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t. A graph is planar if it 
an be drawn on the plane with verti
es at unique lo
ations and noedge interse
tions ex
ept at the vertex endpoints. Re
ent resear
h e�orts have produ
ed new algorithmsfor solving planarity-related problems. Shih and Hsu proposed a linear-time algorithm based on a datastru
ture they named PC-tree, whi
h is similar to but mu
h simpler than a PQ-tree. However, theirpresentation does not explain in detail how to implement the routines that manipulate a PC-tree, andthere are some nontrivial 
orre
tness and run-time issues that were not addressed in their paper. Soit is far from trivial to derive a proper linear-time implementation from their des
ription. This paperpresents additions to the theoreti
al framework of the PC-tree algorithm that are ne
essary to a
hieve
orre
tness and linear running time. A linear-time implementation that addresses the issues raised inthis paper was developed in the LEDA platform and is available.1 Introdu
tionThe �rst linear-time planarity testing algorithm is due to Hop
roft and Tarjan [10℄. The method �rst embedsa 
y
le of the graph, then it breaks the remainder of the graph into a sequen
e of paths that 
an be addedeither to the inside or outside of the starting 
y
le. Some 
orre
tions appear in [8℄, and signi�
ant additionaldetails are presented by Williamson [18, 20℄ as well as the text by Reingold, Nievergelt and Deo [15℄.The se
ond method of planarity testing proven to a
hieve linear time began with a quadrati
 algorithmdue to Lempel, Even, and Cederbaum [13℄ (the LEC algorithm). The algorithm begins by 
reating an st-numbering for a bi
onne
ted input graph. One property of an st-numbering is that there is a path of highernumbered verti
es leading from every vertex to the vertex t, whi
h has the highest number. Thus, if theinput graph is planar, there must exist an embedding ~Gk of the �rst k verti
es su
h that the remainingverti
es (k +1 to t) 
an be embedded in a single fa
e of ~Gk . This planarity testing algorithm was optimizedto linear time by a pair of 
ontributions. Even and Tarjan [9℄ optimized st-numbering to linear time, whileBooth and Lueker [1℄ developed the PQ-tree data stru
ture, whi
h allows the planarity test to eÆ
ientlymaintain information about the portions of the graph that 
an be permuted or 
ipped before and afterembedding ea
h vertex. Chiba, Nishizeki, Abe, and Ozawa [6℄ augmented the PQ-tree operations so that aplanar embedding is 
omputed as the operations are performed, all in linear time.These algorithms are widely regarded as being quite 
omplex [6, 11, 16℄. Re
ent resear
h e�orts haveresulted in two simpler linear-time algorithms, proposed independently, one by Boyer and Myrvold [3, 4℄ andthe other by Shih and Hsu [16℄. Both algorithms present a number of similar and very interesting ideas. Oneof the 
ommon ideas 
onsists of pro
essing the verti
es in a post-order traversal of the depth �rst sear
h(DFS) tree of the graph, or simply the reversal of the DFS number order (instead of an st-numbering). Thishas the property that there is a path of unpro
essed verti
es from every vertex to the root of the DFS-tree.While pro
essing vertex v, the edges from v to the already pro
essed verti
es are embedded (if possible).In our opinion, the Boyer-Myrvold method is the simplest among all linear-time algorithms 
urrentlyknown for the planarity problem. Their data stru
ture maintains a 
olle
tion of planar bi
onne
ted 
om-ponents that are formed as edges are added. The 
ut verti
es separating the bi
onne
ted 
omponents arerepresented by `virtual' verti
es. For ea
h vertex v in reverse of the depth �rst sear
h order, a preliminarybottom-up method is performed to identify the `a
tive' portion of the DFS subtree rooted at v based onwhi
h of its subtrees 
ontain a proper des
endant that, in the input graph, is adja
ent to v by a ba
k edge.? Resear
h partially supported by ProNEx/CNPq 664107/1997-4 (Brazil).?? Supported by fapesp, a Brazilian funding agen
y.



Then, a method 
alled `Walkdown' traverses the a
tive DFS subtree in a top-down fashion, embedding ba
kedges from v to its des
endants and merging bi
onne
ted 
omponents as ne
essary while preserving planarity.The Walkdown traversal method obeys a few simple rules that guarantee that it will be able to embed alledges from v to its des
endants ex
ept when a K3;3 or K5 minor 
an be identi�ed.The method of Shih and Hsu [16℄ also pro
esses the verti
es of the input graph from des
endants toan
estors, and it also adds the ba
k edges from i to its des
endants unless a nonplanarity 
onditions isdete
ted. To e�e
t this strategy, Shih and Hsu 
reated a data stru
ture 
alled a PC-tree, whi
h is a sim-pli�ed form of the Booth-Lueker PQ-tree. For ea
h vertex i, the algorithm �rst sear
hes for a number ofde�ned nonplanarity patterns in the PC-tree, and if none are found, then a planarity redu
tion is appliedto embed the edges from i to its des
endants. However, Shih and Hsu's formulation la
ks a des
ription ofhow exa
tly to implement the routines that manipulate the PC-tree to solve the planarity problem. Thisdes
ription is essential for one to derive a linear-time implementation of their algorithm, and there is a seriesof nontrivial details involved. Moreover, there are some 
aws in the proof that the nonplanarity patternsand the planarity redu
tion patterns together form an unavoidable set. This problem was �rst reported inBoyer's dissertation [2℄ (see also Boyer and Myrvold [4℄), and this paper provides a solution.This paper presents a 
orre
ted version of Shih and Hsu's algorithm (SH algorithm) that 
ontains severalnew nonplanarity patterns. Se
tion 2 �rst presents an overview of the PC-tree data stru
ture and algorithmas presented in [16℄. Then, Se
tion 3 presents 
orre
tions to the SH algorithm, and Se
tion 4 presents aproof that the 
orre
ted SH algorithm does indeed distinguish between planar and nonplanar graphs. As forperforman
e, Se
tion 5 des
ribes two issues that arise when one tries to 
reate a linear-time implementationof Shih and Hsu's ideas. The solutions for these two issues were inspired by Boyer and Myrvold [3℄. A linear-time implementation that a

ounts for the 
orre
tness and speed issues des
ribed in this paper 
an be foundat http://www.ime.usp.br/~
oelho/sh. Se
tion 6 presents an empiri
al 
omparison of this implementationto linear-time implementations of other well-known planarity algorithms.2 Overview of Planarity by PC-treesThe Shih-Hsu algorithm begins by embedding the depth �rst sear
h tree (a trivial task). The main pro
essingmodel is therefore 
on
erned with embedding the ba
k edges for ea
h vertex. The verti
es are pro
essed ina post-order traversal of the depth �rst sear
h tree. For a vertex i, the ba
k edges from i to its des
endantsare added. The ba
k edges from i to its an
estors are embedded when those an
estors are pro
essed.If a graph G is planar, then it is always possible to produ
e a planar embedding ~Gi of the subgraphindu
ed by the subtree rooted by i su
h that all des
endants of i with ba
k edge 
onne
tions to an
estorsof i are on the boundary of a single fa
e of ~Gi. The rationale is the same as that given above for the LECalgorithm. Hen
e, when the SH algorithm is pro
essing a planar graph, it 
reates su

essively larger partialembeddings of the form ~G0, ~G1, ~G2, . . . , ~Gi, . . . , ~Gn, where the last result is an embedding of G. Naturally,the SH algorithm must also a

ount for nonplanar graphs. Nonetheless, the pro
essing model for vertex iremains quite simple: sear
h the partial embedding ~Gi�1 for nonplanarity 
onditions establishedby several lemmata, and if none are found, then apply a planarity redu
tion to produ
e ~Gi.The SH algorithm represents the partial embedding with a data stru
ture 
alled a PC-tree. The startingPC-tree represents ~G0, whi
h is the depth �rst sear
h tree only, with no ba
k edges. Ea
h node of the treeis a P-node that represents a single vertex of the input graph G. The PC-tree remains a tree at all timeseven though it 
on
eptually represents a subgraph that 
ontains 
y
les as ba
k edges from G are embedded.As ba
k edges are added, they bi
onne
t portions of the embedding that were previously separable. Theseparable 
omponents are represented by multiple nodes of the PC-tree, and these are 
onsolidated into asingle C-node representing the new bi
onne
ted 
omponent.In general, the P-nodes of a PC-tree represent 
ut verti
es in the partial embedding, and the C-nodesrepresent bi
onne
ted 
omponents. Before the ba
k edges from a vertex i to its des
endants 
an be embedded,the partial embedding ~Gi�1 must be rearranged so that verti
es with ba
k edge 
onne
tions to properan
estors of i are in a single fa
e. This rearrangement must follow 
ertain rules. Spe
i�
ally, the 
hildrenof a P-node 
an be arbitrarily permuted, and the 
hildren of a C-node 
an only be 
ipped (reversed). Thenonplanarity 
onditions dete
t when the required rearrangement is not possible. If the rearrangement ispossible, then the planarity redu
tions perform the rearrangement, and they 
onsolidate portions of thePC-tree into single C-nodes as ne
essary to e�e
t the embedding of the new ba
k edges and produ
e ~Gi.



Ea
h C-node in a PC-tree has only P-node neighbors that represent verti
es along the external fa
ebounding 
y
le of the bi
onne
ted 
omponent represented by the C-node. For this reason, the P-node neigh-bors of a C-node are 
alled its representative bounding 
y
le (RBC). Given a C-node 
, the neighbor that is
loser to i than 
 is the parent of 
, and the other neighbors of 
 are its 
hildren. However, the 
hildren of aC-node 
annot indi
ate the C-node as the parent (see Se
tion 5.2), so in order to traverse from a 
hild w tothe parent p of 
 (or vi
e versa), one of two paths around the RBC is taken.In general, Tv denotes the PC-subtree rooted by v, whi
h represents the partial embedding of a subgraphof G indu
ed by the verti
es of the DFS subtree rooted by vertex v. For ea
h DFS 
hild r of i, the algorithm
onsiders separately the embedding of ba
k edges between i and verti
es in Tr. This is permissible sin
e,given a subgraph H 
ontaining the DFS tree of G plus all ba
k edges between verti
es in Ti, vertex i stillseparates any two of its DFS 
hildren r1 and r2 in H . Therefore, a Kuratowski subgraph 
annot span thesubgraphs indu
ed by Tr1 and Tr2 be
ause there are not enough paths 
onne
ting them.Within Tr, a subtree Ts is an i�-subtree if it has unembedded ba
k edge 
onne
tions only to properDFS an
estors of i. Similarly, an i-subtree is a subtree Ts of Tr that has unembedded ba
k edges only to i.The absen
e of the nonplanarity patterns is supposed to guarantee that one of the planarity redu
tions isappli
able. The planarity redu
tions have the property that the 
hildren of P-nodes 
an be permuted andthe 
hildren of C-nodes 
an be 
ipped (reversed) su
h that all i-subtrees are near i and all i�-subtrees 
anbe avoided while visiting the i-subtrees to embed the ba
k edges to i. See Figure 1.

Fig. 1. Permute P-nodes and 
ip C-nodes to visit i-subtrees and to avoid i� subtrees. a) Darkened triangles are i-subtrees, whitened triangles are i�-subtrees, double 
ir
les are C-nodes and single 
ir
les are P-nodes. b) The 
hildrenof u are permuted, node 
 is 
ipped on the path axis (u, . . . , m), and u0 is not 
hanged sin
e it has the desired
on�guration.A terminal node is a node t in the PC-tree with the following properties: 1) t has a 
hild i-subtree or isadja
ent to i by a ba
k edge; 2) t has a 
hild i�-subtree or is adja
ent to a proper an
estor of i by a ba
kedge; 3) t has no proper des
endants in the PC-tree with the same properties. Terminal nodes are so namedbe
ause they are the endpoints of 
riti
al paths to r that must be sear
hed for nonplanarity 
onditions. Asan example, Figure 2 illustrates a nonplanarity 
ondition that 
an arise if there are three or more terminalnodes. Then, Lemma 1 (Lemma 2.5 in [16℄) des
ribes a ne
essary 
ondition for planarity, the absen
e ofwhi
h yields the K3;3 minor appearing in Figure 3.Lemma 1 (Shih and Hsu). Suppose there are two terminal nodes u and u0 in Tr. Let P be the uniquepath in T from u to u0. Let m be the least 
ommon an
estor of u and u0. Let P 0 be the unique path from mto r. Let S = fvkv is a 
hild of a node in P , but v is not in Pg. Let S0 = fvkv is a 
hild of a node in P 0- fmg, but v is not in P 0g (note that when m=r, S0 is empty). Then, for ea
h node v in S, Tv is either ani-subtree or an i�-subtree, and for ea
h node v in S0, Tv is an i-subtree.Proof. Sin
e nonessential nodes are removed, if v in S or S0 is not the root of an i-subtree or i�-subtree, thenTv must 
ontain another terminal node, 
ontradi
ting the assumption of two terminal nodes. That v 2 S0
annot be the root of an i�-subtree is proven by Figure 3, whi
h depi
ts the resulting K3;3 minor. 2



Fig. 2. (a) A PC-tree with three terminal nodes. (b) The 
orresponding K3;3 Minor. Note that there are manypossible variations in 
onne
tions of the 
riti
al paths and the i�-subtree 
onne
tions to proper an
estors of i, butedge 
ontra
tion is used to eliminate unne
essary 
omplexities.

Fig. 3. (a) An i�-subtree atta
hed to a proper an
estor v0 of m, the 
losest 
ommon an
estor of two terminal nodesu and u0. (b) The resulting K3;3 from [16℄Remark: The proof of Lemma 1 (Lemma 2.5 in [16℄) is spe
i�
 to PC-trees that 
ontain only P-nodes.Se
tion 3 dis
usses diÆ
ulties with its extension to general PC-trees that 
ontain C-nodes.3 Corre
tions for the PC-tree Planarity AlgorithmThe PC-tree method in [16℄ requires some �xes to yield a 
orre
t planarity test. Aside from the threeterminal node 
ase, Shih and Hsu present four ne
essary 
onditions for maintaining planarity: \In Lemma2.5, Corollary 2.6, [and℄ Lemmas 3.1 and 3.2 we made the assumption that graph G is planar in derivingat those 
on
lusions. We shall show that if these 
on
lusions hold at ea
h iteration by showing that these
onditions imply a feasible internal embedding for ea
h 2-
onne
ted 
omponent." [16, p. 188℄. The authorsthen pro
eed to demonstrate how to perform planarity redu
tions for the one and two terminal node 
ases,but the proof does not show that the presen
e of the four ne
essary planarity 
onditions yields only PC-treesthat are redu
ible by the methods shown.3.1 Patterns of 
hild i-subtrees and i�-subtrees around a terminal C-nodePerhaps the most 
riti
al problem for PC-tree planarity 
orre
tness pertains to Lemma 3.2 in [16℄. Thelemma seeks to 
hara
terize the allowable pattern of 
hild i-subtrees and i�-subtrees around a terminal C-node. Put simply, the lemma states that for the root j of any 
hild i-subtree of a terminal C-node, one ofthe two RBC paths from j to the parent of the C-node must 
ontain only i-subtrees.



While the lemma statement is 
ertainly ne
essary to maintaining planarity, it is only suÆ
ient in theone terminal node 
ase when the terminal node has no proper an
estor with a 
hild i�-subtree. In the twoterminal node 
ase and the one terminal node 
ase where the terminal node has a proper an
estor with a
hild i�-subtree, it is possible to be 
ompliant with the statement of the lemma yet still have a nonplanarity
ondition. Lemma 2 
hara
terizes the additional restri
tion required on terminal C-nodes. Figure 4 depi
tsexample PC-trees for the additional restri
tion, along with the resulting K3;3 minor.

Fig. 4. (a) A K3;3 nonplanarity minor from [3℄, (b) A 
orresponding PC-tree with one terminal C-node having theforbidden 
hild i-i� subtree pattern, (
) Another example with two terminal C-nodes that have the forbidden 
hildi-i� subtree pattern. Only one of the terminal nodes must be a C-node with the forbidden subtree pattern.Lemma 2. If a terminal C-node 
 has a proper an
estor a with either a dire
t ba
k edge to a proper an
estorof i or a 
hild v not an an
estor of 
 su
h that Tv 
ontains an i�-subtree, then 
 must have a 
hild w forwhi
h an RBC path from w to the parent p of 
 
ontains all 
hild i-subtrees of 
.Proof. The 
hildren of the terminal C-node in Figure 4(b) depi
t the minimal 
on�guration of forbiddensubtrees to whi
h all forbidden subtree patterns 
an be redu
ed. The result is the K3;3 minor in Figure 4(a).Figure 4(
) shows that with two terminal nodes, a terminal C-node also must not have the forbidden subtree
on�guration be
ause the subtree 
ontaining the other terminal node atta
hed to the least 
ommon an
estorm is analogous to a 
hild i�-subtree, so again the K3;3 minor in Figure 4(a) results. 23.2 Patterns of 
hild i-subtrees and i�-subtrees around an intermediate C-nodeLemma 3.1 of [16℄ pla
es a ne
essary 
ondition on the intermediate C-nodes of the path P between twoterminal nodes. Given an intermediate C-node 
 with neighbors v and v0 in P , one of the two RBC pathsstri
tly between v and v0 must 
ontain only i-subtrees and the opposing RBC path stri
tly between v andv0 must 
ontain only 
hild i�-subtrees.There are three problems with this lemma in [16℄. First of all, as a proof by 
ontradi
tion, the proofmust a

ount for the negation of the 
ondition in the theorem. The proof in [16℄ presents the 
ase of havingboth a 
hild i-subtree and i�-subtree along a single RBC path. However, it is possible to avoid this 
aseyet still have a nonplanarity 
ondition a

ording to the lemma statement if both RBC paths 
ontain onlya 
hild i�-subtree. Se
ondly, the stated 
ondition is not quite strong enough if the intermediate C-node ism, the 
losest 
ommon an
estor of the terminal nodes. Lemma 3 provides the required modi�
ations to thestatement and proof of Lemma 3.1 in [16℄. The third problem is simply that Lemma 3.1 of [16℄ applies onlyto the two terminal node 
ase, but Corollary 1 demonstrates the need to extend the ne
essary 
ondition ofthe lemma to the analogous s
enario in the one terminal node 
ase.Lemma 3. Given the PC-tree path P between two terminal nodes u and u0 in Tr, 
onsider an intermediateC-node 
 in P �fu; u0g with neighbors v and v0 in P . Let m denote the 
losest 
ommon an
estor of u and u0in the PC-tree. Then, the 
hildren of 
 along one RBC path of 
 stri
tly between v and v0 must be only 
hildi-subtrees, and the opposing RBC path stri
tly between v and v0 must 
ontain only 
hild i�-subtrees. Further,if 
 = m, then the RBC path 
ontaining the 
hild i-subtrees must also 
ontain the parent p of 
.



Fig. 5. (a) A PC-tree in whi
h m is a C-node with a 
hild i-subtree below path P between terminal nodes x and y.(b) A PC-tree with an intermediate C-node that has 
hild i�-subtrees along both RBC paths from parent p to thenext node w in path P . (
) The 
orresponding K3;3 minor from [3℄. Note: This minor also appears in the new threeterminal node 
ase of Figure 7 as well as the forbidden 
hild i-i� subtree pattern of Lemma 3.2 in [16℄.Proof. When 
 6= m, the proof of Lemma 3.1 in [16℄ demonstrates the nonplanarity 
ondition that resultsif one RBC path 
ontains both a 
hild i-subtree and i�-subtree. The nonplanarity 
ondition also 
overs the
ase in whi
h 
 = m and both a 
hild i�-subtree and i-subtree appear in the RBC path that ex
ludes theparent p of 
. The remaining points below were omitted from the proof of Lemma 3.1 in [16℄.When 
 = m, the RBC path stri
tly between v and v0 that ex
ludes the parent p 
an still generate anonplanarity 
ondition even if it 
ontains no 
hild i�-subtree as required by the partial proof of Lemma 3.1.If that RBC path 
ontains a 
hild i-subtree, then the PC-tree has the form depi
ted in Figure 5(a), whi
hresults in the K3;3 depi
ted in Figure 5(
).When 
 = m, the RBC path stri
tly between v and v0 that in
ludes the parent p of 
 
annot 
ontain a
hild i�-subtree. Given the root j of su
h a 
hild j i�-subtree, one of the nonplanarity minors depi
ted forLemma 5 
an be obtained by edge 
ontra
ting the RBC path to merge j with the parent p of 
.When 
 6= m, then both RBC paths around 
 stri
tly between v and v0 
annot 
ontain a 
hild i�-subtree.If both RBC paths 
ontain 
hild i�-subtrees as shown in Figure 5(b), then a K3;3 
an be found a

ording tothe nonplanarity minor in Figure 5(
). 2Remark: The nonplanarity 
ondition of Figure 5(a) is similar to the one in Lemma 3.2 of [16℄, whi
h requiresthe C-node to be a terminal node and x and y to be 
hild i�-subtrees that obstru
t both RBC paths fromw to the parent of the C-node.Corollary 1. Given one terminal node u, let P denote the path from u to the farthest an
estor u0 with a
hild i�-subtree. Let 
 be an intermediate C-node in path P�fug. For 
 6= u0, let v and v0 denote the neighborsof 
 in P . For 
 = u0, let v denote the neighbor of 
 in P and let v0 denote the 
losest 
hild i�-subtree alongeither RBC path from the parent p of 
. The following 
onditions must hold:{ The 
hildren of 
 in one RBC path stri
tly between v and v0 must 
ontain only 
hild i-subtrees.{ The opposing RBC path stri
tly between v and v0 must 
ontain only 
hild i�-subtrees.{ If 
 = u0, then the RBC path 
ontaining the 
hild i-subtrees must also 
ontain p.3.3 Dire
t ba
k edges as degenerate i-subtrees and i�-subtreesThere is an omission from the presentation of several results in [16℄, in
luding Theorem 2.4, Lemma 2.5 andCorollary 2.6 of [16℄. Lemma 4 demonstrates that the nonplanarity 
ondition for Lemma 2.5 in [16℄ (Lemma1 above) 
an still o

ur despite the absen
e of the 
ondition stated by the lemma. Sin
e a number of otherresults in [16℄ have the same problem, Corollary 2 makes a statement that �xes the underlying problem.Lemma 4. Given the same assumptions as Lemma 1, nonplanarity 
an result if S0 is empty or devoid ofverti
es that root 
hild i�-subtrees.Proof. A node in P 0 � fmg 
an have a dire
t ba
k edge to a proper an
estor of i. 2



Corollary 2. A ba
k edge (v, i) 
an be 
onsidered equivalent to a 
hild i-subtree of v, and a ba
k edge (v,t) where t is a proper an
estor of i 
an be 
onsidered equivalent to a 
hild i�-subtree of v.Proof. Solely for the purpose of simplifying proof statements, su
h dire
t ba
k edges 
an be 
onsidered tobe subdivided by an impli
it degree two vertex w, whi
h would be an impli
it 
hild of v. 23.4 Additional 
ases of surrounding an i�-subtreeConsider the extension of Lemma 2.5 in [16℄ (presented in Lemma 1 above) to the 
ase of a PC-tree that
ontains C-nodes. Spe
i�
ally, suppose that the 
losest 
ommon an
estor m of the two terminal nodes is infa
t a C-node whose parent has the only 
hild i�-subtree along the path P 0. Figure 6 depi
ts an examplePC-tree and the 
orresponding K5 minor pattern from [3℄. This 
ase is of 
riti
al importan
e be
ause somegraphs that it represents do not even 
ontain a K3;3, whi
h demonstrates that the proof of Lemma 2.5 doesnot \go through for the 
ase of general trees without any 
hanges provided that the paths through a C-nodeare interpreted 
orre
tly" [16, p. 185℄. Lemma 5 properly extends Lemma 2.5 of [16℄, in
luding a proof thatno other nonplanarity patterns result from its ne
essary 
ondition.

Fig. 6. (a) A PC-tree in whi
h the 
losest 
ommon an
estor of terminal nodes u and u0 is a C-node with a properan
estor that has a 
hild i�-subtree. (b) The 
orresponding K5 minor from [3℄.Lemma 5. Suppose there are two terminal nodes u and u0 in Tr, and let m be their 
losest 
ommon an
estor.Let P 0 be the unique path from m to r. If m has a proper an
estor in Tr with a 
hild i�-subtree, then theinput graph is not planar.Proof. If m is a C-node, then the PC-tree has the form shown in Figure 6(a) and the input graph 
anbe edge 
ontra
ted to the K5 in Figure 6(b) as follows. First, sin
e r and its an
estors are P-nodes, edge
ontra
t the proper an
estor of i into one vertex t and do nothing to i and r. For ea
h C-node 
 in P 0 �m,edge 
ontra
t its RBC so that only the parent and 
hild of 
 in P 0 remain. Then, edge 
ontra
t P 0 �m intor. Similarly, edge 
ontra
t the RBCs of C-nodes in P �m into a single edge per C-node. Then, edge 
ontra
tthe proper des
endants of m leading to u into either u if u is a P-node or a 
hild of u if u is a C-node.Likewise, edge 
ontra
t the proper des
endants of m leading to u0 into either u0 if it is a P-node or a 
hildof u0 if u0 is a C-node.On the other hand, if m is a P-node, then all C-nodes in Tr 
an be edge 
ontra
ted as des
ribed above.Then, the K3;3 given for Lemma 2.5 in [16℄ is appli
able (see Figure 3). 2The proof of Lemma 5 is also important be
ause it demonstrates the a
tual method by whi
h K5 homeo-morphs are found by the PC-tree algorithm, whi
h also 
ontradi
ts [16℄: \we 
ould have three terminal nodesbeing neighbors of a C-node, in whi
h 
ase we would get a subgraph homeomorphi
 to K5 as illustrated inFig. 6." The K5 in Figure 6 of [16℄ is equivalent to Figure 6(b). It does not result in three terminal nodes, butis instead dis
overed by the 
ondition in Lemma 5. Moreover, the 
ase of three terminal node neighbors ofa C-node depi
ted in Figure 7 should be part of an extension of Theorem 2.4 in [16℄ to PC-trees 
ontainingC-nodes, but again the proof does not extend to general PC-trees be
ause the K3;3 identi�ed in the proof




annot always be obtained. Lemma 6 provides the proper extension of the three terminal node 
ase to generalPC-trees that 
ontain C-nodes.Lemma 6. If Tr 
ontains three terminal nodes, then the input graph is not planar.Proof. The proof of Theorem 2.4 in [16℄ provides the proper K3;3 in PC-trees 
ontaining only P-nodes (seeFigure 2). For general PC-trees 
ontaining C-nodes, only proper des
endants of r in Tr need to be 
onsideredsin
e r and its an
estors are P-nodes.For ea
h of the three terminal nodes, denoted i1, i2 and i3, let P1, P2 and P3 denote the 
riti
al pathsfrom ea
h terminal node to r. Without loss of generality, label the terminal nodes so that the join point j1of P1 and P2 is equal or des
endant to the join point j2 of the �rst two paths with P3. The endpoints ofthese 
riti
al paths are r and ea
h of the terminal nodes. The endpoint r is a P-node. For ea
h terminalC-node, edge 
ontra
t the 
hildren of the RBC into a single vertex so that only the parent and one 
hild ofthe C-node remain, then use the 
hild of the C-node as an image vertex of a K3;3, either from Figure 2 orFigure 7 depending on the 
onditions des
ribed below.For ea
h internal C-node of ea
h 
riti
al path ex
ept j1 and j2 (if either is indeed a C-node), edge 
ontra
tthe RBC to a single edge 
ontaining the parent and 
hild in the 
riti
al path. Sin
e the endpoints of the
riti
al paths have already been dis
ussed, this leaves only j1 and j2 to 
onsider.If both j1 and j2 are P-nodes, then 
learly j1 
an be used as the image vertex w in Figure 2, and theK3;3 identi�ed in [16℄ for the three terminal node 
ase 
an still be obtained. Thus, suppose one or both of j1and j2 are C-nodes.Suppose j1 6= j2. If j1 is a P-node, then j2 must be a C-node. Let 
3 denote the 
hild of j2 that leads toi3, and let 
1;2 denote the 
hild of j2 that leads to j1. In this 
ase j1 
an again be used as the image vertexw. The path from w to r leads up to 
1;2. Then it follows the RBC path from 
1;2 through 
3 to the parentof j2 then up to r. On the other hand, if j1 is a C-node with parent p and 
hildren 
1 and 
2 leading to i1and i2, then the RBC paths from p to ea
h of 
1 and 
2 
an be 
ontra
ted to a single edge. If j2 is a P-node,then p is the desired vertex w and we are done. If j2 is a C-node, then j2 must be a proper an
estor of p.Again, we let p be the desired vertex w sin
e the path from w to r 
an be obtained by going around theRBC of j2 as des
ribed above.Finally, suppose j1 = j2 is a C-node. Let 
1, 
2 and 
3 denote the 
hildren of the C-node in RBC orderthat lead to ea
h of the respe
tive terminal nodes, and let p denote the parent of the C-node. Unless thebi
onne
ted 
omponent represented by the C-node happens to have an internally embedded path 
onne
ting
2 and p, the desired vertex w in the K3;3 of Figure 2 
annot be obtained. Figure 7(a) depi
ts the PC-treefor this 
ase, whi
h redu
es to the K3;3 in Figure 7(b). 2

Fig. 7. (a) A PC-tree with three terminal node proper des
endants of a C-node. Note that the paths from the terminalnodes to the RBC verti
es of the C-node have been 
ontra
ted. (b) The 
orresponding K3;3 minor from [3℄.



3.5 The 
ase of zero terminal nodesLemma 7 presents an additional planarity redu
tion for zero terminal nodes, whi
h o

urs in the �nal stepof embedding every graph. This 
ase is easy to resolve, but it is worth mentioning sin
e it is essentially amissing planarity redu
tion.Lemma 7. If, during the embedding of a bi
onne
ted graph G, there is a step i for whi
h zero terminal nodesare identi�ed, then the PC-tree 
an be redu
ed to a single C-node plus P-node neighbors for the RBC of theC-node.Proof. If there are no terminal nodes, then there are no i�-subtrees within Tr. Having no i�-subtrees prior tothe last step 
ontradi
ts the bi
onne
tedness of G. Sin
e G is bi
onne
ted, by de�nition its �nal embedding
an be represented as des
ribed. 24 Proof of Corre
tness for Modi�ed PC-tree AlgorithmThis se
tion presents a proof of 
orre
tness for the PC-tree algorithm as modi�ed by the lemmas and 
orol-laries of Se
tion 3. First, the planarity redu
tion patterns are 
learly 
hara
terized with property statementsbelow. Then, violations of the properties are mapped to the lemmas and 
orollaries so that it is 
lear thatthe planarity redu
tion patterns are the only ones that do not result in a nonplanarity 
ondition. Sin
e it is
lear how to maintain planarity for ea
h of the planarity redu
tions, the 
orre
tness of the algorithm follows.For the two terminal node 
ase, let u and u0 denote the two terminal nodes. Let m denote the 
losest
ommon an
estor of u and u0, and let P denote the PC-tree path (u, . . . , m, . . . , u0). Let P 0 denote thePC-tree path (r, . . . , m). For the one terminal node 
ase, let u denote the terminal node and let u0 denotethe an
estor of u 
losest to the root of Tr that has a 
hild i�-subtree. Let m be a se
ond label for u0. Let Pdenote the path (u, . . . , u0), and let P 0 denote the path (r, . . . , u0). To simplify the statement of properties,
onsider path P to be arranged horizontally in the plane, and 
onsider P 0 as extending verti
ally upwardfrom P . Let L denote an in�nite horizontal line that 
ontains P .Property 1. Nodes in P 0 � fmg have no 
hild i�-subtrees.Property 2. The 
hildren of nonterminal nodes in P are arranged so that all 
hild i-subtrees are above Land all 
hild i�-subtrees are below L.Property 3. Ex
ept for the 
ase of one terminal C-node and u = u0, the 
hildren of terminal nodes in P arearranged so that all 
hild i-subtrees are above L and all 
hild i�-subtrees are below L.Property 4. For the 
ase of one terminal C-node and u = u0, let p be the parent of u and let w and w0 bethe �rst 
hild i�-subtrees in ea
h of the two RBC paths extending from p. The 
hildren of u on the RBCpath stri
tly between w and w0 that 
ontains p must be the roots of all 
hild i-subtrees of u.The proof of 
orre
tness of the modi�ed PC-tree planarity algorithm in Theorem 1 will show that viola-tions of the four properties above result in a nonplanarity 
ondition. That the above properties 
hara
terizethe planarity redu
tions in [16℄ and that the planarity redu
tions embed all ba
k edges from i to des
en-dants of r while maintaining planarity are taken to be straightforward. Moreover, the fa
t that maintainingplanarity through all steps implies the planarity of the graph and that �nding a nonplanarity 
ondition in astep implies the nonplanarity of the graph are also taken to be evident.Theorem 1. The modi�ed PC-tree planarity algorithm applies a planarity redu
tion to Tr if and only ifthere are no terminal nodes or if there are at most two terminal nodes and Properties 1, 2, 3, and 4 hold.Proof. Case no terminal nodes : The planarity redu
tion des
ribed in Lemma 7 is applied.Case one terminal node: Property 1 holds by de�nition. Property 2 holds if u = u0 be
ause there areno nonterminal nodes in P . Property 2 holds if u 6= u0 ex
ept for nonplanarity 
onditions due to Corollary1. If u 6= u0, then Property 3 holds ex
ept for nonplanarity 
onditions due to Lemma 2 and Property 4holds degenerately (is not appli
able). On the other hand, if u = u0, then Property 3 holds degenerately, andProperty 4 holds ex
ept for nonplanarity 
onditions due to Lemma 3.2 of [16℄.



Case two terminal nodes : Property 1 holds ex
ept for nonplanarity 
onditions due to Lemma 5. Property 2holds ex
ept for nonplanarity 
onditions due to Lemma 3. Property 3 holds ex
ept for nonplanarity 
onditionsdue to Lemma 2 and Property 4 holds degenerately.Case more than two terminal nodes : If there are at least three terminal nodes in Tr, then the input graphis not planar a

ording to Lemma 6. Hen
e no planarity redu
tion is applied. 25 Issues Con
erning Linear-Time Performan
eShih and Hsu [16℄ present the ideas ne
essary to a
hieve linear total work for the identi�
ation of terminalnodes, i-subtrees and i�-subtrees in all steps of the PC-tree algorithm. However, there are two impedimentsto a
hieving linear time by the methods stated in [16℄; both are 
omplexities that arise when planarityredu
tions are applied to a PC-tree that 
ontains C-nodes.5.1 Maintaining the RBC when 
ipping C-nodesThe 
laim that the \RBC will be stored as a 
ir
ular doubly linked list" [16, p. 184℄ 
annot be supported.When the representative bounding 
y
les of C-nodes must be joined together, the dire
tion of traversal oftwo su

essive C-nodes may be reversed at the intervening P-node depending on whi
h path 
ontains the
hild i-subtrees in ea
h C-node. Joining the RBCs of two su
h C-nodes into a 
ir
ular doubly linked listwould require the inversion of links in the RBC nodes of one of the two C-nodes. It is easy to 
reate planargraphs in whi
h �(n2) link inversions o

ur in total. To solve this problem, one 
an represent the RBC witha dis
ordant list (de�ned in [3℄). When merging the RBCs of two C-nodes separated by a P-node, only theneighbors of the P-node in the two RBCs are linked together. If the merge must be done su
h that oneC-node is 
ipped relative to the other, then the resulting RBC pointers after the merge will be in dis
ord.However, traversal of the RBC is still possible with only a little extra e�ort. When a traversal arrives at anode v from a prede
essor p along a dis
ordant RBC, the su

essor of v is indi
ated by one of its two RBCpointers. The pointer to use is the one that does not indi
ate p. Figure 8 illustrates this 
on
ept.
0 1

3

52

4Fig. 8. A dis
ordant list of size 3 or more 
an be traversed by taking whi
hever pointer does not lead ba
k to thepre
eding node (from [3℄).5.2 On the infeasibility of C-nodes as parentsIn the 
on
eptual ideal, every C-node and P-node indi
ates its parent a

ording to the PC-tree de�nition.However, the 
hild P-nodes in the RBC of a C-node 
annot indi
ate the C-node as their parent. Considera C-node with the following properties: 1) The RBC of the C-node has a subset S of 
hildren that rooti�-subtrees whi
h all have ba
k edges only to the last vertex to be pro
essed, and 2) the RBC of the C-nodealso has an O(n) sized su

ession of 
hildren that root i�-subtrees whi
h 
onne
t to proper an
estors of i su
hthat su

essive steps of the algorithm merge the RBC of the original C-node into other an
estor C-nodes.At ea
h merge, the members of S must be reparented to point to the new C-node that be
omes their parentafter the planarity redu
tion. This reparenting must be performed on a number of i�-subtree roots that is a
onstant fra
tion of n, and the set of reparenting operations must be performed ea
h time the parent C-nodeof the members of S must be 
hanged to some other an
estor C-node with whi
h the parent is merged.This results in �(n2) performan
e in the worst 
ase. The work 
ould be substantially redu
ed by using themethods of the union-�nd data stru
ture (also 
alled a disjoint set data stru
ture in [7℄), but it would thenhave to be shown that the result is not super-linear, whi
h is the 
ase for generalized union-�nd operations.Either way, [16℄ presents neither this more sophisti
ated parenting strategy nor the required proof.



Perhaps the simplest strategy to solve this problem is not to adopt a 
omplex parenting strategy andpresent a 
omplex proof, but rather to let the parent pointer of all 
hildren of a C-node simply be nil,indi
ating they are part of a C-node, and keeping a pointer from ea
h C-node 
hild to its entry in the RBC.To �nd the parent of any node whose parent pointer is nil, traverse both dire
tions around the RBC inparallel. This will obtain the parent of the C-node by the shorter path, so that the work done will not ex
eeda 
onstant fa
tor of the length of RBC that will be eliminated during the planarity redu
tion in the samestep. This is analogous to the method used in [3, 4℄ to traverse the external fa
es of bi
onne
ted 
omponentsthat are merged during the pro
essing of a vertex.6 Empiri
al Results and Future WorkThis paper has reported and solved a number of additional theoreti
al 
omplexities that arise in the pub-lished version of the Shih-Hsu PC-tree planarity algorithms [16℄. A few years earlier, Thomas [17℄ providedan alternate formulation of the Shih-Hsu planarity algorithm that a
hieved linear-time performan
e for tri-
onne
ted graphs. Thomas points out that signi�
ant additional te
hni
al 
ompli
ations would arise whena

ounting for graphs of lower 
onne
tivity and when one requires a planar embedding.Our implementation e�orts have been based on extending the formulation in Thomas' notes as a wayof better understanding and 
orre
ting the problems with the PC-tree formulation in [16℄. The resultingLEDA-based implementation 
ontains 
ode manifestations of the PC-tree problem solutions reported inthis paper. We have a
hieved a linear-time implementation, both for produ
ing a planar embedding andfor isolating a Kuratowski subgraph in a nonplanar graph. We have performed the same empiri
al testsused in LEDA to 
ompare the Hop
roft-Tarjan and Booth-Lueker implementations, and all results are
onsistent with the results for maximal planar graphs (MP) and their nonplanar 
ounterparts 
reated byadding one random edge (MP+e). Figure 9 presents the MP and MP+e empiri
al 
omparisons of our 
urrentimplementation with the Hop
roft-Tarjan (HT) and Booth-Lueker (BL) implementations in LEDA, as wellas a non-LEDA implementation of the Boyer-Myrvold (BM) algorithm in [4℄. Note that there are no HTresults for nonplanar graphs be
ause LEDA does not implement Williamson's Kuratowski subgraph isolator(indeed Williamson [21℄ knows of no O(n) implementation).

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000

C
P

U
 T

im
e

Number of vertices

(G4) TEST+JUSTIFICATION

BL
HT
BM
SH

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000

C
P

U
 T

im
e

Number of vertices

(G5) TEST+JUSTIFICATION

BL
BM
SH

Fig. 9. Empiri
al results 
omparing the SH, HT, BL and BM implementations on testing and justifying maximalplanar graph (left) and their nonplanar 
ounterparts (right) 
onsisting of an extra random edge. The justi�
ation
onsists of 
reating an embedding for a planar graph or isolating a Kuratowski subgraph of a nonplanar graph. Resultsfor HT on nonplanar graphs 
annot be obtained from LEDA.Although our implementation is not yet 
ompetitive with HT and BL, we believe that it 
an be mademore 
ompetitive, in part through further appli
ation of some of the methods of the BM algorithm, whi
h
urrently has the fastest implementation by about 2.5 times on planar graphs and about 8 times on nonplanargraphs. Our implementation e�orts to date have been prin
ipally 
on
erned with 
orre
tness and linear-timeperforman
e. The 
orre
tness 
on
erns led us to extend Thomas' formulation based on an understanding ofthe original LEC algorithm (this formulation appears in [14℄). We believe that the su

ess of this approa
h



in �nding and solving problems with the PC-tree formulation substantiates the further investigation andexposition of the SH algorithm as an LEC-type algorithm. Indeed, future work shall 
onsist of re�ning thisalternate formulation with the ultimate goal of developing a uni�ed LEC-type framework for des
ribing theSH, BL and BM algorithms. As Williamson [19℄ notes, \it would be desirable to have not one but severalbasi
ally di�erent [linear time Kuratowski subgraph isolators℄" be
ause the 
ondition of linearity \for
es theemergen
e of a 
ertain level of insight into the stru
ture of nonplanar graphs and Kuratowski's theorem." ThePC-tree formulation [16℄, augmented by the 
orre
tions in this paper, two variations of the BM algorithm [3,4℄, and Karabeg's analysis [12℄ of the BL algorithm 
olle
tively demonstrate four di�erent methods for thedis
overy of nonplanarity. Along with the 
orresponden
e drawn between HT and BL in [5℄, we believe thata more generalized LEC-type formulation 
ould unify all of these methods and in
rease our graph theoreti
understanding of planarity.Referen
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