. There it is apparent that H is a
necessary P[H]!truth. So M!conditionalization and Bayesian
conditionalization are rather different. In general,
M!conditionalization makes the accepted sentence true
without making it necessarily true, whereas Bayesian
condtionalization makes the accepted sentence necessarily
true.

The first thing that we need to establish about M!revision
is that an M-revised probability distribution is still an
appropriate probability distribution.

Theorem M.1 If P satisfies NP1!9, then P<A> satisfies
NP1!9.

The next thing we wish to establish about M!revision is
that it introduces no spurious abnormal sets or necessary
truths.

Theorem M.2  ' is P<A>!abnormal if and only if ' is
P!abnormal.

Theorem M.3 B is necessarily P<A>!true, given ', if and
only if B is necessarily P!true, given '.

The primary reason for introducing a new scheme for
conditionalization was that neither the Bayesian scheme nor



Table 5: Coin Toss, M!conditioned on H, then M!conditioned on - H

P<H,-H>(A, ')
'

t H T E H w T H w E T w E f

A

t 1 1 1 1 1 1 1 1

H 0 1 0 0 0 0 0 1

T 1 0 1 0 1 0 1 1

E 0 0 0 1 0 1 0 1

H w T 1 1 1 0 1 0 1 1

H w E 0 1 0 1 0 1 0 1

T w E 1 0 1 1 1 1 1 1

f 0 0 0 0 0 0 0 1

Table 6: Coin Toss, M!conditioned on - H

P<-H>(A, ')
'

t H T E H w T H w E T w E f

A

t 1 1 1 1 1 1 1 1

H 0 1 0 0 0 0 0 1

T 1 0 1 0 1 0 1 1

E 0 0 0 1 0 1 0 1

H w T 1 1 1 0 1 0 1 1

H w E 0 1 0 1 0 1 0 1

T w E 1 0 1 1 1 1 1 1

f 0 0 0 0 0 0 0 1

the Jeffrey scheme constituted a reasonable model for how an
agent could accept A at one time and subsequently change
his/her mind at a later time and accept - A. We now wish to
show that M!revision handles such cases well. 

Let us begin with an example. Recall that Table 4
represents P<H>, i.e. the distribution P, but M!conditioned
on H. In Table 5 we give the values for P<H,-H>, which is
the distribution P<H>, but M!conditioned on - H. For
Bayesian conditionalization, the distribution P[H,-H] will
always be the trivial constant 1 function. However, it is
obvious that Table 5 is not the trivial constant 1 function.
Note that P<H,- H>(- H, {t}) = 1; that is, - H is true in
P<H,- H>, as desired.

Of course one might well wonder how the function
P<H, - H> relates to other distributions. Once again, we
consider an example. For the sake of comparison, Table 6
represents the distribution P<- H>. It may come as a surprise
to see that Table 5 and Table 6 are exactly the same! So
P<H,- H> represents the result of an agent first accepting H,
but then subsequently changing his/her mind and accepting

- H instead.
This happy identity between P<H,- H> and P<- H> is not

just a fortuitous accident of our example, as the following
theorem demonstrates. For any sentence A, M!revision on A
followed by M!revision on - A is just the same as
M!revision on - A. The change!of!mind situations so
troublesome for Bayesian and Jeffrey revision are easily
handled by M!revision.

Theorem M.4 For all sentences A and all Popper
distributions P, P<A,- A> = P<- A>.

Gärdenfors and others have suggested that we need two
types of belief change functions: one function for belief
expansion, and one function for belief contraction. A change
of mind of the sort we have been considering is then done by
first retracting a previously held belief, and then secondly
augmenting the retracted belief set with the new belief. The
contraction function seems to be the most problematic. In
general there will be a multitude of different ways to
“simplify” a set of sentences so that the set is compatible with



some specified sentence, but as yet nothing proposed seems
intuitively compelling. See [3] for further details. 

Although it may seem appealing at first sight, on deeper
reflection the contraction!expansion approach can be seen to
be fundamentally flawed. Suppose we want to revise some
prior conditional distribution to reflect the acceptance of A,
and suppose we are considering background assumption set
'. If A is incompatible with ', then it seems we should alter
' in some way, say to '(A) so that we can add A without
incompatibility. That is, we should first apply some
contraction function to remove from ' all those sentences that
are incompatible with A, producing a logically weaker set
'(A); then we should take as new values the original
distribution conditionalized on '(A) c {A}. But adopting
such a stategy would force A to be a necessary truth in the
revised probability function. In other words, the
contraction!expansion strategy once more seems to blur the
distinction between accepting A as true and making A
necessarily true.

On the face of it, M!revision obviously does not follow
the contraction!expansion strategy and yet it seems to
accomplish both jobs. It is worth while trying to understand
how this double function is achieved. Intuitively, when we
M!conditionalize on sentence A, we consider each
background set '. If A is compatible with ', we use as new
values those of the old distribution conditional on ' c {A};
if A is incompatible with ', then we abandon A and take as
new values those of the old distribution conditional on just '.
It may seem at first blush that such a strategy is mistaken;
instead of abandoning incompatible information in the
background assumptions, as is dictated by a contraction
scheme, M!revision counsels the abandonment of the new
information when incompatibilities arise. The view of
M!revision is that if adding a new belief to a set of
background assumptions is probabilistically absurd, then one
simply should not add that belief to that set of background
assumptions. If the new belief is not itself abnormal, then it
will be compatible with {t}, so we can always make a normal
new belief true in the revised distribution. On the other hand,
there is no reason to refuse to countenance other sets of
background beliefs that are incompatible with the new
information. After all, we are only trying to make the new
belief true, not necessarily true. In this way, crucial aspects
of the original distribution are preserved in the new
distribution so that if a change of mind occurs at a later time,
this crucial information can be recovered. Just as Popper
functions allow us to muse in a conditional way about events
we firmly believe will not occur, so does M!revision allow
us to muse in a conditional way about situations incompatible
with newly adopted beliefs. If we subsequently change our
mind about a newly adopted belief, these conditional musings
can be used to establish the newly revised distribution in a
reasonable way.

As previously remarked, Bayesian conditionalization of
distribution P on sentence A always results in a distribution

P[A] in which A is a necessary truth, even if A is
P!abnormal. If A is P!abnormal, then P[A] is the trivial
constant 1 function, and every sentence becomes a necessary
truth. But with M!revision, P and P<A> have exactly the
same necessary truths and the same absurd propositions. So
if A is P!abnormal, then it will also be P!abnormal in P<A>.
If A is P!abnormal, then ' c {A} will also be P!abnormal
for all '. So M!revision on a P!abnormal set results in no
change to P at all. But if A is P!normal, then A will always
be be a simple truth of P<A>; but unless A is necessarily
P!true, it will not be necessarily P<A>!true.

Theorem M.5 If A is P!abnormal, then P<A> = P.

Theorem M.6 If A is P!normal, then P<A>(A, {t}) = 1

For Bayesian conditionalization, the order in which
revisions are made is irrelevant. But given Theorem M.4, it
is obvious that at least in some cases of M!revision, the order
in which revisions are made is a relevant consideration. In
particular, first accepting A and subsequently accepting - A
will generally result in a very different distribution from that
obtained by first accepting - A and subsequently accepting
A. However, when there is no conflict among background
assumptions and newly accepted information, order does not
matter.

Theorem M.7 If ' c {A, B} is P!normal, then for all
sentences x 

P<A,B>(x, ') = P<B,A>(x, ') = P<A v B>(x, ').

Space restrictions prevent going into more detail. But, it
should be clear from this brief account that M!revision with
Popper functions is without doubt a better model for rational
belief than a priori distributions and Bayesian
conditionalization. As we have seen, M!revision easily
accounts for the change!of!mind examples in which an
agent first accepts some sentence A and then subsequently
rejects A in favor of - A. Further, M-revision has the great
advantage of tremendous theoretical simplicity compared
with alternatives such as [1] or [3]. M-revision is a fully
probabilistic model of belief revision, requiring no complex
algebraic constructions of “core beliefs”, no “contraction” or
“expansion” schemes or similar machinery.

However, there is another sort of problem to which we
should turn our attention. Suppose an agent comes to accept
A, but then at some later point decides this acceptance was a
mistake. The agent may not be in a position to accept - A,
but rather would just like to return to the original state of
belief before A was accepted. It seems that M!revision by
itself is not able to handle this situation. The solution to this
problem requires combining M!revision with a
conditionalized version of Jeffrey revision (see [4]), but space
limitations prevent elaboration here.  

In current research we are investigating M!revision
schemes appropriate for comparative probability relations of
the sort discussed in [7], [10], and [11]. As discussed in [9]



and [12], we advocate that belief revision is closely linked to
non!monotonic reasoning, and we are exploring the
connections between such reasoning and M!revision.
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