
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Tutorial Implementation of the Diffusion
Algorithmic Skeleton with the BSMLlib Library

Frederic LOULERGUE and Zhenjiang HU and
Kazuhiko KAKEHI

METR 2004–06 February 2004

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein are
maintained by the authors or by other copyright holders, notwithstanding that they have of-
fered their works here electronically. It is understood that all persons copying this information
will adhere to the terms and constraints invoked by each author’s copyright. These works
may not be reposted without the explicit permission of the copyright holder.

A Tutorial Implementation of the Diffusion
Algorithmic Skeleton with the BSMLLIB Library

Frédéric Loulergue ∗ Zhenjiang Hu† Kazuhiko Kakehi†

February 5, 2004

Abstract

Skeleton programming enables programmers to build parallel programs
easier by providing efficient ready-made parallel algorithms. The diffusion
skeleton was proposed (associated with a method for program derivation)
to abstract a good combination of primitive skeletons, such as map, parallel
reduction and parallel prefix sum (scan).

The BSMLLIB library whose design is based on formal semantics is a
library for the Objective Caml language to support Bulk Synchronous Paral-
lelism. It offers a small set of primitives which permits to write any deter-
ministic BSP algorithm.

In this paper we study the implementation of the diffusion parallel skele-
ton using the BSMLLIB library in a tutorial way.

1 Introduction

With the increasing popularity of parallel programming environments such as PC
cluster, more and more people, including those who have little knowledge of par-
allel architecture and parallel programming, are hoping to write parallel programs.
This situation eagerly calls for models and methodologies which can assist pro-
gramming parallel computers effectively and correctly.

The design of parallel programming languages is a trade-off between:

• the possibility of expressing parallel features necessary for predictable ef-
ficiency, but which make programs more difficult to write, to prove and to
port

∗Laboratory of Algorithms, Complexity and Logic, University Paris XII, Val-de-Marne, 61, av-
enue du g én éral de Gaulle, 94010 Cr éteil cedex – France, loulergue@univ-paris12.fr

† Information Processing Laboratory, Department of Mathematical Informatics/Department
of Mathematical Engineering and Information Physics, The University of Tokyo,
{hu,kaz}@mist.i.u-tokyo.ac.jp

1

• the abstraction of such features that are necessary to make parallel program-
ming easier, but which must not hinder efficiency and performance predic-
tion.

The data parallel model turns out to be one of the most successful ones for
programming massively parallel computers. To support parallel programming, this
model basically consists of two parts:

• a parallel data structure to model a uniform collection of data which can be
organized in a way that each element can be manipulated in parallel; and

• a fixed set of parallel skeletons on the parallel data structure to abstract par-
allel structures of interest, which can be used as building blocks to write
parallel programs.

Typically, these skeletons include element-wise arithmetic and logic opera-
tions, reductions, prescans, and data broadcasting. This model not only provides
programmers an easily understandable view of a single execution stream of a par-
allel program, but also makes the parallelizing process easier because of explicit
parallelism of the skeletons.

Parallel skeletons are often too primitive to describe programs solving a bit
complicated problems. In order to make programs efficients, programmers are
required to choose appropriate primitive skeletons and combine them in a suitable
way. It is not an easy task, since programming is apt to become a process with
much a trial and error.

To overcome this problem, we proposed a parallel skeleton, namely diffusion
skeleton diff [2]. This skeleton is derived from the Diffusion Theorem [19] and is
defined in terms of primitive skeletons map, reduce and scan. It abstracts a ‘good’
combination of parallel primitives, and thanks to the underlying theorem, recursive
functions defined naturally in some specific from over recursive data structure can
be, under some conditions, turned into the form using the diff skeleton.

In order to obtain universal parallel languages where execution cost can be
easily determined from the source code (in this context, cost means the estimate of
parallel execution time), we use explicit processes corresponding to the processors
of the parallel machine. Bulk Synchronous Parallel (BSP) computing [28, 33] is a
parallel programming model which uses explicit processes, offers a high degree of
abstraction and yet, allows portable and predictable performance on a wide variety
of architectures.

An operational approach has led to a BSP λ-calculus that is confluent and uni-
versal for BSP algorithms [27, 21, 24], and to a library of bulk synchronous prim-
itives for the Objective Caml [20, 7, 30] language which is sufficiently expressive
and allows the prediction of execution times [16, 23].

This framework is a good trade-off for parallel programming because:

• the defined calculus is a confluent calculus so:

2

– one can design purely functional parallel languages from it. Without
side-effects, programs are easier to prove [10, 11], and to re-use (the
semantics is compositional)

– we can choose any evaluation strategy for the language. An eager lan-
guage allows good performances.

• this calculus is based on BSP operations, so programs are easy to port, their
costs can be predicted and are also portable because they are parametrized
by the BSP parameters of the target architecture.

Bulk Synchronous Parallel ML or BSML is our extension of ML for programming
direct-mode parallel BSP algorithms as functional programs. A BSP algorithm is
said to be in direct mode [14] when its physical process structure is made explicit.
Such algorithms offer predictable and scalable performance and BSML expresses
them with a small set of primitives taken from the confluent BSλ-calculus: a par-
allel constructor, asynchronous parallel function application, synchronous global
communications and a synchronous global conditional.

There is currently no full implementation of BSML but there is a partial imple-
mentation as a library. The BSMLLIB library [1] implements the BSML primitives
using Objective Caml [20] and MPI [34]. BSMLLIB can be taught to BSc. stu-
dents due to the small number of basic operations1 . There are additional modules
which provide several usual parallel algorithms. They constitute what is called the
BSMLLIB standard library.

This paper is tutorial implementation of the diffusion skeleton using the BSM-
LLIB library. We first describe the bulk synchronous parallel model and the core
BSMLLIB library with some basic examples (section 2). Then we give some el-
ements of the Bird-Merteens formalism (BMF) and describe the diffusion algo-
rithmic skeleton (section 3). Section 4 explains the parallel implementation of the
diffusion skeletons as an higher-order function written in Objective Caml using the
BSMLLIB library. It also presents an example of use of this skeleton. Appendix B
explains the installation and basic use of the BSMLLIB library.

2 Functional Bulk Synchronous Parallelism

2.1 The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model [35, 29, 33] describes: an abstract
parallel computer, a model of execution and a cost model. A BSP computer has
three components: a homogeneous set of processor-memory pairs, a communica-
tion network allowing inter processor delivery of messages and a global synchro-
nization unit which executes collective requests for a synchronization barrier. A
wide range of actual architectures can be seen as BSP computers.

1It is actually taught at the universities of Orl éans and Paris Val de Marne

3

The performance of the BSP computer is characterized by three parameters
(expressed as multiples the local processing speed):

• the number of processor-memory pairs p

• the time l required for a global synchronization

• the time g for collectively delivering a 1-relation (communication phase
where every processor receives/sends at most one word). The network can
deliver an h-relation (communication phase where every processor receives/sends
at most h words) in time g×h.

Those parameters can easily be obtained using benchmarks [17].
A BSP program is executed as a sequence of super-steps, each one divided into

(at most) three successive and logically disjointed phases (Fig. 1):

1. Each processor uses its local data (only) to perform sequential computations
and to request data transfers to/from other nodes;

2. the network delivers the requested data transfers;

3. a global synchronization barrier occurs, making the transferred data available
for the next super-step.

synchronization barrier

synchronization barrier

T
IM

E

a

...

. . .

. . .P0 P1 P2 P(p-1)

Figure 1: A BSP super-step

The execution time of a super-step s is, thus, the sum of the maximal local
processing time, of the data delivery time and of the global synchronization time:

Time(s) = max
i:processor

w(s)
i + max

i:processor
h(s)

i ×g+ l

where w(s)
i = local processing time on processor i during super-step s and h(s)

i =

max{h(s)
i+ ,h(s)

i−} where h(s)
i+ (resp. h(s)

i−) is the number of words transmitted (resp.
received) by processor i during super-step s.

4

The execution time ∑s Time(s) of a BSP program composed of S super-steps
is, therefore, a sum of 3 terms:

W +H ×g+S× l where

{

W = ∑s maxi w(s)
i

H = ∑s maxi h(s)
i .

In general, W,H and S are functions of p and of the size of data n, or of more
complex parameters like data skew. To minimize execution time, the BSP algo-
rithm design must jointly minimize the number S of super-steps, the total volume h
with imbalance of communication and the total volume W with imbalance of local
computation.

Bulk Synchronous Parallelism (and the Coarse-Grained Multicomputer, CGM,
which can be seen as a special case of the BSP model) is used for a large variety of
applications: scientific computing [5, 18], genetic algorithms [6] and genetic pro-
gramming [9], neural networks [31], parallel databases [3], constraint solvers [15],
etc. It is to notice that “A comparison of the proceedings of the eminent confer-
ence in the field, the ACM Symposium on Parallel Algorithms and Architectures,
between the late eighties and the time from the mid nineties to today reveals a
startling change in research focus. Today, the majority of research in parallel algo-
rithms is within the coarse-grained, BSP style, domain” [8].

2.2 The Bulk Synchronous Parallel ML Library

There is currently no implementation of a full Bulk Synchronous Parallel ML lan-
guage but rather a partial implementation: a library for Objective Caml. The so-
called BSMLLIB library is based on the following elements.

It gives access to the BSP parameters of the underling architecture. In particu-
lar, it offers the function bsp p:unit->int such that the value of bsp p() is p, the
static number of processes of the parallel machine. The value of this variable does
not change during execution (for “flat” programming, this is not true if a parallel
juxtaposition is added to the language [25]).

It also offers the bsp g and bsp l functions which both have type unit->float.
In BSMLLIB, these parameters are read from the /̃.bsmllibrc file (which should
contain lines of the form: p,g, l for example 4,1.,11.5).

The abstract polymorphic type ’a par represents the type of p-wide parallel
vectors of objects of type ’a, one per process. The nesting of par types is prohib-
ited. Our type system enforces this restriction [13, 12].

This is very different from SPMD programming (Single Program Multiple
Data) where the programmer must use a sequential language and a communica-
tion library (like MPI [34]). A parallel program is then the multiple copies of a
sequential program, which exchange messages using the communication library.
In this case, messages and processes are explicit, but programs may be non deter-
ministic or may contain deadlocks.

Another drawback of SPMD programming is the use of a variable containing
the processor name (usually called “pid” for Process Identifier) which is bound

5

outside the source program. A SPMD program is written using this variable. When
it is executed, if the parallel machine contains p processors, p copies of the program
are executed on each processor with the pid variable bound to the number of the
processor on which it is run. Thus parts of the program that are specific to each
processor are those which depend on the pid variable. On the contrary, parts of the
program which make global decision about the algorithms are those which do not
depend on the pid variable. This dynamic and undecidable property is given the
role of defining the most elementary aspect of a parallel program, namely, its local
vs global parts.

The parallel constructs of BSML operate on parallel vectors. Those parallel
vectors are created by:

mkpar: (int -> ’a) -> ’a par

so that (mkpar f) stores (f i) on process i for i between 0 and (p− 1). We
usually write f as fun pid->e to show that the expression e may be different on
each processor. This expression e is said to be local. The expression (mkpar f)
is a parallel object and it is said to be global.

Example 1 The expression mkpar(fun pid->pid) will create the following par-
allel vector:

0 1 · · · (p−1)

A BSP algorithm is expressed as a combination of asynchronous local compu-
tations (first phase of a super-step) and phases of global communication (second
phase of a super-step) with global synchronization (third phase of a super-step).
Asynchronous phases are programmed with mkpar and with:

apply: (’a -> ’b) par -> ’a par -> ’b par

apply (mkpar f) (mkpar e) stores (f i) (e i) on process i. Neither the im-
plementation of BSMLLIB, nor its semantics [22] prescribe a synchronization bar-
rier between two successive uses of apply.

Example 2 Let consider the following expression:

let vf = mkpar(fun i->(+) i)
and vv = mkpar(fun i->2*i+1) in
apply vf vv

The two parallel vectors are respectively equivalent to:

fun x->x+0 fun x->x+1 · · · fun x->x+(p-1)

and
0 3 · · · 2× (p−1)+1

The expression apply vf vv is then evaluated to:

0 4 · · · 2× (p−1)+2

6

Readers familiar with BSPlib [33, 17] will observe that we ignore the distinc-
tion between a communication request and its realization at the barrier. The com-
munication and synchronization phases are expressed by:

put:(int->’a option) par -> (int->’a option) par

Consider the expression: put(mkpar(fun i->fsi)) (*)
To send a value v from process j to process i, the function fs j at process j

must be such as (fs j i) evaluates to Some v. To send no value from process j to
process i, (fs j i) must evaluate to None.

Expression (*) evaluates to a parallel vector containing a function fd i of deliv-
ered messages on every process. At process i, (fdi j) evaluates to None if process
j sent no message to process i or evaluates to Some v if process j sent the value v
to the process i.

Example 3 Consider a parallel machine with 4 processors and functions f i whose
types are int → αoption par such as (fi (i + 1)) = Some vi for i = 0,1,2 and
(fi j) = None otherwise.

The expression mkpar(fun i → fi) would be evaluated as follows:

1. First at each process the function is applied to all process identifiers to pro-
duce p values, the messages to be sent by the processes. In the following
figure, a column represents the values produced at one process and the lines
are ordered by destination (first line represents the messages to be sent to
process 0, etc.):

None None None None
Some v0 None None None

None Some v1 None None
None None Some v2 None

2. Then the exchange of messages is actually performed. If we think of the
previous table as a matrix, the resulting matrix is obtained by transposition:

None Some v0 None None
None None Some v1 None
None None None Some v2

None None None None

3. Finally the parallel vector of functions is produced. Each process i holds
an array ai of size p (a column of the previous matrix) and the function is
fun x → ai.(x). In our example at process 3, (f3 0) = None which means that
process 3 received no message from process 0 and (f3 2) = Some v2 which
means that process 2 sent the value v2 to process 3.

7

The full language would also contain a synchronous conditional operation:

if e at n then e1 else e2

It evaluates to v1 (the value obtained by evaluating e1) or v2 (the value obtained
by evaluating e2) depending on the value of the parallel vector of booleans e at
process given by the integer n. But Objective Caml is an eager language and this
synchronous conditional operation can not be defined as a function. That is why
the core BSMLLIB contains the function:

at: ’a par -> int -> ’a

to be used in the constructions:

• if (at vec pid) then ... else ... where (vec:bool par) and
(pid:int)

• match at e pid with ... where pid:int

at expresses communication and synchronization phases. Global conditional
is necessary to express algorithms like:

Repeat Parallel Iteration Until Max of local errors < epsilon

Without it, the global control cannot take into account data computed locally. It
is possible to use the at functions in other situations but one should avoid the
(hidden) nesting of parallel vectors. For example the following expression (types
are given for subexpressions to ease the understanding):

(* com: (int->true option) par *)
let com = put(mkpar(fun i d->if i=d then Some true else None))
and this = mkpar(fun i->i) in
mkpar(fun i->if i<(bsp_p()/2) then at (apply com this) 0 else None)

is not a correct program (you can write it and compile it with the BSMLLIB library
but the execution will fail and the type checking by our type system [12] fails)
because the parallel expression (apply com this) would be evaluated inside a
mkpar. It breaks the BSP model because one part of the parallel machine will eval-
uate an expression with communications and synchronization and another half will
evaluate an expression without communication and synchronization: global syn-
chronizations are required in the BSP model (all the processes must be involved).
For a detailed discussion about these problems, see [12]. The following program
can be safely executed because e1 is already evaluated when it is used inside the
mkpar function.

let com = put(mkpar(fun i d->if i=d then Some true else None))
and this = mkpar(fun i->i) in
let e1 = at (apply com this) 0 in
mkpar(fun i->if i<(bsp_p()/2) then e1 else None)

8

2.3 Examples

This small set of primitives is enough to write any deterministic BSP algorithm.
There are only few additional primitives for initialization (to be called at the begin-
ning of the program):

initialize: unit->unit

and for timing:

exception Timer_failure of string
val start_timing: unit->unit
val stop_timing: unit->unit
val get_cost: unit -> float par

start timing() starts the timing. stop timing() stops it. get cost() returns
a parallel vector which contains for each processor the time elapsed between the
call of start timing and stop timing. The exception Timer failure is raised
if the call to one of those functions is meaningless (for eg a call to stop timing
if start timing have not been called before. The core library is contained in the
module Bsmllib.

All these primitives are used for “flat” programming. There also exist three
other primitives for parallel composition [25, 26]. These primitives are not yet
available in the current distribution.

When one start to program using the BSMLLIB library, it appears that some
other functions ease the programming. These functions are given in the BSMLLIB

standard library. It is to notice that one can program without them and that they are
all written using the primitives only.

replicate create a parallel vector with the same value everywhere:

(* val replicate: ’a -> ’a par *)
let replicate x = mkpar(fun i->x)

It is often convenient to apply the same sequential function to all the elements
of a parallel vector. It can be done using the parfun functions. parfun is for
functions with one argument, parfun2 is for functions with two arguments, etc.:

(* val parfun: (’a -> ’b) -> ’a par -> ’b par *)
let parfun f = apply (replicate f)

(* val parfun2: (’a -> ’b -> ’c) -> ’a par -> ’b par -> ’c par *)
let parfun2 f v1 = apply (parfun f v1)

In the following we will also use two additional functions which are not (yet)
part of the standard library.

applyat n f1 f2 vv applies function f1 at process n and function f2 at other
processes.

9

(* val applyat: int -> (’a -> ’b) -> (’a -> ’b) -> ’a par -> ’b par *)
let applyat n f g =

let pf = mkpar(fun pid ->if pid=n then f else g) in
apply pf

parpair of pairpar transforms a parallel vector of pairs in a pair of parallel
vectors:

(* val parpair_of_pairpar: (’a * ’b) par -> ’a par * ’b par *)
let parpair_of_pairpar vv = (parfun fst vv,parfun snd vv)

The semantics of the total exchange function is given by:

totex 〈 v0 , . . . , vp−1 〉 = 〈 f , . . . , f , . . . , f 〉

where ∀i.(0 ≤ i < p) ⇒ (f i) = vi. The code is as follows where noSome just re-
moves the Some constructor (the function is given in appendix A) and compose is
usual function composition:

(* val totex: ’a par -> (int -> ’a) par *)
let totex vv =

parfun (compose noSome) (put(parfun (fun v dst->Some v) vv))

3 The Diffusion Parallel Skeleton and the Diffusion The-
orem

We will use the BMF data parallel programming model [4, 32] to describe the
diffusion skeleton. We choose BMF because it can provide us a concise way to
describe both programs and transformation of programs. In this section we present
the BMF notation and the diffusion skeleton

3.1 Basic BMF Notation

Functions. Function application is denoted by a space and the argument which
may be written without brackets. Thus f a means f (a).

Functions are curried, and application associates to the left. Thus f a b means
(f a) b. Function application binds stronger than any other operator, so f a⊕ b
means (f a)⊕ b, not f (a⊕ b). Function composition is denoted by a centralized
circle ◦. By definition, we have (f ◦ g)a = f (g a). Function composition is an
associative operator. Infix binary operators will often be denoted by ⊕, ⊗ � and
can be sectioned; an infix binary operator like ⊕ can be turned into unary or binary
functions by a⊕b = (a⊕)b = (⊕b)a = (⊕) a b.

10

Parallel Data Structure: Join Lists. Join lists (or append lists) are finite se-
quences of values of the same type. A list is either the empty, a singleton, or the
concatenation of two other lists. We write [] for the empty list, [a] for the single-
ton list with element a and x ++y for the concatenation (join) of two lists x and y.
Concatenation is associative, and [] is its unit. For example, [1]++[2]++[3] denotes
a list with three elements, often abbreviated to [1;2;3]. We also write a : x for
[a]++x. If a list is constructed only by the constructor of [] and :, we call it cons
list.

Parallel Skeletons: map, reduce, scan, zip. It has been shown [32] that BMF is
a nice architecture-independent parallel computation model, consisting of a small
fixed set of specific higher order functions which can be regarded as parallel skele-
tons suitable for parallel implementation. Four important higher order functions
are map, reduce, scan and zip.

map is the skeleton which applies a function to every element in a list. reduce
is the skeleton which collapses a list into a single value by repeated application of
some associative binary operator. scan is the skeleton which computes the prefix
sums using some associative binary operator. zip combines two lists into a list of
pairs.

Their informal definitions are:

map f [x1,x2, . . . ,xn] = [f x1, f x2, . . . , f xn]

reduce (⊕) [x1,x2, . . . ,xn] = x1 ⊕ x2 ⊕ . . .⊕ xn

scan (⊕) [x1,x2, . . . ,xn] = [ı⊕;x1;x1 ⊕ x2; . . . ;x1 ⊕ x2 ⊕ . . .⊕ xn]

zip [x1,x2, . . . ,xn] [y1,y2, . . . ,yn] = [(x1,y1),(x2,y2, . . . ,(xn,yn)]

The length of the result of scan is n+1 for an input list of length n. scan’ and
prescan skeletons are scan-like skeletons whose result has length n. Their informal
definitions are:

scan′ (⊕) [x1,x2, . . . ,xn] = [x1;x1 ⊕ x2; . . . ;x1 ⊕ x2 ⊕ . . .⊕ xn]

prescan (⊕) [x1,x2, . . . ,xn] = [ı⊕;x1;x1 ⊕ x2; . . . ;x1 ⊕ x2 ⊕ . . .⊕ xn−1]

3.2 Diffusion

Diffusion Theorem [19] describes a transformation rule from a recursive definition
into a composition of map, reduce, scan.

Theorem 1 (Diffusion) Given a function h defined in the recursive following form:

h [] c = g1 c

h (x : xs) c = k(x,c) ⊕ h xs (c⊗g2 x)

If ⊕ and ⊗ are associative and have units, then h can be diffused into the following
form.

h xs c = reduce (⊕)(map f as)⊕g1 b

11

where

bs++[b] = map (c⊗) (⊗) (map g2 xs))

as = zip xs bs

The diff skeleton [2] is defined, based upon this theorem.

Definition 1 (Diffusion Skeleton)

diff (⊕) (⊗) k g1 g2 xs c = reduce (⊕) (map k as ⊕ g1 b

where

bs++[b] = map (c⊗) (⊗) (map g2 xs))

as = zip xs bs

and ⊕ and ⊗ are associative operations with units.

3.3 Example

To see how the diffusion theorem works in practice, consider a simple problem of
eliminating smaller elements. An element is said to be smaller if it is less than
some element be- fore itself in the list. For example, for the list [1;5;3;4;5;7], 3
and 4 are smaller elements, and thus the resultant list is [1;5;5;7]. This problem
can be solved directly; scan the list from left to right and eliminate every element
which is less than the maximum of the scanned elements. That is,

se [] c = []

se (x : xs) c = if x < c then se xs c else [x] ++ se xs x

The second equation is not in the form where the theorem can be applied. A sim-
ple transformation of merging two recursive calls into a single one soon gives the
appropriate form:

se (x : xs) c = (if x < c then [] else [x])++se xs (if x < c then c else x)

Now matching the recursive definition of se with that in the diffusion theorem
yields:

se xs c = reduce (⊕) (map k as) ⊕ g1 b

where

bs++[b] = map (c⊗) (scan (⊗) (map g2 xs))

as = zip xs bs

p⊕q = p++q

c⊗a = if a < c then c else a

k(x,c) = if x < c then [] else [x]

g1 c = []

g2 x = x

12

Consequently, we have come to an efficient parallel algorithm for this problem.
We can easily code it in terms of diff as follows:

se xs c = diff (⊕) (⊗) k g1 g2 xs c

where

p⊕q = p++q

c⊗a = if a < c then c else a

k(x,c) = if x < c then [] else [x]

g1 c = []

g2 x = x

4 Implementation of the Diffusion Skeleton Using the BSM-
LLIB

This section shows how to implement the diffusion skeleton using the BSMLLIB

library. We begin to explain the diff function and then describe the functions
called inside this diff function.

4.1 The diff function

The definition of the diff function follows exactly the definition given in sec-
tion 3.2. The first argument is a binary (associative) operator and the second ar-
gument is its neutral. The third argument is also a binary operator. The fourth
argument is what corresponds to the k binary function, functions g1 and g2 are the
two next arguments. Then diff takes a parallel vector of lists which should be
seen as one wide list. One can define a function which will take a list as input and
distribute it among all processes. The last argument of diff is the accumulator c:

(* val diff:
(’a->’a->’a) -> ’a -> binary operator, neutral
(’b->’b->’b) -> binary operator
(’c->’b->’a) -> (’b->’a) -> (’c->’b) -> k, g1 and g2
’c list par -> ’b -> ’a par list and accumulator *)

let diff op1 op1neutral op2 k g1 g2 xs c =
let bs’=scanl op2 c (map g2 xs) in
let nocut l = None,l in
let b’,bs=parpair_of_pairpar(applyat (bsp_p()-1) cutlast nocut bs’) in
let (Some b)=at b’ (bsp_p()-1) in
reducer op1 op1neutral (g1 b) (map2 k xs bs)

13

First bs’ is calculated. We apply function g2 to all the elements of the parallel
vector of lists using the map function (defined section 4.2). Then we compute the
parallel prefix sum scanl on the obtained parallel vector of lists using the operator
op2 and c as initial value. The scanl is the most complex function used in diff.
Its implementation is explained in section 4.4.

If xs represents the list [x1;x2; . . . ;xn], it is the parallel vector (to ease the
explanation we assume here that n can be divided by p but the program works for
all cases):

〈 [x1;x2; . . . ;xn/p] , . . . , [xn+1−n/p;xn+2−n/p; . . . ;xn] 〉

then bs’ is the parallel vector:

〈 [c;op2 c x1; . . . ;op2 (. . .) xn/p−1] , . . . , [op2 (. . .) xn−n/p; . . . ;op2 (. . .) xn] 〉

At process p− 1 we have n
p + 1 values. We need to cut this last value and send it

to all processes: this is done be the three next lines of the program. First at process
p−1 we cut the last value using the cutlast sequential function which is given in
appendix A. For non-empty lists it is defined by:

cutlast [x1; . . . ;xn] = (Some xn, [x1; . . . ;xn−1])

At other processes the lists are unchanged. Then we transform the obtained parallel
vector of pairs in pairs of parallel vectors using parpairs of pairpar. The first
component is a parallel vector which contains None everywhere but at process p−
1 contains Some(op2 (op2(op2 c x1) . . .)xn). This last value is projected to all
processes using the at function and the Some constructor is removed by pattern
matching (fifth line of the program).

To end we apply the binary function k to all elements of the parallel vectors
of lists xs and bs using the map2 function defined in section 4.2. Then we reduce
(sum) the obtained parallel vector of lists using the reducer function defined in
section 4.3. The result is a parallel vector which contains the same value every-
where.

4.2 The map and map2 functions

The Objective Caml functions List.map and List.map2 are defined on lists with
the following semantics:

map f [x1; . . . ;xn] = [(f x1); . . . ;(f xn)]
map2 f [x1; . . . ;xn] [y1; . . . ;yn] = [(f x1 y1); . . . ;(f xn yn)]

For map2 it is mandatory that the two lists have the same number of elements.
To have such functions but for parallel vectors of lists instead of lists, only

parfun functions are needed:

14

(* val map: (’a -> ’b) -> ’a list par -> ’b list par *)
let map f = parfun (List.map f)

(* val map2:
(’a -> ’b -> ’c) -> ’a list par -> ’b list par -> ’c list par *)

let map2 f = parfun2 (List.map2 f)

4.3 The reducer function

To reduce a parallel vector of lists we can proceed in two super-steps:

• reduction of the lists held by each process

• total exchange of the computed values

• reduction of the p values (all the processes do the same work)

In this case the BSP cost (assuming the binary operation used has constant
complexity) is:

(
n
p

+ g× (p−1)× s + l) + p

where s is the size of the values exchanges (we assume that the p values have the
same size).

This can of course may not be the most efficient BSP algorithm for reduction:
it depends on the values of g,s and l. Thus it is possible to write different BSP
algorithms with the same semantics but with different cost formula. The diff
function could take the reducer algorithm as argument and the best reduction
could be selected at runtime.

For example the reduction can be performed using log p super-steps using a
binary communication schema where at each super-step values are exchanged only
pairs of processes. In this case the cost would be:

n
p

+ (log p)× (g× s + l + 1)

Such an algorithm could be interesting. For example if we have p=64 processors:
we have to compare

63×g× s + l + 64 < 6×g× s +6 × l + 1

which is equivalent to:

g× s <
5× l − 62

57
For the a Cray T3D machine g = 1.7 and l = 148 (values found in the BSPlib
pages, http://www.bsp-worldwide.org) which gives s < 6.99. Thus for the example
given in section 4.5 the first algorithm is better since we work on integers which

15

are smaller than 7 words. In the next section we will propose a generic scan algo-
rithm which could be instantiated differently with respects to the parameters of the
machine and of the problem.

Another point is that the total exchange function totex (presented in sec-
tion 2.3) returns a parallel vector of functions. To avoid the creation of an in-
termediate data-structure (a list for example) we use a reduction funreduce where
the ordered collection to reduce is given by a function:

let rec funreduce n1 n2 op e f =
if n1>n2
then e
else op (f n1) (funreduce (n1+1) n2 op e f)

Using funreduce, the reducer function is written as follows:

(* val reducer: (’a -> ’a -> ’a) -> ’a -> ’a -> ’a list par -> ’a par *)
let reducer op neutral e vl =

let locally_reduced = parfun (List.fold_left op neutral) vl in
parfun (funreduce 0 (bsp_p()-1) op e) (totex locally_reduced)

4.4 The scanl function

In order to implement the scanl function we will instantiate a generic scan oper-
ation. This generic operation could compute the sum of prefixes of any parallel
vectors of some collection of indexed elements. The collections could be lists,
arrays or any indexed collection of elements (for example unary functions from
integers to something else).

generic scan operates on a parallel vector of collections of indexed elements.
It depends on:

• the data structure used for the collection of elements

• the sequential scan on this collection of elements

• the parallel prescan on vectors of this kind of elements (not parallel vector
of collections)

• how to map on this kind of collection

• how to take and remove the last element of this kind of collection

(* val generic_scan:
((’a -> ’b) -> ’c -> ’d -> ’e list) ->
((’a -> ’b) -> ’c -> ’e par -> ’a par) ->
(’b -> ’e list -> ’f) ->
(’e list -> ’e option * ’e list) ->
(’a -> ’b) -> ’c -> ’d par -> ’f par *)

16

let generic_scan sscan pprescan map cutlast op neutral vv =
let local_scan = parfun (sscan op neutral) vv in
let last l = Some (List.hd(List.rev l)),l in
let tmp = applyat (bsp_p()-1) last cutlast local_scan in
let last_elements = parfun (compose noSome fst) tmp
and new_lists = parfun snd tmp in
let values_to_add = pprescan op neutral last_elements in
parfun2 map (parfun op values_to_add) new_lists

If vv is (to ease the presentation we consider that the collections are lists):

〈 [x1;x2; . . . ;xn/p] , . . . , [xn+1−n/p;xn+2−n/p; . . . ;xn] 〉

then local scan is the following vector:

〈 [c;op2 c x1; . . . ;op2 (. . .) xn/p] , . . . , [c;op2 c xn+1−n/p; . . . ;op2 (. . .) xn/p] 〉

Each process now holds n
p + 1 values. For each process (except the last one) we

need to remove the last value of the collection. The tmp vector is a parallel vector of
pairs. The first component is (Some vi) where vi was the last element of the list and
the second component is the list without this last element. At process p−1 the sec-
ond component is the unchanged list. From this vector we obtain last elements
the parallel vector composed with the last elements and new lists the parallel
vector of lists without their last elements. values to add computes the partial re-
ductions of the last elements vector. At process i, only the first i−1 values will
be reduced: this operation is called pprescan (for parallel prescan). To end the
values obtained are added to the new lists parallel vector of lists.

In order to have a scanl function we need now to provide a sequential scan, a
parallel prescan, a sequential map and a function to remove the last element of the
collection. We chose here to use lists. The sequential scan is given in appendix A.
The parallel prescan follows. It proceeds in two super-steps. Like reducer other
choices are possible and we do not need to rewriting the full scanl function, we
could only provide another parallel prescan. The sequential map is the usual Ob-
jective Caml List.map function and the last required function is provided by the
cutlast function which has already been discussed:

(* val pprescan_direct: (’a -> ’a -> ’a) -> ’a -> ’a par -> ’a par *)

let pprescan_direct op neutral vv =
let tosend = mkpar(fun pid v dst->
if pid<dst then Some v else if dst=pid then Some neutral else None) in

let sent = put(apply tosend vv) in
let local_reduce = mkpar(fun pid->funreduce 0 pid op neutral) in
apply local_reduce (parfun (compose noSome) sent)

17

(* val scanl: (’a -> ’a -> ’a) -> ’a -> ’a list par -> ’a list par *)
let scanl op e =

generic_scan sscan pprescan_direct List.map cutlast op e

4.5 Example

The smaller elements example explained in section 3.3 can be simply implemented
using the diff higher-order function. To transform the result which is a parallel
vector into a usual Objective Caml value we can use the unsafe proj function
(not available in BSMLLIB v 0.2) which is defined by:

unsafe proj〈 v , . . . , v , . . . , v 〉 = v

No check is done: it means that if the parallel vector does not contain the same
value everywhere then the behavior is unspecified. The safe proj function checks
if the same value is everywhere but it needs communications. In this case we are
sure that there is no such problem. One may avoid the nesting of parallel vectors
when using these projection functions.

(* va se: int list par -> int list *)
let se xs =

let k x c = if x<c then [] else [x]
and g1 x = []
and g2 x = x in
unsafe_proj(diff (@) [] max k g1 g2 xs min_int)

In this program, (@) is the concatenation of lists, max is the maximum function
and min int is the smallest integer value. All these expressions are predefined in
Objective Caml.

We can new try the program. For the sake of simplicity, assume we have a 4
processors machine. The input for se can be defined as the following function:

let f = function
0 -> [4;5;6;7]

| 1 -> [3;10;8;11]
| 2 -> [4;5;6;7]
| 3 -> []

Of course for a real use of se we could for example read the data from a file on
process 0 and then cut the list and distribute it among the processors.

The application of se will then give (in the BSMLLIB top-level):

let _ = se (mkpar f)
-: int list = [4; 5; 6; 7; 10; 11]

18

Acknowledgments

This works was done during a short visit by the first author at the Information
Processing Laboratory, Department of Mathematical Informatics / Department of
Mathematical Engineering and Information Physics, The University of Tokyo. It
was supported by the PRESTO project, Japan Science and Technology Corpora-
tion. Frederic Loulergue wishes to thank Pr. Zhenjiang Hu for this invitation and
the fruitful discussions with him and other members of the IPL, Kazuhiko Kakehi
and Yasushi Hayashi.

References

[1] The BSMLLIB library version 0.2. http://bsmllib.free.fr.

[2] S. Adachi, H. Iwasaki, and Z. Hu. Diff: A Powerfull Parallel Skeleton. In
The 2000 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), volume 4, pages 425–527. CSREA
Press, 2000.

[3] M. Bamha, F. Bentayeb, and G. Hains. An efficient scalable parallel view
maintenance algorithm for shared nothing multi-processor machines. In
T. Bench-Capon, G. Soda, and A. Min Tjoa, editors, 10th International Con-
ference on Database and Expert Systems Applications, DEXA’99, number
1677 in LNCS, pages 616–625. Springer-Verlag, August 30 – September 3
1999.

[4] R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, pages 3–42. Springer-Verlag,
1987.

[5] R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchronous
parallel architectures. In B. Pehrson and I. Simon, editors, Technology and
Foundations: Information Processing ’94, Vol. I, volume 51 of IFIP Trans-
actions A, pages 509–514. Elsevier Science Publishers, Amsterdam, 1994.

[6] A. Braud and C. Vrain. A parallel genetic algorithm based on the BSP
model. In Evolutionary Computation and Parallel Processing GECCO &
AAAI Workshop, Orlando (Florida), USA, 1999.

[7] E. Chailloux, P. Manoury, and B. Pagano. Développement d’applications
avec Objective Caml. O’Reilly France, 2000. freely available in english at
http://caml.inria.fr/oreilly-book/index.html.

[8] F. Dehne. Special issue on coarse-grained parallel algorithms. Algorithmica,
14:173–421, 1999.

19

[9] D. C. Dracopoulos and S. Kent. Speeding up genetic programming: A parallel
BSP implementation. In First Annual Conference on Genetic Programming.
MIT Press, July 1996.

[10] F. Gava. Formal Proofs of Functional BSP Programs. Parallel Processing
Letters, 13(3):365–376, 2003.

[11] F. Gava. Une bibliothèque certifi ée de programmes fonctionnels BSP. In
M énissier-Morain, V., editor, Jourńees Francophones des Langages Appli-
catif, JFLA. INRIA, january 2004. to appear.

[12] F. Gava and F. Loulergue. A Polymorphic Type System for Bulk Synchronous
Parallel ML. In V. Malyshkin, editor, Seventh International Conference on
Parallel Computing Technologies (PaCT 2003), number 2763 in LNCS, pages
215–229. Springer Verlag, 2003.

[13] F. Gava and F. Loulergue. Synthèse de types pour Bulk Synchronous Paral-
lel ML. In Journées Francophones des Langages Applicatifs (JFLA 2003),
january 2003.

[14] A. V. Gerbessiotis and L. G. Valiant. Direct Bulk-Synchronous Parallel Al-
gorithms. Journal of Parallel and Distributed Computing, 22:251–267, 1994.

[15] L. Granvilliers, G. Hains, Q. Miller, and N. Romero. A system for the high-
level parallelization and cooperation of constraint solvers. In Y. Pan, S. G.
Akl, and K. Li, editors, Proceedings of International Conference on Parallel
and Distributed Computing and Systems (PDCS), pages 596–601, Las Vegas,
USA, 1998. IASTED/ACTA Press.

[16] G. Hains and F. Loulergue. Functional Bulk Synchronous Parallel Program-
ming using the BSMLlib Library. In S. Gorlatch and C. Lengauer, editors,
Constructive Methods for Parallel Programming, Advances in Computation:
Theory and Practice, pages 165–178. Nova Science Publishers, august 2002.

[17] J.M.D. Hill, W.F. McColl, and al. BSPlib: The BSP Programming Library.
Parallel Computing, 24:1947–1980, 1998.

[18] Guy Horvitz and Rob H. Bisseling. Designing a BSP version of ScaLAPACK.
In Bruce Hendrickson et al., editor, Proceedings Ninth SIAM Conference on
Parallel Processing for Scientific Computing. SIAM, Philadelphia, PA, 1999.

[19] Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Calculating Efficient Par-
allel Programs. In ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM’99), pages 85–94. ACM
Press, January 22-23 1999.

[20] Xavier Leroy. The Objective Caml System 3.07, 2003. web pages at
www.ocaml.org.

20

[21] F. Loulergue. BSλp: Functional BSP Programs on Enumerated Vectors. In
J. Kazuki, editor, International Symposium on High Performance Comput-
ing, number 1940 in Lecture Notes in Computer Science, pages 355–363.
Springer, October 2000.

[22] F. Loulergue. Distributed Evaluation of Functional BSP Programs. Parallel
Processing Letters, (4):423–437, 2001.

[23] F. Loulergue. Implementation of a Functional Bulk Synchronous Parallel
Programming Library. In 14th IASTED International Conference on Parallel
and Distributed Computing Systems, pages 452–457. ACTA Press, 2002.

[24] F. Loulergue. A Calculus of Functional BSP Programs with Explicit Sub-
stitution. In G. Joubert, W. Nagel, F. Peters, and W. Walter, editors, Par-
allel Computing: Software Technology, Algorithms, Architectures and Ap-
plications, Proceeding of the 10th ParCo Conference, Dresden, 2003. North
Holland/Elsevier. to appear.

[25] F. Loulergue. Parallel Juxtaposition for Bulk Synchronous Parallel ML. In
H. Kosch, L. Boszorm ényi, and H. Hellwagner, editors, Euro-Par 2003, num-
ber 2790 in LNCS, pages 781–788. Springer Verlag, 2003.

[26] F. Loulergue. Parallel Superposition for Bulk Synchronous Parallel ML. In
Peter M. A. Sloot and al., editors, International Conference on Computational
Science (ICCS 2003), Part III, number 2659 in LNCS. Springer Verlag, june
2003.

[27] F. Loulergue, G. Hains, and C. Foisy. A Calculus of Functional BSP Pro-
grams. Science of Computer Programming, 37(1-3):253–277, 2000.

[28] W. F. McColl. Scalability, portability and predictability: The BSP approach
to parallel programming. Future Generation Computer Systems, 12:265–272,
1996.

[29] W. F. McColl. Universal computing. In L. Bouge and al., editors, Proc.
Euro-Par ’96, volume 1123 of LNCS, pages 25–36. Springer-Verlag, 1996.

[30] D. R émy. Using, Understanding, and Unravellling the OCaml Language. In
G. Barthe, P. Dyjber, L. Pinto, and J. Saraiva, editors, Applied Semantics,
number 2395 in LNCS, pages 413–536. Springer, 2002.

[31] R. O. Rogers and D. B. Skillicorn. Using the BSP cost model to optimise
parallel neural network training. Future Generation Computer Systems, 14(5-
6):409–424, 1998.

[32] D. B. Skillicorn. Foundations of Parallel Programming. Number 6 in Inter-
national Series on Parallel Computation. Cambridge University Press, 1994.

21

[33] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers
about BSP. Scientific Programming, 6(3):249–274, 1997.

[34] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.

[35] Leslie G Valiant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8):103, August 1990.

A Sequential Functions Used in the Programs

(* val noSome: ’a option -> ’a *)
let noSome (Some x) = x

(* val compose: (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b *)
let compose f g x = f(g x)

(* val cutlast: ’a list -> ’a option * ’a list *)
let rec cutlast = function

[] -> None,[]
| [h] -> Some h,[]
| h::t -> let last,beginning = cutlast t in last,h::beginning

(* In our case we will use the sscan’ which is undefined for
empty lists *)

(* sscan’ op [x_1;...;x_n] = [x_1;op x_1 x_2;...;op (...) x_n] *)
let sscan’ op (h::t) =

let rec sscan_aux op acc = function
[] -> []

| h::t-> let newacc = op acc h in newacc::(sscan_aux op newacc t) in
h::(sscan_aux op h t)

(* Usual sequential scan with neutral *)
let sscan op neutral l = sscan’ op (neutral::l)

B Installation of the BSMLLIB Library

First download the lastest version of the library at http://bsmllib.free.fr. Un-
compress and untar it: tar zvf bsmllib-0.2.tar.gz. Then in the bsmllib-0.2
directory, edit the file Makefile. The beginning of this file should look like:

MODIFY THOSE VARIABLES TO MATCH YOUR INSTALLATION
export CC=mpicc
export CLIBS=
export MPIINCDIR=/usr/include

22

export MPILIBDIR=/usr/lib

MODIFY THOSES VARIABLES TO CHANGE THE INSTALLATION DIRECTORIES
OCAML_LIB_INSTALL=$(HOME)/bsmllib
SCRIPT_INSTALL=$(HOME)/bin

You should change the values of the variables to fit your installation. CC, CLIBS,
MPIINCDIR and MPILIBDIR are used to indicate where your MPI tools and libraries
can be found. You can compile the sequential version (which offers the same pos-
sibilities that the parallel version) without any MPI library installed. You just need
the Objective Caml language [20].

The BSMLLIB distribution contains of courses the libraries but also some
scripts to ease the compilation of programs using the BSMLLIB library and a
toplevel based on the sequential version of the library. The Objective Caml libraries
are installed in the OCAML LIB INSTALL directory and the scripts and toplevel are
installed in the SCRIPT INSTALL directory.

Then the compilation and installation is done by make install.
To try the toplevel, be sure that the SCRIPT INSTALL directory is in your path

and create a /̃.bsmllibrc file which should contain lines of the form: p,g, l for
example 4,1.,11.5. It means that if you run the sequential version of the library it
will behave as if your were running your programs on a 4 processors machine with
g = 1 and l = 11.5.

Then call it with: bsmllib. The following lines will appear:

Bsmllib version 0.2
Objective Caml version 3.07

#

Now you can write your programs as in the Objective Caml toplevel. For ex-
ample (do not write the “#” symbol, it is the toplevel prompt):

open Bsmllib;;
open Bsmlbase;;
let my_first_parallel_vector = mkpar(fun i -> 2*i+1);;
val my_first_parallel_vector: int par = <abstr>
parprint print_int my_first_parallel_vector;;
Process 0: 1
Process 1: 3
Process 2: 5
Process 3: 7
-: unit par = <abstr>
#

To compile programs, use the bsmllibc script (see the reference manual for
more informations).

23

