
An Evaluation Method for Stemming Algorithms

Chris D. Paice

Department of Computing, Lancaster University

Bailrigg, Lancaster LA1 4YR, U.K.

Abstract

The effectiveness of stemming algorithms has usually been measured in terms of their

effect on retrieval performance with test collections. This however does not provide any

insights which might help in stemmer optimisation. This paper describes a method in

which stemming performance is assessed against predefine concept groups in samples of

words. This enables various indices of stemming performance and weight to be computed.

Results are reported for three stemming algorithms. The validity and usefulness of the

approach, and the problems of conceptual grouping, are discussed, and directions for

further research are identified.

Introduction

Stemming is a widely-used method of word standardisation designed to allow the matching of

morphologically related terms, such as “clusters” and “clustering”. The idea is that, in a language

like English, a typical word contains a stem which refers to some central idea or ‘meaning’, and

that certain affixes have been added to modify the meaning and/or to fit the word for its syntactic

role. The purpose of stemming is to strip away the affixes and thus reduce the word to its essence.

In practice, some affixes may alter the meaning of a word so greatly that to remove them would

be to discard vital information. In particular, deletion of prefixes is not generally felt to be helpful,

except in certain domains such as medicine and chemistry. On the other hand, most suffixes in

English are considered to be potentially removable. This paper is concerned with stemming in the

restricted sense of suffix removal.

A useful summary of various stemming and conflation algorithms is given in the paper by Lennon

et al. [1]; further algorithms have been described by Frakes [2] and by Paice [3].

Stemming Errors

There are two particular problems in using stemming for word standardisation. In the first place,

pairs of etymologically related words sometimes differ sharply in meaning - for example, consider

“author” and “authoritarian”. In the second place, the transformations involved in adding and

removing suffixes involve numerous irregularities and special cases.

Stemming errors are of two kinds: wuierstemmirzg errors, in which words which refer to the same

concept are not reduced to the same stem, and overstemmirzg errors, in which words are converted to

the same stem even though they refer to distinct concepts. In designing a stemming algorithm there

is a trade-off between these two kinds of error. A ligkt stemmer plays safe in order to avoid
overstemming errors, but consequently leaves many understemming errors. A heavy sfewzwzer boldly

removes all sorts of endings, some of which are decidedly unsafe, and therefore commits many

oversternming errors.

There have been several investigations into the effects of stemming on retrieval performance in

test collections [1,2,4,5]. In most cases, stemming was found to improve retrieval performance, but not

by very much, and there were no consistent differences of performance between different stemmers.

Harman was unable to show any consistent benefit over not using stemming at all [6].

43

We might expect a relationship between the weight of stemming used and the retrieval

performance in particular types of search; for instance, it might be supposed that heavy stemming

is appropriate when high recall is needed. Lennon et d. used the degree of dictionary compression

as a measure of the weight, or strength, of each stemmer, but found that this did not correlate

clearly with the performance in precision-oriented and recall-oriented searches [1].

Although evaluating stemmers on the basis of their effects on retrieval performance may seem

appropriate from an IR viewpoint, it is probably unhelpful in practice, because it gives no insight

into the specific causes of errors. Moreover, it ignores the fact that stemmers are not used only in IR

systems - for example, they may be used in a natural language interface, or in a frame-instantiation

program. IR-basect evaluations are irrelevant to such applications.

This paper outlines an approach to stemmer evaluation which is based on detecting and counting

the ach~al under- and overstemming errors committed during stemming of word samples derived

from actual texts. This permits the computation of a ‘stemming weight’ index for each stemmer, as

well as indices representing the under- and overstemming error rates and the general accuracy. The

method involves manually dividing a sample of words into conceptual groups, and referring the

actual stemming performance to these groups.

It may be objected that natural words do not fall into entirely clear-cut semantic groups, and

that anyway humans cannot be relied upon to make objective assignments. In fact of course, the very

practice of stemming obviously relies on an assumption of semantic grouping, even if it is somewhat

approximate. Our assumption here is that careful human judgment can produce groups which are in

reasonable agreement with ‘reality’, and that these can be used for evaluation purposes.

In using a sample of words taken from a natural source, we encounter the question of whether to

base the evaluation on all the individual word tokens in the sample, or on only the distinct word

types. In the first case, we would determine the frequencies of all the word types and take these

into account in computing the performance indices. This is perfectly straightforward, but it is found

that the results then obtained tend to be dominated by the way the stemmer handles a quite small

number of high frequency word groups - for example, common verbs such as “be”/ “being” /“been”,

“do” /“doing’’/’’done” etc. This is unfortunate since in practice common and irregular forms are often

handled by lexical lookup anyway. Stemmers are mainly required to deal with words of relatively

rare and unpredictable occurrence. In view of this, our evaluation method ignores occurrence

frequencies, and uses word types rather than tokens. An incidental benefit is that there is no need to

remove syntactic function words - nor to worry about what should be included in the stoplist - since

it can be shown that inclusion or exclusion of these words has very little effect on the results.

Computation of Performance Indices

Suppose we have a sample of W different words, partitioned into ‘concept groups’ each

containing forms which are both semantically and morphologically related to one another. For

each concept group two totals may be computed.

Firstly, since a perfect stemmer should merge every member of a concept group with every other,

the number of pairs of different words in the group defines the ‘desired merge total’ ~M~g for that

group. This is given by

DMTg = 0.5 ng(ng -1)

where ng is the number of words in the group.

Secondly, a perfect stemmer shoLkl not merge any member of the present concept group with any

word which is not in the group. Thus, for every group there is a ‘desired non-merge total’ ~~~g

given by

DAITg = 0.5TZg(VV - IZg)

By summing these two totals over all groups in the word sample, we obtain the @obal desired
w[crgc total G DMT and the glohd desired nownerge total GDNT respectively. Each equation

contains a 0.5 factor to compensate for double counting of pairs during the summation.

44

After applying a stemmer to the sample, we are likely to find that some of the groups still

contain two or more distinct stems. In such groups there are understemrning errors to be counted. Thus,

suppose a concept group of size ng containss distinct stems after stemming, and that the numbers of

instances of these stems are Z41, U2, .. . us. The number of understemming errors for the group (the

‘unachieved merge total’ LIMTg) is given by

Z.IMTg = 0.5 ~i=l ~ui(ng - Ui)..

Summing this quantity over all groups we obtain the global unachieved merge total G LIMT; the

understemming index L.11is now given b y the ratio GUMT\GDMT.

After stemming, we also expect to find cases where the same stem occurs in two or more concept

groups. The procedure here is to gather all cases of a particular stem into a ‘stem group’; now any

stem group whose members are derived from two or more different concept groups contains

overstemming errors which need to be counted.

Consider a stem group which contains ~~ items which are derived from f different concept

groups, and suppose that the numbers of representatives of these concept groups are vl, v.2, . . . vt.
The number of overstemming errors for this stem group is represented by the ‘wrongly-merged total’

WMTS, given by:

WMTs = 0.5 ~ i=l .t~i(~ts - vi) {1}

Summing this quantity over all stem groups we obtain the global wrongly-merged total G WMT;
the overstemming index 01 is now given by the ratio GWMT/ GDNT.

It is clear that for a heavy stemmer 01 will be rather high and ~1 low, whereas for a light

stemmer the situation will be reversed. The ratio of these two quantities may therefore be taken as

a measure of the stwur/i}2g weight SW:

Sw = ol/ul .

Because we have no precise theory to account for the relationship between the understemming

and overstemrning tendencies, we lack any satisfactory framework in which to assess particular U1

and 01 values. It will commonly occur that one stemmer will be better than another in terms of LH,
but worse in terms of 01. So is there any way to judge whether one is better than another overall?

And does the question even have meaning? Regarding the second question we may observe that, if

the difference in weight is quite small and the difference in UI and/or 01 is large, then it probably

does make sense to talk about the relative general accuracy of the two stemmers, at least for the

word sample under consideration.

In order to obtain some kind of baseline against which the general accuracy of a stemmer may be

judged, we refer to the process of length tt’wmztioft - that is, reducing every word to just its first q

letters (words shorter than ~ being left unchanged). Length truncation is the crudest method of

stemming, and we would obviously expect any rule-based or table-based stemmer to do better. Note

however that length truncation refers to not just one but a series of stemmers, each with a different

value of ~; for IR purposes truncation lengths of 5,6 and 7 seem to be the most useful.

The idea here is that if we determine values of UI and 01 for a series of truncation lengths, the

(LII,O 1) coordinates define a tnuxation li}ze against which any stemmer can be assessed. Any

reasonable stemmer will give a (LJ1, O1) point between the truncation line and the origin; in

general, the further away the point is from the truncation line, the better the stemmer can be said

to be. Specifically, a performance measure which we may call the error rate relative to truncation,

or ERRT, can be obtained by extending a line from the origin O through the (UI,OI) point P until

it intersects the truncation line at T, as illustrated in Figure 1. ERRT is then simply defined as

ERRT = length(OP)/length(OT) .

45

01

o
UI

Figure 1: computation of ERRT value

Experimental Arrangements

A suite of computer programs was written to permit computation of the above indices. The

processing falls broadly into four parts:

.- conversion of a source text sample into a grouped file;

.- computation of a truncation line for the grouped file;

-- application of one or more stemming algorithms to the words in the grouped file, to obtain

values of LII,OI and SW;
-- computation of the ERR 7’ value for each stemmer by comparing its (LII,OI) point to the

truncation line.

The only stage where human effort is involved is in the construction of the groups. The grouping

program presents to the user an alphabetic display of all the distinct words from the source. The

program makes all the obvious decisions on the user’s behalf, but for all uncertain cases refers to the

user for the decision. Adjacent groups are separated by inserting ‘barriers’ into the file.

The grouped file thus produced is not likely to be correct. For one thing, some of the ‘obvious’

decisions taken by the program may in fact be wrong. For another, alphabetic ordering may

sometimes split up certain conceptual groups (consider “read”, “readily”, “reading”, “readjust”,

“reads”). Thirdly, the user may require time to reconsider some of the more difficult groupings.

Consequently, a second and perhaps even third scan of the file needs to be performed, using a

standard editor, before the grouping will be satisfactory. The grouping is thus a rather laborious

process, though once it is finished the grouped file represents a permanent resource for future use.

A question arises over what to do about irregular verbs. It seems natural and proper that “fly”

and “flew” should be placed in the same group, but what about “is” and “were”, and “go” and

“went”? Stemming relies on morphological regularities and similarities, so it seems wrong to

penalise it for not merging totally dissimilar forms. In the event, a rule-of-thumb was used that

words should only be grouped together if at least the first two letters were the same. This was

partly a matter of convenience, since it is awkward to bring together words which are far apart in

the alphabetic list. The rule obviously leads to anomalies - e.g., “bring” and “brought” are grouped,

but “buy” and “bought” are not - but because the indices are based on word types rather than tokens

it has only a tiny effect on the values of the indices.

During the grouping process, the user is presented with individual, isolated words; no context is

given, and so there is no chance to allow for the different meanings of ambiguous words. In making a

46

grouping decision, the user is in effect deciding whether two words typically refer to the same

underlying concept, given a knowledge of the general domain of the source material.

This still leaves the question whether two words which refer to related but not quite identical

concepts should be counted as equivalent. It may be that taking a ‘strict’ view of semantic

equivalence will give materially different results than taking a ‘loose’ view. To investigate this

point, groups were actually defined at two levels of ‘tightness’, using two kinds of inter-group

barrier. First, there is a level of possibly large, loose groups, containing words which may be quite

weakly related to one another. Secondly, any loose group may be subdivided into two or more tight

subgroups, each containing words which refer to more-or-less identical concepts. This approach

means that for each stemmer which is evaluated against a given word sample, two separate sets of

performance indices are generated.

Some examples of the two-level grouping are shown in Figure 2. The words abstract and addition

have been placed in individual subgroups because they are both ambiguous. Thus, one sense of

abstract is related to abstractness, the other to literature abstracts. During the grouping,

abstracting was assigned to the latter subgroup because the domain of the source was known to be

library science.

(
(
(
(
(
(
(
(
(
..
(
(
(
(
(
(
(
(

abstract) (abstraction, abstractly)
abstracts, abstracting, abstracted, abstracters)

addition) (additional, additionally)
add, adds, adding, added, additive)

alter, alters, altered, alterations)
alternate, alternately, alternating, alternations)
alternative, alternatives, alternatively)

appropriate, appropriately) (appropriations)

authur, author’s, authors, authorship)

authoritarian) (authoritative) (authoriiy, authorities)
authorized, authorization)

cost, costing, costed, costs) (costly)

device, devices) (devise, devising, devised)

element, elements, elemental) (elementary)

explicate, explicates, explicated, explication, explications)
explicit, explicitly)

frame, frames, framing, framed) (framework, frameworks)

Figure 2: examples of two-level concept groups

Words enclosed within parentheses are grouped tightly together.

A horizontal line is a major barrier between adjacent loose groups.

(All are actual examples taken from CISI source.)

Performance evaluations were carried out for three stemmers whose details (including specific

rule tables) are fully described in the IR literature: the Lovins stemmer [7], the Porter stemmer [8]

and the Paice/Husk stemmer [3]. To provide a baseline for computing values of ERRT, LII and 01

values were also obtained for simple truncation using truncation lengths of 4,5,6, 7 and 8.

A sample of words was obtained by processing all of the titles and abstracts in the CISI test

collection, which is concerned with Library and Information Science. This source contained a total

of 184,659 words, reduced to 9,757 after deletion of duplicates. Runs were also carried out using two

smaller word samples: 1,527 distinct words (derived from 8,947 source words) from a textbook

excerpt concerned with computer storage devices, and 3,559 distinct words (from 32,098 source words)

from the texts of 14 papers on agriculture.

47

In order to investigate the influence of sample size on the performance indices, four subsamples

were prepared from the CISI text source, by taking every nth line from complete collection, with n

values of 2, 4, 8 and 16, and then preparing grouped files as usual. The resulting word samples

contained 7,304, 5,395, 3804 and 2,654 word types respectively, compared with 9,757 for the full

CISI vocabulary.

Results

Although the values of the indices were markedly different for the different word samples, the

patterns of values were much the same in all cases, so that similar conclusions could be drawn for

each sample. Table 1 shows the results obtained for the CISI sample. If we compare the

corresponding values obtained for the and loose levels of grouping, we find that all four indices

vary in the ways we would expect. Understemming will obviously be greater, and overstemming

less, for loose than for tight grouping, and this in turn causes considerably smaller SW values for

the loose grouping level. The ER R T values are larger with loose grouping; this too is

understandable since loose semantic relationships are naturally reflected in weaker and less

systematic morphological similarities.

---- tight grouping ---- ---- loose grouping ----

UI 01 SW ERRT U/ 01 SW ERRT

trunc(4) 0.062 0.000814 0.013127 ------ 0.099 0.000706 0.007155 ------

trunc(5) 0.176 0.000262 0.001487 ------ 0.258 0.000183 0.000710 ------

trunc(6) 0.337 0.000073 0.000218 0.442 0.000022 0.000050 -.. -..

trunc(7) 0.527 0.000028 0.000054 ------ 0.633 0.000002 0.000004

trunc(8) 0.700 0.000012 0.000017 ------ 0.780 0.000000 0.000000 ------

Lovins 0.326 0.000063 0.000193 0.92 0.459 0.000020 0.000044 1.00

Paice/Husk 0.121 0.000118 0.000978 0.55 0.257 0.000051 0.000197 0.67

Porter 0.374 0.000028 0.000074 0.76 0.542 0.000004 0.000007 0.88

Table 1: Stemming performance indices for the CISI word sample

If now we compare the pflttem of values within the tight and loose sections of Table 1, we can

find no marked differences, and this suggests that the properties and validity of the indices are not

strongly affected by the level of grouping - provided presumably that a consistent strategy is used.

Comparing the three stemmers with one another, the relative values of the four indices maybe

summarised as follows:

Zll(Porter) > ~~(Lovins) > LH(Paice/Husk)

O1(Paice/Husk) > O~(Lovins) > O1(Porter)

S ~(Paice/Husk) > SW(Lovins) > SW(Porter)

ERRT(Lovins) > ERRT(Porter) > ERRT(Paice/Husk)

Although the magnitudes of the differences varied a good deal, and in a couple of cases were only

marginal, the above inequalities actually held for all of the word samples tested. In terms of the

~1 index, Lovins was noticeably closer to Porter than to Paice/Husk.

48

If we take ERRT as a general indicator of performance accuracy, we would have to conclude

that Paice/Husk is a better stemmer than Porter, which is in turn better than Lovins. However, the

differences in stemming weight between Paice/Husk and Porter are so great that it is probably

meaningless to compare their accuracy: Paice/Husk is a heavy stemmer and Porter a light stemmer,

and presumably each is suited to a different task.

It is helpful to look at Figure 3, which plots ~~ vs. 01 for the CISI sample at the tight grouping

level. This not only highlights the great difference in weight between Paice/Husk and Porter, it

also casts light on the performance of Lovins. Notice first that the truncation line is convex towards

the origin; this is as expected, given the generally inverse relationship between between L.H and

01. However, a line joining the performance points for Paice/Husk, Lovins and Porter is clearly

concave towards the origin, suggesting that Lovins is genuinely less accurate than either of the

other stemmers. This relationship holds for both tight and loose levels of grouping for all the word

samples tested .

300

xlo -6

250

200

150

100

50

trunc(5)

I I 1 1 1 +

0.1 0.2 0.3 0:4 0:5 UI

Figure 3: UI x 01 plot for CISI sample (tight grouping)

Lennon et al. represented the weights of their stemmers by the dictionary compression each

could achieve. Their results for Lovins and Porter are compared with ours in Table 2. Our results

from the CISI sample are closest to theirs from the Brown linguistic corpus; oddly, this appeared to

be the least similar source to ours. However, our ratio for the compression by Lovins compared to

49

Porter was 1.14, whilst theirs were all in the range 1.13 to 1.18. Our compression values confirm

clearly that Porter is a lighter stemmer than Lovins, and also that Paice/Husk is much heavier.

--- this work --- --- Lennon et al. 1981 ---

n Clsl Brown N PL Inspec Cranfield

sample words 9,757 100.0 --- --- -– -–

tight groups 5,101 47.7 -– -– -– -–

loose groups 4,350 55.4 --- -– -– -–

Lovins stems 5,409 44.6 45.8 39.2 39.5 30.9

Paice/Husk stems 4,755 51.3 -– -– -– -–

Porter stems 5,964 38.9 38.8 34.6 33.8 26.2

Table 2: Dictionary compression by three stemmers.

n represents numbers of items;

other values are percentage compression rates.

We now turn to the effect of sample size. It appears that U1, representing the internal structure

of the concept groups, is fairly insensitive to sample size. 01 however (and consequently SW) falls

off sharply as sample size increases. ERRT shows a less consistent tendency: the values for Lovins

and Porter reach a minimum at about 5,000 sample words, whereas Paice/Husk decreases

throughout, but shows signs of levelling off around 10,000 words.

We may recall that 01 is defined as G WMT/GDNT. The global desired non-merge total

GDNT can be expected to depend on the square of the word sample size W. We may therefore

infer that the global wrongly-merged total G WMT increases less fast, and this in turn implies

that the average value of formula {1} is less than proportional to W. This can be explained if the

average stem-group size shows little or no tendency to increase with W; this is plausible since it is

likely that as the source grows, the fresh introductions will increasingly tend to be non-domain-

related singleton words.

Findings

The general results of our experiments maybe summarised as follows:

-- The specific values of the performance indices vary markedly depending on the source text.

-- For a particular word source, the values of U1 are fairly insensitive to sample size, whereas

values of 01 and S W fall off sharply as sample size increases. ERRT values show modest

fluctuations.

.- In terms of the stemming weight SW, Porter is a light stemmer and Paice/Husk a heavy

stemmer.

-- The difference in the SW value between Porter and Paice/Husk is so great that it is probably

meaningless to compare their performance.

-- The Lovins stemmer seems to be generally less accurate than either of the other two stemmers.

-- The choice of grouping level does not appear to be a critical matter, provided that a consistent

strategy is used in each case.

The lightness of the Porter stemmer is in agreement with earlier findings that Porter is
significantly lighter than Lovins and several other algorithms [1].

50

Final Comments

The author is well aware of various doubts and problems with the methods described in this

paper. Further work is clearly needed to explore the validity of the approach and to make the
programs more useful. One area of difficulty concerns the subjective and fuzzy nature of the grouping

operations, and it would he valuabl~ to hav~ som~ objective evidence to assist in this activity.

Rather than basing the grouping on a display of isolated words it might be better if grammatically

tagged words could be presented instead. Part-of-speech tags might be of some use, but semantic tags

would appear to be of greater value [9]. Use of tagged text would of course mean that a particular

word type might be assigned to different groups on different occasions.

Use of these stemmer evaluation tools (whether in the existing or an enhanced form) is not

limited to comparing the performance of existing off-the-shelf stemmers: they can also be used for

optimizing the rule-tables which the stemmers use. The types of changes considered would of course

depend on the nature of the stemmer in question. For example, we might try to make Porter’s

algorithm stem a little more heavily by adding additional rules or by modifying or relaxing some

of the contextual constraints.

With Paice/Hu sk, the emphasis would be on reducing the number of overstemming errors by

retracting or modifying some of the more trOUblWOIIW rules. In this case, it would be desirable to

discover which rules are a serious cause of overstemming errors. This could be done by modifying the

stemmer to keep a note of each removed ending (or the rule used to remove it) so that this

information is available when the under- and overstemming errors are being counted. It should then

be possible to compute individual error indices for each different ending.

It would be interesting to apply this evaluation method to dictionary-based conflation in order

to investigate the extent and significance of the performance gap between a well-optimised

stemmer and a full dictionary operation.

Acknowledgements. I should like to thank Gareth Husk, Chris Danson and Helen Simpson for their

invaluable work in cieveloping various parts of the software.

References

1. Lennon, M., Pierce, D. S., Tarry, B. D., Willett, P. An evaluation of some conflation algorithms for

information retrieval. JoIirwd of I}zforIHathH SCimcr 1981; 3{ 177-183.

2. Frakes, W.B. Trrw CoHj7afiott for I}I~orwIation Retrimnl. Ph.D. thesis, Syracuse University, NY,
198~.

3. Paice, C.D. Another stemmer. SIGIR for’?~m 1990; 24,56-61.

4. Hafer, M.A. and Weiss, S.F. Word segmentation by letter successor varieties. lnforvvrtion

Storage fl}ui Retrleml 1974; 10, 371-385.

5. Landauer, C. and Mah, C. Message extraction through estimation of relevance. In: R. N.Oddy et

d. (Ects.), Irrformtiotl Retmxd Resem’ch. Lomion: Butterworths, London, 1981, pp.117-138.

6. Harman, D. How effective is suffixing? ~o?trml of the Awericm Society for l}lforvlfltiotl Science

1991; 42, 7-15.

7. Lovins, J.B. Development of a stemming algorithm. Met)/a}~id Trmdafio}z a)zd Coqmtatiomd
Linguistics 1968; 11, 22-31.

8. Porter, M.F. An algorithm for suffix stripping. Program 1980; 14, 130-137.

9. Wilson, A. and Rayson, P. The automatic content analysis of spoken discourse: a report on work in

progress. In: Souter, C. and Atwell, A., Corpus-based Covyri~hztiowd Linguistics. Rodopi,

Amster~iam & Atlanta GA, 1993.

