Discrete Mathematics and Theoretical Computer Scieh@901, 101-108

A permutation representation that knows what
“Eulerian” means

Roberto Mantadiand Fanja Rakotondrajab

1LIAFA, Universié Paris 7 - Denis Diderot, e-mail: mantaci@liafa.jussieu.fr
2Département de Ma#imatiques, Facudtdes Sciences, Univesid’Antananarivo,
e-mail: frakoton@syfed.refer.mg

received Feb 5, 20Qtevised May 14, 20Qkaccepted May 14, 2001

Eulerian numbers (and “Alternate Eulerian numbers”) are often interpreted as distributions of statistics defined over the Sym-
metric group. The main purpose of this paper is to define a way to represent permutations that provides some other combinatorial
interpretations of these numbers. This representation uses a one-to-one correspondence between permutations and the so-called
subexceedant functions
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1 Introduction

Several works in discrete mathematics and theoretical computer science deal with effective ways to represent
permutations.

A pioneer of this matter is Lehmefl[6] who associates bijectively with each permutation over the interval
[N ={1,2,...,n} afunctionf : [n] — {0,1,...,n—1}. There are several ways to establish this one-to-one corre-
spondence but perhaps the most classical of them is the so-talader codd€or inversion tabl¢. The Lehmer
code of a permutatioa is a functionf defined in the following way, for all € [n:

f(i) isthe numberofindicesj suchthat K j<i and o(j) <a(i).

The description of the Lehmer code can also be found in Kriith [5]. However, Knuth cites Marshall Hall's obser-
vation [4] stating that this function uniquely determines the corresponding permutation.
These functions have obviously the following property :

0< f(i)<i forall 1<i<n,

and because of this property such functions are cailgskxceedant term that can be found for instance in the
work of Dumont and Viennot]2].

Subexceedant functions are certainly an effective coding for permutations, because the word
f(1)f(2)...f(n) for a subexceedant function can be represented more effectively than the word
0(1)o(2)...0(n) of the corresponding permutation. Firstly, the word representing generally a word on a
smaller alphabet thafil,2,...,n}, which may allow to code the letters of the alphabet with shorter code words.
Moreover, a word of length on an alphabet of cardinality smaller thaiis likely to contain several consecutive
occurrences of a same integer, which notoriously allows an even more compact representation of the word itself.
For instance, if a word representing a subexceedant fun€tammtains 50 consecutive occurrences of an integer
it is certainly more efficient to code that factor of the wdraith the couplg50,i) than with 50 consecutiviés.
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We present here a way to associate with every permutation af mggp+— [n] such that
1<f(i)<i forall 1<i<n.

For obvious reasons, we will still call these function subexceedant, although for sake of consistency with previous
litterature they would be better called with the barbarian team strictly subexceedafunctions.

Besides the advantage of compactness that we have already mentioned, our coding seems to be appropriate to
transfer to the subexceedant functions some properties that are typical of permutations, namely the distribution of
certain statistics calleHulerian

Eulerian numbersy,  with n > 1 and 1< k < n, are “a classic” in enumerative combinatorics. Their properties
are described in details in most introductory manuals of enumerative combinatorics such as Ridrdan [10]. A
further, thorough investigation of these numbers is in the fundamental work of Foata aiideddtergeri]3],
while applications of these numbers to analysis of algorithms (namely, sorting algorithms) can be found in Knuth
[5] and applications to combinatorics of words can be found in Lothaire [7].

Eulerian numbers are often studied by seeing them as distributions of statitics (therefor&ubdhegh statis-
tics) defined over permutations, suchdescents, excedances, readings

In this paper we look at some statistics defined over the set of subexceedant functions and show that they are
also Eulerian using the coding that we have introduced.

A natural extension of this work would be to study the distribution of sequences of consecutive occurrences of a
same integer in a random subexceedant function, in order to establish when itis convenient to use the corresponding
subexceedant function to represent a permutation in a more effective fashion.

However, the correspondence between certain properties of the Eulerian statistics over the permutations and the
properties of the Eulerian statistics over subexceedant functions is already an encouraging result in itself.

We also show that other properties of permutations can be “read” over the corresponding subexceedant function.
In particular, we show that it is possible to characterize subexceedant functions associated with even permutations
or those associated with derangements.

2 Notations, definitions and preliminaries

Let us denote byn] the interval{1,2,3,...,n} and byo a permutation of the symmetric grod,. We will adhere

to the following convention: when we multiply two permutations, the leftmost permutation always acts first, for
example ifo = (13)(245) andt = (1543 (2) thenot = (1)(235)(4).

Definition 2.1 An integer ic [n] is a fixed point foo if o(i) =1i.

Definition 2.2 A pernutationo is a derangement i has no fixed points.

We will denote byD, the set of all derangements &y, and byd, the cardinality ofD;,.

Definition 2.3 A subexceedant function f ¢m is a map f: [n] — [n] such that

1<f(i)<iforall 1<i<n.

The authors were introduced to the subject of subexceedant functions by D. Dumont [1]. We will derfgte by
the set of all subexceedant functions[oh and we will represent a subexceedant functicover [n] by the word
f(1)f(2)--- f(n).

Example 2.4 The following are the set$, forn=1,2,3:

F={1}
P ={11,12}
F3=9{111112113 121122123}

It is easy to verify thatardf, = n!, since from each subexceedahtover [n— 1], one can obtaim distinct
subexceedant functions oVl by adding any integere [n] at the end of the word representiffig
We will denote by Inff) the set of the elements ii{[n]) and by IMA(f) the cardinality of this set.

Example 2.5 Let f = 112352 be a subexceedant functior{ar2, - - -, 6}, then In{f) = {1,2,3,5} and IMA(f) =
4,
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3 A bijection between the subexceedant functions and permutations

We will give a bijection betweers,, and F, and highlight some of its properties.
Let@: ¥n — &y, be the map which associates with the subexceedant funttiom permutatiows = ¢( f) defined
as a product of transpositions by:

or =(1f(1)(21(2)--(n f(m)).

Notice that there is an abuse of notation in the definitioo ofindeed, iff (i) =i, then the cycldi f (i)) = (i)
does not really denote a transposition but simply the identty permutation.

Proposition 3.1 The mappis a bijection from#, onto &,.

Proof. Since&, and #, both have cardinality!, it suffices to prove thag is injective. Letf andg be two
subexceedant functions ¢m. Assume thaip(f) = @(g) i.e. ot = 04. So we have:

(1£(1)(21(2))---(n f(n) = (19(1))(29(2))--- (n g(n)).

Sinceos = 0y, then in particulao (n) = ag(n), but by definitiono (n) = f(n) andag(n) = g(n), sof(n) an
are equal as well. Let us multiply both members of this equality on the right by the permytafitm ) = (n
we obtain:

dg(n)
g(n)),
(1f(1)(21(2):--(n=1f(n-1))=(19(1))(29(2))--(n—1g(n—1)).

Now, if we apply the same process to these two permutations, we diffainl) = g(n— 1). By iterating, we can
conclude thaf (i) = g(i) for all integers and then that = g. &

Example 3.2 Take f = 112435487 and = 9. The permutatiows = ¢(f) is:

Of

(1)(21)(32)(4)(53)(65)(74)(8)(97)
(16532(497)(8)
_ (12345678;

612935487

Let o be a permutation of the symmetric gro&p and f be the inverse image ofby ¢. Thenf can be constructed
as below:

1. Setf(n) =a(n).

2. Multiply o on the right by the transpositiam a(n)) (this operation consists in exchanging the image of
and the image o6~1(n)), we obtain this way a new permutation havingn as a fixed point. Thug; can
be considered as a permutation®f_1. Then setf(n—1) = o1(n—1).

3. Apply now the same process to the permutatignby multiplying it by (n— 1 o1(n—1)) and obtain this
way f(n—2). By iterating, it is possible to obtain all values tfi) for all integers.

Example 3.3 Let us consider the permutation

(12345678
- \61293548

defined in the previous example. We are going to construct the subexceedant funittédris the inverse image
of o by the bijectiong. First, we havef (9) = o(9) = 7. To computef (8), we have to exchange the images of 9
ando~1(9) = 4 in o and we obtain the permutation

5 _ (12345678
1= \612735489"
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which is indeed a permutation &g and hence that can be considered as
01— (1234567;.
6127354
Then we have (8) = 01(8) = 8. To definef (7), we have to exchange the images of 8 and*(8) = 8 in o; and

we obtain the permutation
5, (123456
27 \612735

in &7, thenf(7) = 02(7) = 4. By using the same process, we obtain the following permutations and the different

values off (i):
12345
3_<61243

1234
O4= <5124§ and f(5) =04(5) =3

123
Os = <312® and f(4)=05(4) =4

Og = <;i2) and f(3) :06(3) =2

9 and f(6) =03(6) =5

07 = <; i) and f(Z) = 07(2) =1

Og = (i) and f(l) = 08(1) =1
Finally, we obtain the subexceedant functiba: 112435487.

D. Dumont [1] noticed that the cardinality of the gdtc #, | IMA (f) =k} is the Eulerian numbeX, k. This result
can be proven in different ways. One possibility is to show that the nunshges card{f € 7, | IMA(f) =k}
satisfy the recursive relation of the Eulerian numb&g, i.e.

Shk=(N—K+1)sh1k1+KS$ 1k
This is not hard to prove, since all the elements of thq $et 7, | IMA (f) =k} are obtained in a unique way

e either from an element of 7,_1 with IMA (f) = k by concatenating at its end one of the integers in the set
Im(f)
e or from an element of 7,_; with IMA (f) = k— 1 by concatenating at its end one of the (k— 1) integers
in the sefn] \ Im(f).
In order to give a bijective proof of this result, we recall a definition.

Definition 3.4 A pemutatioro has an anti-excedance irei [n] if o(i) <.

We denote by AXa) the number of the anti-excedancesoofThe Eulerian numbeh, x equals the cardinality of
the set{o € &, | o hask anti-excedancég(see [3], [8], [9]).

We now prove thas, x = Ank by showing that an appropriate restriction of the npajefined in Propg 3} 1 is indeed
a bijection between the sép € S, | AX(0) =k} and the seff € 7, | IMA(f) =k}.

Proposition 3.5 Let f be a subexceedant function of thegeand leto; = @( f) be the image of f by the bijection
@. The two following assertions are equivalent:

1. ielm(f)
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2. ot has an anti-excedance alrl(i)

Therefore, the number of images of f is equal to the number of anti-excedarwes of

Proof. Assume that € Im(f) and let{j1, j2,---,j¢} be the set of integers such thijx) = i. The integerjy
are all greater than or equalitsincef is a subexceedant function. Then the transpositi¢ng), (j2i), -, (je i)
appear in this order in the definition of, therefore the image gf, by o+ is necessarily because the integgy
never appears in the product before the occurrencg,of (sincef is subexceedant) arichever appears in this
product after the occurrence ff i) sincej, is the largest element havings image. Sg, = o (i) and hence
ot(j¢) = a¢(os1(i)) =i with i < j,, thatis,o¢ has an anti-excedance jn= ot ~1(i).

Conversely, let us take an elemégt Im( ) and let us look at the product of transpositions that defineS he
integeri only appears once, exactly in the transpositioh(i)) with f (i) <i. Then the inverse image ofs either
f(i) itself or an integer that appears in a transposition that occurs on the (eft@f) (notice that all transpositions
that appear on the left ¢f f (i)) involve only integers that are smaller th@nin either case, the inverse image of
i is an integer smaller thainthat is,o¢ (i) < i = o¢ (o (i) and hences¢ has an excedance @y ~1(i). This
concludes the proof. &

3.1 Derangements and subexceedant functions

Now, we are going to establish that derangements or permutations without fixed points are in bijection with a
precise class of subexceedant functions.

Definition 3.6 Let f a subexceedant function and i an integenn We say that i is a multiple fixed point for f if:
1. f(iy=iand
2. there exists an integers i such that {j) =i.

Example 3.7 Take f= 12133 The integerl is a multiple fixed point, where&and3 are not.

Proposition 3.8 Let 7, be the set of subexceedant functiafig,the symmetric group angithe bijection between
Fnand Sy, described in Prop 3] 1. Let f be a subexceedant functioroand ¢ f ) the corresponding permutation.
Thenot is a derangement if and only if all fixed points of f are multiple.

Proof. Let f be a subexceedant function ainbde a non multiple fixed point. In this caskji) =i andf(j) #1i
for all integersj # i. Then the integer appears only once in the transposition product defimipgthis unique
occurrence is the "transpositiofi’f (i) ), which is the identity permutation. Therefase(i) =i, that is,i is a fixed
point foro; ando is not a derangement.

Conversely, ifot is not a derangement and an integisra fixed point foio then by using the inverse construction
of @, we havef (i) =i and there is not another intege# i such thatf(j) = i. This concludes the proof. &

4 Other interpretations of the numbers P,k and Dy«

We will denote respectively by, « andP, k the cardinalities of the set of all odd permutationsSinhavingk anti-
excedances and the set of all even permutatioi@,ihavingk anti-excedances. These numbers were introduced
by the first author in [[8] and further studied inl [9]. The numbeyg are also referred to as "Alternate Eulerian
numbers”. We recall that the numbétg andD, k satisfy the recursive formulas:

Puk= (N—K)Dn_1x-1+KDn_1x+Pr-1k-1
Dnk = (N—K)Ph-1k-1+KPh-1k+Dn-1k-1

for all positive integers and 1< k < n. We will study in this section two other interpretations of these numbers.

Proposition 4.1 Let f € 7, be a subexceedant function aad = @(f) be the corresponding permutation. Then
o is an even permutation if and only if the numbéf pof strict anti-excedances of f is even.
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Proof. Notice thatf has a strict anti-excedanceiiiif and only if the integeii is not a fixed point forf. Then

in the transpositions product defining the permutatigni.e. in the decompositioa; = (1 f(1))---(n f(n)), the
number of the cycles that are not equal to the identity coincide with the number of strict anti-excedahcElseof
parity of a permutatior is the same as the parity of the number of transpositions that occur in any product of
transposition that is equal to &

Corollary 4.2 The number  equals the cardinality of the set of all subexceedant functiorigisuch that the
number of the strict anti-excedances of f is evenldfdl (f) = k, and the number B designates the cardinality

of the set of all subexceedant functionsfinsuch that the number of the strict anti-excedances of f is odd and
IMA () =k.

We give another combinatorial interpretation of the nunfgy related to subexceedant functions. We show
that subexceedant functions having image of cardinklégd with an even number of strict anti-excedances are in
bijection with subexceedant functions having image of cardinklitjth an odd number of occurrences of 1.

Definition 4.3 A subexceedant function f has a strict anti-excedance in(ijf< i.

We will denote bya( f) the number of the strict anti-excedanced @nd byb( f) the number of occurrences of the
integer 1 inf.

Example 4.4 Taken =6 andf = 112433, them(f) = 4 andb(f) = 2.
Definition 4.5 Define the mag : 7, — 7, as follows:
o ifa(f)+b(f)is odd, thenp(f)=f and
o ifa(f)+Db(f)iseven, then look for the smallest integer i that satisfies either one of the following properties:
(p1) ielm(f)\{1} and f(i)=1, or
(p2) i €Im(f)\ {1} andiis a multiple fixed point.
Theny(f) is the subexceedant function described as follows:
(j) forall j #iandy(f)(i) =1.
(j)forall j #iandy(f)(i)=1.

Lemma 4.6 The mapy is well defined, indeed, if(d) + b(f) is even, then there always exists an integer i which
satisfies either propertyp; ) or property(py).

— if i satisfies(p1), then we defing)(f)(j) = f
— if i satisfies(p2), then we define)(f)(j) = f

Proof. We will prove this result by contradiction. Leti},---,ix be the elements of I(f) and suppose that
f(i) # 1 for all integerd in Im(f)\ {1} and also that none of the integers in(lim\ {1} is a multiple fixed point.
If jis aninteger such thatd j < iy, then necessarilj(j) = 1 becausd is subexceedant and the next smallest

possible value foff (j) is iz, with iz > j, which would contradict the fact thdtis subexceedant. The imageiof

is clearlyi, itself because we suppose thdt;) # 1 forallt = 2,--- k. If j is an integer such tha < j < iz, then
necessarilyf (j) = 1 indeedf is subexceedant and therefdrg) can only be 1 oy, butif f(j) =i, theni, would

be a multiple fixed point. Analogously we prove tHdt;) = i; for allt = 2,-- -, k and thatf (j) = 1 for all integers

j € Im(f). Thenf has exactlyn—k+ 1 occurrences of 1 (all elements, except- -, ik, have image 1) and exactly
n— k strict anti-excedanced (presents a strict anti-excedance injaf Im(f)). This is a contradiction since, by
hypothesis, these two numbers must have the same parity. &

Example 4.7 This example shows how the mapvorks.

o Let f; be the subexceedant functi@®h2413 Then g f;) =4 and I f1) = 3. Since &f1) 4+ b(f1) = 7 which
is an odd number, thegy(f1) = f1.
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o Let f; be the subexceedant functi®th2433 Then df,) = 4 and i f;) = 2, then & f2) + b(f2) = 6 which
is an even number, therefore, in order to compyie,) we need to determine the smallest integer i in
Im(f2) \ {1} = {2,3,4} such that either £(i) = 1, or i is a multiple fixed point. This integer B which
satisfies the first of these properties. The functdf,) is then obtained from,fby making i= 2 a multiple
fixed point (that is, by setting(2) = 2). HenceW(fz) = 122433

e Let f3 be the subexceedant functit@2433 Then 4 f3) = 3 and K f3) = 1, then & f3) + b(f3) = 4 which
is an even number, therefore, in order to compuitefz) we need to determine the smallest integer i in
Im(f3) \ {1} = {2,3,4} such that either (i) = 1, or i is a multiple fixed point. This integer B which
satisfies the second of these properties. The fundiidn) is then obtained from,fby setting $(2) = 1).
Hence,y(f2) = 112433

Remark 4.8 For all subexceedant functions f i, one hadm(f) = Im((f)).
Proposition 4.9 The mapy is a bijection between the set of the subexceedant functiofs in

Proof. It follows from the definition of that for all f in the set of the subexceedant functions, one has

W(w(f)) = f
and hencep is invertible (and its inverse is itself). &

Proposition 4.10 The mapy associates a subexceedant function f having an even (respectively, odd) number
of occurrences of 1, with a subexceedant functjgi) having an odd (respectively, even) number of strict anti-
excedances.

Proof. Consider the two following cases.
1. Ifa(f)+b(f)is odd, thenp(f) = f and the statement is obvious.
2. Ifa(f)+Db(f) is even, then

(a) eitherf has an even number of strict anti-excedances and the number of occurrenced a$ &wen,
in which casel(f) has an odd number of strict anti-excedances and an odd number of occurrences of
11

(b) or f has an odd number of strict anti-excedances and the number of occurrences fofslodd, in
which casa)(f) has an even number of strict anti-excedances and an even number of occurrences of
1.

o

The following theorem is a consequence of the above results.

Theorem 4.11 The appropriate restriction of the malpis a bijection between the set of the subexceedant functions
in 7, having image of cardinality k with an odd number of occurrencekarid the set of subexceedant functions
in %, having image of cardinality k with an even number of strict anti-excedances.

Corollary 4.12 The number Fx equals the cardinality of the set of the subexceedant functions 7, isuch
that IMA (f) = k and f contains an odd number of occurrenced.ofThe number Ry equals of the set of the
subexceedant functions f i such thatMA (f) = k and f contains an even number of occurrencek of
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