
ADAPT: Design assistance for iterative analog synthesis

Chieh Lin, Tino Heijmen, Jan ter Maten, Marq Kole

Philips Research Laboratories, Eindhoven, The Netherlands; Email: chieh.lin@philips.com

Abstract

This paper presents an analog circuit design assistance tool called Adapt. The tool can perform automatic circuit

sizing over a wide range of heterogeneous design parameters. We present Adapt’s architecture and the design flow,

discuss important user-interface aspects of the tool, disclose details on the optimization algorithms incorporated

in the tool, and demonstrate the practical strength of the tool. The industrial-strength capabilities of the tool are

showcased using an RF low-noise amplifier that is used in Bluetooth applications.

1 Introduction

Although the current trend in integrated circuit design

is to implement as much as possible of the functional-

ity of an integrated system in the digital domain, ana-

log circuits are still indispensable to interface to the real

world. A clear example is the development in RF appli-

cations for mobile and wireless communications. Apart

from this, the design of any circuit at the transistor level

is basically analog circuit design and that includes the

design of digital standard cells used in digital circuitry.

Designing analog and RF building blocks is a time-

consuming and complicated task. Starting from a num-

ber of specifications, a designer has to use his experi-

ence and creativity to select or develop a topology that

might be able to meet those specifications. From the

chosen circuit topology he has to determine how and

under which conditions the specifications can be met.

This is normally accomplished by selecting the right

values for all components available in the circuit. In

the design of integrated circuits the designer has rela-

tively much freedom in the selection of possible values

through the related geometrical dimensions of the com-

ponents, for instance the width and length of MOS tran-

sistors and poly resistors, the emitter area of bipolars,

etc. Therefore this is also called the sizing of the de-

sign. Next to component values also the values of bias

currents and voltages (including the supplies) should be

considered design parameters.

Manual sizing of the design is a tedious task, but gives

a lot of insight into circuit behavior, which might be

useful at a later stage of the design process. As the hu-

man designer knows which specifications are the most

important or the most difficult to meet, he can keep

possible design solutions in mind for every specifica-

tion. The implications of this design process are clear.

Firstly, analog design requires a lot of experience of

the designer. Secondly, automating this task is both

knowledge and computation intensive. Still, the main

reason one would like to automate this task is time re-

duction of analog building block development. Also,

with the scarcity of experienced analog designers one

would like such a designer to focus on the creative part

of analog circuit design and leave the tedious and less

creative part of it to a computer.

In the past 15 or so years quite a number of develop-

ments into the area of analog synthesis have appeared.

Where initial efforts focused on the automation of the

complete analog design process, the more recent results

offer help at particular points in the process: circuit siz-

ing, design centering, design space exploration. Other

important aspects of analog synthesis are automated

topology selection and layout generation. Although a

lot of progress has been made in the past decades, tools

in the latter areas are not yet mature enough, proba-

bly due to more difficult challenges, compared to cir-

cuit optimization tools. In this paper we employ analog

synthesis to cover only circuit optimization.

Within our group a tool called Adapt has been devel-

oped which focuses on circuit sizing. In Section 2 we

present Adapt in the context of previous analog synthe-

sis developments. We will discuss its interaction with

the user, which is a vital point of each tool; how does

the user enter his design problem, how does he inter-

act with it, and how is it embedded in the complete

design flow. In Section 3 we reveal which optimiza-

tion algorithms Adapt uses for its operation. A new

algorithm, developed for Adapt, is discussed in detail.

Section 4 demonstrates the true power of Adapt; a de-

manding contemporary circuit has been optimized and,

consequently, has led to a considerable improvement

compared to manual design. Finally, in Section 5 we

wrap up with a few conclusions and directions for fu-

ture research.

2 Adapt: Analog Synthesis

Whereas digital design is highly automated and relies

heavily on synthesis tools, the bulk of analog design

is done by hand and requires a significant amount of

design effort even though analog parts commonly oc-

cupy only a relatively small part of the silicon area in

the final design. The main reason for this design effort

is that analog design is knowledge-intensive due to the

strongly non-linear nature of the performance measures

and the high sensitivity of these measures to variations

in the design parameters, resulting in design problems

with complex trade-offs. In order to decrease the de-

sign time for analog design and to be able to handle in-



creasingly complex circuits and design processes, sig-

nificant effort has been spent during the past decades

on the automation of analog design [4].

In the past, a number of approaches have been pro-

posed to deal with the problem of automatically sizing

the circuit, sometimes in combination with automated

topology selection. These approaches can be roughly

categorized into knowledge-based methods, using de-

sign knowledge and heuristics, and optimization-based

methods, applying numerical programming techniques.

The first generation of knowledge-based tools for ana-

log circuit synthesis were presented in the second

half of the 1980s; programs such as BLADES [3],

IDAC [1], and OASYS [5]. However, all these pro-

grams suffered from the problem that the heuristic

knowledge of an analog designer is difficult to acquire

explicitly. Not only was it a very time-consuming

process to encode design knowledge for a given set

of specifications, but this design knowledge also had

a limited lifetime. The high rate of progress in pro-

cess technologies made knowledge acquired yesteryear

less an obviously good choice for current technologies.

Therefore, the application of knowledge-based analog

synthesis approaches has been limited.

Starting from the late 1980s a second generation of

methods emerged that apply optimization techniques to

determine the values of the design parameters in order

to optimize the circuit performance for a given set of

specification constraints. These methods are more flex-

ible than the knowledge-based approaches and can be

extended more easily to new circuit types. Two subcat-

egories can be distinguished: the equation-based and

the simulation-based approaches. The equation-based

methods use analytic design equations to describe the

circuit performance. The advantages of the equation-

based approach are the short evaluation time and the

flexibility. The main drawback is that analytical mod-

els have to be used to derive the design equations and,

despite recent progress in symbolic circuit analysis, not

all design characteristics can be easily captured in an-

alytic equations with sufficient accuracy. These prob-

lems can be avoided by applying a simulation-based

approach where a circuit analysis tool is executed in

the inner loop of the optimization to determine the cir-

cuit performance. Although this used to be computa-

tionally too expensive, with the exponential increase

of computation power this approach has become in-

creasingly favorable. Especially for small and medium-

sized circuits the relatively high evaluation cost of nu-

merical simulation is not an obstacle. Tools such as

DELIGHT.SPICE, FRIDGE, ASTRX/OBLX, MAEL-

STROM, and ANACONDA (see [4] for an overview)

are examples of simulation-based tools.

Thus, although automated circuit sizing is not by far

as commonly used as, for example circuit simulation,

it has gained increasing interest in the analog design

process during the last decades. However, a key diffi-

culty is that the analog design problem, with all the in-

volved design knowledge and heuristics, has to be for-

mulated as an optimization problem such that the final

optimized results are acceptable to the designer. This

often presents a high threshold for using a circuit-sizing

tool.

2.1 Adapt Flow

In Fig. 1 the Adapt design cycle is shown as a continu-

ous loop. It is assumed that the designer has selected an

appropriate circuit topology, i.e. it might be able to ful-

fill all specifications once properly sized (“unoptimized

netlist”). At the top left side of the figure, the designer

enters the design cycle by defining the circuit perfor-

mance targets (“circuit characteristic”, “operator”, “tar-

get”). Also, each of these circuit specifications have

to be put in one or more priority groups, which is ex-

plained shortly.

characteristic

circuit

priority

simulations

groups

optimize

variables

compute

instance

parameter

values

evaluate

function

cost

function

cost

construct

actions

optimization

algorithmic

perform

circuit

characteristics

derive

specifications

list

operator

target

adapt

netlist(s)

list

netlist

simulation(s)

circuit

unoptimized

Fig. 1: The Adapt design cycle.

Once these inputs have been handled, Adapt starts to

construct the cost function for this particular optimiza-

tion problem. Based on sampled values around the

given initial solution, the optimization routine will de-

termine the most likely direction of a better solution

and provide a new set of values for the optimize vari-

ables. Optimize variables are the basic parameters the

optimization routine operates on. It is better to use op-

timize variables rather than the design parameters di-

rectly as this will allow a designer to specify a number

of design parameters that are correlated, for instance

for transistor matching purposes. This approach clearly

reduces the number of independent optimize param-

eters which has a positive effect on overall run-time.

From the optimize variables, the design parameters (in-

stance parameter values) are calculated. These can now

be inserted in the original netlist at the appropriate po-

sitions. Next, the designer needs to enter a so-called

simulations list: a list of simulations to be carried out

for the circuit to be able to obtain the simulation data

necessary to calculate the design characteristics. This

might be a number of transient simulations for a digi-

tal cell, but may also be a number of complicated RF

simulations for an RF mixer circuit or a VCO. Us-

ing this simulations list, a set of netlists is produced



and the simulation job is fed to the simulator. Using

the user-defined specifications list, Adapt will derive

from the simulation output all required information to

compute the circuit characteristics and quantify them

in terms of the given specifications. The comparison of

the design characteristics with the design specifications

is done through a new evaluation of the cost function.

The quality of the design characteristics is quantified

by the cost function value and this, in turn, guides the

optimization algorithm in choosing the next adaptation

of the optimize variables. Now we have completed a

single iteration of the Adapt design cycle. Typically

the optimization algorithm iterates this process until a

predefined number of evaluations has been performed,

(non-)convergence has been detected or the user has

stopped the program.

Adapt can be highly interactive. It gives feedback in

a graphical form and easily allows for exploration of

any circuit topology, enabling the designer to build

up design knowledge when working with the tool.

Adapt uses an external numerical circuit simulator and

a derivative-free nonlinear constrained optimization al-

gorithm.

Even though the underlying methods in Adapt are op-

timization methods, the program hides the mathemati-

cal complexity implied by these methods from the user.

This is achieved by automatically formulating the opti-

mization problem in a similar way as is done in a man-

ual design process. It provides a user interface that uses

circuit characteristics and design specifications to com-

municate with the user. This interface is highly inter-

active and has been designed to be as close as possi-

ble to the design environment the designer is comfort-

able with. It leaves the maximum amount of freedom

to control the design process as desired.

One aspect of optimization that often proves a great

barrier to entry of potentially interested designers is

the formulation of a mathematical optimization prob-

lem. This involves setting up a cost function, which is

specific for each problem and which guides the opti-

mization in the desired direction. Adapt provides auto-

mated generation of the cost function based on a simple

and intuitive set of operators, familiar to analog design-

ers. The current approach, evolved from many years of

user-feedback, is intuitive and straightforward, hiding

as many optimization-specific details as possible.

To analog designers some specifications are more im-

portant than others. For instance, a functional require-

ment such as phase margin has higher priority than

minimizing the power consumption. Only once the

specification of higher importance has been satisfied

should the sizing process try to meet the specification

of the lower priority item. This process has been im-

plemented in Adapt through so-called priority groups.

The optimization algorithm will try to meet the spec-

ifications in the higher priority groups first, and opti-

mizes the lower priority groups while constraining the

achieved higher priority specifications not to fall below

their accepted values for the remainder of the optimiza-

tion process. In practice the designer will put the func-

tional requirements at higher priority groups and global

optimization for power and area in the lower priority

groups.

2.2 Adapt User Interface

Adapt intends to help an analog designer tune a circuit

with a given topology to fit its specifications. An im-

portant perceived benefit is that it allows the designer

to use his own experience to guide the tool in the right

direction and arrive at a design that meets the specifi-

cations. The main contribution required from the de-

signer is simulation and design knowledge. The pro-

gram is a design assistant that gives the user full con-

trol over the design, the specifications, and the way in

which the specifications should be met.

To measure the performance of the design, a so-called

test-bench is required. This test-bench is made up from

three parts: a test-rig, the specifications list, and the

simulations list. The latter two were discussed with the

Adapt design cycle; the first requires some explanation.

A test-rig consists of extra circuitry (such as voltage

and current supplies, loads at outputs, bias sources,

etc.) that is added to the selected circuit topology in

order to allow simulations specified in the simulations

list to be performed.

An interesting application of Adapt is the migration of

an existing design to a new process technology. For this

approach the test-bench need not be changed. Indeed,

it is the centerpiece that allows one to test the specifi-

cations for the new design in the same way that they

were derived for the old design. It is generally a good

idea to construct a test-bench in a process-independent

manner, keeping reuse in mind.

An important consideration for analog synthesis is that

the design process mimics as much as possible the

design style and environment the user is comfortable

with. That means integration into the common de-

sign environment (such as Cadence Design Frame-

work II), support of a simulator qualified for the job

(an industrial-strength simulator such as Avant! Star-

Hspice), and access to all necessary output facilities the

user would use during the similar manual process.

At the moment both the Philips in-house analog circuit

simulator Pstar can be used as well as Cadence’s Spec-

tre simulator. Aimed at the design of small or medium-

sized building blocks such as opamps, comparators,

logic gates, VCOs, mixers, Adapt has already been ap-

plied successfully at several design centers throughout

Philips Semiconductors.

3 Optimization Algorithms

Adapt transforms a design problem into a series of op-

timization problems. Candidate algorithms for solving



these have to satisfy a number of criteria:� The algorithm should be capable of handling

nonlinear constrained optimization problems.� The number of required function evaluations

should be as low as possible, because a full cir-

cuit simulation is performed in each optimization

step.� The algorithm should be truly derivative-free.

Derivatives of the performance functions with

respect to changes in the design variables are

not provided by the simulator. Finite-difference

schemes cannot be used, because the function

values are contaminated by numerical noise.

Adapt applies two different optimization algorithms

that satisfy these conditions. The first combines the

Nelder–Mead (NM) method for unconstrained opti-

mization with a quadratic penalty function to include

constraints. The second uses an augmented Lagrangian

as a merit function, which is minimized by a grid-based

trust-region approach. The latter algorithm has been

developed specifically for Adapt.

The search for the optimal values of the optimization

variables (OVs) can be formulated as a nonlinear con-

strained optimization problem in n variables with m
constraints,minimize f(x); x = (x1; x2; : : : ; xn);subjet to i(x) � 0; i = 1; : : : ;m;ai � xi � bi; i = 1; : : : ; n; (1)

where xi denotes the ith OV, with lower and upper

bounds ai and bi, respectively. The values of the objec-

tive function f(x) and the constraint functions i(x)
are obtained from circuit simulation. Equality con-

straints are not included in Eq. (1) because Adapt needs

and supports only inequality constraints. However, the

algorithms could be easily adjusted to accommodate to

problems including equality constraints.

The performance and stability of the optimization al-

gorithms are affected by the scaling of the OVs and

the values of the merit functions. Several transforma-

tion types are of interest in a circuit sizing tool. Linear

transformation is most suitable for OVs that vary only

over a small range. On the other hand, OVs with large

ranges are best scaled by a logarithmic transformation.

However, if the variable or function is not strictly posi-

tive or negative, a transformation has to be defined that

behaves logarithmically in the infinite limit, but that

can also be applied to variables of indefinite sign. This

kind of transformation is called quasi-logarithmic. All

three scaling types are used in Adapt.

The NM algorithm has been widely used in practical

applications because of its simplicity and robustness.

However, it suffers from several drawbacks, such as

moderate performance, lack of a solid theoretical ba-

sis, and danger of degeneracy of the simplex. Because

the total process time is mainly determined by the num-

ber of evaluations, the relatively poor performance of

the NM algorithm can be a problem in the optimiza-

tion of larger designs. Therefore, an alternative algo-

rithm, named Gridmom, was developed for application

in Adapt. This algorithm is treated below. For a more

detailed discussion we refer to a forthcoming paper [6].

3.1 Method of Multipliers

The Gridmom algorithm applies a sequential mini-

mization of an augmented Lagrangianpenalty func-

tion. By introducing a slack variable si � 0, each

inequality constraint in Eq. (1) can be rewritten as an

equality: i(x) + si = 0. The augmented Lagrangian

penalty function can then be written as,�ALAG;s(x;�;�; s) = (2)f(x) + mXi=1 ��i[i(x) + si℄ + �i[i(x) + si℄2	 ;
where the parameters �i and �i are Lagrange multi-

pliers and penalty factors, respectively. Minimization

over the slack variables si yields a simplified penalty

function,�ALAG(x;�;�) = (3)f(x) + mXi=1 (�imax�i(x)� �i2�i ; 0�2 � �2i4�i) :
In contrast with the quadratic penalty function, an ex-

act solution of the augmented Lagrangian can be found

for finite values of �i, provided that these values are

sufficiently large and that the values of �i are simulta-

neously optimized. If these conditions are met, opti-

mizing the penalty function of Eq. (3) results in a com-

bined set of variable values x�i and multipliers ��i that

correspond to a solution of Eq. (1), independent of the

chosen values of �i.
The algorithm uses the method of multipliers(MOM)

to solve the problem of Eq. (1), with the augmented

Lagrangian of Eq. (3) as a merit function [6]. After a

counter k is initialized (k = 1), the variables xi and

the penalty factors �i are set to their initial values x(0)i
and �(0)i , respectively, and the multipliers �i are set to�(0)i = 0. The values of �i and �i are fixed and the

merit function,�(k)ALAG(x) = �ALAG(x;� = �(k�1);� = �(k�1));
(4)

is minimized, resulting in the argument x(k) for which

the function is minimal,x(k) = argminx �(k)ALAG(x): (5)

The values of the multipliers are updated using x(k),�(k)i = �(k�1)i � 2max[�(k�1)i i(x(k)); �(k�1)i ℄: (6)



The updated multiplier values define a new merit func-

tion. The value of k is incremented and �(k)ALAG(x) is

again minimized, giving a new solution x(k). Then, ei-
ther the multiplier �i is updated, according to Eq. (6),

or the corresponding penalty factor �i is increased.

Which of the two parameters is adjusted depends on the

violation of the corresponding constraint i(x). The se-

quence of minimizing the merit function of Eq. (3) and

updating the parameters �i and �i is repeated until the

termination criteria have been satisfied.

A combined set of variable values x� and multipliers�� is regarded as a solution of Eq. (1), if the first-

order Karush–Kuhn–Tucker (KKT) conditions are ful-

filled. The algorithm is also ended if the maximum al-

lowed number of subproblems has been exceeded with-

out finding a solution. It is then left to the user to accept

the intermediate results or to modify the input specifi-

cations and restart the optimization.

3.2 Trust-Region Minimization

The original nonlinear constrained problem is con-

verted into a sequence of bound-constrained subprob-

lems, as discussed above. Each subproblem involves

the minimization of a merit function �(k)ALAG(x). To

this purpose, an algorithm is applied that is similar to

the one reported in [2]. This algorithm uses a grid

and applies a trust-region approach that approximates�(k)ALAG(x) by a quadratic model function,q(x) = a+gT (x�xref)+ 12(x�xref)TG (x�xref);
(7)

which is minimized within a trust-regionB with radius� centered at the reference point xref ,B = fx 2 Rn j kx� xrefk1 � � g: (8)

In this region, q(x) is assumed to be a good estimate

of the true merit function. Because the infinite normkxk1 � maxi jxij is used, the trust-region has a

square or (hyper-)cubic shape. Evaluation of the merit

function is restricted to points on a grid. Initially the

grid is relatively coarse, but it is refined during the op-

timization process. The application of successively re-

fined grids prevents the clustering of evaluation points

in an early stage.

The algorithm for minimizing �(k)ALAG(x) distinguishes

three phases: a starting phase, a descent phase, and a

refinement-checkphase. After the starting phase, the

descent and refinement-check phases are alternately ex-

ecuted until the termination criteria have been fulfilled.

The details of the starting and descent phases primarily

determine the progress of the algorithm. On the other

hand, the properties of the refinement-check phase are

mainly responsible for its robustness and convergence

behavior.

During the starting phase, the merit function is evalu-

ated at as many points as are necessary to enable the

construction of an approximating function. The Grid-

mom algorithm includes two different starting phase

methods: one applying the Hooke–Jeeves (HJ) algo-

rithm, the other using the Uniform Design (UD) ap-

proach. The second method is based on number theory

and generates a uniform sample point distribution in the

feasible domain [6].

The trust-region approach is applied in the descent
phase, where the model function q(x) is constructed

by least-squares fitting to a set of points at which the

merit function has previously been evaluated. The se-

lection criterion for the points in this set is the distance

from the reference point. The descent phase is entered

as soon as possible, because progress is assumed to

be faster than during the starting phase. Initially, the

descent phase applies a linear approximating function.

When more evaluations have been performed and the

number of available fitting points increases, the linear

model is replaced by a quadratic model with a diago-

nal Hessian G. When sufficient evaluation points are

available, the algorithm switches to a quadratic func-

tion with a full Hessian.

An accurate estimate of the gradient g is more crucial

than an accurate approximation of the Hessian G in

Eq. (7). Therefore, the accuracy of the gradient is im-

proved locally by performing a second least-squares fit,

with a fixed Hessian obtained from the first fit, using a

small number of evaluation points close to xref .
The approximating function is minimized within the

trust-region and the merit function is evaluated at the

feasible grid point nearest to the minimum of the ap-

proximating function. The trust-region radius and the

reference point are updated and a new approximating

function is constructed. This process is repeated un-

til either a grid point is proposed at which the merit

function has already been evaluated or until a maxi-

mum number of successive iterations have not resulted

in an improved estimate of the optimum.

The update of the trust-region radius � is based on the

change in the value of the true merit function compared

to the reduction predicted by the approximating func-

tion. The criterion for updating the reference point xref
is determined by a similar ratio.

The refinement-check phasedetermines whether the

grid should be refined. To this purpose a linear approx-

imating function is fitted to a set of nearby evaluation

points and minimized. If necessary for the construction

of a non-singular linear function, the merit function is

evaluated at a number of additional points. The algo-

rithm returns to the descent phase if the grid point clos-

est to the minimum of the linear model is a better es-

timate of the optimum than the current approximation.

Otherwise, if new evaluation points have been attained

during the refinement-check phase, a quadratic model

function is constructed and minimized within the trust-

regionB of Eq. (8), just as in the descent phase. If these

efforts do not result in a better estimate of the optimum,

the grid spacing is reduced.



The current estimate of the optimum is accepted as the

solution of the subproblem when a stationary pointof

the merit function has been obtained. Criteria with re-

spect to both the variable values and the function val-

ues of the augmented Lagrangian are applied to test for

a stationary point. The algorithm is also terminated af-

ter a maximum number of function evaluations or when

the grid has been refined a maximum number of times.

Although each minimization of the current augmented

Lagrangian is an optimization problem on its own, it is

possible to reusethe values of the objective and con-

straint functions obtained when solving previous sub-

problems. The values of f(x) and i(x) computed

for previous evaluation points are stored (an evaluation

point is defined as a set of OV values). This information

is used to compute the value of the current augmented

Lagrangian for the stored evaluation points, given the

current values of the Lagrange multipliers �i and the

penalty factors �i. Thus, a starting set of data for the

construction of approximating functions is available af-

ter the first subproblem has been solved. This reuse

of simulation data can significantly increase the perfor-

mance of the MOM approach.

4 A Design Example

In this section we demonstrate the strength of Adapt

by discussing some of the results we have obtained re-

cently on contemporary circuits. The demonstration

vehicle is an RF low-noise amplifier that is used in

Bluetooth applications.

Due to intellectual property constraints, we are unable

to disclose details on the circuit topology.

4.1 RF Low-Noise Amplifier

Every analog circuit designer knows that typically

many specification trade-offs are possible, some of

which are exceptionally attractive. This case shows that

Adapt can successfully find one of these special cases

for an RF low-noise amplifier circuit.

While we increase 40% of the LNA power consump-

tion (including a mirror suppression filter), we can gain

more than 3dB in noise figure value, obtain 2dBv in-

crease in gain, and reduce third order harmonic distor-

tion by more than 3dBv. This is a significant improve-

ment of the manual design.

This design has 14 optimize variables, 34 design pa-

rameters, and 4 specifications for gain, power, linearity

and noise. Although the number of optimize variables

is quite modest, this particular design required the use

of advanced RF analysis methods that are much more

computationally expensive than conventional analyses.

Therefore, it might be considered a challenge to formu-

late the optimization problem in such a way as to find a

good solution in a reasonable amount of time. From the

experiments, we observed that Adapt (using Gridmom)

is very robust and the overall run-time does not increase

dramatically as the problem size increases (number of

specs, number of optimize variables, number of simula-

tions). The optimization run-time was somewhat more

than one hour for 111 simulation cycles (see Fig. 1) on

a standard HP9000/800 UNIX server.

5 Conclusions and Directions

We have shown that Adapt is a true analog design as-

sistance that can help a designer find better circuit so-

lutions in less time. Adapt is very well integrated in

the overall design flow using the Cadence DF II en-

vironment. It exhibits a friendly graphical user inter-

face that shields the designer from non-relevant algo-

rithmic aspects. Consequently, setting up the tool for

a specific design problem is quite straightforward. The

new Gridmom algorithm in Adapt has been discussed.

Moreover, the industrial-strength power of Adapt has

been demonstrated by the improved result of an RF

low-noise amplifier for Bluetooth applications.

There are still points for improvements that we are con-

sidering. Some of those are: efficient determination

of solution robustness and better handling of hetero-

geneous test-benches. Last but not least, taking into

account layout effects during optimization is of major

importance, especially for RF circuits.

References

[1] Degrauwe, M.G.R., Goffart, B.L.A.G., Meixenberger, C.,

Pierre, M.L.A., Litsios, J.B., Rijmenants, J., Nys, O.J.A.P., Di-

jkstra, E., Joss, B., Meyvaert, M.K.C.M., Schwarz, T.R., Par-

doen, M.D., “Toward an analog system design environment”,

IEEE J. SSC, Vol. 24 (1989), pp. 659–671.

[2] Elster, C., and Neumaier, A., “A Grid Algorithm for Bound

Constrained Optimization of Noisy Functions”, IMA J. Numer.
Anal., Vol. 15 (1995), pp. 585–608.

[3] El-Turky, F., and Perry, E.E., “BLADES: an artificial intelli-

gence approach to analog circuit design”, IEEE Trans. CAD,
Vol. 8 (1989), pp. 680–692.

[4] Gielen, G.G.E., and Rutenbar, R.A., “Computer-Aided Design

of Analog and Mixed-Signal Integrated Circuits”, Proc. IEEE,

vol. 88 (2000), pp. 1825–1852.

[5] Harjani, R., “OASYS: a framework for analog circuit synthe-

sis”, IEEE Trans. CAD, Vol. 8 (1989), pp. 1247–1266.

[6] Heijmen, T.G.A., Kevenaar, T.A.M., Pranger, H.-J., “Adapt: an

Optimization-Based Analog Design Assistance Tool”, submit-

ted for publication.

[7] Kole, M., Heijmen, T., Kevenaar, T., Pranger, H.-J., Sevat, M.,

“Adapt, an interactive tool for analog synthesis”, Proc. SAME
Conf., Sophia Antipolis, France, 2001.


