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Abstract

The number of processor cache misses has a crit-
ical impact on the performance of DBMSs run-
ning on servers with large main-memory configu-
rations. In turn, the cache utilization of database
systems is highly dependent on the physical or-
ganization of the records in main-memory. A re-
cently proposed storage model, called PAX, was
shown to greatly improve the performance of se-
quential file-scan operations when compared to
the commonly implemented N-ary storage model.
However, the PAX storage model can also demon-
strate poor cache utilization for other common op-
erations, such as index scans. Under a workload
of heterogenous database operations, neither the
PAX storage model nor the N-ary storage model
is optimal.

In this paper, we propose a flexible data stor-
age technique called Data Morphing. Using
Data Morphing, a cache-efficient attribute layout,
called a partition, is first determined through an
analysis of the query workload. This partition is
then used as a template for storing data in a cache-
efficient way. We present two algorithms for com-
puting partitions, and also present a versatile stor-
age model that accommodates the dynamic reor-
ganization of the attributes in a file. Finally, we
experimentally demonstrate that the Data Morph-
ing technique provides a significant performance
improvement over both the traditional N-ary stor-
age model and the PAX model.
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1 Introduction

Database systems have traditionally focused on improving
the overall system performance by minimizing the num-
ber of disk I/O operations. Disk I/O has traditionally been
the most important component of the memory access hi-
erarchy, but the current trend in Random Access Memory
(RAM) cost and capacity now makes it necessary to re-
evaluate this focus. The cost of RAM is decreasing rapidly,
while the capacity of RAM is increasing exponentially.
This trend was recognized by the authors of the Asilomar
report where they predicted that, in the future, all but the
largest data sets will reside entirely in main-memory [5].
As increasing amounts of data become main-memory res-
ident, the performance bottleneck becomes the accesses to
main-memory rather than the accesses to disk [7]. Because
of this shift, intelligently storing and accessing the data in
main-memory is becoming critical to the performance of
database systems [2, 7, 17, 22].

Unfortunately, the main-memory bottleneck is becom-
ing more severe due to the growing disparity between
processor speeds and the latency in accessing the main-
memory. To alleviate this disparity, modern processors em-
ploy a hierarchy of low-latency memory, called caches, that
reside between the processor and the RAM. Each cache
stores the most frequently accessed data blocks (includ-
ing instructions), reducing the amount of data that must be
retrieved directly from the main-memory. Starting at the
first level of cache memory, each subsequent level of cache
stores larger amounts of data, but each subsequent level of
cache is also more expensive to access. Modern processors
typically contain two, or even three, levels of processor
cache, with each level storing both instructions and data.
Research has shown that database systems incur a signif-
icant amount of second level (L2) data cache misses, and
consequently, the L2 cache utilization is critical to overall
performance [3]. In this paper we only focus on techniques
for reducing the L2 cache misses, and simply refer to them
as cache misses for the remainder of this paper.

Critical to system performance is the efficient retrieval
and update of data records inside the database. Database
systems typically store records of data in files, where each



file consists of a collection of slotted-pages, and each
slotted-page contains a collection of records. A page is
a fixed-size block of allocated memory. A slotted-page is
a page that contains an array of byte-offsets that reference
the start of each record allocated within the page. Typi-
cally, each attribute of the record is stored in consecutive
memory addresses on the slotted page, in what is called the
N-ary storage model. Common implementations of the N-
ary storage model place variable length attributes at the end
of the fixed-length attributes, and use fixed length place-
holders to reference the relocated attributes.

A recently proposed storage model, called PAX, ver-
tically decomposes each record, storing each attribute in
subdivisions of a page, called mini-pages [2]. The PAX
storage model improves the cache utilization for queries
that access only a few attributes from a high percentage
of records, such as during a sequential file scan. This im-
provement in cache utilization is a direct result of being
able to pack attributes of many different records into the
same cache line. However, for access plans where only a
fraction of the records are accessed, such as during an index
scan, the PAX storage model can result in a greater number
of cache misses. In such cases, N-ary may actually perform
better, especially as the number of attributes accessed per
record increases.

As previously demonstrated, both the N-ary and the
PAX storage models work well for different families of ac-
cess plans. A choice between the two storage models is dif-
ficult as the query workload may be large or may vary over
time. A better storage model should incorporate the best
characteristics of both models; namely, vertical decompo-
sition and groups of sequentially allocated attributes. This
storage model should also provide the flexibility to adapt to
changing workloads. In this paper, we propose a novel data
storage technique, called Data Morphing (DM) that meets
these goals.

This paper makes the following contributions:

• We present a flexible page architecture that is a gener-
alization of the previously proposed PAX page architec-
ture. In the Data Morphing page architecture, attributes
of the same tuple can be stored in non-contiguous groups,
which increases the spatial locality of memory accesses.
As a result, fewer cache misses are incurred during query
processing.

• We present two algorithms for calculating the attribute
groups that are stored on each page. The Naive algo-
rithm performs an exhaustive search of the possible at-
tribute layouts, but the algorithm is expensive to compute
for relations with a large number of attributes. The Hill-
Climb algorithm performs a greedy search of the layout
space, trading optimality for faster time complexity.

• We present an empirical evaluation of the Data Morphing
technique. We show that the partitioning algorithms cal-
culate attribute groupings that reduce the number of cache
misses incurred during query execution. As a direct result
of improving the cache utilization, our prototype DBMS
implementing the DM technique can evaluate queries up

to 45% faster than the N-ary storage model and up to 25%
faster than the PAX model.

The remainder of this paper is organized as follows:
Section 2 presents an example motivating the need for Data
Morphing. Section 3 provides definitions for the common
terms used in the subsequent sections. In Section 4, we
present the Data Morphing technique. A detailed experi-
mental evaluation is presented in Section 5. Related work
is discussed in Section 6, and Section 7 contains our con-
clusions.

2 Motivating Example

As described in the introduction, neither the N-ary storage
model nor the PAX storage model provide the optimal stor-
age model for data. To illustrate this fact, we will use the
relation and query shown in Figure 1 in the following ex-
ample.

Client (id: Integer, priority: Integer, name: Varchar(32),
usage: Real, address: Varchar(32),
location: Integer) key (id);

SELECT location, usage
FROM Client WHERE priority < 12

Figure 1: Client Relation and Query

In Figure 1, the Client relation consists of six at-
tributes of types Integer, Real, and Varchar. The Integer and
Real data types are each four bytes in size. The Varchar(32)
data type is a variable length string with a maximum length
of 32 bytes. The selectivity of the predicate on priority
is 12.5%, and the processor cache line size is 32 bytes. Fig-
ure 2 shows a single record in the Client relation as it is
stored on a page using the N-ary storage model; as in typ-
ical implementations, the variable-length strings are stored
at the end of the fixed-length attributes. To visualize the at-
tributes that are read into the processor cache as the result
of a cache miss, the width of the diagram is shown to be the
same size as a cache line.

Assuming that a sequential file scan is used to answer
this query, the records are retrieved as follows. The first
priority attribute is requested from memory. This
memory access incurs a cache miss to read the contigu-
ous block of memory containing the attribute into the pro-
cessor cache. If the value of the priority attribute is
less than 12, the location and usage attributes are ac-
cessed. Because the location and usage attributes are
contained in the processor cache, retrieving them incurs no
additional cache misses. The select operator then continues
with the next record, until all of the records have been read.
The cost of answering this query totals approximately one
cache miss per record.

The PAX storage model vertically decomposes the
records into zones, called mini-pages, as shown in Fig-
ure 3; for simplicity, we do not show all of the details.
In the figure, the attributes are presented as belonging
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Figure 2: N-ary Storage Model Figure 3: PAX (Vertical Decomp.) Figure 4: Attribute Grouping

to specific records by indicating the record number next
to the attribute name. Using the PAX storage model, a
cache miss is incurred upon reading the first priority
attribute. After the first cache miss, the priority at-
tributes of the next eight records are read without incur-
ring any additional cache misses. Because the predicate on
the priority attribute is true for one record out of ev-
ery eight records accessed, reading the location and the
usage attributes incurs two additional cache misses per
eight records. The resulting cost of the select operator is
approximately 1/8+2/8 = 0.375 cache misses per record.
This is a significant improvement over the traditional N-ary
storage model.

While the PAX storage model performs better than the
N-ary storage model, the number of cache misses can
be reduced even further. Recognizing that the usage
and location attributes are always accessed collec-
tively, the record should be partitioned into four zones:
the priority attribute in one zone, the usage and
location attributes in a second zone, the id attribute
in a third zone, and the remaining attributes in a fourth
zone, as shown in Figure 4. Similar to the PAX layout, the
priority attribute from eight consecutive records can be
read while incurring only a single cache miss. For every
value of the priority attribute that is less than 12, the
usage and location attributes are read. Because the
usage and location attributes were located in different
cache blocks in the PAX layout, two cache misses were in-
curred to read both of the attributes. When using the group
layout (Figure 4), however, a single cache miss is incurred
to read the first usage attribute, and the location at-
tribute is then read from the cache. Using this particular
grouping, the number of cache misses per record shrinks to
two cache misses per eight records, or 0.25 cache misses
per record.

As the example demonstrates, partitioning the records’
attributes into non-contiguous zones can significantly re-
duce the number of processor cache misses. Determin-
ing the attribute partition for a single query is not difficult;
however, choosing a partition that reduces the total amount
of cache misses for the entire query workload is much more
complex. In addition, the query workload may change over

Variable Definition

A The set of all attributes in relation R =
{a1, a2, · · · , an}

group A subset of the set of attributes, group ⊆ A
partition A collection of groups

zone The area of a slotted page where all instances
of a group are written

zone-record An instance of the attributes in a particular
group

G The set of all possible groups
|G| The number all possible groups
P The set of all unique partitions
|P | The number of all unique partitions

Table 1: Definitions

time, so the optimal layout may change accordingly. The
Data Morphing technique presented in this paper provides
a method to calculate a cache-efficient partition for a given
workload of queries, and also provides a method to reor-
ganize data to dynamically adapt to a changing workload.
Before the Data Morphing technique is presented, the fol-
lowing section provides the definitions to the terms used in
the discussion.

3 Definitions

For the presentation of the Data Morphing technique, the
following definitions apply. A group represents a set of
attributes that are written to consecutive memory addresses
on a page. A partition is a set of groups that uniquely
defines the position of every attribute in a relation. A zone
defines the area of a page where all instances of a particular
group are written. A zone-record defines an instance of
the attributes in a particular group. These definitions are
summarized in Table 1.

To further illustrate the concepts in this section suc-
cinctly, we will use a simplified version of the previous
example. The new example relation and the correspond-
ing query are shown in Figure 5. As before, the predicate
on the priority attribute has a selectivity of 12.5%, and
all of the attributes are four bytes in size.



R = (priority:Integer, location:Integer,
usage:Integer)

SELECT location, usage
FROM R WHERE priority < 12

Figure 5: Example Relation and Query

Using the relation R, shown in Figure 5, a partition p
representing the traditional N-ary Storage Model is

p = {{priority,location,usage}}.
Partition p has one group of attributes, and all three at-
tributes are to be written consecutively in memory. A par-
tition representing the PAX storage model is

p = {{priority}, {location}, {usage}}.
This partition has three groups, with each attribute belong-
ing to a separate group.

Formalizing the discussion, consider the set A of all at-
tributes in relation R. From the definition, a partition p of
set A is a collection of subsets of A, called groups, such that
each group is non-empty and is pairwise disjoint with all
other groups, and ∪p = A. The set of all possible groups,
G, is the power set of the attribute set A. The size of G
is 2n, where n is the number of attributes in the relation
R. The set of all possible partitions is P . The number of
possible partitions of set A, or |P |, is described by Bell
numbers [4, 21].

From the example, the set of all attributes, A, the set of
all possible groups, G, and the set of all possible partitions,
P , are as follows:

A = {priority,location,usage}
G = {{priority}, {location}, {usage},

{priority,location}, {priority,usage},
{location,usage},
{priority,location,usage}}

P = {{{priority}, {location}, {usage}},
{{priority,location}, {usage}},
{{priority,usage}, {location}},
{{priority}, {location,usage}},
{{priority,location,usage}}}.

Now that the definitions have been presented, the next
section introduces the Data Morphing process.

4 Data Morphing
Data Morphing consists of two phases: (a) calculating a
cache-efficient storage template and (b) reorganizing the
data into this cache-efficient organization. In this section,
we first introduce the DM page architecture, which allows
attributes to be grouped into non-contiguous zones. We
then introduce two algorithms for calculating attribute par-
titions that improve the spatial locality of the data.

4.1 Page Structure

To support decomposition of the records’ attributes into
groups, a flexible page structure is required. The new page
structure must allow the attributes of a record to be written
in an arbitrary pattern while also retaining the link between
the external record id and the internal record. The PAX
page structure [2] has many of these properties; however,
the PAX page structure stores each attribute individually.
We need a more general page architecture that allows arbi-
trary grouping of attributes and also seamlessly accommo-
dates the traditional N-ary representation (which is more
efficient in some cases). In this section, we present the
Data Morphing page structure. The DM page structure can
be viewed as a generalization of the PAX page structure.

4.1.1 Page Description

The traditional slotted page includes meta-data at the top of
the page along with a slot array located at the bottom of the
page. The attributes of each record are written to consecu-
tive memory addresses on the page, with the starting offset
of a record stored in the slot array [20]. The record space
typically grows downwards (increasing memory addresses)
while the slot array grows upwards (decreasing memory ad-
dresses), and the free space on the page is determined by
the unallocated memory between the two regions.

To support the partitioning of attributes into separate
zones, the new DM slotted-page structure requires five ad-
ditional arrays. The first array, ATT-ZON, records the zone
number for each attribute. The second array, ATT-SZ,
records the size of each attribute, with variable-length at-
tributes marked accordingly. The third array, ATT-OFF,
records the offset of the attribute into each zone-record.
The fourth array, ZON-OFF, records the starting offset of
each zone on the page. The fifth array, REC-SZ, records
the size of each zone-record. Figure 6 illustrates the new
slotted-page data structure.

A partition is local to each page. This allows the work-
ing set of pages for one workload to be organized differ-
ently than the working set of pages for a different work-
load. If the entire relation uses the same static layout, the
partition information can be stored in the system catalogs.

The size of each DM array is implementation depen-
dent. For our particular implementation, the number of en-
tries in each table is equal to the number of attributes in
the relation. We use 1-byte entries for the ATT-ZON ta-
ble and 2-byte entries for the remaining tables. For a rela-
tion with 16 attributes, the total size of the meta-data would
be 144 bytes, spanning five 32-byte cache lines. If only a
few records on each page are accessed, the cost of access-
ing the meta-data can be quite expensive. For this reason,
we are examining alternatives to allocating the meta-data
on each page while still allowing the partitions to vary be-
tween pages.

It is important to note that the slotted-page data struc-
tures are located at the same byte-offsets on each page. If
the records are accessed in a random order, the data struc-
tures on each page may be removed from the processor



cache due to conflict misses; therefore, a more efficient
technique is to access all the necessary records on a page
before moving to any other pages in the heap file. This
problem is not unique to the DM technique, but is common
to all heap files that use the slotted-page data structure.

ATT−ZON ATT−SZ ATT−OFF

ZON−OFF REC−SZ

Variable Length Attribute Zone
(Heap)

Hello World11

Slot Array

att−cntPage Header zon−cnt

Fixed Length Attribute Zone

Presence Bits

10

Figure 6: DM Slotted Page Layout

The DM slotted page consists of one or more zones.
Fixed-length attributes and variable-length attributes can
be grouped together into variable-length zones. Each
variable-length zone has a slot-array that contains refer-
ences to the position of all of that zone’s records. All
variable-length zone-records store the variable-length val-
ues at the end of each record, as is typically done in the
N-ary storage model. If a group consists of only fixed-
length attributes, the group can be stored in a fixed-length
zone. Since the attributes in a fixed-length zone can be
accessed using a simple byte-offset calculation, the fixed-
length zones do not contain a slot-array. In place of the
slot-array, a bit-array is used to indicate the presence or ab-
sence of a zone-record.

The fixed-length zone is not required but can be conve-
nient. For example, fixed-length zones are easier to manage
because there is no need to maintain a heap. Also, using a
simple byte-offset calculation to access the attribute is more
efficient than accessing a slot array.

4.1.2 Page Operations

For the DM slotted-page layout, the typical operations, in-
cluding attribute retrieval, record insertion, deletion, and
updates, are modified in a straight-forward way. The key
changes are that these operations need to consult the addi-
tional meta-data to locate the attribute values. In the inter-
est of space, we omit these details in this presentation and
refer the interested reader to [15].

4.1.3 Dynamically Reorganizing Pages

Because the query workload may change over time, the
Data Morphing process may periodically recommend a
new attribute partition. The attribute layout will then need
to be reorganized to match the new partition. The reorgani-
zation process is as follows. The Storage Manager is first
provided a new attribute partition. When a page is accessed

from the data file, the page’s partition description is com-
pared to the recommended partition. If the two partitions
differ, the page is reorganized based on the recommended
partition.

The structure of the DM slotted page allows pages to be
lazily reorganized at access time. Therefore, only highly
accessed pages will be reorganized. Some pages in the file
may rarely be reorganized. Because the partition informa-
tion is stored on each page, pages with different partitions
may co-exist in the same file.

We expect page reorganization to be an expensive oper-
ation relative to the cost of scanning the records on a page,
so a reorganization should be performed judiciously. Anal-
ysis of the reorganization strategy is left for future work.

4.2 Partitioning the Attributes

The Data Morphing technique consists of two phases: cal-
culating a cache-efficient attribute partition, and reorganiz-
ing the data. The first phase of the DM process calculates
a cache efficient layout for the attributes of a given rela-
tion R(a1, a2, · · · , an), and a given set of queries, Q. To
calculate this layout, we present two algorithms. First, we
present a naive algorithm which finds the optimal layout,
but requires exponential space and time in the number of
attributes. We then present a heuristic algorithm to reduce
the computational complexity. The heuristic algorithm is
based on a hill-climbing (steepest-descent) algorithm, and
trades optimality for improved time complexity.

4.2.1 Data Morphing Input

Each of the proposed algorithms relies on information
about the queries that are executed. A query q in the query
set Q is described by an ordered sequence of pairs, (x, y),
where x represents the attribute accessed, and y represents
the frequency at which attribute x is accessed. Using the
example from Section 3 for illustration, a sequential file-
scan will access 100% of the priority attributes. If the
value of the priority attribute is less than 12, the re-
maining two attributes are accessed. The selectivity of the
predicate on priority is 12.5%, so both of the remain-
ing attributes will be accessed for 12.5% of the records.
The resulting query sequence, q, will be:

q = ((priority, 100%),
(location, 12.5%), (usage, 12.5%))

4.2.2 Cache Miss Model

The cache miss model computes the cost, in the number of
processor cache misses, for a query to access the attributes
in a group. For the cache miss model, we define the ac-
cess rate of the group, acc, as the rate of the most accessed
attribute in that group. Given a query q and an attribute
group g, the number of cache misses incurred is calculated
as follows: Accessing the first attribute a in the sequence q
that is also a member of group g incurs a cache miss. The



number of zone-records available per cache line, τ , is given
by Equation 1.

τ =
cache line size
sizeof(g)

(1)

The number of zone-records between successive record ac-
cesses, itval, is given in Equation 2

itval =
1

acc
(2)

If the interval of zone-records, itval, is larger than the num-
ber of zone-records available in one cache line, each zone-
record accessed incurs a cache miss for each cache line
spanned by the group. The model returns the number of
cache misses per record, as shown in Equation 3.

model(q, g) =
{

1
τ if itval < τ
acc ∗ � 1

τ 	 if itval >= τ
(3)

Our cache-miss model attempts to capture the first-order
effects of accessing the records in a heap file, either through
a sequential file-scan or as part of an index scan. This
model relies on the assumption that the attributes are ac-
cessed in a uniformly random fashion, the cache line be-
ing accessed is not removed from the processor cache be-
fore the all of the attributes in that cache line have been
processed, and that the data was removed from the pro-
cessor cache between successive record scan operations.
Our model may unfairly penalize group sizes larger than a
cache line due to the assumption that a query on that group
will incur a cache miss for each cache line spanned by that
group.

For typical cache line sizes (32 and 64 bytes), we be-
lieve it is reasonable to assume that all of the data in a sin-
gle cache line will be processed before that cache line is
evicted. Also, when processing sequential scans of even
moderate size heap files, and with many concurrently exe-
cuting database operations, the processor cache is unlikely
to contain the same records upon the next occurrence of a
file scan operation. But, if the heap file is used in many
queries or the heap file is not large relative to the processor
cache, the data may reside in the processor cache between
successive scans. For this scenario, incorporating Carde-
nas’s formula [10], or possibly Yao’s formula [23], into the
model may provide a more cache-efficient attribute parti-
tion and is the subject of future work. We also plan to
revisit the assumption that data is accessed uniformly by
incorporating the distribution type of the data. Finally, we
plan to more fairly incorporate group sizes larger than the
cache line size in future versions of the cost model.

Even though our cache-miss model is very simple, the
experimental evaluation shows that it still allows cache-
efficient attribute partitions to be calculated. We expect
that the performance of a more complex cost model will
improve the quality of the attribute partitions but with an
additional computational cost.

Using the example relation and query in Figure 5, the
cost of grouping the priority and usage attributes is
calculated as follows. The query, q, on the relation is:

q = ((priority, 100%),
(location, 12.5%), (usage, 12.5%))

The group, g, is:

g = {priority,usage}
The size of group g is 8 bytes. The size of a cache line is
assumed to be 32 bytes. The access rate, acc, of group g is
the access rate of the highest accessed attribute a ∈ g. In
this example, acc = 1. The number of groups per cache
line, τ = 32/8 = 4, means that four zone-records of this
group g can be accessed in one cache miss. Now, we need
to calculate how often this group is accessed. itval = 1
states that every record is accessed. Because four zone-
records can be read for every cache miss, the cost of this
query on group g is 0.25 cache misses per record.

4.2.3 Naive Algorithm

The Naive algorithm calculates the optimal attribute parti-
tions based on the cost of each possible partition. The opti-
mal partitions are the candidates that result in the fewest
number of overall cache misses for the query workload.
The cost of executing a query on a relation that uses a par-
ticular partition p is the sum of the cost to access the at-
tributes from each group in the partition, as shown in Equa-
tion 4.

cost(q, p) =
|p|∑
i=1

model(q, pi) (4)

Equation 4 calculates the cost of executing query q on the
partition p. In Equation 4, |p| represents the number of
groups in the partition p, pi represents group i in partition
p, and model(q, pi) is the number of cache misses incurred
for query q to access the attributes in group pi (Equation 3).

The Naive algorithm calculates the cost of each possible
partition and selects the partitions with the lowest overall
cost for the set of queries Q. The method for calculating
the lowest cost is shown in Equation 5.

costmin = min
i=1...|P |


 |Q|∑

j=1

cost(Qj , Pi)


 (5)

In Equation 5, |P | is the number of possible partitions of
the set of attributes A, Pi is partition i ∈ P , |Q| is the
number of queries in the workload, and Qj is query j ∈ Q.

Because a group may be used in several partitions, cal-
culating the cost of a partition in Equation 5 repeats work
that may have been previously computed. Instead of calcu-
lating the cost of each partition, we can calculate the cost
of each possible group. The cost of a partition is the sum of
the costs of each group in the partition. If a table is created



Naive(Q,P,G)
(* Q is the set of all queries *)
(* P is the set of all partitions *)
(* G is the set of all groups *)

(* Compute each group cost *)
for i← 1 to length[G]

for j ← 1 to length[Q]
table[i]← model(Q[j], G[i])

(* Compute each possible partition’s cost *)
R← ∅
for i← 1 to length[P ]

p← P [i]
for j ← 1 to length[p]

(* g is a group in partition p *)
g ← pj

sum← sum + table[g]
(* Record all min cost partitions *)
if sum = mincost

R← R ∪ p
if sum < mincost

R← p
mincost← sum

return R

Figure 7: Naive Algorithm

to record the cost of each group g ∈ G, the cost of the par-
tition p can be calculated by a series of table lookups. The
costmin formula in Equation 5 can then be expressed using
Equation 8.

table[g] =
|Q|∑
i=1

model(Qi, g) (6)

cost(p) =
|p|∑
i=i

table[pi] (7)

costmin = min
i=1...|P |

(cost(Pi)) (8)

In Equation 6, a table of the costs of each group g is
first computed for the query workload Q. In Equation 7,
the cost of a partition is then computed by summing the
costs of the individual groups contained in the partition.
Equation 8 finds the minimum cost of all the partitions in
P . The partitions that correspond to the minimum number
of cache misses is the solution. Pseudo-code for the Naive
algorithm is shown in Figure 7.

Unfortunately, the Naive algorithm is exponential in
both time and space. For each query q ∈ Q, n possible
attributes are examined. The number of groups to exam-
ine is 2n, where n is the number of attributes in a relation.
The total cost to record the group cost table is O(mn2n),
where m is the number of queries in the query set. The
number of possible attribute partitions is described by Bell
numbers. Several authors have studied the asymptotic limit
of the Bell numbers [13, 19]. Approximating the findings
of de Bruijn, the Bell numbers have an asymptotic limit of
O(en ln(n)). The time complexity of the algorithm is there-

Group Cost

{priority} 0.125
{location} 0.125
{usage} 0.125
{priority,location} 0.25
{priority,usage} 0.25
{location,usage} 0.125
{priority,location,usage} 0.375

Table 2: Example: Group Costs

Partition Cost

{{priority}, {location}, {usage}} 0.375
{{priority,location}, {usage}} 0.375
{{priority,usage}, {location}} 0.375
{{priority}, {location,usage}} 0.25
{{priority,location,usage}} 0.375

Table 3: Example: Partition Costs

fore O(en ln(n) + mn2n). The space complexity is Θ(2n)
to store the group-cost table.

We can demonstrate the Naive algorithm on the exam-
ple query in Figure 5. First, the cost of each group is pre-
computed and stored in a cost table, as shown in Table 2.
After precomputing the cost of each group, we compute the
cost of each partition, as shown in Table 3. The partition
that results in the minimum cost for this query workload is
{{priority}, {location,usage}}. In other words,
the priority attributes should be in one zone, and the
location and usage attributes should be in a separate
zone, with the location and usage attributes of each
record written contiguously on the page.

The time complexity of the Naive algorithm is expo-
nential due to the number of possible partitions that must
be examined. The Hill-Climb algorithm, presented next,
trades the guarantee of finding the optimal partition for an
improvement in time complexity.

4.2.4 Hill-Climb Algorithm

The Naive algorithm computes the set of optimal partitions
but the time complexity is exponential due to the number of
possible partitions that must be examined. The Hill-Climb
algorithm trades the guarantee of optimality for faster com-
putation time. The Hill-Climb algorithm is computed as
follows. First, the cost of each attribute grouping is cal-
culated as in Equation 6 of the Naive algorithm. Each of
the n attributes are then partitioned into separate groups.
The algorithm then begins an iterative process to select a
partition. In the first iteration, the algorithm considers the
effect of “merging” any two partitions. The cost of each
of these combinations is computed. (Each partition has ex-
actly n − 2 groups with one attribute, and one group with
two attributes.) The partition that has the cheapest cost is
then picked for the next iteration. The next iteration pro-
ceeds in a similar fashion and considers all possible pair-
ings of the remaining groups. Thus, in each iteration, the
number of groups is reduced by one. This process is re-



Hill-Climb(Q,G)
(* Q is the set of all queries *)
(* G is the set of all groups *)

(* Compute the cost, table[i], of each group i*)
for i← 1 to length(G)

for j ← 1 to length(Q)
table[i]← model(Q[j], G[i])

(* Compute the cost for each partition *)
Cand← {{1}, {2}, · · · , {n}}
candcost← cost(Cand) (* Equation 7 *)
R← ∅
do

R← Cand
mincost← candcost
Cand← ∅
for i← 1 to length(R)

for j ← i + 1 to length(R)
s← {{R1, · · · , Ri ∪Rj , · · · }}
Cand← Cand ∪ s

(* Compute lowest cost partition *)
candcost← mini=1...|Cand|(cost(Candi))
Cand← mini=1...|Cand|(Candi)

while candcost < mincost
return R

Figure 8: Hill-Climb Algorithm

peated until the total cost of the partition does not improve.
Ties among candidate partitions with the same cost are bro-
ken by randomly selecting a partition from the set. The
pseudo-code for this algorithm is shown in Figure 8.

The time complexity is O(mn2n) to calculate the group
cost table and O(n3) to calculate the best partition. The
resulting time complexity is therefore O(mn2n). Again,
the space complexity is Θ(2n) to store the group-cost table.
If space is not an issue, and if the query information arrives
at a relatively low rate, then this algorithm may perform
well, even for a large number of attributes.

The following describes the use of the Hill-Climb algo-
rithm on the example in Figure 5. The candidate partition
is initialized to

cand = {{priority}, {location}, {usage}},
with a cost of candcost = 0.375 cache misses per record.
The result of combining each group would result in a can-
didate set of:

cand = {{{priority,location}, {usage}},
{{priority,usage}, {location}},
{{priority}, {location,usage}}}

The respective costs for each partition in the candidate set
is (0.375, 0.375, 0.25) cache misses per record. The best
partition from the candidate set is

p = {{priority}, {location,usage}}
with a cost of 0.25 cache misses per record, as calculated
from Table 2. The second iteration creates the candidate set

cand = {{{priority,location,usage}}}

with a cost of 0.375. Because the cost is greater than the
current best partition cost of 0.25 cache misses per record,
the algorithm terminates and the partition

p = {{priority}, {location,usage}}
is returned.

5 Experimental Evaluation
In this section, we present the results of an experimental
evaluation of the Data Morphing technique.

5.1 Experimental Setup

Data Morphing was implemented within an experimental
database system that we are developing, called Quickstep.
The Quickstep DBMS uses fixed-size pages for storing and
retrieving data from the disk. The DBMS allocates mem-
ory in pages that can then be saved to disk, and uses a
buffer manager to manage page caching in main memory.
If the database size is less than the buffer pool size, then
the entire database image is mapped to a contiguous space
in memory. In this mode, all disk pointers are swizzled to
direct memory pointers. In the experiments presented in
this section, the entire data set is always pinned in main
memory, so there is no disk I/O from swapping pages out
of the buffer. We expect that the performance improvement
of the DM technique to decrease as the amount of disk I/O
increases, but the DM technique is still applicable for use
on datasets that primarily reside in the main-memory.

Currently, Quickstep only supports file-level locks, and
updates are not logged. The code path in Quickstep is op-
timized for high-performance when the database primarily
resides in the main-memory. Quickstep executes fewer in-
structions per query and incurs fewer L1 instruction-cache
misses than commercial databases are expected to experi-
ence [3]. Quickstep uses cache-conscious hash and B+tree
index structures. Joins are evaluated using either nested-
loops or hash-join algorithms, and aggregates are evaluated
using a hash-based aggregate algorithm.

The experiments were performed on a 600 MHz, Intel
Pentium III processor, with 768MB of main memory. This
processor includes a two level cache hierarchy. There are
two first level caches, named L1-I and L1-D, that cache in-
structions and data respectively. There is also a single L2
cache that stores both instructions and data. The L1 caches
are 16KB, 4-way, set-associative caches with a 32 byte
line size. The L2 cache is a 512KB, 4-way, set-associative
cache, also with a 32 byte line size. The operating system
was Linux, kernel version 2.4.18.

The Pentium III processor includes two event counters
that are available for recording events, such as the number
of instructions executed. To access the event counters, the
PAPI library was used [8]. The events measured include:
the number of cycles executed, the number of instructions
executed, and the number of L2 cache misses incurred. In
the experimental results that follow, only the execution time
and the number of cache misses are reported.
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Figure 9: Baseline Performance Figure 10: Q1: Attribute Scaleup

The PAX storage model was implemented using the
Data Morphing slotted-pages, where each attribute is as-
signed to a separate zone. We chose to replace variable-
length attributes with fixed-length attributes, if the values
in the variable-length attribute are 32 bytes, or smaller, in
size. It is possible to concurrently prefetch cache-lines but
we do not implement this optimization. Adding cache-line
prefetching may improve the performance of both the PAX
storage model and the DM model, but prefetching cache
lines can hurt performance if done incorrectly [1]; there-
fore, this optimization is left for future work.

For all the experiments presented here, the Hill-Climb
algorithm produced the same partitions as the Naive algo-
rithm.

5.2 Queries

The following experiments used query Q1 and query Q2,
shown in Table 4. These queries select records from the
the Wisconsin Benchmark’s [14] TENK1 relation, scaled
to one million records. A non-clustered, B+-tree index is
constructed on the unique1 attribute of this relation.

To answer a given query, the database system’s query
optimizer selects an index scan operator over a sequen-
tial file scan operator if (1) there exists a predicate on the
unique1 attribute, and (2) the selectivity is estimated to
be 10%, or less. The index scan operator uses the B+-tree
that is constructed on the unique1 attribute.

# Query Access Plan
Q1 SELECT [varies] FROM Tenk1 Non-clustered

WHERE unique1 < 100, 000 index scan
Q2 SELECT [varies] FROM Tenk1 Sequential

WHERE unique1 < 200, 000 file scan

Table 4: Queries

Query Q1 selects 10% of the records in the TENK1 rela-
tion and accesses a variable number of attributes from each
selected record. Query Q2 selects 20% of the records in the
TENK1 relation. Using the criteria specified for the query
optimizer, Q1 is executed using an index scan operator and
Q2 is executed using a sequential file scan.

5.3 Experiment 1: Baseline Performance

In this experiment, we executed queries Q1 and Q2, shown
in Table 4. Query Q1 selects the first twelve attributes from
the relation TENK1, and query Q2 selects only the first at-
tribute from relation TENK1.

Figure 9 shows the execution time and cache misses
experienced for queries Q1 and Q2. Query Q1 typifies a
query that can be most efficiently executed when the data
is stored in the N-ary storage model. Query Q1 is executed
36% faster with the N-ary model than with the PAX model.
In addition, the N-ary storage model incurred 59% fewer
cache misses than PAX. By allocating the attributes in a
single zone, the DM storage model is similar to the N-ary
storage model; therefore, the performance of the query on
DM was very close to the performance on the N-ary model.

The PAX storage model provides cache efficient data
storage for plans that access a small number of attributes
from a high percentage of the records in a file. Query Q2
typifies such a query. As shown in Figure 9, query Q2
was 50% faster using PAX versus the N-ary storage model.
In addition, with PAX, this query experienced 88% fewer
cache misses than when using the N-ary storage model. By
allocating each attribute in its own zone, the DM storage
model is identical to the PAX storage model and shows
similar performance.

5.4 Experiment 2: Attribute Scale-up

We now examine the performance sensitivity of each stor-
age model when accessing an increasing number of at-
tributes from each selected record. For this analysis, we
again used queries Q1 and Q2, and changed the project list
to include an increasing number of randomly chosen at-
tributes.

Figure 10 shows the execution time and cache misses for
query Q1, as the number of attributes accessed increased.
When projecting eight attributes, the DM storage model re-
sulted in 29% faster evaluation as compared to PAX, and
incurred 60% fewer cache misses. Compared to the N-ary
model, DM performed 9% faster, with 33% fewer cache
misses.

The results shown in Figure 10 demonstrate that, for
an index scan operation, partitioning the attributes into se-
quential groups is more efficient than vertically decompos-
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Figure 11: Q2: Attribute Scaleup Figure 12: Workload Performance

ing each attribute into separate groups. The N-ary storage
model performs worse than the DM storage model because
non-sequential attributes have a higher probability of being
allocated to memory addresses that map to different cache
lines. The Data Morphing process improves the spatial lo-
cality of those non-sequential attributes by placing them in
a group where the attributes are stored in consecutive mem-
ory addresses.

Figure 11 shows the execution time and cache misses
for query Q2, as the number of attributes selected in-
creased. From the figure, when selecting eight attributes,
DM was 35% faster than N-ary and incurred 73% fewer
cache misses. DM was also faster than PAX by 28% and
incurred 61% fewer cache misses.

Figure 11 illustrates that vertically decomposing the at-
tributes into separate groups improves the data locality of
the attributes that are accessed during a sequential scan
of the file. But, as the number of projected attributes in-
creases, the vertical decomposition becomes less cache-
efficient. Data Morphing performs well as the number
of projected attributes increases because, unlike the PAX
model, the attributes can be stored in sequential memory,
and, unlike the N-ary model, the attributes can be grouped
into a single cache line.

5.5 Experiment 3: Query Workload

In this experiment, we examined the benefits of using the
Data Morphing process for a workload of queries. Work-
load W1 consists of two queries, Q1 and Q2 (Table 4).
Each query in this workload was executed a number of
times that is determined by the ratio of Q1 to Q2. The
ratios used in this experiment are (Q1%-Q2%): 20%-80%,
50%-50%, and 80%-20%. These ratios describe the num-
ber of times query Q1 and query Q2 were executed as a
percentage of the total number of queries executed.

Figure 12 shows the execution time and cache misses
for the database system when executing these two queries.
From the figures, the workload performance when using
DM was 25% faster than PAX, with 46% fewer cache
misses. Compared to the N-ary storage model, the perfor-
mance when using DM was 45% faster, with 82% fewer
cache misses. This experiment demonstrates the DM stor-
age technique’s ability to adapt to a dynamic query work-
load. By analyzing the workload, the Data Morphing tech-

nique found attribute partitions that increased the overall
spatial locality of the data and, as a result, improved the
performance of the system.

5.6 TPC-H Benchmark Queries

To further substantiate the performance results, we exam-
ined two queries from the TPC-H benchmark: query 6 and
query 12. Both queries were evaluated using a sequential
file scan. Query 12 also required a join operation between
two tables. The join operation was executed using a hash
join.

Figure 13 shows the execution time and the number of
cache misses incurred during the evaluation of each query.
From the figure, for query 6, using DM was 9% faster than
PAX and incurred 18% fewer cache misses. Compared to
N-ary, the DM storage resulted in a 41% improvement in
query response time and incurred 80% fewer cache misses.
For query 12, the DM model resulted in a 6% improvement
in response time over PAX and incurred 5% fewer cache
misses. For this same query, DM was 29% faster than N-
ary and incurred 64% fewer cache misses.

The results of both query 6 and query 12 are similar to
the results of executing query Q2 in Experiment 2 (Fig-
ure 11). In Experiment 2, we show that PAX and Data
Morphing perform similarly when executing a sequential
file scan and projecting only a few attributes from every
selected record.

5.7 Bulkload Time

We also measured the effect of the various storage mod-
els on the time it takes to bulkload the TENK1 relation.
The bulkloading time for DM pages never exceeded 10%
of the time to bulkload that same relation into the N-ary
format. As our page structure is very similar to the PAX
page structure, these results are similar to the bulkloading
performance of PAX [3]; in the interest of space, we omit
this graph.

5.8 Algorithm Performance

We verified the execution time of the two partitioning al-
gorithms by calculating an attribute partition for a relation,
named TENKX, that is similar to the TENK1 relation but
contains an increasing number of attributes. For input to
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the algorithms, we modeled queries Q1 and Q2 operating
on the TENKX relation. Query Q1 projects all attributes
from 10% of the records in TENKX. Query Q2 projects only
the first attribute from 100% of the records in TENKX. We
varied the number of attributes in relation TENKX from 2–
22 attributes. Figure 14 shows the resulting execution time
for both algorithms on a logarithmic scale. As expected,
the Naive algorithm was much more expensive to compute
than the Hill-Climb algorithm. When the relation contained
more than 16 attributes, the Naive algorithm became pro-
hibitively expensive. While the Hill-Climb algorithm was
also exponential in time, the algorithm performed well for
a much larger relation size.

5.9 Summary

In this section, we have experimentally evaluated the ef-
fects of using the N-ary, PAX, and DM storage models.
We have demonstrated the effectiveness of the DM stor-
age model over the N-ary and the PAX storage models.
We have also shown that, for a heterogeneous workload of
queries, neither the PAX nor the N-ary storage models pro-
vide the most cache-efficient storage model. The DM stor-
age model is more efficient in such cases. Finally, we note
that the cache-miss latency is expected to increase over the
next several years, so the performance improvement from
using Data Morphing will increase relative to PAX and the
N-ary storage model.

6 Related Work

The Decomposition Storage Model (DSM) was proposed
as an alternative to the N-ary Storage Model in [12]. DSM
decomposes the attributes of a relation into sub-relations,
with one attribute per sub-relation. DSM requires expen-
sive sub-relation joins to access attributes that are con-
tained in different sub-relations. Monet is a main-memory
database system that utilizes DSM to reduce the need for
main-memory bandwidth [6, 7].

An alternative to the N-ary storage model and DSM
was introduced by Ailamaki, et al., called PAX for Parti-
tion Attributes Across [2]. PAX is a page level decompo-
sition model where each attribute is stored in sub-divided
regions of a page, called mini-pages. Unlike DSM, PAX
does not require expensive reconstruction joins to access

multiple attributes. The PAX storage model was found to
significantly improve query execution time for sequential
file scans because of the improved data locality. Data Mor-
phing uses a page structure similar to PAX for decompos-
ing attributes, but Data Morphing provides a more general
storage model by allowing records to be decomposed into
groups of attributes.

Decomposing a single relation into multiple relations
to increase system performance has been studied in [18].
The proposed algorithm requires the computation of an at-
tribute affinity matrix that records the pair-wise frequency
of accessing the attributes. After decomposing the relation
into multiple relations, an expensive join operation must be
used to retrieve the record. We are proposing a page-level
decomposition of a relation that does not require any addi-
tional join operation for retrieving the decomposed records.

Data locality techniques for improving cache utilization
has been studied in [9, 11, 22]. Data Morphing takes ad-
vantage of data locality by analyzing the access pattern of
the attributes in a relation and then grouping attributes with
similar access patterns. Data Morphing is the only system
that we are aware of that dynamically adjusts the storage
model to account for access locality.

7 Conclusions and Future Work

Processor cache performance is critical to DBMSs in which
the data is primarily main memory resident. In this paper,
we have presented a technique, called Data Morphing, for
improving the utilization of the processor cache by dynam-
ically reorganizing the attributes of a record in memory.
Through this reorganization, attributes that are accessed to-
gether are collocated in the same cache line, improving
performance through a reduction in the number of cache
misses.

Through experimental analysis, we have shown that the
Data Morphing technique reduces the number of cache
misses incurred during query execution; as a direct re-
sult, the database system experiences better overall per-
formance. We have also shown that the partitioning algo-
rithms provide cache-efficient organizations for the data,
performing up to 45% faster than the N-ary storage model
and up to 25% faster than the PAX storage model when
executing a workload of queries.



Our experimental analysis was based on querying
datasets that reside entirely in the main memory. In fu-
ture work, we will examine the system performance when
executing queries on much larger datasets. Increasing the
size of the dataset will increase the amount of disk accesses
required in executing the query workload. Similar to PAX,
we expect the performance benefits of Data Morphing to
reduce as the cost of servicing disk I/O becomes the domi-
nating cost.

In addition, we have only examined Data Morphing as
applied to the traditional slotted page of records. One pos-
sible direction for this work is to incorporate it into native
XML databases, such as Natix [16]. In Natix, the trees that
represent XML documents are decomposed into clusters of
nodes, and each cluster is treated as a record. A decomposi-
tion algorithm is used to calculate the composition of each
cluster, as this composition is critical to the performance of
the query workload. Since accessing a node in a cluster is
analogous to accessing the attribute of a record, we expect
that the Data Morphing technique can be used to provide
cache-efficient layouts for the storage of these clusters.
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