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Then, a method alled `Walkdown' traverses the ative DFS subtree in a top-down fashion, embedding bakedges from v to its desendants and merging bionneted omponents as neessary while preserving planarity.The Walkdown traversal method obeys a few simple rules that guarantee that it will be able to embed alledges from v to its desendants exept when a K3;3 or K5 minor an be identi�ed.The method of Shih and Hsu [16℄ also proesses the verties of the input graph from desendants toanestors, and it also adds the bak edges from i to its desendants unless a nonplanarity onditions isdeteted. To e�et this strategy, Shih and Hsu reated a data struture alled a PC-tree, whih is a sim-pli�ed form of the Booth-Lueker PQ-tree. For eah vertex i, the algorithm �rst searhes for a number ofde�ned nonplanarity patterns in the PC-tree, and if none are found, then a planarity redution is appliedto embed the edges from i to its desendants. However, Shih and Hsu's formulation laks a desription ofhow exatly to implement the routines that manipulate the PC-tree to solve the planarity problem. Thisdesription is essential for one to derive a linear-time implementation of their algorithm, and there is a seriesof nontrivial details involved. Moreover, there are some aws in the proof that the nonplanarity patternsand the planarity redution patterns together form an unavoidable set. This problem was �rst reported inBoyer's dissertation [2℄ (see also Boyer and Myrvold [4℄), and this paper provides a solution.This paper presents a orreted version of Shih and Hsu's algorithm (SH algorithm) that ontains severalnew nonplanarity patterns. Setion 2 �rst presents an overview of the PC-tree data struture and algorithmas presented in [16℄. Then, Setion 3 presents orretions to the SH algorithm, and Setion 4 presents aproof that the orreted SH algorithm does indeed distinguish between planar and nonplanar graphs. As forperformane, Setion 5 desribes two issues that arise when one tries to reate a linear-time implementationof Shih and Hsu's ideas. The solutions for these two issues were inspired by Boyer and Myrvold [3℄. A linear-time implementation that aounts for the orretness and speed issues desribed in this paper an be foundat http://www.ime.usp.br/~oelho/sh. Setion 6 presents an empirial omparison of this implementationto linear-time implementations of other well-known planarity algorithms.2 Overview of Planarity by PC-treesThe Shih-Hsu algorithm begins by embedding the depth �rst searh tree (a trivial task). The main proessingmodel is therefore onerned with embedding the bak edges for eah vertex. The verties are proessed ina post-order traversal of the depth �rst searh tree. For a vertex i, the bak edges from i to its desendantsare added. The bak edges from i to its anestors are embedded when those anestors are proessed.If a graph G is planar, then it is always possible to produe a planar embedding ~Gi of the subgraphindued by the subtree rooted by i suh that all desendants of i with bak edge onnetions to anestorsof i are on the boundary of a single fae of ~Gi. The rationale is the same as that given above for the LECalgorithm. Hene, when the SH algorithm is proessing a planar graph, it reates suessively larger partialembeddings of the form ~G0, ~G1, ~G2, . . . , ~Gi, . . . , ~Gn, where the last result is an embedding of G. Naturally,the SH algorithm must also aount for nonplanar graphs. Nonetheless, the proessing model for vertex iremains quite simple: searh the partial embedding ~Gi�1 for nonplanarity onditions establishedby several lemmata, and if none are found, then apply a planarity redution to produe ~Gi.The SH algorithm represents the partial embedding with a data struture alled a PC-tree. The startingPC-tree represents ~G0, whih is the depth �rst searh tree only, with no bak edges. Eah node of the treeis a P-node that represents a single vertex of the input graph G. The PC-tree remains a tree at all timeseven though it oneptually represents a subgraph that ontains yles as bak edges from G are embedded.As bak edges are added, they bionnet portions of the embedding that were previously separable. Theseparable omponents are represented by multiple nodes of the PC-tree, and these are onsolidated into asingle C-node representing the new bionneted omponent.In general, the P-nodes of a PC-tree represent ut verties in the partial embedding, and the C-nodesrepresent bionneted omponents. Before the bak edges from a vertex i to its desendants an be embedded,the partial embedding ~Gi�1 must be rearranged so that verties with bak edge onnetions to properanestors of i are in a single fae. This rearrangement must follow ertain rules. Spei�ally, the hildrenof a P-node an be arbitrarily permuted, and the hildren of a C-node an only be ipped (reversed). Thenonplanarity onditions detet when the required rearrangement is not possible. If the rearrangement ispossible, then the planarity redutions perform the rearrangement, and they onsolidate portions of thePC-tree into single C-nodes as neessary to e�et the embedding of the new bak edges and produe ~Gi.



Eah C-node in a PC-tree has only P-node neighbors that represent verties along the external faebounding yle of the bionneted omponent represented by the C-node. For this reason, the P-node neigh-bors of a C-node are alled its representative bounding yle (RBC). Given a C-node , the neighbor that isloser to i than  is the parent of , and the other neighbors of  are its hildren. However, the hildren of aC-node annot indiate the C-node as the parent (see Setion 5.2), so in order to traverse from a hild w tothe parent p of  (or vie versa), one of two paths around the RBC is taken.In general, Tv denotes the PC-subtree rooted by v, whih represents the partial embedding of a subgraphof G indued by the verties of the DFS subtree rooted by vertex v. For eah DFS hild r of i, the algorithmonsiders separately the embedding of bak edges between i and verties in Tr. This is permissible sine,given a subgraph H ontaining the DFS tree of G plus all bak edges between verties in Ti, vertex i stillseparates any two of its DFS hildren r1 and r2 in H . Therefore, a Kuratowski subgraph annot span thesubgraphs indued by Tr1 and Tr2 beause there are not enough paths onneting them.Within Tr, a subtree Ts is an i�-subtree if it has unembedded bak edge onnetions only to properDFS anestors of i. Similarly, an i-subtree is a subtree Ts of Tr that has unembedded bak edges only to i.The absene of the nonplanarity patterns is supposed to guarantee that one of the planarity redutions isappliable. The planarity redutions have the property that the hildren of P-nodes an be permuted andthe hildren of C-nodes an be ipped (reversed) suh that all i-subtrees are near i and all i�-subtrees anbe avoided while visiting the i-subtrees to embed the bak edges to i. See Figure 1.

Fig. 1. Permute P-nodes and ip C-nodes to visit i-subtrees and to avoid i� subtrees. a) Darkened triangles are i-subtrees, whitened triangles are i�-subtrees, double irles are C-nodes and single irles are P-nodes. b) The hildrenof u are permuted, node  is ipped on the path axis (u, . . . , m), and u0 is not hanged sine it has the desiredon�guration.A terminal node is a node t in the PC-tree with the following properties: 1) t has a hild i-subtree or isadjaent to i by a bak edge; 2) t has a hild i�-subtree or is adjaent to a proper anestor of i by a bakedge; 3) t has no proper desendants in the PC-tree with the same properties. Terminal nodes are so namedbeause they are the endpoints of ritial paths to r that must be searhed for nonplanarity onditions. Asan example, Figure 2 illustrates a nonplanarity ondition that an arise if there are three or more terminalnodes. Then, Lemma 1 (Lemma 2.5 in [16℄) desribes a neessary ondition for planarity, the absene ofwhih yields the K3;3 minor appearing in Figure 3.Lemma 1 (Shih and Hsu). Suppose there are two terminal nodes u and u0 in Tr. Let P be the uniquepath in T from u to u0. Let m be the least ommon anestor of u and u0. Let P 0 be the unique path from mto r. Let S = fvkv is a hild of a node in P , but v is not in Pg. Let S0 = fvkv is a hild of a node in P 0- fmg, but v is not in P 0g (note that when m=r, S0 is empty). Then, for eah node v in S, Tv is either ani-subtree or an i�-subtree, and for eah node v in S0, Tv is an i-subtree.Proof. Sine nonessential nodes are removed, if v in S or S0 is not the root of an i-subtree or i�-subtree, thenTv must ontain another terminal node, ontraditing the assumption of two terminal nodes. That v 2 S0annot be the root of an i�-subtree is proven by Figure 3, whih depits the resulting K3;3 minor. 2



Fig. 2. (a) A PC-tree with three terminal nodes. (b) The orresponding K3;3 Minor. Note that there are manypossible variations in onnetions of the ritial paths and the i�-subtree onnetions to proper anestors of i, butedge ontration is used to eliminate unneessary omplexities.

Fig. 3. (a) An i�-subtree attahed to a proper anestor v0 of m, the losest ommon anestor of two terminal nodesu and u0. (b) The resulting K3;3 from [16℄Remark: The proof of Lemma 1 (Lemma 2.5 in [16℄) is spei� to PC-trees that ontain only P-nodes.Setion 3 disusses diÆulties with its extension to general PC-trees that ontain C-nodes.3 Corretions for the PC-tree Planarity AlgorithmThe PC-tree method in [16℄ requires some �xes to yield a orret planarity test. Aside from the threeterminal node ase, Shih and Hsu present four neessary onditions for maintaining planarity: \In Lemma2.5, Corollary 2.6, [and℄ Lemmas 3.1 and 3.2 we made the assumption that graph G is planar in derivingat those onlusions. We shall show that if these onlusions hold at eah iteration by showing that theseonditions imply a feasible internal embedding for eah 2-onneted omponent." [16, p. 188℄. The authorsthen proeed to demonstrate how to perform planarity redutions for the one and two terminal node ases,but the proof does not show that the presene of the four neessary planarity onditions yields only PC-treesthat are reduible by the methods shown.3.1 Patterns of hild i-subtrees and i�-subtrees around a terminal C-nodePerhaps the most ritial problem for PC-tree planarity orretness pertains to Lemma 3.2 in [16℄. Thelemma seeks to haraterize the allowable pattern of hild i-subtrees and i�-subtrees around a terminal C-node. Put simply, the lemma states that for the root j of any hild i-subtree of a terminal C-node, one ofthe two RBC paths from j to the parent of the C-node must ontain only i-subtrees.



While the lemma statement is ertainly neessary to maintaining planarity, it is only suÆient in theone terminal node ase when the terminal node has no proper anestor with a hild i�-subtree. In the twoterminal node ase and the one terminal node ase where the terminal node has a proper anestor with ahild i�-subtree, it is possible to be ompliant with the statement of the lemma yet still have a nonplanarityondition. Lemma 2 haraterizes the additional restrition required on terminal C-nodes. Figure 4 depitsexample PC-trees for the additional restrition, along with the resulting K3;3 minor.

Fig. 4. (a) A K3;3 nonplanarity minor from [3℄, (b) A orresponding PC-tree with one terminal C-node having theforbidden hild i-i� subtree pattern, () Another example with two terminal C-nodes that have the forbidden hildi-i� subtree pattern. Only one of the terminal nodes must be a C-node with the forbidden subtree pattern.Lemma 2. If a terminal C-node  has a proper anestor a with either a diret bak edge to a proper anestorof i or a hild v not an anestor of  suh that Tv ontains an i�-subtree, then  must have a hild w forwhih an RBC path from w to the parent p of  ontains all hild i-subtrees of .Proof. The hildren of the terminal C-node in Figure 4(b) depit the minimal on�guration of forbiddensubtrees to whih all forbidden subtree patterns an be redued. The result is the K3;3 minor in Figure 4(a).Figure 4() shows that with two terminal nodes, a terminal C-node also must not have the forbidden subtreeon�guration beause the subtree ontaining the other terminal node attahed to the least ommon anestorm is analogous to a hild i�-subtree, so again the K3;3 minor in Figure 4(a) results. 23.2 Patterns of hild i-subtrees and i�-subtrees around an intermediate C-nodeLemma 3.1 of [16℄ plaes a neessary ondition on the intermediate C-nodes of the path P between twoterminal nodes. Given an intermediate C-node  with neighbors v and v0 in P , one of the two RBC pathsstritly between v and v0 must ontain only i-subtrees and the opposing RBC path stritly between v andv0 must ontain only hild i�-subtrees.There are three problems with this lemma in [16℄. First of all, as a proof by ontradition, the proofmust aount for the negation of the ondition in the theorem. The proof in [16℄ presents the ase of havingboth a hild i-subtree and i�-subtree along a single RBC path. However, it is possible to avoid this aseyet still have a nonplanarity ondition aording to the lemma statement if both RBC paths ontain onlya hild i�-subtree. Seondly, the stated ondition is not quite strong enough if the intermediate C-node ism, the losest ommon anestor of the terminal nodes. Lemma 3 provides the required modi�ations to thestatement and proof of Lemma 3.1 in [16℄. The third problem is simply that Lemma 3.1 of [16℄ applies onlyto the two terminal node ase, but Corollary 1 demonstrates the need to extend the neessary ondition ofthe lemma to the analogous senario in the one terminal node ase.Lemma 3. Given the PC-tree path P between two terminal nodes u and u0 in Tr, onsider an intermediateC-node  in P �fu; u0g with neighbors v and v0 in P . Let m denote the losest ommon anestor of u and u0in the PC-tree. Then, the hildren of  along one RBC path of  stritly between v and v0 must be only hildi-subtrees, and the opposing RBC path stritly between v and v0 must ontain only hild i�-subtrees. Further,if  = m, then the RBC path ontaining the hild i-subtrees must also ontain the parent p of .



Fig. 5. (a) A PC-tree in whih m is a C-node with a hild i-subtree below path P between terminal nodes x and y.(b) A PC-tree with an intermediate C-node that has hild i�-subtrees along both RBC paths from parent p to thenext node w in path P . () The orresponding K3;3 minor from [3℄. Note: This minor also appears in the new threeterminal node ase of Figure 7 as well as the forbidden hild i-i� subtree pattern of Lemma 3.2 in [16℄.Proof. When  6= m, the proof of Lemma 3.1 in [16℄ demonstrates the nonplanarity ondition that resultsif one RBC path ontains both a hild i-subtree and i�-subtree. The nonplanarity ondition also overs thease in whih  = m and both a hild i�-subtree and i-subtree appear in the RBC path that exludes theparent p of . The remaining points below were omitted from the proof of Lemma 3.1 in [16℄.When  = m, the RBC path stritly between v and v0 that exludes the parent p an still generate anonplanarity ondition even if it ontains no hild i�-subtree as required by the partial proof of Lemma 3.1.If that RBC path ontains a hild i-subtree, then the PC-tree has the form depited in Figure 5(a), whihresults in the K3;3 depited in Figure 5().When  = m, the RBC path stritly between v and v0 that inludes the parent p of  annot ontain ahild i�-subtree. Given the root j of suh a hild j i�-subtree, one of the nonplanarity minors depited forLemma 5 an be obtained by edge ontrating the RBC path to merge j with the parent p of .When  6= m, then both RBC paths around  stritly between v and v0 annot ontain a hild i�-subtree.If both RBC paths ontain hild i�-subtrees as shown in Figure 5(b), then a K3;3 an be found aording tothe nonplanarity minor in Figure 5(). 2Remark: The nonplanarity ondition of Figure 5(a) is similar to the one in Lemma 3.2 of [16℄, whih requiresthe C-node to be a terminal node and x and y to be hild i�-subtrees that obstrut both RBC paths fromw to the parent of the C-node.Corollary 1. Given one terminal node u, let P denote the path from u to the farthest anestor u0 with ahild i�-subtree. Let  be an intermediate C-node in path P�fug. For  6= u0, let v and v0 denote the neighborsof  in P . For  = u0, let v denote the neighbor of  in P and let v0 denote the losest hild i�-subtree alongeither RBC path from the parent p of . The following onditions must hold:{ The hildren of  in one RBC path stritly between v and v0 must ontain only hild i-subtrees.{ The opposing RBC path stritly between v and v0 must ontain only hild i�-subtrees.{ If  = u0, then the RBC path ontaining the hild i-subtrees must also ontain p.3.3 Diret bak edges as degenerate i-subtrees and i�-subtreesThere is an omission from the presentation of several results in [16℄, inluding Theorem 2.4, Lemma 2.5 andCorollary 2.6 of [16℄. Lemma 4 demonstrates that the nonplanarity ondition for Lemma 2.5 in [16℄ (Lemma1 above) an still our despite the absene of the ondition stated by the lemma. Sine a number of otherresults in [16℄ have the same problem, Corollary 2 makes a statement that �xes the underlying problem.Lemma 4. Given the same assumptions as Lemma 1, nonplanarity an result if S0 is empty or devoid ofverties that root hild i�-subtrees.Proof. A node in P 0 � fmg an have a diret bak edge to a proper anestor of i. 2



Corollary 2. A bak edge (v, i) an be onsidered equivalent to a hild i-subtree of v, and a bak edge (v,t) where t is a proper anestor of i an be onsidered equivalent to a hild i�-subtree of v.Proof. Solely for the purpose of simplifying proof statements, suh diret bak edges an be onsidered tobe subdivided by an impliit degree two vertex w, whih would be an impliit hild of v. 23.4 Additional ases of surrounding an i�-subtreeConsider the extension of Lemma 2.5 in [16℄ (presented in Lemma 1 above) to the ase of a PC-tree thatontains C-nodes. Spei�ally, suppose that the losest ommon anestor m of the two terminal nodes is infat a C-node whose parent has the only hild i�-subtree along the path P 0. Figure 6 depits an examplePC-tree and the orresponding K5 minor pattern from [3℄. This ase is of ritial importane beause somegraphs that it represents do not even ontain a K3;3, whih demonstrates that the proof of Lemma 2.5 doesnot \go through for the ase of general trees without any hanges provided that the paths through a C-nodeare interpreted orretly" [16, p. 185℄. Lemma 5 properly extends Lemma 2.5 of [16℄, inluding a proof thatno other nonplanarity patterns result from its neessary ondition.

Fig. 6. (a) A PC-tree in whih the losest ommon anestor of terminal nodes u and u0 is a C-node with a properanestor that has a hild i�-subtree. (b) The orresponding K5 minor from [3℄.Lemma 5. Suppose there are two terminal nodes u and u0 in Tr, and let m be their losest ommon anestor.Let P 0 be the unique path from m to r. If m has a proper anestor in Tr with a hild i�-subtree, then theinput graph is not planar.Proof. If m is a C-node, then the PC-tree has the form shown in Figure 6(a) and the input graph anbe edge ontrated to the K5 in Figure 6(b) as follows. First, sine r and its anestors are P-nodes, edgeontrat the proper anestor of i into one vertex t and do nothing to i and r. For eah C-node  in P 0 �m,edge ontrat its RBC so that only the parent and hild of  in P 0 remain. Then, edge ontrat P 0 �m intor. Similarly, edge ontrat the RBCs of C-nodes in P �m into a single edge per C-node. Then, edge ontratthe proper desendants of m leading to u into either u if u is a P-node or a hild of u if u is a C-node.Likewise, edge ontrat the proper desendants of m leading to u0 into either u0 if it is a P-node or a hildof u0 if u0 is a C-node.On the other hand, if m is a P-node, then all C-nodes in Tr an be edge ontrated as desribed above.Then, the K3;3 given for Lemma 2.5 in [16℄ is appliable (see Figure 3). 2The proof of Lemma 5 is also important beause it demonstrates the atual method by whih K5 homeo-morphs are found by the PC-tree algorithm, whih also ontradits [16℄: \we ould have three terminal nodesbeing neighbors of a C-node, in whih ase we would get a subgraph homeomorphi to K5 as illustrated inFig. 6." The K5 in Figure 6 of [16℄ is equivalent to Figure 6(b). It does not result in three terminal nodes, butis instead disovered by the ondition in Lemma 5. Moreover, the ase of three terminal node neighbors ofa C-node depited in Figure 7 should be part of an extension of Theorem 2.4 in [16℄ to PC-trees ontainingC-nodes, but again the proof does not extend to general PC-trees beause the K3;3 identi�ed in the proof



annot always be obtained. Lemma 6 provides the proper extension of the three terminal node ase to generalPC-trees that ontain C-nodes.Lemma 6. If Tr ontains three terminal nodes, then the input graph is not planar.Proof. The proof of Theorem 2.4 in [16℄ provides the proper K3;3 in PC-trees ontaining only P-nodes (seeFigure 2). For general PC-trees ontaining C-nodes, only proper desendants of r in Tr need to be onsideredsine r and its anestors are P-nodes.For eah of the three terminal nodes, denoted i1, i2 and i3, let P1, P2 and P3 denote the ritial pathsfrom eah terminal node to r. Without loss of generality, label the terminal nodes so that the join point j1of P1 and P2 is equal or desendant to the join point j2 of the �rst two paths with P3. The endpoints ofthese ritial paths are r and eah of the terminal nodes. The endpoint r is a P-node. For eah terminalC-node, edge ontrat the hildren of the RBC into a single vertex so that only the parent and one hild ofthe C-node remain, then use the hild of the C-node as an image vertex of a K3;3, either from Figure 2 orFigure 7 depending on the onditions desribed below.For eah internal C-node of eah ritial path exept j1 and j2 (if either is indeed a C-node), edge ontratthe RBC to a single edge ontaining the parent and hild in the ritial path. Sine the endpoints of theritial paths have already been disussed, this leaves only j1 and j2 to onsider.If both j1 and j2 are P-nodes, then learly j1 an be used as the image vertex w in Figure 2, and theK3;3 identi�ed in [16℄ for the three terminal node ase an still be obtained. Thus, suppose one or both of j1and j2 are C-nodes.Suppose j1 6= j2. If j1 is a P-node, then j2 must be a C-node. Let 3 denote the hild of j2 that leads toi3, and let 1;2 denote the hild of j2 that leads to j1. In this ase j1 an again be used as the image vertexw. The path from w to r leads up to 1;2. Then it follows the RBC path from 1;2 through 3 to the parentof j2 then up to r. On the other hand, if j1 is a C-node with parent p and hildren 1 and 2 leading to i1and i2, then the RBC paths from p to eah of 1 and 2 an be ontrated to a single edge. If j2 is a P-node,then p is the desired vertex w and we are done. If j2 is a C-node, then j2 must be a proper anestor of p.Again, we let p be the desired vertex w sine the path from w to r an be obtained by going around theRBC of j2 as desribed above.Finally, suppose j1 = j2 is a C-node. Let 1, 2 and 3 denote the hildren of the C-node in RBC orderthat lead to eah of the respetive terminal nodes, and let p denote the parent of the C-node. Unless thebionneted omponent represented by the C-node happens to have an internally embedded path onneting2 and p, the desired vertex w in the K3;3 of Figure 2 annot be obtained. Figure 7(a) depits the PC-treefor this ase, whih redues to the K3;3 in Figure 7(b). 2

Fig. 7. (a) A PC-tree with three terminal node proper desendants of a C-node. Note that the paths from the terminalnodes to the RBC verties of the C-node have been ontrated. (b) The orresponding K3;3 minor from [3℄.



3.5 The ase of zero terminal nodesLemma 7 presents an additional planarity redution for zero terminal nodes, whih ours in the �nal stepof embedding every graph. This ase is easy to resolve, but it is worth mentioning sine it is essentially amissing planarity redution.Lemma 7. If, during the embedding of a bionneted graph G, there is a step i for whih zero terminal nodesare identi�ed, then the PC-tree an be redued to a single C-node plus P-node neighbors for the RBC of theC-node.Proof. If there are no terminal nodes, then there are no i�-subtrees within Tr. Having no i�-subtrees prior tothe last step ontradits the bionnetedness of G. Sine G is bionneted, by de�nition its �nal embeddingan be represented as desribed. 24 Proof of Corretness for Modi�ed PC-tree AlgorithmThis setion presents a proof of orretness for the PC-tree algorithm as modi�ed by the lemmas and orol-laries of Setion 3. First, the planarity redution patterns are learly haraterized with property statementsbelow. Then, violations of the properties are mapped to the lemmas and orollaries so that it is lear thatthe planarity redution patterns are the only ones that do not result in a nonplanarity ondition. Sine it islear how to maintain planarity for eah of the planarity redutions, the orretness of the algorithm follows.For the two terminal node ase, let u and u0 denote the two terminal nodes. Let m denote the losestommon anestor of u and u0, and let P denote the PC-tree path (u, . . . , m, . . . , u0). Let P 0 denote thePC-tree path (r, . . . , m). For the one terminal node ase, let u denote the terminal node and let u0 denotethe anestor of u losest to the root of Tr that has a hild i�-subtree. Let m be a seond label for u0. Let Pdenote the path (u, . . . , u0), and let P 0 denote the path (r, . . . , u0). To simplify the statement of properties,onsider path P to be arranged horizontally in the plane, and onsider P 0 as extending vertially upwardfrom P . Let L denote an in�nite horizontal line that ontains P .Property 1. Nodes in P 0 � fmg have no hild i�-subtrees.Property 2. The hildren of nonterminal nodes in P are arranged so that all hild i-subtrees are above Land all hild i�-subtrees are below L.Property 3. Exept for the ase of one terminal C-node and u = u0, the hildren of terminal nodes in P arearranged so that all hild i-subtrees are above L and all hild i�-subtrees are below L.Property 4. For the ase of one terminal C-node and u = u0, let p be the parent of u and let w and w0 bethe �rst hild i�-subtrees in eah of the two RBC paths extending from p. The hildren of u on the RBCpath stritly between w and w0 that ontains p must be the roots of all hild i-subtrees of u.The proof of orretness of the modi�ed PC-tree planarity algorithm in Theorem 1 will show that viola-tions of the four properties above result in a nonplanarity ondition. That the above properties haraterizethe planarity redutions in [16℄ and that the planarity redutions embed all bak edges from i to desen-dants of r while maintaining planarity are taken to be straightforward. Moreover, the fat that maintainingplanarity through all steps implies the planarity of the graph and that �nding a nonplanarity ondition in astep implies the nonplanarity of the graph are also taken to be evident.Theorem 1. The modi�ed PC-tree planarity algorithm applies a planarity redution to Tr if and only ifthere are no terminal nodes or if there are at most two terminal nodes and Properties 1, 2, 3, and 4 hold.Proof. Case no terminal nodes : The planarity redution desribed in Lemma 7 is applied.Case one terminal node: Property 1 holds by de�nition. Property 2 holds if u = u0 beause there areno nonterminal nodes in P . Property 2 holds if u 6= u0 exept for nonplanarity onditions due to Corollary1. If u 6= u0, then Property 3 holds exept for nonplanarity onditions due to Lemma 2 and Property 4holds degenerately (is not appliable). On the other hand, if u = u0, then Property 3 holds degenerately, andProperty 4 holds exept for nonplanarity onditions due to Lemma 3.2 of [16℄.



Case two terminal nodes : Property 1 holds exept for nonplanarity onditions due to Lemma 5. Property 2holds exept for nonplanarity onditions due to Lemma 3. Property 3 holds exept for nonplanarity onditionsdue to Lemma 2 and Property 4 holds degenerately.Case more than two terminal nodes : If there are at least three terminal nodes in Tr, then the input graphis not planar aording to Lemma 6. Hene no planarity redution is applied. 25 Issues Conerning Linear-Time PerformaneShih and Hsu [16℄ present the ideas neessary to ahieve linear total work for the identi�ation of terminalnodes, i-subtrees and i�-subtrees in all steps of the PC-tree algorithm. However, there are two impedimentsto ahieving linear time by the methods stated in [16℄; both are omplexities that arise when planarityredutions are applied to a PC-tree that ontains C-nodes.5.1 Maintaining the RBC when ipping C-nodesThe laim that the \RBC will be stored as a irular doubly linked list" [16, p. 184℄ annot be supported.When the representative bounding yles of C-nodes must be joined together, the diretion of traversal oftwo suessive C-nodes may be reversed at the intervening P-node depending on whih path ontains thehild i-subtrees in eah C-node. Joining the RBCs of two suh C-nodes into a irular doubly linked listwould require the inversion of links in the RBC nodes of one of the two C-nodes. It is easy to reate planargraphs in whih �(n2) link inversions our in total. To solve this problem, one an represent the RBC witha disordant list (de�ned in [3℄). When merging the RBCs of two C-nodes separated by a P-node, only theneighbors of the P-node in the two RBCs are linked together. If the merge must be done suh that oneC-node is ipped relative to the other, then the resulting RBC pointers after the merge will be in disord.However, traversal of the RBC is still possible with only a little extra e�ort. When a traversal arrives at anode v from a predeessor p along a disordant RBC, the suessor of v is indiated by one of its two RBCpointers. The pointer to use is the one that does not indiate p. Figure 8 illustrates this onept.
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4Fig. 8. A disordant list of size 3 or more an be traversed by taking whihever pointer does not lead bak to thepreeding node (from [3℄).5.2 On the infeasibility of C-nodes as parentsIn the oneptual ideal, every C-node and P-node indiates its parent aording to the PC-tree de�nition.However, the hild P-nodes in the RBC of a C-node annot indiate the C-node as their parent. Considera C-node with the following properties: 1) The RBC of the C-node has a subset S of hildren that rooti�-subtrees whih all have bak edges only to the last vertex to be proessed, and 2) the RBC of the C-nodealso has an O(n) sized suession of hildren that root i�-subtrees whih onnet to proper anestors of i suhthat suessive steps of the algorithm merge the RBC of the original C-node into other anestor C-nodes.At eah merge, the members of S must be reparented to point to the new C-node that beomes their parentafter the planarity redution. This reparenting must be performed on a number of i�-subtree roots that is aonstant fration of n, and the set of reparenting operations must be performed eah time the parent C-nodeof the members of S must be hanged to some other anestor C-node with whih the parent is merged.This results in �(n2) performane in the worst ase. The work ould be substantially redued by using themethods of the union-�nd data struture (also alled a disjoint set data struture in [7℄), but it would thenhave to be shown that the result is not super-linear, whih is the ase for generalized union-�nd operations.Either way, [16℄ presents neither this more sophistiated parenting strategy nor the required proof.



Perhaps the simplest strategy to solve this problem is not to adopt a omplex parenting strategy andpresent a omplex proof, but rather to let the parent pointer of all hildren of a C-node simply be nil,indiating they are part of a C-node, and keeping a pointer from eah C-node hild to its entry in the RBC.To �nd the parent of any node whose parent pointer is nil, traverse both diretions around the RBC inparallel. This will obtain the parent of the C-node by the shorter path, so that the work done will not exeeda onstant fator of the length of RBC that will be eliminated during the planarity redution in the samestep. This is analogous to the method used in [3, 4℄ to traverse the external faes of bionneted omponentsthat are merged during the proessing of a vertex.6 Empirial Results and Future WorkThis paper has reported and solved a number of additional theoretial omplexities that arise in the pub-lished version of the Shih-Hsu PC-tree planarity algorithms [16℄. A few years earlier, Thomas [17℄ providedan alternate formulation of the Shih-Hsu planarity algorithm that ahieved linear-time performane for tri-onneted graphs. Thomas points out that signi�ant additional tehnial ompliations would arise whenaounting for graphs of lower onnetivity and when one requires a planar embedding.Our implementation e�orts have been based on extending the formulation in Thomas' notes as a wayof better understanding and orreting the problems with the PC-tree formulation in [16℄. The resultingLEDA-based implementation ontains ode manifestations of the PC-tree problem solutions reported inthis paper. We have ahieved a linear-time implementation, both for produing a planar embedding andfor isolating a Kuratowski subgraph in a nonplanar graph. We have performed the same empirial testsused in LEDA to ompare the Hoproft-Tarjan and Booth-Lueker implementations, and all results areonsistent with the results for maximal planar graphs (MP) and their nonplanar ounterparts reated byadding one random edge (MP+e). Figure 9 presents the MP and MP+e empirial omparisons of our urrentimplementation with the Hoproft-Tarjan (HT) and Booth-Lueker (BL) implementations in LEDA, as wellas a non-LEDA implementation of the Boyer-Myrvold (BM) algorithm in [4℄. Note that there are no HTresults for nonplanar graphs beause LEDA does not implement Williamson's Kuratowski subgraph isolator(indeed Williamson [21℄ knows of no O(n) implementation).
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Fig. 9. Empirial results omparing the SH, HT, BL and BM implementations on testing and justifying maximalplanar graph (left) and their nonplanar ounterparts (right) onsisting of an extra random edge. The justi�ationonsists of reating an embedding for a planar graph or isolating a Kuratowski subgraph of a nonplanar graph. Resultsfor HT on nonplanar graphs annot be obtained from LEDA.Although our implementation is not yet ompetitive with HT and BL, we believe that it an be mademore ompetitive, in part through further appliation of some of the methods of the BM algorithm, whihurrently has the fastest implementation by about 2.5 times on planar graphs and about 8 times on nonplanargraphs. Our implementation e�orts to date have been prinipally onerned with orretness and linear-timeperformane. The orretness onerns led us to extend Thomas' formulation based on an understanding ofthe original LEC algorithm (this formulation appears in [14℄). We believe that the suess of this approah
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