Correcting and Implementing the PC-tree Planarity Algorithm

John M. Boyer!, Cristina G. Fernandes?*, Alexandre NomaZ?**, and José Coelho de Pina Jr.2*

! PureEdge Solutions Inc. Victoria, BC Canada
jboyerQacm.org; jboyer@PureEdge.com
2 University of Sao Paulo, Brazil
{cris, noma, coelho}@ime.usp.br

Abstract. A graph is planar if it can be drawn on the plane with vertices at unique locations and no
edge intersections except at the vertex endpoints. Recent research efforts have produced new algorithms
for solving planarity-related problems. Shih and Hsu proposed a linear-time algorithm based on a data
structure they named PC-tree, which is similar to but much simpler than a PQ-tree. However, their
presentation does not explain in detail how to implement the routines that manipulate a PC-tree, and
there are some nontrivial correctness and run-time issues that were not addressed in their paper. So
it is far from trivial to derive a proper linear-time implementation from their description. This paper
presents additions to the theoretical framework of the PC-tree algorithm that are necessary to achieve
correctness and linear running time. A linear-time implementation that addresses the issues raised in
this paper was developed in the LEDA platform and is available.

1 Introduction

The first linear-time planarity testing algorithm is due to Hopcroft and Tarjan [10]. The method first embeds
a cycle of the graph, then it breaks the remainder of the graph into a sequence of paths that can be added
either to the inside or outside of the starting cycle. Some corrections appear in [8], and significant additional
details are presented by Williamson [18,20] as well as the text by Reingold, Nievergelt and Deo [15].

The second method of planarity testing proven to achieve linear time began with a quadratic algorithm
due to Lempel, Even, and Cederbaum [13] (the LEC algorithm). The algorithm begins by creating an st-
numbering for a biconnected input graph. One property of an st-numbering is that there is a path of higher
numbered vertices leading from every vertex to the vertex ¢, which has the highest number. Thus, if the
input graph is planar, there must exist an embedding Gy of the first k vertices such that the remaining
vertices (k + 1 to t) can be embedded in a single face of Gy This planarity testing algorithm was optimized
to linear time by a pair of contributions. Even and Tarjan [9] optimized st-numbering to linear time, while
Booth and Lueker [1] developed the PQ-tree data structure, which allows the planarity test to efficiently
maintain information about the portions of the graph that can be permuted or flipped before and after
embedding each vertex. Chiba, Nishizeki, Abe, and Ozawa [6] augmented the PQ-tree operations so that a
planar embedding is computed as the operations are performed, all in linear time.

These algorithms are widely regarded as being quite complex [6,11,16]. Recent research efforts have
resulted in two simpler linear-time algorithms, proposed independently, one by Boyer and Myrvold [3, 4] and
the other by Shih and Hsu [16]. Both algorithms present a number of similar and very interesting ideas. One
of the common ideas consists of processing the vertices in a post-order traversal of the depth first search
(DFS) tree of the graph, or simply the reversal of the DFS number order (instead of an st-numbering). This
has the property that there is a path of unprocessed vertices from every vertex to the root of the DFS-tree.
While processing vertex v, the edges from v to the already processed vertices are embedded (if possible).

In our opinion, the Boyer-Myrvold method is the simplest among all linear-time algorithms currently
known for the planarity problem. Their data structure maintains a collection of planar biconnected com-
ponents that are formed as edges are added. The cut vertices separating the biconnected components are
represented by ‘virtual’ vertices. For each vertex v in reverse of the depth first search order, a preliminary
bottom-up method is performed to identify the ‘active’ portion of the DFS subtree rooted at v based on
which of its subtrees contain a proper descendant that, in the input graph, is adjacent to v by a back edge.

* Research partially supported by PRONEx/CNPqQ 664107/1997-4 (Brazil).
** Supported by FAPESP, a Brazilian funding agency.

Then, a method called ‘Walkdown’ traverses the active DFS subtree in a top-down fashion, embedding back
edges from v to its descendants and merging biconnected components as necessary while preserving planarity.
The Walkdown traversal method obeys a few simple rules that guarantee that it will be able to embed all
edges from v to its descendants except when a K3 3 or K5 minor can be identified.

The method of Shih and Hsu [16] also processes the vertices of the input graph from descendants to
ancestors, and it also adds the back edges from 4 to its descendants unless a nonplanarity conditions is
detected. To effect this strategy, Shih and Hsu created a data structure called a PC-tree, which is a sim-
plified form of the Booth-Lueker PQ-tree. For each vertex 4, the algorithm first searches for a number of
defined nonplanarity patterns in the PC-tree, and if none are found, then a planarity reduction is applied
to embed the edges from i to its descendants. However, Shih and Hsu’s formulation lacks a description of
how exactly to implement the routines that manipulate the PC-tree to solve the planarity problem. This
description is essential for one to derive a linear-time implementation of their algorithm, and there is a series
of nontrivial details involved. Moreover, there are some flaws in the proof that the nonplanarity patterns
and the planarity reduction patterns together form an unavoidable set. This problem was first reported in
Boyer’s dissertation [2] (see also Boyer and Myrvold [4]), and this paper provides a solution.

This paper presents a corrected version of Shih and Hsu’s algorithm (SH algorithm) that contains several
new nonplanarity patterns. Section 2 first presents an overview of the PC-tree data structure and algorithm
as presented in [16]. Then, Section 3 presents corrections to the SH algorithm, and Section 4 presents a
proof that the corrected SH algorithm does indeed distinguish between planar and nonplanar graphs. As for
performance, Section 5 describes two issues that arise when one tries to create a linear-time implementation
of Shih and Hsu’s ideas. The solutions for these two issues were inspired by Boyer and Myrvold [3]. A linear-
time implementation that accounts for the correctness and speed issues described in this paper can be found
at http://www.ime.usp.br/~coelho/sh. Section 6 presents an empirical comparison of this implementation
to linear-time implementations of other well-known planarity algorithms.

2 Overview of Planarity by PC-trees

The Shih-Hsu algorithm begins by embedding the depth first search tree (a trivial task). The main processing
model is therefore concerned with embedding the back edges for each vertex. The vertices are processed in
a post-order traversal of the depth first search tree. For a vertex i, the back edges from i to its descendants
are added. The back edges from i to its ancestors are embedded when those ancestors are processed.

If a graph G is planar, then it is always possible to produce a planar embedding G; of the subgraph
induced by the subtree rooted by ¢ such that all descendants of i with back edge connections to ancestors
of i are on the boundary of a single face of G;. The rationale is the same as that given above for the LEC
algorithm. Hence, when the SH algorithm is processing a planar graph, it creates successively larger partial
embeddings of the form Gg, G1, G, ..., Gy, ..., Gy, where the last result is an embedding of G. Naturally,
the SH algorithm must also account for nonplanar graphs. Nonetheless, the processing model for vertex i
remains quite simple: search the partial embedding G;_; for nonplanarity conditions established
by several lemmata, and if none are found, then apply a planarity reduction to produce G;.

The SH algorithm represents the partial embedding with a data structure called a PC-tree. The starting
PC-tree represents G, which is the depth first search tree only, with no back edges. Each node of the tree
is a P-node that represents a single vertex of the input graph G. The PC-tree remains a tree at all times
even though it conceptually represents a subgraph that contains cycles as back edges from G are embedded.
As back edges are added, they biconnect portions of the embedding that were previously separable. The
separable components are represented by multiple nodes of the PC-tree, and these are consolidated into a
single C-node representing the new biconnected component.

In general, the P-nodes of a PC-tree represent cut vertices in the partial embedding, and the C-nodes
represent biconnected components. Before the back edges from a vertex ¢ to its descendants can be embedded,
the partial embedding G;_; must be rearranged so that vertices with back edge connections to proper
ancestors of i are in a single face. This rearrangement must follow certain rules. Specifically, the children
of a P-node can be arbitrarily permuted, and the children of a C-node can only be flipped (reversed). The
nonplanarity conditions detect when the required rearrangement is not possible. If the rearrangement is
possible, then the planarity reductions perform the rearrangement, and they consolidate portions of the
PC-tree into single C-nodes as necessary to effect the embedding of the new back edges and produce G;.

Each C-node in a PC-tree has only P-node neighbors that represent vertices along the external face
bounding cycle of the biconnected component represented by the C-node. For this reason, the P-node neigh-
bors of a C-node are called its representative bounding cycle (RBC). Given a C-node ¢, the neighbor that is
closer to i than c¢ is the parent of ¢, and the other neighbors of ¢ are its children. However, the children of a
C-node cannot indicate the C-node as the parent (see Section 5.2), so in order to traverse from a child w to
the parent p of ¢ (or vice versa), one of two paths around the RBC is taken.

In general, T, denotes the PC-subtree rooted by v, which represents the partial embedding of a subgraph
of GG induced by the vertices of the DFS subtree rooted by vertex v. For each DFS child r of 4, the algorithm
considers separately the embedding of back edges between ¢ and vertices in 7;.. This is permissible since,
given a subgraph H containing the DFS tree of G plus all back edges between vertices in T;, vertex i still
separates any two of its DFS children r; and ry in H. Therefore, a Kuratowski subgraph cannot span the
subgraphs induced by 7)., and 7)., because there are not enough paths connecting them.

Within 7)., a subtree Ty is an i*-subtree if it has unembedded back edge connections only to proper
DFS ancestors of 7. Similarly, an i-subtree is a subtree T of 7). that has unembedded back edges only to .
The absence of the nonplanarity patterns is supposed to guarantee that one of the planarity reductions is
applicable. The planarity reductions have the property that the children of P-nodes can be permuted and
the children of C-nodes can be flipped (reversed) such that all i-subtrees are near i and all i*-subtrees can
be avoided while visiting the i-subtrees to embed the back edges to i. See Figure 1.

Fig. 1. Permute P-nodes and flip C-nodes to visit i-subtrees and to avoid i* subtrees. a) Darkened triangles are i-
subtrees, whitened triangles are i*-subtrees, double circles are C-nodes and single circles are P-nodes. b) The children
of u are permuted, node c is flipped on the path axis (u, ..., m), and v’ is not changed since it has the desired
configuration.

A terminal node is a node t in the PC-tree with the following properties: 1) ¢ has a child i-subtree or is
adjacent to i by a back edge; 2) ¢ has a child i*-subtree or is adjacent to a proper ancestor of i by a back
edge; 3) t has no proper descendants in the PC-tree with the same properties. Terminal nodes are so named
because they are the endpoints of critical paths to r that must be searched for nonplanarity conditions. As
an example, Figure 2 illustrates a nonplanarity condition that can arise if there are three or more terminal
nodes. Then, Lemma 1 (Lemma 2.5 in [16]) describes a necessary condition for planarity, the absence of
which yields the K3 3 minor appearing in Figure 3.

Lemma 1 (Shih and Hsu). Suppose there are two terminal nodes u and u' in T,.. Let P be the unique
path in T from u to u'. Let m be the least common ancestor of u and u'. Let P' be the unique path from m
tor. Let S = {v||v is a child of a node in P, but v is not in P}. Let S' = {v||v is a child of a node in P’
- {m}, but v is not in P'} (note that when m=r, S’ is empty). Then, for each node v in S, T, is either an
i-subtree or an i*-subtree, and for each node v in S', T, is an i-subtree.

Proof. Since nonessential nodes are removed, if v in S or S’ is not the root of an i-subtree or i*-subtree, then
T, must contain another terminal node, contradicting the assumption of two terminal nodes. That v € S’
cannot be the root of an i*-subtree is proven by Figure 3, which depicts the resulting K3 3 minor. |

(b)

Fig.2. (a) A PC-tree with three terminal nodes. (b) The corresponding Kz 3 Minor. Note that there are many
possible variations in connections of the critical paths and the i*-subtree connections to proper ancestors of ¢, but
edge contraction is used to eliminate unnecessary complexities.

-
\i-———_——

(@) (b)
Fig. 3. (a) An i*-subtree attached to a proper ancestor v’ of m, the closest common ancestor of two terminal nodes
uw and u'. (b) The resulting K3 3 from [16]

Remark: The proof of Lemma 1 (Lemma 2.5 in [16]) is specific to PC-trees that contain only P-nodes.
Section 3 discusses difficulties with its extension to general PC-trees that contain C-nodes.

3 Corrections for the PC-tree Planarity Algorithm

The PC-tree method in [16] requires some fixes to yield a correct planarity test. Aside from the three
terminal node case, Shih and Hsu present four necessary conditions for maintaining planarity: “In Lemma
2.5, Corollary 2.6, [and] Lemmas 3.1 and 3.2 we made the assumption that graph G is planar in deriving
at those conclusions. We shall show that if these conclusions hold at each iteration by showing that these
conditions imply a feasible internal embedding for each 2-connected component.” [16, p. 188]. The authors
then proceed to demonstrate how to perform planarity reductions for the one and two terminal node cases,

but the proof does not show that the presence of the four necessary planarity conditions yields only PC-trees
that are reducible by the methods shown.

3.1 Patterns of child z-subtrees and 7*-subtrees around a terminal C-node

Perhaps the most critical problem for PC-tree planarity correctness pertains to Lemma 3.2 in [16]. The
lemma seeks to characterize the allowable pattern of child i-subtrees and i*-subtrees around a terminal C-
node. Put simply, the lemma states that for the root j of any child i-subtree of a terminal C-node, one of
the two RBC paths from j to the parent of the C-node must contain only i-subtrees.

While the lemma statement is certainly necessary to maintaining planarity, it is only sufficient in the
one terminal node case when the terminal node has no proper ancestor with a child ¢*-subtree. In the two
terminal node case and the one terminal node case where the terminal node has a proper ancestor with a
child i*-subtree, it is possible to be compliant with the statement of the lemma yet still have a nonplanarity
condition. Lemma 2 characterizes the additional restriction required on terminal C-nodes. Figure 4 depicts
example PC-trees for the additional restriction, along with the resulting K3 3 minor.

(b) (c)

Fig. 4. (a) A K33 nonplanarity minor from [3], (b) A corresponding PC-tree with one terminal C-node having the
forbidden child i-i* subtree pattern, (c) Another example with two terminal C-nodes that have the forbidden child
i-1" subtree pattern. Only one of the terminal nodes must be a C-node with the forbidden subtree pattern.

Lemma 2. If a terminal C-node ¢ has a proper ancestor a with either a direct back edge to a proper ancestor
of i or a child v not an ancestor of ¢ such that T, contains an i*-subtree, then ¢ must have a child w for
which an RBC path from w to the parent p of ¢ contains all child i-subtrees of c.

Proof. The children of the terminal C-node in Figure 4(b) depict the minimal configuration of forbidden
subtrees to which all forbidden subtree patterns can be reduced. The result is the K3 3 minor in Figure 4(a).
Figure 4(c) shows that with two terminal nodes, a terminal C-node also must not have the forbidden subtree
configuration because the subtree containing the other terminal node attached to the least common ancestor
m is analogous to a child i*-subtree, so again the K3 3 minor in Figure 4(a) results. O

3.2 Patterns of child z-subtrees and 7*-subtrees around an intermediate C-node

Lemma 3.1 of [16] places a necessary condition on the intermediate C-nodes of the path P between two
terminal nodes. Given an intermediate C-node ¢ with neighbors v and v’ in P, one of the two RBC paths
strictly between v and v’ must contain only i-subtrees and the opposing RBC path strictly between v and
v’ must contain only child i*-subtrees.

There are three problems with this lemma in [16]. First of all, as a proof by contradiction, the proof
must account for the negation of the condition in the theorem. The proof in [16] presents the case of having
both a child i-subtree and i*-subtree along a single RBC path. However, it is possible to avoid this case
yet still have a nonplanarity condition according to the lemma statement if both RBC paths contain only
a child i*-subtree. Secondly, the stated condition is not quite strong enough if the intermediate C-node is
m, the closest common ancestor of the terminal nodes. Lemma 3 provides the required modifications to the
statement and proof of Lemma 3.1 in [16]. The third problem is simply that Lemma 3.1 of [16] applies only
to the two terminal node case, but Corollary 1 demonstrates the need to extend the necessary condition of
the lemma to the analogous scenario in the one terminal node case.

Lemma 3. Given the PC-tree path P between two terminal nodes u and u' in T,, consider an intermediate
C-node c in P —{u,u'} with neighbors v and v' in P. Let m denote the closest common ancestor of u and u'
in the PC-tree. Then, the children of ¢ along one RBC path of ¢ strictly between v and v' must be only child
i-subtrees, and the opposing RBC path strictly between v and v' must contain only child i*-subtrees. Further,
if ¢ = m, then the RBC path containing the child i-subtrees must also contain the parent p of c.

(b)
Fig. 5. (a) A PC-tree in which m is a C-node with a child i-subtree below path P between terminal nodes z and y.
(b) A PC-tree with an intermediate C-node that has child i*-subtrees along both RBC paths from parent p to the
next node w in path P. (c¢) The corresponding K3 3 minor from [3]. Note: This minor also appears in the new three
terminal node case of Figure 7 as well as the forbidden child i-i* subtree pattern of Lemma 3.2 in [16].

Proof. When ¢ # m, the proof of Lemma 3.1 in [16] demonstrates the nonplanarity condition that results
if one RBC path contains both a child i-subtree and i*-subtree. The nonplanarity condition also covers the
case in which ¢ = m and both a child i*-subtree and i-subtree appear in the RBC path that excludes the
parent p of c¢. The remaining points below were omitted from the proof of Lemma 3.1 in [16].

When ¢ = m, the RBC path strictly between v and v’ that excludes the parent p can still generate a
nonplanarity condition even if it contains no child i*-subtree as required by the partial proof of Lemma 3.1.
If that RBC path contains a child i-subtree, then the PC-tree has the form depicted in Figure 5(a), which
results in the K3 3 depicted in Figure 5(c).

When ¢ = m, the RBC path strictly between v and v’ that includes the parent p of ¢ cannot contain a
child i*-subtree. Given the root j of such a child j i*-subtree, one of the nonplanarity minors depicted for
Lemma 5 can be obtained by edge contracting the RBC path to merge j with the parent p of c.

When ¢ # m, then both RBC paths around c¢ strictly between v and v’ cannot contain a child i*-subtree.

If both RBC paths contain child i*-subtrees as shown in Figure 5(b), then a K3 3 can be found according to
O

the nonplanarity minor in Figure 5(c).
Remark: The nonplanarity condition of Figure 5(a) is similar to the one in Lemma 3.2 of [16], which requires
the C-node to be a terminal node and z and y to be child i*-subtrees that obstruct both RBC paths from

w to the parent of the C-node.

Corollary 1. Given one terminal node u, let P denote the path from u to the farthest ancestor u' with a
child i*-subtree. Let ¢ be an intermediate C-node in path P—{u}. For ¢ # u', let v and v' denote the neighbors
of ¢ in P. For ¢ = u', let v denote the neighbor of ¢ in P and let v' denote the closest child i*-subtree along
either RBC path from the parent p of c. The following conditions must hold:

— The children of ¢ in one RBC path strictly between v and v' must contain only child i-subtrees.

— The opposing RBC path strictly between v and v' must contain only child i*-subtrees.

— If c =, then the RBC path containing the child i-subtrees must also contain p.

3.3 Direct back edges as degenerate i-subtrees and i*-subtrees

There is an omission from the presentation of several results in [16], including Theorem 2.4, Lemma 2.5 and
Corollary 2.6 of [16]. Lemma 4 demonstrates that the nonplanarity condition for Lemma 2.5 in [16] (Lemma
1 above) can still occur despite the absence of the condition stated by the lemma. Since a number of other
results in [16] have the same problem, Corollary 2 makes a statement that fixes the underlying problem.

Lemma 4. Given the same assumptions as Lemma 1, nonplanarity can result if S’ is empty or devoid of

vertices that root child i*-subtrees.

Proof. A node in P’ — {m} can have a direct back edge to a proper ancestor of i. O

Corollary 2. A back edge (v, i) can be considered equivalent to a child i-subtree of v, and a back edge (v,
t) where t is a proper ancestor of i can be considered equivalent to a child i*-subtree of v.

Proof. Solely for the purpose of simplifying proof statements, such direct back edges can be considered to
be subdivided by an implicit degree two vertex w, which would be an implicit child of v. O

3.4 Additional cases of surrounding an 2*-subtree

Consider the extension of Lemma 2.5 in [16] (presented in Lemma 1 above) to the case of a PC-tree that
contains C-nodes. Specifically, suppose that the closest common ancestor m of the two terminal nodes is in
fact a C-node whose parent has the only child i*-subtree along the path P’. Figure 6 depicts an example
PC-tree and the corresponding K5 minor pattern from [3]. This case is of critical importance because some
graphs that it represents do not even contain a K3 3, which demonstrates that the proof of Lemma 2.5 does
not “go through for the case of general trees without any changes provided that the paths through a C-node
are interpreted correctly” [16, p. 185]. Lemma 5 properly extends Lemma 2.5 of [16], including a proof that
no other nonplanarity patterns result from its necessary condition.

-
\i-———_——

(a) (b)

Fig. 6. (a) A PC-tree in which the closest common ancestor of terminal nodes » and u' is a C-node with a proper
ancestor that has a child ¢*-subtree. (b) The corresponding K5 minor from [3].

Lemma 5. Suppose there are two terminal nodes u and u' in T, and let m be their closest common ancestor.
Let P' be the unique path from m to r. If m has a proper ancestor in T, with a child i*-subtree, then the
input graph is not planar.

Proof. If m is a C-node, then the PC-tree has the form shown in Figure 6(a) and the input graph can
be edge contracted to the K5 in Figure 6(b) as follows. First, since r and its ancestors are P-nodes, edge
contract the proper ancestor of 7 into one vertex ¢ and do nothing to ¢ and r. For each C-node ¢ in P’ —m,
edge contract its RBC so that only the parent and child of ¢ in P’ remain. Then, edge contract P’ —m into
r. Similarly, edge contract the RBCs of C-nodes in P —m into a single edge per C-node. Then, edge contract
the proper descendants of m leading to w into either u if u is a P-node or a child of u if u is a C-node.
Likewise, edge contract the proper descendants of m leading to u' into either ' if it is a P-node or a child
of ' if v’ is a C-node.

On the other hand, if m is a P-node, then all C-nodes in 7). can be edge contracted as described above.
Then, the K3 3 given for Lemma 2.5 in [16] is applicable (see Figure 3). |

The proof of Lemma 5 is also important because it demonstrates the actual method by which K5 homeo-
morphs are found by the PC-tree algorithm, which also contradicts [16]: “we could have three terminal nodes
being neighbors of a C-node, in which case we would get a subgraph homeomorphic to K5 as illustrated in
Fig. 6.” The K5 in Figure 6 of [16] is equivalent to Figure 6(b). It does not result in three terminal nodes, but
is instead discovered by the condition in Lemma 5. Moreover, the case of three terminal node neighbors of
a C-node depicted in Figure 7 should be part of an extension of Theorem 2.4 in [16] to PC-trees containing
C-nodes, but again the proof does not extend to general PC-trees because the K3 3 identified in the proof

cannot always be obtained. Lemma 6 provides the proper extension of the three terminal node case to general
PC-trees that contain C-nodes.

Lemma 6. If T, contains three terminal nodes, then the input graph is not planar.

Proof. The proof of Theorem 2.4 in [16] provides the proper K 3 in PC-trees containing only P-nodes (see
Figure 2). For general PC-trees containing C-nodes, only proper descendants of 7 in T). need to be considered
since r and its ancestors are P-nodes.

For each of the three terminal nodes, denoted i1, i» and i3, let P;, P, and P; denote the critical paths
from each terminal node to r. Without loss of generality, label the terminal nodes so that the join point j;
of P, and P is equal or descendant to the join point js of the first two paths with P;. The endpoints of
these critical paths are r and each of the terminal nodes. The endpoint r is a P-node. For each terminal
C-node, edge contract the children of the RBC into a single vertex so that only the parent and one child of
the C-node remain, then use the child of the C-node as an image vertex of a K3 3, either from Figure 2 or
Figure 7 depending on the conditions described below.

For each internal C-node of each critical path except j; and j, (if either is indeed a C-node), edge contract
the RBC to a single edge containing the parent and child in the critical path. Since the endpoints of the
critical paths have already been discussed, this leaves only j; and js to consider.

If both j; and j, are P-nodes, then clearly j; can be used as the image vertex w in Figure 2, and the
K3 3 identified in [16] for the three terminal node case can still be obtained. Thus, suppose one or both of j;
and j are C-nodes.

Suppose ji # j2. If j; is a P-node, then j» must be a C-node. Let ¢3 denote the child of j; that leads to
i3, and let ¢ » denote the child of j» that leads to j;. In this case j; can again be used as the image vertex
w. The path from w to r leads up to ¢; 2. Then it follows the RBC path from ¢; » through c3 to the parent
of j, then up to r. On the other hand, if j; is a C-node with parent p and children ¢; and ¢ leading to i
and 49, then the RBC paths from p to each of ¢; and ¢» can be contracted to a single edge. If j» is a P-node,
then p is the desired vertex w and we are done. If j; is a C-node, then j, must be a proper ancestor of p.
Again, we let p be the desired vertex w since the path from w to r can be obtained by going around the
RBC of j; as described above.

Finally, suppose j; = j2 is a C-node. Let ¢1, ¢2 and c3 denote the children of the C-node in RBC order
that lead to each of the respective terminal nodes, and let p denote the parent of the C-node. Unless the
biconnected component represented by the C-node happens to have an internally embedded path connecting
¢2 and p, the desired vertex w in the Ks 3 of Figure 2 cannot be obtained. Figure 7(a) depicts the PC-tree
for this case, which reduces to the K3 3 in Figure 7(b). O

Fig. 7. (a) A PC-tree with three terminal node proper descendants of a C-node. Note that the paths from the terminal
nodes to the RBC vertices of the C-node have been contracted. (b) The corresponding K3 3 minor from [3].

3.5 The case of zero terminal nodes

Lemma 7 presents an additional planarity reduction for zero terminal nodes, which occurs in the final step
of embedding every graph. This case is easy to resolve, but it is worth mentioning since it is essentially a
missing planarity reduction.

Lemma 7. If, during the embedding of a biconnected graph G, there is a step i for which zero terminal nodes
are identified, then the PC-tree can be reduced to a single C-node plus P-node neighbors for the RBC of the
C-node.

Proof. If there are no terminal nodes, then there are no i*-subtrees within 7,.. Having no ¢*-subtrees prior to
the last step contradicts the biconnectedness of G. Since G is biconnected, by definition its final embedding
can be represented as described. O

4 Proof of Correctness for Modified PC-tree Algorithm

This section presents a proof of correctness for the PC-tree algorithm as modified by the lemmas and corol-
laries of Section 3. First, the planarity reduction patterns are clearly characterized with property statements
below. Then, violations of the properties are mapped to the lemmas and corollaries so that it is clear that
the planarity reduction patterns are the only ones that do not result in a nonplanarity condition. Since it is
clear how to maintain planarity for each of the planarity reductions, the correctness of the algorithm follows.

For the two terminal node case, let v and u' denote the two terminal nodes. Let m denote the closest
common ancestor of u and u', and let P denote the PC-tree path (u, ..., m, ..., u'). Let P’ denote the
PC-tree path (r, ..., m). For the one terminal node case, let u denote the terminal node and let u' denote
the ancestor of u closest to the root of T, that has a child i*-subtree. Let m be a second label for u’. Let P
denote the path (u, ..., u'), and let P' denote the path (r, ..., u’). To simplify the statement of properties,
consider path P to be arranged horizontally in the plane, and consider P’ as extending vertically upward
from P. Let L denote an infinite horizontal line that contains P.

Property 1. Nodes in P’ — {m} have no child i*-subtrees.

Property 2. The children of nonterminal nodes in P are arranged so that all child i-subtrees are above L
and all child i*-subtrees are below L.

Property 3. Except for the case of one terminal C-node and u = «’, the children of terminal nodes in P are
arranged so that all child i-subtrees are above L and all child i*-subtrees are below L.

Property 4. For the case of one terminal C-node and u = u’, let p be the parent of u and let w and w’ be
the first child i*-subtrees in each of the two RBC paths extending from p. The children of u on the RBC
path strictly between w and w' that contains p must be the roots of all child i-subtrees of u.

The proof of correctness of the modified PC-tree planarity algorithm in Theorem 1 will show that viola-
tions of the four properties above result in a nonplanarity condition. That the above properties characterize
the planarity reductions in [16] and that the planarity reductions embed all back edges from i to descen-
dants of r while maintaining planarity are taken to be straightforward. Moreover, the fact that maintaining
planarity through all steps implies the planarity of the graph and that finding a nonplanarity condition in a
step implies the nonplanarity of the graph are also taken to be evident.

Theorem 1. The modified PC-tree planarity algorithm applies a planarity reduction to T, if and only if
there are no terminal nodes or if there are at most two terminal nodes and Properties 1, 2, 3, and 4 hold.

Proof. Case no terminal nodes: The planarity reduction described in Lemma 7 is applied.

Case one terminal node: Property 1 holds by definition. Property 2 holds if u = u' because there are
no nonterminal nodes in P. Property 2 holds if u # u' except for nonplanarity conditions due to Corollary
1. If u # u', then Property 3 holds except for nonplanarity conditions due to Lemma 2 and Property 4
holds degenerately (is not applicable). On the other hand, if u = «', then Property 3 holds degenerately, and
Property 4 holds except for nonplanarity conditions due to Lemma 3.2 of [16].

Case two terminal nodes: Property 1 holds except for nonplanarity conditions due to Lemma 5. Property 2
holds except for nonplanarity conditions due to Lemma 3. Property 3 holds except for nonplanarity conditions
due to Lemma 2 and Property 4 holds degenerately.

Case more than two terminal nodes: If there are at least three terminal nodes in 7)., then the input graph
is not planar according to Lemma 6. Hence no planarity reduction is applied. a

5 Issues Concerning Linear-Time Performance

Shih and Hsu [16] present the ideas necessary to achieve linear total work for the identification of terminal
nodes, i-subtrees and ¢*-subtrees in all steps of the PC-tree algorithm. However, there are two impediments
to achieving linear time by the methods stated in [16]; both are complexities that arise when planarity
reductions are applied to a PC-tree that contains C-nodes.

5.1 Maintaining the RBC when flipping C-nodes

The claim that the “RBC will be stored as a circular doubly linked list” [16, p. 184] cannot be supported.
When the representative bounding cycles of C-nodes must be joined together, the direction of traversal of
two successive C-nodes may be reversed at the intervening P-node depending on which path contains the
child i-subtrees in each C-node. Joining the RBCs of two such C-nodes into a circular doubly linked list
would require the inversion of links in the RBC nodes of one of the two C-nodes. It is easy to create planar
graphs in which ©(n?) link inversions occur in total. To solve this problem, one can represent the RBC with
a discordant list (defined in [3]). When merging the RBCs of two C-nodes separated by a P-node, only the
neighbors of the P-node in the two RBCs are linked together. If the merge must be done such that one
C-node is flipped relative to the other, then the resulting RBC pointers after the merge will be in discord.
However, traversal of the RBC is still possible with only a little extra effort. When a traversal arrives at a
node v from a predecessor p along a discordant RBC, the successor of v is indicated by one of its two RBC
pointers. The pointer to use is the one that does not indicate p. Figure 8 illustrates this concept.

t2 9F °5 ¢
/'4<§ @r

e

Fig. 8. A discordant list of size 3 or more can be traversed by taking whichever pointer does not lead back to the
preceding node (from [3]).

5.2 On the infeasibility of C-nodes as parents

In the conceptual ideal, every C-node and P-node indicates its parent according to the PC-tree definition.
However, the child P-nodes in the RBC of a C-node cannot indicate the C-node as their parent. Consider
a C-node with the following properties: 1) The RBC of the C-node has a subset S of children that root
i*-subtrees which all have back edges only to the last vertex to be processed, and 2) the RBC of the C-node
also has an O(n) sized succession of children that root i*-subtrees which connect to proper ancestors of i such
that successive steps of the algorithm merge the RBC of the original C-node into other ancestor C-nodes.
At each merge, the members of S must be reparented to point to the new C-node that becomes their parent
after the planarity reduction. This reparenting must be performed on a number of i*-subtree roots that is a
constant fraction of n, and the set of reparenting operations must be performed each time the parent C-node
of the members of S must be changed to some other ancestor C-node with which the parent is merged.
This results in @(n?) performance in the worst case. The work could be substantially reduced by using the
methods of the union-find data structure (also called a disjoint set data structure in [7]), but it would then
have to be shown that the result is not super-linear, which is the case for generalized union-find operations.
Either way, [16] presents neither this more sophisticated parenting strategy nor the required proof.

Perhaps the simplest strategy to solve this problem is not to adopt a complex parenting strategy and
present a complex proof, but rather to let the parent pointer of all children of a C-node simply be nil,
indicating they are part of a C-node, and keeping a pointer from each C-node child to its entry in the RBC.
To find the parent of any node whose parent pointer is nil, traverse both directions around the RBC in
parallel. This will obtain the parent of the C-node by the shorter path, so that the work done will not exceed
a constant factor of the length of RBC that will be eliminated during the planarity reduction in the same
step. This is analogous to the method used in [3, 4] to traverse the external faces of biconnected components
that are merged during the processing of a vertex.

6 Empirical Results and Future Work

This paper has reported and solved a number of additional theoretical complexities that arise in the pub-
lished version of the Shih-Hsu PC-tree planarity algorithms [16]. A few years earlier, Thomas [17] provided
an alternate formulation of the Shih-Hsu planarity algorithm that achieved linear-time performance for tri-
connected graphs. Thomas points out that significant additional technical complications would arise when
accounting for graphs of lower connectivity and when one requires a planar embedding.

Our implementation efforts have been based on extending the formulation in Thomas’ notes as a way
of better understanding and correcting the problems with the PC-tree formulation in [16]. The resulting
LEDA-based implementation contains code manifestations of the PC-tree problem solutions reported in
this paper. We have achieved a linear-time implementation, both for producing a planar embedding and
for isolating a Kuratowski subgraph in a nonplanar graph. We have performed the same empirical tests
used in LEDA to compare the Hopcroft-Tarjan and Booth-Lueker implementations, and all results are
consistent with the results for maximal planar graphs (MP) and their nonplanar counterparts created by
adding one random edge (MP+e). Figure 9 presents the MP and MP+e empirical comparisons of our current
implementation with the Hopcroft-Tarjan (HT) and Booth-Lueker (BL) implementations in LEDA, as well
as a non-LEDA implementation of the Boyer-Myrvold (BM) algorithm in [4]. Note that there are no HT
results for nonplanar graphs because LEDA does not implement Williamson’s Kuratowski subgraph isolator
(indeed Williamson [21] knows of no O(n) implementation).

(G4) TEST+JUSTIFICATION (G5) TEST+JUSTIFICATION
120 T T T T T T T T IBL T
T
851 BM -l |
100 F SH ---e--—-
30 E
80 |- - 1 25 | Y
(] < (] s
£ g £
[. i [
S5 60r o)
o) o
© . o
40 - .
20 b g X
F] 1 Bl

0 S 3 t 0
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Number of vertices Number of vertices

Fig. 9. Empirical results comparing the SH;, HT, BL and BM implementations on testing and justifying maximal
planar graph (left) and their nonplanar counterparts (right) consisting of an extra random edge. The justification
consists of creating an embedding for a planar graph or isolating a Kuratowski subgraph of a nonplanar graph. Results
for HT on nonplanar graphs cannot be obtained from LEDA.

Although our implementation is not yet competitive with HT and BL, we believe that it can be made
more competitive, in part through further application of some of the methods of the BM algorithm, which
currently has the fastest implementation by about 2.5 times on planar graphs and about 8 times on nonplanar
graphs. Our implementation efforts to date have been principally concerned with correctness and linear-time
performance. The correctness concerns led us to extend Thomas’ formulation based on an understanding of
the original LEC algorithm (this formulation appears in [14]). We believe that the success of this approach

in finding and solving problems with the PC-tree formulation substantiates the further investigation and
exposition of the SH algorithm as an LEC-type algorithm. Indeed, future work shall consist of refining this
alternate formulation with the ultimate goal of developing a unified LEC-type framework for describing the
SH, BL and BM algorithms. As Williamson [19] notes, “it would be desirable to have not one but several
basically different [linear time Kuratowski subgraph isolators]” because the condition of linearity “forces the
emergence of a certain level of insight into the structure of nonplanar graphs and Kuratowski’s theorem.” The
PC-tree formulation [16], augmented by the corrections in this paper, two variations of the BM algorithm [3,
4], and Karabeg’s analysis [12] of the BL algorithm collectively demonstrate four different methods for the
discovery of nonplanarity. Along with the correspondence drawn between HT and BL in [5], we believe that
a more generalized LEC-type formulation could unify all of these methods and increase our graph theoretic
understanding of planarity.

References

1. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity
using PQ-tree algorithms. Journal of Computer and Systems Sciences, 13:335-379, 1976.

2. J. Boyer. Simplified O(n) algorithms for planar graph embedding, Kuratowski subgraph isolation and related
problems. Ph.D. Thesis, University of Victoria, 2001.

3. J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified O(n) planar embedding algorithm.
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 140-146, 1999.

4. J. Boyer and W. Myrvold. Simplified O(n) planarity algorithms. Journal of Algorithms, pages 1 41, Submitted
Dec. 3, 2001.

5. E. R. Canfield and S. G. Williamson. The two basic linear time planarity algorithms: Are they the same? Linear
and Multilinear Algebra, 26:243 265, 1990.

6. N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for embedding planar graphs using PQ-trees.
Journal of Computer and Systems Sciences, 30:54 76, 1985.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge,
Massachusetts, 1990.

8. N. Deo. Note on Hopcroft and Tarjan planarity algorithm. Journal of the Association for Computing Machinery,
23:74 75, 1976.

9. S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer Science, 2:339-344, 1976.

10. J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the Association for Computing Machinery,
21(4):549 568, 1974.

11. M. Jinger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in automatic graph drawing. In G. Di Battista,
editor, Proc. 5th International Symposium on Graph Drawing ‘97, volume 1353 of Lecture Notes in Computer
Science, pages 193 204. Springer Verlag, Sept. 1997.

12. A. Karabeg. Classification and detection of obstructions to planarity. Linear and Multilinear Algebra, 26:15-38,
1990.

13. A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. In P. Rosenstiehl, editor,
Theory of Graphs, pages 215-232, New York, 1967. (Proc. Int. Symp. Rome, July 1966), Gordon and Breach.

14. A. Noma. Andlise experimental de algoritmos de planaridade. Master’s thesis, Universidade de Sao Paulo, May
2003. in Portuguese.

15. E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and Practice. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1977.

16. W.-K. Shih and W.-L. Hsu. A new planarity test. Theoretical Computer Science, 223:179 191, 1999.

17. R. Thomas. Planarity in linear time. http://www.math.gatech.edu/"thomas/, June 1997.

18. S. G. Williamson. Embedding graphs in the plane- algorithmic aspects. Ann. Disc. Math., 6:349 384, 1980.

19. S. G. Williamson. Depth-first search and Kuratowski subgraphs. Journal of the Association for Computing
Machinery, 31(4):681-693, 1984.

20. S. G. Williamson. Combinatorics for Computer Science. Computer Science Press, Rockville, Maryland, 1985.

21. S. G. Williamson. Personal Communication during Boyer’s Ph.D. Defense. August 24, 2001.

