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Abstract

Marginal maximum likelihood estimation based on the expectation–maximization algorithm
(MML/EM) is developed for the one-parameter logistic model with ability-based guessing (1PL-
AG) item response theory (IRT) model. The use of the MML/EM estimator is cross-validated
with estimates from NLMIXED procedure (PROC NLMIXED) in Statistical Analysis System.
Numerical data are provided for comparisons of results from MML/EM and PROC NLMIXED.
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Introduction

Psychological constructs are hypothetical concepts that cannot be observed directly, but theo-

rized to explain human behavior. Examples include intelligence, motivation, self-esteem, mathe-

matics proficiency, and happiness. Although these constructs cannot be observed directly, their

existence can be inferred through various behaviors. For example, mathematics proficiency can

be inferred by observing a person’s responses to an instrument (i.e., a mathematics test). By pla-

cing an individual on this latent continuum, measuring the construct is formally established. As

one of the tools for measuring constructs, item response theory (IRT) models how the trait level

is related with an individual’s response to an item. In applying this to education, trait levels are

realized as latent variables (theta, trait continuum, or scale), which represent the individual’s

ability within a specific knowledge domain. Furthermore, one or more item parameters charac-

terize an individual item. Assuming success or failure on an item follows independent Bernoulli
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distribution, the Rasch model (Lord & Novick, 1968) relates the probability of pass/fail on item

with the difference between person ability and item difficulty through the logistic link function.

In terms of IRT modeling, multiple-choice (MC) items impose an interesting problem that can-

not be handled with the conventional Rasch model: guessing. There are diverse parameterizations

and interpretations used to accommodate the guessing behavior. As a result, various IRT models

have been proposed to explain guessing behavior within the model: (a) a fixed value of 1=L, with

L being the number of options in MC items; (b) an average guessing parameter across items in a

MC testing; (c) a guessing parameter specific to each item, as in the three-parameter logistic

(3PL) model (Birnbaum, 1968); and (d) models for guessing that are dependent on person ability

(Hutchinson, 1991). The fixed value of 1=L guessing parameter reflects the concept of random

guessing and studies have shown that the real guessing probability may be larger or smaller than

the 1=L depending on the attractiveness of incorrect options (Hambleton, Swaminathan, &

Rogers, 1991). However, the 3PL was developed to explain the larger-than-zero probability of

guessing on MC items for examinees of low abilities. Under 3PL, the parameter reflects item-

dependent pseudo-guessing. A high value indicates a higher probability of passing an item for

individuals with low ability, which may be due to the lack of attractive distractors. While the tradi-

tional 3PL explains pseudo-guessing behavior for low-ability examinees, the one-parameter logis-

tic model with ability-based guessing (1PL-AG), has been introduced to describe guessing

primarily for average-ability examinees (San Martı́n, del Pino, & De Boeck, 2006).

1PL-AG

One of the interpretations of the 3PL model is that item responses are composed of two pro-

cesses: a p-process and a g-process (Hutchinson, 1991). The p-process is an item-solving pro-

cess, whereas the g-process is a guessing process. One possible arrangement of executing the

two processes is that the g-process is followed by the p-process: An examinee attempts to solve

an item and resorts to guessing only if a correct response is not identified. While applying this

process model, 1PL-AG was motivated from the observation that the success of guessing

depends on ability. For instance, an examinee with higher ability may have a higher chance of

success on the g-process, perhaps, due to his or her greater ability to recall relevant facts and

connect separate knowledge to make a correct choice. According to the 1PL-AG, the probabil-

ity of passing an item j given ability ui and item parameters is

Pj uið Þ=
1

1 + exp � ui � bj

� �� � + 1� 1

1 + exp � ui � bj

� �� �
 !

1

1 + exp � aui � gj

� �� � , ð1Þ

where 1=(1 + exp(� (ui � bj))) is the p-process and 1=(1 + exp(� (aui � gj))) is the g-process.

For the p-process, the probability of a correct response to the jth item is identical to the one-

parameter IRT model and depends on the difference between the item difficulty, bj and

examinee’s ability, ui. For the g-process, the probability of success for the jth item depends on

ability (ui), an average weight on ability (a), and the guessing probability on the logistic scale

(g) for an examinee with average ability (i.e., ui = 0).

As a is a positive value, the probability of passing an item due to the g-process increases as

the ability increases. However, as the g-process is weighted by the probability of the failed p-

process (i.e., 1 2 p-process), which approaches zero as ability increases, the net contribution of

the g-process decreases at high ability. In addition, as the g-process approaches zero as ability

decreases, the net contribution of guessing deceases at low ability. According to San Martı́n et

al. (2006), the interpretation for the low contribution from the g-process at both extremes is that
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low-ability examinees are attracted by the distractors and not able to find the correct answer,

whereas high-ability examinees do not necessarily resort to guessing to choose the correct

response.

Recently, researchers have raised model identification issue related with 1PL-AG (Maris &

Bechger, 2009; San Martı́n, Rolin, & Castro, 2013). Model identifiability states that there is a

one-to-one relationship between the parameters and the sampling distributions. Under the sam-

pling theory framework, it is not possible to obtain unbiased and/or consistent estimators of

parameters if identifiability does not hold (Gabrielsen, 1978; Koopmans & Reiersol, 1950).

Maris and Bechger (2009) have shown that 3PL is not identifiable if all discrimination is held

to a constant value (i.e., called 1PL-G). For example, it can be shown in 1PL-G that parameter

values of (u, difficulty, guessing) of both (2.0, 1.2, 0.2) and (2.0134428, 1.1694177, 0.1751562)

result in same probability of passing an item, 0.7519796. Then, it cannot be determined which

set of parameter should be used for the correct inference. This identification issue is relevant to

the current study because 1PL-G is nested within 1PL-AG by setting a to zero.

The model identifiability problem, however, should be considered under the context of the

sampling distribution and the parameter of interest (San Martı́n et al., 2013). For instance,

the identification problem differs significantly depending on whether the abilities are speci-

fied as fixed effects versus random effects. For fixed-effects specification, the parameters of

interest during the estimation include u, whereas the random-effects specification margina-

lizes the likelihood function and u is integrated out using a known (or partially known) abil-

ity distribution. It is known that 1PL-G could be identified by fixing one guessing parameter

to a known value (e.g., zero for convenience) under the random-effects specification and that

the ability distribution is known up to the scale parameter (San Martı́n et al., 2013). Whether

this issue imposes any practical limitation for 3PL or 1PL-AG model is still an open ques-

tion. Furthermore, question on whether the identification problem still remains when the

ability distribution is fully specified (i.e., location and scale are assumed to be known) has

not answered yet.

In terms of parameter estimation, PROC NLMIXED has been the primary estimation tool

because of programming ease. However, the 1PL-AG model has been vastly underused due to,

we believe, the lengthy estimation time. Therefore, the current study develops and evaluates an

efficient estimator based on the marginal maximum likelihood estimation with the expectation–

maximization algorithm (MML/EM) for the 1PL-AG model (Bock & Aitkin, 1981). The rest of

the article is organized as follows. Estimation methodologies under the IRT framework are

introduced and the MML/EM for the 1PL-AG model is derived. A simulation study and its

results are presented, followed by the discussion.

Method

MML/EM Estimation Algorithm for the 1PL-AG Model

The conditional probability for an examinee i to respond in pattern Yi = ½yi1, yi2, . . . , yiJ �, condi-

tional on ability ui is P(Yi|ui). For an examinee randomly sampled from a population with ability

distribution g(u), the unconditional probability of Yi is

P Yið Þ=
ð

P Yijuð Þg uð Þdu: ð2Þ

Under the assumption of independence of observations, the logarithmic transformation of the

probability of response patterns for I randomly chosen examinees becomes
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log L =
XI

i

log P Yið Þ: ð3Þ

The derivation of the marginal likelihood equations begins with the first derivatives with

respect to a parameter z:

∂
∂z

log L =
PI

i

1
P Yið Þ

Ð
∂
∂z

P Yijuð Þ
h i

g uð Þdu

=
PI

i

1
P Yið Þ

Ð
∂
∂z

log P Yijuð Þ
h i

P Yijuð Þg uð Þdu

=
PI

i

Ð
∂
∂z

log P Yijuð Þ
h i

P Yijuð Þg uð Þ
P(Yi)

h i
du

=
PI

i

Ð
∂
∂z

log P Yijuð Þ
h i

P ujYið Þdu:

ð4Þ

Furthermore, the first derivative of the conditional likelihood function is expressed as

∂
∂z

log P Yijuð Þ = ∂
∂z

log
QJ

j

Pj uð Þyij Qj uð Þ1�yij

" #

=
PJ

j

yij�Pj uð Þ
Pj uð ÞQj uð Þ

∂Pj uð Þ
∂z

,

ð5Þ

where yij is the dichotomous response to item j of examinee i; Pj(u) is the probability of being

correct on item j for an examinee of ability u; and Qj(u) is 1 2Pj(u).

For each of 1PL-AG parameters, a, bj, and gj, the first derivatives of the conditional likeli-

hood functions are

∂

∂a
log P Yijuð Þ=

XJ

j

yij � Pj uð Þ
Pj uð ÞQj uð Þ

u

1 + exp u� bj

� �
" #

exp au + gj

� �
1 + exp au + gj

� �� �2

" #" #
, ð6Þ

∂

∂bj

log P Yijuð Þ = yij � Pj uð Þ
Pj uð ÞQj uð Þ

exp u� bj

� �
1 + exp u� bj

� �� �2

" #
�1

1 + exp au + gj

� � , ð7Þ

and

∂

∂gj

log P Yijuð Þ= yij � Pj uð Þ
Pj uð ÞQj uð Þ

1

1 + exp u� bj

� �
" #

exp au + gj

� �
1 + exp au + gj

� �� �2
: ð8Þ

Note that except for the parameter a, which is common across items, the first derivatives of

bj and gj do not depend on bh, and gh of j 6¼ h. Plugging Equations 6, 7, and 8 into 4, the mar-

ginal likelihood equations for a, bj, and gj are

∂

∂a
log L =

XI

i

ð XJ

j

yij � Pj uð Þ
Pj uð ÞQj uð Þ

u

1 + exp u� bj

� �
" #

exp au + gj

� �
1 + exp au + gj

� �� �2

" #" #" #
P ujYið Þdu,

ð9Þ
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∂

∂bj

log L =
XI

i

ð
yij � Pj uð Þ
Pj uð ÞQj uð Þ

exp u� bj

� �
1 + exp u� bj

� �� �2

" #
�1

1 + exp au + gj

� �
" #" #

P ujYið Þdu, ð10Þ

and

∂

∂bj

log L =
XI

i

ð
yij � Pj uð Þ
Pj uð ÞQj uð Þ

1

1 + exp u� bj

� �
" #

exp au + gj

� �
1 + exp au + gj

� �� �2

" #" #
P ujYið Þdu: ð11Þ

Equations 9, 10, and 11 represent a nonlinear system of equations that need to be solved for

their roots. The integral within the equations can be accomplished through numerical integra-

tion, which is the approximation of integrating a continuous curve through the summation of a

rectangular area. The integrands, the functions under integration, are evaluated at a finite set of

points called ‘‘integration points’’ (or quadrature points). The prior ability distribution, g(u), is

approximated by taking a finite number of quadrature points, Xk for k = (1, 2, . . . , q) along the u

scale and its corresponding weights, A(Xk). The posterior distribution of u, Equation 4, is

obtained at each Xk and its weights A(Xk):

P Xk jYið Þ=

QJ
j

Pj Xkð Þyij Qj Xkð Þ1�yij A Xkð Þ

Pq
k

QJ
j

Pj Xkð Þyij Qj Xkð Þ1�yij A Xkð Þ
: ð12Þ

This equation limits the continuous distribution of the posterior ability of examinee i, ui, into

a finite number of quadrature points. Assuming a unit normal distribution of u, quadrature

points and their weights can be obtained from Gaussian quadrature formula (Stroud & Secrest,

1966). In addition, values of A(Xk) could be adjusted at each iteration by empirically estimated

weights (Mislevy, 1984). As suggested from Equation 12, however, the impact of the prior abil-

ity distribution is insignificant with a practically large number of items (Bock & Aitkin, 1981).

Intuitively, the ability distribution of a sample conditional on the observation of responses to

items depends mainly on the item responses and their characteristics rather than on the popula-

tion ability distribution, if responses are drawn from enough items. The marginal likelihood

equations using Equation 12 are

∂

∂a
log L =

XI

i

Xq

k

XJ

j

yij � Pj Xkð Þ
Pj Xkð ÞQj Xkð Þ

Xk

1 + exp Xk � bj

� �
" #

exp aXk + gj

� �
1 + exp aXk + gj

� �� �2

" #" #
P Xk jYið Þ

( )
,

ð13Þ

∂

∂bj

log L =
XI

i

Xq

k

yij � Pj Xkð Þ
Pj Xkð ÞQj Xkð Þ

exp Xk � bj

� �
1 + exp Xk � bj

� �� �2

" #
�1

1 + exp aXk + gj

� �
" #

P Xk jYið Þ
( )

,

ð14Þ

and

∂

∂gj

log L =
XI

i

Xq

k

yij � Pj Xkð Þ
Pj Xkð ÞQj Xkð Þ

1

1 + exp Xk � bj

� �
" #

exp aXk + gj

� �
1 + exp aXk + gj

� �� �2

" #
P Xk jYið Þ

( )
:

ð15Þ
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Equations 13, 14, and 15 are marginal likelihood functions of the parameters of the entire set

of J items through the posterior ability distribution, P(Xk|Yi). Therefore, (2J + 1) marginal likeli-

hood equations should be solved simultaneously. However, solving entire equations imposes an

intractable computational burden of generating and inverting a (2J + 1) 3 (2J + 1) Jacobian

matrix for Equations 13, 14, and 15.

Bock and Aitkin (1981) applied the EM algorithm to transform a regular MML estimation to

a missing data problem. For that, two artificial quantities are introduced:

�nk =
XI

i

P Xk jYið Þ =
XI

i

QJ
j

Pj Xkð Þyij Qj Xkð Þ1�yij A Xkð Þ

Pq
k

QJ
j

Pj Xkð Þyij Qj Xkð Þ1�yij A Xkð Þ

2
6664

3
7775, ð16Þ

and

�rjk =
XI

i

yijP Xk jYið Þ=
XI

i

yij

QJ
j

Pj Xkð Þyij Qj Xkð Þ1�yij A Xkð Þ

Pq
k

QJ
j

Pj Xkð Þyij Qj Xkð Þ1�yij A Xkð Þ

2
6664

3
7775, ð17Þ

where �nk is the expected number of examinees at ability level Xk, and �rjk is the expected number

of correct responses at ability level Xk for item j. Using these quantities, the marginal likelihood

equations become

∂

∂a
log L =

Xq

k

XJ

j

�rjk � �nkPj Xkð Þ
Pj Xkð ÞQj Xkð Þ

Xk

1 + exp Xk � bj

� �
" #

exp aXk + gj

� �
1 + exp aXk + gj

� �� �2

" #" #
, ð18Þ

∂

∂bj

log L =
Xq

k

�rjk � �nkPj Xkð Þ
Pj Xkð ÞQj Xkð Þ

exp Xk � bj

� �
1 + exp Xk � bj

� �� �2

" #
�1

1 + exp aXk + gj

� �
" #" #

, ð19Þ

and

∂

∂gj

log L =
Xq

k

�rjk � �nkPj Xkð Þ
Pj Xkð ÞQj Xkð Þ

1

1 + exp Xk � bj

� �
" #

exp aXk + gj

� �
1 + exp aXk + gj

� �� �2

" #" #
: ð20Þ

To summarize, the complete steps for MML/EM algorithm are as follows:

1. E-step: Given the response strings, the provisional initial parameters, and the quadra-

ture weight A(Xk), compute the expected number of examinees on each Xk, �nk , and

compute the expected correct responses for item j on each Xk, �rjk .

2. M-step: For each item, find the roots for Equations 18, 19, and 20 via a numerical

method such as the Newton–Raphson method.

The MML/EM algorithm is an iterative process such that the E-step and M-step are repeated

until item parameters satisfy the predefined convergence criterion. A careful examination should

reveal that Equations 19 and 20 for an item j do not depend on the parameters of an item h,

where j 6¼ h, because �nk and �rjk summarize the necessary information from the item parameter

estimates. Therefore, Equations 19 and 20 could be solved for individual items. However,
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Equation 18 depends on the parameters of the entire set of items through summation across

items, due to the parameter a being common for all items. Thissen (1982) suggested a simpler

relaxation solution that could be applied for this estimation: Solve Equations 19 and 20 for each

item and then Equation 18 will be solved. The application of the EM algorithm transforms mul-

tiple cycles of the (2J + 1)-dimensional parameter estimation into a J two-dimensional and a

single univariate problem. Because each individual cycle can be solved quickly, the MML/EM

algorithm is known to have a tremendous advantage in terms of estimation time. MML/EM pro-

cedure eliminates the need for the second derivative matrix because the equations of the first

derivative (i.e., the marginal likelihood equations) are driven explicitly. The marginalization of

the ability parameter is common for MML (Bock & Lieberman, 1970), MML/EM (Bock &

Aitkin, 1981), and PROC NLMIXED. However, MML/EM is unique in that the ability para-

meter, or its transformed variable, is estimated in every iteration.

Simulation Study

The main goals of this simulation study are twofold. First, the recovery of 1PL-AG model para-

meters is examined using the MML/EM method presented previously. For this, the following

steps are taken: (a) Implement MML/EM for the 1PL-AG in Java language; (b) generate

response strings of three groups of examinees (i.e., 2,500, 3,000, and 3,500) to 20 1PL-AG

items of a = (0.065, 0.265, 0.365) and bs and gs from true values in Table 1. bs are difficulty

parameter and gs are guessing at u = 0 in logistic scale. Mean, standard deviation, minimum

and maximum for bs and gs are (0.641, 1.021, 21.3697, 2.097) and (21.223, 0.644, 22.502,

20.23), respectively, and 20 values are randomly sampled within the ranges. The generated

true parameter values in the current study are guided by the work from San Martı́n et al.

(2006). (c) Perform parameter estimations for 3 (as) 3 3 (sample sizes) conditions. (d) Repeat

Steps (b) and (c) 50 times and examine the performance of parameter recoveries in terms of

their root mean square errors (RMSEs) and standard errors. The differences between true and

estimated parameters are squared and averaged over 50 replications. Then squared root is taken

for each bs, a, and gs. Empirical standard errors for each parameter estimates were derived

based on 50 replications as well.

Second, the performance comparison between MML/EM and PROC NLMIXED is made in

terms of biases and estimation times. For this, 50 replications of parameter recoveries are per-

formed with PROC NLMIXED for the same 3 3 3 conditions. The same number of Gauss–

Hermite quadrature points (i.e., 10 points) and the same convergence criterion (i.e., The differ-

ence of 22 3 Log-likelihood (22 3l) values between two successive EM iterations being

smaller than 10E-3) are applied for both MML/EM and PROC NLMIXED. The results from

both the MML/EM and PROC NLMIXED procedures are compared based on estimation accu-

racy and simulation time. RMSEs are used for evaluating estimation accuracy for each items.

For example, RMSE for bj is

RMSEbj
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r

bjr � b̂j

� �2

R

2
664

3
775

vuuuuut , ð21Þ

where R is the number of replications (i.e., 50), bjr is the estimated parameter for item j in rth

replication, and b̂j is the true parameter value. Empirical standard errors were estimated across

50 replications. In addition, estimated standard errors were calculated and the ratio of average
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estimated standard errors to empirical standard errors for each parameters are calculated. In

addition, 22 3 Log-likelihood values are calculated as fit statistics for each estimation method

and simulation condition.

The simulation time for MML/EM was measured after the initial values for convergence of

the Newton–Raphson method were obtained. SAS version 9.3 was used, and the simulations

were performed using a computer with the following specifications: AMD Phenom II X4 CPU,

3.4 GHz, 512 KB Cache, and 6 GB of RAM.

Results

Tables 1 and 2 present parameter recoveries for individual items (in the order of bs, a, and gs)

in each condition.

Tables 3 and 4 present of RMSEs for individual items (in the order of bs, a, and gs) in each

condition.

Table 5 shows empirical standard errors. In addition, standard errors from MML/EM and

PROC NLMIXED were analytically estimated, and the ratios of the average estimated standard

errors to the empirical standard errors were presented within the parentheses. The values close

to ones indicate that estimated standard errors are accurate to the empirical standard errors.

MML/EM resulted in smaller standard errors for as, whereas PROC NLMIXED produced

smaller standard errors for bs. Standard errors for gs were comparable for both methods. As

shown in Table 5, the standard errors decreased as the sample sizes increased. Large standard

error values for gs imply large variations for estimates of guessing parameter.

Table 6 presents simulation time and a model fit statistic (i.e., 22 3l) for each of the esti-

mation methods. For PROC NLMIXED, the simulation took from 1.85 to 3.72 hr, whereas

MML/EM took from 15.5 to 50 s. There is a clear pattern of increased estimation time as sam-

ple size increases. PROC NLMIXED and MML/EM methods both showed the largest simula-

tion time for a = .265. In terms of the 22 3l, the differences between the MML/EM and

PROC NLMIXED were small, demonstrating that both procedures produced similar values in

terms of their likelihoods.

Discussion

The advancement of the IRT model has been intertwined with the development of parameter

estimation techniques. Recent attention on the IRT model as examples of the NLMIXED model

expanded the understanding and interpretation of parameters in IRT models. The relationship

between two somewhat distinct models already was predicted by Bock and Lieberman (1970),

when they regarded abilities as random effects. Methods of NLMIXED and MML/EM take a

common approach: the maximization of the marginalized likelihood function. While widely

available NLMIXED estimators perform direct optimization after marginalization (Rijmen,

Tuerlinckx, De Boeck, & Kuppens, 2003), MML/EM incorporates estimations of the distribu-

tions of ability parameters. Through this augmentation of person parameter information for item

parameter estimation, MML/EM achieves a faster convergence.

Most of the research on the 1PL-AG model has been based on the use of PROC NLMIXED

for the parameter estimation. Although it provides ease of programming, lengthy estimation

time associated with PROC NLMIXED encouraged an alternative estimation procedure. The

main contribution of the current study, we believe, is the development of a more efficient esti-

mation procedure for the 1PL-AG model. For the demonstration of the MML/EM method, a

simulation study was conducted and compared with the current standard estimation procedure.

The results indicated that MML/EM method produced estimates that were comparable with the
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PROC NLMIXED in a fraction of the time. As the performance of the PROC NLMIXED pro-

cedure has not, to our knowledge, been compared with other estimation methods, this study

supports the general accuracy of this procedure as well.

The conceptualization and interpretation of guessing in educational testing settings are far

from being settled. There is not a single model that fully explains underlying interactions

Table 3. RMSE for the Estimates From MML/EM.

Parameters

a = .065 a = .265 a = .365

2,500 3,000 3,500 2,500 3,000 3,500 2,500 3,000 3,500

b1 0.296 0.283 0.261 0.359 0.331 0.405 0.604 0.503 0.424
b2 0.164 0.156 0.137 0.263 0.214 0.199 0.396 0.296 0.278
b3 0.345 0.286 0.350 0.444 0.451 0.367 0.625 0.633 0.608
b4 0.300 0.256 0.278 0.526 0.548 0.430 0.519 0.521 0.393
b5 0.274 0.265 0.292 0.433 0.453 0.370 0.577 0.516 0.433
b6 0.321 0.258 0.264 0.392 0.399 0.410 0.424 0.398 0.417
b7 0.205 0.192 0.206 0.251 0.233 0.234 0.409 0.294 0.291
b8 0.203 0.208 0.216 0.366 0.377 0.378 0.547 0.500 0.399
b9 0.153 0.134 0.142 0.293 0.263 0.224 0.358 0.307 0.277
b10 0.375 0.336 0.319 0.477 0.442 0.429 0.401 0.471 0.409
b11 0.209 0.206 0.231 0.257 0.258 0.249 0.358 0.312 0.330
b12 0.245 0.212 0.227 0.391 0.324 0.318 0.424 0.322 0.313
b13 0.311 0.281 0.321 0.406 0.414 0.375 0.480 0.367 0.365
b14 0.148 0.147 0.149 0.271 0.266 0.243 0.355 0.328 0.305
b15 0.304 0.294 0.274 0.418 0.407 0.392 0.605 0.493 0.455
b16 0.283 0.297 0.321 0.453 0.560 0.568 0.602 0.482 0.486
b17 0.205 0.201 0.204 0.342 0.377 0.306 0.449 0.437 0.381
b18 0.183 0.144 0.178 0.263 0.236 0.195 0.430 0.331 0.328
b19 0.223 0.251 0.229 0.366 0.346 0.433 0.680 0.466 0.386
b20 0.175 0.144 0.163 0.250 0.294 0.252 0.398 0.344 0.305
a .083 .108 .105 .101 .102 .106 .117 .092 .097
g1 0.212 0.249 0.204 0.266 0.258 0.271 0.352 0.251 0.304
g2 0.418 0.407 0.468 0.726 0.562 0.531 0.637 0.959 0.701
g3 1.039 1.066 0.985 1.359 1.202 1.121 1.322 1.193 1.718
g4 0.193 0.191 0.180 0.234 0.230 0.211 0.223 0.207 0.228
g5 0.191 0.214 0.219 0.272 0.261 0.246 0.336 0.279 0.276
g6 0.469 0.431 0.383 0.813 0.480 0.583 0.701 0.619 0.988
g7 0.530 0.388 0.423 0.667 0.480 0.476 0.695 0.850 0.495
g8 0.214 0.222 0.195 0.320 0.324 0.313 0.586 0.418 0.386
g9 0.671 0.538 0.665 0.826 0.922 0.821 0.976 0.853 0.786
g10 1.080 1.117 0.922 1.161 0.922 0.942 1.068 0.837 0.982
g11 0.227 0.258 0.239 0.254 0.278 0.236 0.306 0.284 0.346
g12 0.257 0.228 0.220 0.344 0.315 0.277 0.342 0.285 0.280
g13 0.338 0.349 0.344 0.479 0.457 0.413 0.659 0.446 0.461
g14 0.337 0.315 0.310 0.729 0.642 0.555 0.674 0.676 0.543
g15 0.672 0.802 0.547 0.905 0.833 0.960 0.849 1.246 0.684
g16 0.178 0.203 0.191 0.234 0.270 0.224 0.301 0.242 0.220
g17 0.224 0.226 0.210 0.268 0.242 0.253 0.325 0.324 0.328
g18 0.475 0.426 0.417 0.651 0.560 0.463 0.735 0.523 0.543
g19 0.197 0.239 0.202 0.237 0.239 0.256 0.376 0.313 0.304
g20 0.235 0.250 0.291 0.376 0.383 0.326 0.504 0.403 0.472

Note. RMSE = root mean square error; MML = marginal maximum likelihood; EM = expectation–maximization

algorithm.
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between ability and item characteristics occurring from guessing. Even the most popular model,

the 3PL, explains the probability of guessing for low-ability examinees, whereas the 1PL-AG

focuses on guessing behavior for mid-ability examinees. For the 1PL-AG, guessing is the sec-

ondary or auxiliary problem-solving process conditional on the failure of the main process used

to respond to an item. Therefore, low-ability examinees lack this ability, whereas high-ability

examinees do not have to depend on it.

Table 4. RMSE for the Estimates From PROC NLMIXED.

Parameters

a = .065 a = .265 a = .365

2,500 3,000 3,500 2,500 3,000 3,500 2,500 3,000 3,500

b1 0.341 0.338 0.331 0.522 0.431 0.491 0.868 0.679 0.588
b2 0.171 0.145 0.138 0.337 0.262 0.259 0.546 0.391 0.372
b3 0.291 0.282 0.365 0.590 0.580 0.450 0.859 0.763 0.689
b4 0.354 0.301 0.337 0.815 0.656 0.621 0.776 0.789 0.537
b5 0.305 0.288 0.312 0.636 0.396 0.489 0.837 0.710 0.586
b6 0.310 0.287 0.294 0.515 0.444 0.492 0.607 0.511 0.517
b7 0.218 0.184 0.233 0.320 0.304 0.291 0.620 0.395 0.381
b8 0.220 0.251 0.265 0.510 0.412 0.449 0.722 0.646 0.463
b9 0.153 0.133 0.150 0.376 0.328 0.299 0.478 0.386 0.334
b10 0.408 0.351 0.346 0.667 0.525 0.509 0.601 0.587 0.519
b11 0.205 0.212 0.241 0.372 0.293 0.297 1.203 0.428 0.429
b12 0.255 0.243 0.263 0.510 0.434 0.422 0.753 0.441 0.462
b13 0.329 0.305 0.371 0.535 0.465 0.442 0.644 0.523 0.482
b14 0.175 0.154 0.146 0.313 0.317 0.317 0.536 0.434 0.360
b15 0.345 0.302 0.294 0.556 0.496 0.490 0.785 0.607 0.559
b16 0.342 0.369 0.417 0.492 0.599 0.871 1.909 0.693 0.545
b17 0.232 0.235 0.222 0.400 0.456 0.403 0.755 0.638 0.517
b18 0.200 0.164 0.180 0.319 0.207 0.253 0.552 0.414 0.403
b19 0.286 0.300 0.280 0.508 0.373 0.484 1.175 0.608 0.481
b20 0.174 0.171 0.165 0.311 0.299 0.322 0.509 0.436 0.333
a .119 .171 .137 .153 .121 .143 .195 .134 .120
g1 0.251 0.330 0.258 0.359 0.288 0.329 0.505 0.347 0.361
g2 0.477 0.417 0.440 0.740 0.653 0.567 1.230 1.248 0.861
g3 0.971 1.154 1.130 1.668 1.261 1.525 2.677 2.008 1.786
g4 0.231 0.230 0.219 0.306 0.262 0.276 0.318 0.285 0.268
g5 0.240 0.263 0.256 0.367 0.272 0.307 0.434 0.352 0.323
g6 0.529 0.490 0.493 0.734 0.592 0.627 1.185 1.472 1.256
g7 0.608 0.453 0.477 0.952 0.742 0.570 0.893 0.732 0.590
g8 0.270 0.288 0.238 0.425 0.364 0.371 0.715 0.513 0.431
g9 0.691 0.553 0.718 1.056 0.876 1.795 1.272 0.888 0.812
g10 1.177 1.701 1.161 1.346 1.013 1.030 2.735 0.968 0.892
g11 0.269 0.327 0.272 0.335 0.285 0.284 0.407 0.325 0.375
g12 0.309 0.312 0.270 0.412 0.379 0.343 0.454 0.366 0.354
g13 0.388 0.420 0.401 0.550 0.501 0.482 0.898 0.603 0.546
g14 0.420 0.383 0.352 0.923 0.646 0.601 0.811 0.635 0.609
g15 0.923 0.988 0.634 1.146 1.554 1.550 2.173 1.151 1.537
g16 0.243 0.300 0.238 0.282 0.252 0.271 0.412 0.309 0.236
g17 0.218 0.296 0.223 0.339 0.295 0.289 0.439 0.399 0.372
g18 0.602 0.558 0.462 0.581 0.538 0.425 1.149 0.555 0.635
g19 0.274 0.324 0.245 0.303 0.252 0.297 0.516 0.382 0.324
g20 0.256 0.352 0.304 0.416 0.366 0.365 0.573 0.447 0.430

Note. RMSE = root mean square error.
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(â
)

SE
(b̂

)
SE

(ĝ
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Modeling factors that influence examinee’s responses with IRT models is an ongoing effort.

Therefore, further research should follow. First, a possible instability between the discrimina-

tion and the guessing parameter in the 3PL (van der Linden & Hambleton, 1997) may be appli-

cable to 1PL-AG model. Second, the application of EM for NLMIXED reported by Walker

(1996) opens interesting comparison study with MML/EM method. Third, a more systematic

approach for obtaining initial values of MML/EM will accelerate wide adoption of MML/EM

estimation. As each Newton–Raphson process takes less than a minute for conditions in this

study, even with an elaborate search method, MML/EM should still hold a substantial advan-

tage in terms of computing time compared with other methods. Fourth, there has been several

studies compared the performance between Markov chain Monte Carlo (MCMC) and MML

estimation for binary outcomes (Albert, 1992; Baker, 1998; Kieftenbeld & Natesan, 2012; Kim,

2001). However, to our knowledge, no studies have been done comparing the performance

between MCMC and NLMIXED. Therefore, future study comparing the performance between

MCMC and SAS PROC NLMIXED for 1PL-AG will provide useful information for the choice

of estimation method. Last, two-parameter logistic model with ability-based guessing (2PL-

AG) should be investigated at as a natural extension of 1PL-AG. 2PL-AG conceptualizes the

discriminating power of each item by allowing discrimination parameters to be freely estimated,

while also including ability-based guessing process. However, another interesting approach is

to view 2PL-AG as a 3PL model with ability-based guessing. Unlike the constant probability of

guessing in 3PL, a monotonic increasing probability of success of guessing on the ability scale

can be modeled in 2PL-AG. When a (i.e., the weight on ability in the guessing process) is fixed

to zero, 2PL-AG is reduced to 3PL, which makes 3PL a nested model of 2PL-AG. The differ-

ence in the number of item parameters between two models is only one. It is believed that a

model comparison among 2PL-AG, 3PL, and 1PL-AG would be worth further investigation.
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