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Abstract. Functional and delimited continuations are more expressive than tra-
ditional abortive continuations and they apparently seem to require a framework
beyond traditional continuation or monadic semantics. We show that this is not the
case: standard continuation semantics is sufficient to explain directly the common
control operators for delimited continuations. This implies a monadic framework for
typed and encapsulated functional and delimited continuations which we design and
implement as a Haskell library.
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1. Introduction

Continuation-passing style (CPS) and its generalization to monadic
style are the standard mathematical frameworks for understanding
(and sometimes implementing) control operators. In the late eighties a
new family of control operators were introduced that apparently went
“beyond continuations” (Felleisen, 1988; Felleisen et al., 1988; Johnson
and Duggan, 1988) and “beyond monads” (Wadler, 1994). These con-
trol operators permit the manipulation of delimited continuations that
represent only part of the remainder of a computation, and they also
support the composition of continuations, even though such operations
are not directly supported by standard continuation models (Strachey
and Wadsworth, 1974). Delimited continuations are also referred to as
subcontinuations (Hieb et al., 1994), since they represent the remainder
of a subcomputation rather than of a computation as a whole.

Without the unifying frameworks of continuation semantics or mon-
ads, it is difficult to understand, compare, implement, and reason about
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2 Dybvig, Peyton Jones, Sabry

the various control operators for subcontinuations, their typing prop-
erties, and logical foundations. In this paper we design such a unifying
framework based on continuation semantics, then generalize it to a
typed monadic semantics. We illustrate this framework with a basic
set of control operators that can be used to model the most common
control operators from the literature (Section 2).

We first give an abstract and expressive continuation semantics for
delimited continuations (Section 3), using a technique first used by
Moreau and Queinnec. We simplify this semantics in two ways to
produce a novel continuation semantics that demonstrates that any
program employing delimited continuations can be evaluated via a
single, completely standard CPS translation, when provided with ap-
propriate meta-arguments and run-time versions of our operators that
manipulate these arguments.

We then factor the continuation semantics into two parts: a transla-
tion into a monadic language that specifies the order of evaluation, and
a library that implements the control operators themselves (Section 4).
This allows us to give a typed account of the subcontinuation oper-
ators that makes explicit where control effects can occur, and where
they cannot (Section 5). In particular, our design is the first to offer
statically-checked guarantees of encapsulation of control effects. We
introduce an operator runCC which encapsulates a computation that
uses control effects internally, but is purely functional when viewed
externally.

Once the monadic effects have been made apparent by the first trans-
lation, the control operators can be implemented as an ordinary, typed
library. This offers the opportunity to prototype design variations—of
both implementation approach and library interface—in a lightweight
way. We make this concrete, using Haskell as an implementation of
the monadic language, by providing three different prototype imple-
mentations of the control operators (Section 6). The first of these
implementations is suitable for low-level manipulations of the stack, the
second suitable for a CPS compilation strategy, and the third suitable
for a language that provides access to the entire abortive continua-
tion using an operator like callcc. The library implementation is itself
strongly typed, which helps enormously when writing its rather tricky
code.

We also present a properly tail recursive Scheme implementation of
our operators in Appendix C.
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A Monadic Framework for Subcontinuations 3

(Variables) x, . . .

(Expressions) e ::= x | λx.e | e e
| newPrompt | pushPrompt e e
| withSubCont e e | pushSubCont e e

Figure 1. Call-by-value λ-calculus with control

2. Control Operators

The literature describes several families of control operators for sub-
continuations. In this section, we introduce the family of four operators
that we study in detail and relate them to other operators in the
literature.

2.1. Our Operators

The operators in our family are newPrompt, pushPrompt, withSub-
Cont, and pushSubCont. Figure 1 shows the syntax of our opera-
tors, extending a conventional, call-by-value λ-calculus. We give their
semantics formally in Section 3, but intuitively they behave as follows:

− The newPrompt operator creates a new prompt, distinct from all
existing prompts.

− The pushPrompt operator evaluates its first subexpression and
uses the resulting value, which must be a prompt, to delimit the
current continuation during the evaluation of its second subexpres-
sion.

− The withSubCont operator evaluates both of its subexpressions,
yielding a prompt p and a function f . It captures a portion of the
current continuation back to but not including the activation of
pushPrompt with prompt p, aborts the current continuation back
to and including the activation of pushPrompt, and invokes f on
a representation of the captured subcontinuation. If more than
one activation of pushPrompt with prompt p is still active, the
most recent activation, i.e., the one that delimits the smallest
subcontinuation, is selected.

− The pushSubCont operator evaluates its first subexpression to
yield a subcontinuation k, then evaluates its second subexpression
in a continuation that composes k with the current continuation.

While newPrompt and withSubCont can be treated as functions, push-
Prompt and pushSubCont must be treated as syntactic constructs since
they exhibit a non-standard evaluation order.
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These operators are essentially identical to ones proposed by Gunter
et al. (1995). The only difference aside from minor syntactic details
is that our operators do not require captured subcontinuations to be
represented as functions.

2.2. Relationship with Existing Operators

While our operators can be used directly, the primary intent is that
they be used as building blocks to form higher level control operators,
including existing operators from the literature. To provide some in-
tuition about our operators, we compare them with existing operators
and show how they can be used to express those operators.

Traditional continuations represent the entire rest of the computa-
tion from a given execution point, and, when reinstated, they abort the
context of their use. To model traditional continuations, we assume
the existence of a top-level prompt available as the constant p0 and
define a withCont operator to manipulate the entire continuation via
this prompt.

withCont e = withSubCont p0 (λk.pushPrompt p0 (e k))

With withCont we can model Scheme’s call-with-current-continuation
(here abbreviated callcc), which captures the current continuation and
passes a function encapsulation of the continuation to its argument:

callcc = λf.withCont (λk.pushSubCont k (f (reifyA k)))

where:
reifyA k = λv.abort (pushSubCont k v)
abort e = withCont (λ .e)

When applied to a function f , callcc captures the entire continuation k
using withCont, uses pushSubCont to reinstate a copy of k, and applies
f to a functional representation of k, namely (reifyA k). When applied
to a value v, this functional representation aborts its context, reinstates
k, and returns v to k.

Felleisen’s C (Felleisen et al., 1987a) is a variant of callcc that aborts
the current continuation when it captures the continuation. It can be
modeled similarly:

C = λf.withCont (λk.f (reifyA k))

Like continuations reified by callcc, a continuation reified by C aborts
the current continuation when it is invoked. In contrast, the oper-
ator F (Felleisen et al., 1987a) also captures and aborts the entire
continuation, but the reified continuation is functional, or composable,
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A Monadic Framework for Subcontinuations 5

as with our subcontinuations. It can be modeled with a non-aborting
reify operator:

F = λf.withCont (λk.e (reify k))

where:
reify k = λv.pushSubCont k v

When prompts appear other than at top level, they serve as control
delimiters (Felleisen et al., 1987b; Felleisen, 1988; Danvy and Filinski,
1990) and allow programs to capture and abort a subcontinuation, i.e.,
a continuation representing part of the remainder of the computation
rather than all of it. The first control delimiter to be introduced was
Felleisen’s # (prompt), which delimits, i.e., marks the base of, the
continuation captured and aborted by F (Felleisen et al., 1987a). In
the presence of prompts, the operator F captures and aborts the con-
tinuation up to but not including the closest enclosing prompt. This
means that the prompt remains in place after a call to F , and the
captured subcontinuation does not include the prompt. Variants of F
have been introduced since, that do not leave behind the prompt when
a subcontinuation is captured, or do include the prompt in the captured
subcontinuation is invoked. For example, reset and shift (Danvy and
Filinski, 1990) are similar to # and F , but shift both leaves behind the
prompt when a subcontinuation is captured and includes the prompt
in the captured subcontinuation.

To illustrate these differences, we introduce a classification of control
operators in terms of four variants of F that differ according to whether
the continuation-capture operator (a) leaves behind the prompt on the
stack after capturing the continuation and (b) includes the prompt at
the base of the captured subcontinuation.

−F− does not leave the prompt behind or include it in the subcontin-
uation; this is like cupto (Gunter et al., 1995) and withSubCont.

−F+ does not leave the prompt behind, but does include it in the sub-
continuation; this is like a spawn controller (Hieb and Dybvig,
1990).

+F− leaves the prompt behind, but does not include it in the sub-
continuation; this is the delimited F operator (Felleisen et al.,
1987b).

+F+ leaves the prompt behind and includes it in the subcontinuation;
this is the shift operator (Danvy and Filinski, 1990).
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In all cases, the traditional interface is that the captured subcontinua-
tion is reified as a function. Using our primitives and a single constant
prompt #, these operators can be defined as follows:

−F− = λf.withSubCont # (λk.f (reify k))
−F+ = λf.withSubCont # (λk.f (reifyP # k))
+F− = λf.withSubCont # (λk.pushPrompt # (f (reify k)))
+F+ = λf.withSubCont # (λk.pushPrompt # (f (reifyP # k)))

where

reify k = λv.pushSubCont k v
reifyP p k = λv.pushPrompt p (pushSubCont k v)

A natural extension of the framework with a single fixed prompt is to
allow multiple prompts. Some proposals generalize the single prompt
by allowing hierarchies of prompts and control operators, like resetn
and shiftn (Danvy and Filinski, 1990; Sitaram and Felleisen, 1990).

Other proposals instead allow new prompts to be generated dy-
namically, like spawn (Hieb and Dybvig, 1990; Hieb et al., 1994). In
such systems, the base of each subcontinuation is rooted at a different
prompt, and each generated prompt is associated with a function that
can be used for accessing the continuation up to that prompt. This is
more expressive than either single prompts or hierarchies of prompts
and allows arbitrary nesting and composition of subcontinuation-based
abstractions. In our framework, spawn is defined as follows:

spawn = λf.(λp.pushPrompt p (f (−F+ p))) newPrompt
−F+ = λp.λf.withSubCont p (λk.f (reifyP p k))

where we have generalized the definition of −F+ to take a prompt
argument p instead of referring to the fixed prompt #. Thus, spawn
generates a new prompt, pushes this prompt, creates a control operator
that can access this prompt, and makes this specialized control operator
available to its argument f .

Moreau and Queinnec (1994) proposed a pair of operators, marker
and call/pc, that provide functionality similar to that of spawn. The
marker operator generates a new prompt and pushes it, and call/pc
captures and aborts the subcontinuation rooted at a given prompt. The
key difference is that the continuation reified by call/pc is stripped of
all intervening prompts, even though they are necessarily unrelated to
the prompt at the base. We could model this behavior in our system
with the addition of a strip operator as follows.

marker e = (λp.pushPrompt p (e p)) newPrompt
call/pc = λp.λf.withSubCont p (λk.f (reify (strip k)))
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Such an operator is easily added to our system given the implementa-
tion approach we present later in this paper. We do not do so, however,
because the stripping behavior of call/pc is unique in the world of
control operators and, in our opinion, not useful, since it inhibits the
nesting of control abstractions.

The operators −F+ and +F− share an intuitively appealing iden-
tity property, which is that capturing and immediately reinstating a
subcontinuation is effectively a no-op. The operator −F+ takes away
the prompt, but its subcontinuation reinstates it, while +F− leaves the
prompt, and its subcontinuation does not reinstate it. Thus:

+F− (λk.ke) = e if k 6∈ e
−F+ (λk.ke) = e if k 6∈ e

The same operation with −F− results in the net elimination of one
prompt, while the same operation with +F+ results in the net intro-
duction of one prompt. Although this would seem to make −F+ or
+F− better choices, we have chosen −F− semantics for our primitive
operator withSubCont because it is the one that most easily models the
others. While Shan (2004) has demonstrated that one can use even +F+

semantics (in the form of shift) to implement the semantics of −F−,
−F+, and +F−, doing so requires a complex syntactic redefinition of
the prompt operator, using a trampolining mechanism similar to one
used by Sitaram and Felleisen (1990) to implement hierarchies of #
and F .

We have supposed the possible existence of a top-level prompt p0,
which we needed to implement callcc, C, and F without #. We do not
insist that the top-level prompt be included in the model, however.
It may be preferable not to include a top-level prompt, since this
gives subprograms possibly undesirable control over the main program,
which can easily provide the subprogram with a top-level prompt if
desired.

3. Continuation Semantics

In this section, we develop a continuation semantics for the call-by-value
λ-calculus embedding of our operators. We proceed in the traditional
way, by giving a translation from the source language of Figure 1 to
a pure, call-by-name lambda calculus target language (introduced in
Section 3.1). We review the traditional CPS semantics for simple con-
trol operators like callcc (Section 3.2) and explain why it is insufficient
for delimited continuations. We then discuss why neither of the two
standard approaches to extending the CPS translation for delimited
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(Variables) x, κ, . . .
(Numerals) n

(Expressions) e ::= x | λx.e | e e
| error
| n | e + e | num? e
| [] | e : e | hd e | tl e | null? e
| true | false | if e then e else e

Figure 2. Extended call-by-name λ-calculus: Syntax

continuations is entirely satisfactory (Section 3.3). Thus motivated,
we develop an expressive and abstract CPS semantics in Sections 3.4
and 3.5.

3.1. A CPS Calculus

In order to make the CPS semantics precise, we first introduce a pure
calculus to serve as the target of the CPS translation. The calculus
is a standard call-by-name one whose syntax is given in Figure 2.
In addition to the core λ-terms, it includes a constant denoting an
error, numbers, lists, and booleans with their associated operations.
The semantics of the CPS calculus is standard, and is given by the
equivalences in Figure 3.

In the sequel, we take the liberty to use pattern-matching syntax,
recursive definitions, and other convenient syntactic sugar which is
easily translated to the core calculus.

3.2. Standard CPS Semantics

For the pure call-by-value λ-calculus, the CPS semantics is defined as
follows. The map P[[.]] takes an expression in the call-by-value calculus
of Figure 1 (without the control operations for now) and returns an
expression in the extended call-by-name calculus of Figure 2. The result
of the translation is always a λ-expression that expects a continuation
and returns an answer of some arbitrary but fixed type:

P[[x]] = λκ.κ x
P[[λx.e]] = λκ.κ (λx.λκ′.P[[e]] κ′)
P[[e1e2]] = λκ.P[[e1]] (λf.P[[e2]] (λa.f a κ))

The translation of a complete program is given by P[[e]] κ0, where κ0

is the initial continuation λv.v. The translation introduces variables
that are assumed not to occur free in the input expression.

Adding callcc to the pure fragment is straightforward:

P[[callcc e]] = λκ.P[[e]] (λf.f (λx.λκ′.κ x) κ)
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(λx.e)e′ = e[e′/x]
λx.(λy.e) x = λy.e if x 6∈ e

n1 + n2 = n1 + n2

num? n = true
num? (λx.e) = false

num? [] = false
num? (e1 : e2) = false

hd (e1 : e2) = e1

tl (e1 : e2) = e2

null? [] = true
null? (e1 : e2) = false

if true then e1 else e2 = e1

if false then e1 else e2 = e2

error e′ = error
error + e = error
n + error = error

num? error = error
hd error = error
tl error = error

null? error = error
if error then e1 else e2 = error

Figure 3. Extended call-by-name λ-calculus: Semantics

After evaluating its subexpression, callcc applies the resulting func-
tion f to a function encapsulating the captured continuation in the
same continuation. If the function encapsulating the captured contin-
uation is applied to a value, it aborts the current continuation and
reinstates the captured continuation by passing the value to the cap-
tured continuation and dropping the current continuation. Handling F
in the absence of # is also straightforward:

P[[Fe]] = λκ.P[[e]] (λf.f (λx.λκ′.κ′(κ x)) κ0)

In this case, f is invoked in the initial continuation, effectively aborting
the current continuation, and the encapsulating function does not drop
the current continuation but rather composes it with the captured
continuation.

Handling even a single prompt # is not so straightforward. What we
need is a way to split a continuation κ into two pieces at the prompt.
The continuation is represented as a function, however, so splitting
it is not an option. What we need is a richer representation of the
continuation that supports two operations: κ#

↑ representing the portion

of κ above the prompt, and κ#
↓ representing the portion of κ below the

prompt.
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3.3. Traditional Solutions

Two basic approaches have been proposed to deal with the fact that
the representation of continuations as functions is not sufficiently ex-
pressive:

1. Abstract continuation semantics (Felleisen et al., 1988). This ap-
proach develops an algebra of contexts that is expressive enough
to support the required operations on continuations. From the al-
gebra, two representations for continuations are derived: one as a
sequence of frames, and the other as objects with two methods
for invoking and updating the continuation. The operations κ#

↑
and κ#

↓ can be realized by traversing the sequence up to the first
prompt and returning the appropriate subsequence, and the com-
position of continuations can be implemented by appending their
two sequences.

2. Metacontinuations (Danvy and Filinski, 1990). Since we must split
the continuation above and below the prompt, why not maintain
two separate parameters to the CPS semantics? The first parame-
ter κ will correspond to the portion of the evaluation context above
the first prompt, and the second parameter γ will correspond to
the portion of the evaluation context below the first prompt. The
parameter κ is treated as a partial continuation, i.e., a function
from values to partial answers that must be delivered to the second
parameter γ to provide final answers. In other words, given the two
continuation parameters κ and γ and a value v one would compute
the final answer using γ(κv). If the nested application is itself ex-
pressed in CPS as κvγ, it becomes apparent that γ is a continuation
of the continuation, or in other words a metacontinuation.

Unfortunately, neither approach is ideal. The metacontinuation ap-
proach leads to control operators with the +F+ semantics, from which
the other semantic variants may be obtained only with difficulty, as
discussed in Section 2. The metacontinuation approach also requires
that the program undergo two CPS conversion passes. The first is
a nonstandard one that exposes the continuation but leaves behind
nontail calls representing the metacontinuation, and the second is a
standard one that exposes the metacontinuation. Additional complex-
ity is involved in the presence of multiple prompts. Handling static
hierarchical prompts requires additional CPS conversion passes (Danvy
and Filinski, 1990), and while we conjecture that the trampolining reset
operators of Sitaram and Felleisen and of Shan can be extended to
handle dynamically generated prompts, this would further complicate
that mechanism.
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On the other hand, the algebra of contexts is not sufficiently ab-
stract for our purposes, due to its over-constrained representation of
continuations. Although a common representation of continuations in
an implementation is indeed as a stack of frames, exposing this fine
granularity in the semantics suggests that an implementation must
loop through these frames individually (Gasbichler and Sperber, 2002),
even though prompts may be many frames apart. We would prefer a
model that allows control operators to be built on top of any existing
abstraction of continuations, for example, on top of a CPS interme-
diate language representing continuations as functions, or on top of a
language with an implementation of callcc that gives access to some
unknown representation of the continuation.

3.4. Representing Metacontinuations

It turns out that we can strike a middle ground that provides all the
expressiveness of the sequence of frames approach while leaving the
representation of continuations as abstract as possible. We do this by
adopting features of both of the traditional approaches to modeling de-
limited continuations. We borrow from the metacontinuation approach
the notion of a split continuation. From the algebra of contexts, we
borrow the representation of a continuation as a sequence. The key in-
sight is that we need represent only the metacontinuation as a sequence
while leaving the representation of partial continuations fully abstract.
This technique was first applied by Moreau and Queinnec (1994) in a
semantics for marker and call/pc.

Before giving the full CPS translation, we first discuss the repre-
sentation of partial continuations and metacontinuations. A partial
continuation is represented in the standard way for CPS semantics, i.e.,
as a function mapping values to answers. A metacontinuation is repre-
sented as a list, where each element is either a numeral (representing a
unique prompt name) or a partial continuation.

When a metacontinuation (represented as a list) is applied to a
value, the result should be a final observable answer. In our case, this
is slightly more complicated in order to deal properly with the genera-
tion of new prompts, without using global side-effects. To accomplish
this, we assume a global supply of names (represented as numerals)
that is threaded through along with the metacontinuation. Applying a
metacontinuation is defined by cases on the sequence representing the
metacontinuation:

K([], v) = λp.v
K(p : γ, v) = K(γ, v)
K(κ : γ, v) = κ v γ
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P[[x]] = λκ.λγ.λp.κ x γ p
P[[λx.e]] = λκ.λγ.λp.κ (λx.λκ′.λγ′.λp′.P[[e]] κ′ γ′ p′) γ p
P[[e1e2]] = λκ.λγ.λp.

P[[e1]] (λf.λγ′.λp′.
P[[e2]] (λa.λγ′′.λp′′.f a κ γ′′ p′′) γ′ p′) γ p

P[[newPrompt]] = λκ.λγ.λp.κ p γ (p + 1)
P[[pushPrompt e1 e2]] = λκ.λγ′.λp′.

P[[e1]] (λp.λγ.λp′′.P[[e2]] κ0 (p : γ) p′′) γ′ p′

P[[withSubCont e1 e2]] = λκ.λγ′′.λp′′.
P[[e1]] (λp.λγ′.λp′.
P[[e2]] (λf.λγ.λp′′′.

f (κ : γp
↑) κ0 γp

↓ p′′′) γ′ p′) γ′′ p′′

P[[pushSubCont e1 e2]] = λκ.λγ′′.λp.
P[[e1]] (λγ′.λγ.λp′.
P[[e2]] κ0 (γ′++(κ : γ)) p′) γ′′ p

Figure 4. CPS translation of call-by-value calculus with control

If the sequence is empty, then we are done: we simply ignore the prompt
supply and return the value v as the final answer. If the sequence starts
with a prompt p, then the value is returned through the prompt, which
is popped, and the next segment of the metacontinuation is inspected.
Finally, if the sequence starts with a partial continuation κ, then κ is
given the value v and the rest of the sequence as its metacontinuation.

With the list representation, a metacontinuation can easily be split
at an arbitrary prompt, and two metacontinuations can easily be com-
posed. Composition is achieved via the function ++, which appends two
lists. The operations that split the metacontinuation are defined below:

[]p↑ = error

(p : γ)p
↑ = []

(p′ : γ)p
↑ = p′ : γp

↑
(κ : γ)p

↑ = κ : γp
↑

[]p↓ = error

(p : γ)p
↓ = γ

(p′ : γ)p
↓ = γp

↓ where p 6= p′

(κ : γ)p
↓ = γp

↓

3.5. An Expressive but Abstract CPS Semantics

A CPS translation for the call-by-value λ-calculus embedding of our
operators is given in Figure 4. The translation of an expression e from
Figure 1 is P[[e]]κ0 [] 0 where κ0 is the initial partial continuation,
[] is the initial empty metacontinuation, and 0 is the first generated
prompt name. The initial partial continuation κ0 takes a value and
a metacontinuation and applies the metacontinuation to the value:
λv.λγ.K(γ, v).
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P[[x]] = λκ.κ x
P[[λx.e]] = λκ.κ (λx.λκ′.P[[e]] κ′)
P[[e1e2]] = λκ.P[[e1]] (λf.P[[e2]] (λa.f a κ))

P[[newPrompt]] = λκ.λγ.λp.κ p γ (p + 1)
P[[pushPrompt e1 e2]] = λκ.P[[e1]] (λp.λγ.P[[e2]] κ0 (p : κ : γ))
P[[withSubCont e1 e2]] = λκ.P[[e1]] (λp.P[[e2]] (λf.λγ.f (κ : γp

↑) κ0 γp
↓))

P[[pushSubCont e1 e2]] = λκ.P[[e1]] (λγ′.λγ.P[[e2]] κ0 (γ′++(κ : γ)))

Figure 5. CPS translation of call-by-value calculus with control (η-reduced)

P[[x]] = λκ.κ x
P[[λx.e]] = λκ.κ (λx.λκ′.P[[e]] κ′)
P[[e1e2]] = λκ.P[[e1]] (λf.P[[e2]] (λa.f a κ))

P[[newPrompt]] = newPromptc

P[[pushPrompt e1 e2]] = λκ.P[[e1]] (pushPromptc κ P[[e2]])
P[[withSubCont e1 e2]] = withSubContc

P[[pushSubCont e1 e2]] = λκ.P[[e1]] (pushSubContc κ P[[e2]])

where, in the target language:

newPromptc = λκ.λγ.λp.κ p γ (p + 1)
pushPromptc = λκ.λt.λp.λγ.t κ0 (p : κ : γ))

withSubContc = λp.λf.λκ.λγ.f (κ : γp
↑) κ0 γp

↓))

pushSubContc = λκ.λt.λγ′.λγ.t κ0 (γ′++(κ : γ))

Figure 6. Factoring the control operations

So far, this yields for our operators a semantics that is similar in
nature to the one that Moreau and Queinnec gave for marker and
call/pc. We now push on it a bit harder.

Figure 5 simplifies the CPS translation by η-reducing the equations
in Figure 4 to eliminate arguments that are simply passed along. Pure
λ-calculus terms have no need to access the metacontinuation or next
prompt, and their Figure 5 translations reflect this fact. While the
metacontinuation and next prompt are available at all times, they
are ignored by the core terms and manipulated only by the control
operators. The metacontinuation and next prompt are accessed in a
monad-like way, separate from the everyday handling of control.

Figure 6 takes the simplification one step further. The handling of
core terms is as in Figure 5, but the portions of the control operator
code that deal directly with the metacontinuation and next prompt
have been split out into separate run-time combinators. These com-
binators are defined simply as target-language constants. The CPS
translation itself thereby becomes completely independent of the meta-
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14 Dybvig, Peyton Jones, Sabry

continuation and next prompt and deals with the control operators
only superficially. A practical consequence of this observation is that
any program that makes use of delimited continuations can be evalu-
ated simply by rewriting the program (just once!) using a completely
standard CPS-conversion algorithm and by supplying additional “hid-
den” arguments—the metacontinuation and next prompt—and suitable
implementations of our operators that manipulate those arguments.
Indeed, if we introduced thunks into the interfaces of pushPrompt and
pushSubCont, the CPS-conversion algorithm would not need to deal
with the control operators in any way, even superficially.

4. Monadic Semantics

The CPS semantics plays two complementary roles: it specifies the or-
der of evaluation among subexpressions, and it specifies the semantics
of the control operators.

The order of evaluation is important, because it directly affects the
semantics of control effects. For example, adding pushPrompt as an
ordinary function to a call-by-value language like Scheme or ML gives
the wrong semantics, because the default parameter-passing mechanism
would evaluate e2 before invoking the pushPrompt operation. Since the
whole point of pushPrompt is to introduce a prompt to which control
operations in e2 can refer, evaluating those control operations before
pushing the prompt defeats the purpose of the operation. One solution
is to treat the control operators as syntactic constructs, as we have
done so far. Another is to use thunks to manually delay and force the
evaluation of e2 at the appropriate times (see for example the embed-
ding of reset in ML by Filinski (1994)). As shown in Appendix C,
in Scheme the use of thunks would typically be abstracted using the
macro language, which is effectively equivalent to adding pushPrompt
as a syntactic construct. In both cases, however, such encoding tricks
distract from and complicate the semantic analysis.

An alternative, and now well-established, technique is to express the
order of evaluation by a translation T [[e]] into a monadic meta-language,
after which the behavior of the control operators can be expressed by
defining them as constants, just as we did in Section 3.5. This separation
allows us to study the issues related to the order of evaluation sepa-
rately from the semantics of the control operators. More importantly it
allows us in the next section to introduce a monadic typing discipline
to track and encapsulate the control effects.

By separating the issues related to the order of evaluation from
the semantics of control operators, we gain better understanding of
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Variables x, . . .

Terms e ::= x | λx.e | e1e2

| return e | e1 >>= e2

| newPrompt | pushPrompt e1 e2

| withSubCont e1 e2 | pushSubCont e1 e2

Figure 7. Monadic metalanguage: Syntax

T [[x]] = return x
T [[λx.e]] = return (λx.T [[e]])
T [[e1e2]] = T [[e1]] >>= λf.T [[e2]] >>= λa.f a

T [[newPrompt]] = newPrompt
T [[pushPrompt e1 e2]] = T [[e1]] >>= λp.pushPrompt p T [[e2]]
T [[withSubCont e1 e2]] = T [[e1]] >>= λp.

T [[e2]] >>= λf.
withSubCont p f

T [[pushSubCont e1 e2]] = T [[e1]] >>= λs.pushSubCont s T [[e2]]

Figure 8. Monadic translation of call-by-value calculus with control

both aspects. By using the monadic language, with its clear distinction
between terms with no effects and terms of computation type, func-
tion calls can no longer trigger computational effects which must be
triggered explicitly using the special computation rules of the monad.
(See the loop example in Section 5.3 for a concrete example of how a
typical use of thunks to control the order of evaluation can be better
achieved in the monadic metalanguage.) Finally, the separation allows
us to focus in the rest of the paper on the more important issues related
to the semantics and implementation of the control operators without
unnecessary distractions.

4.1. A Monadic Metalanguage with Prompts and
Continuations

The monadic translation T [[e]] takes a source-language term to a term
in a monadic metalanguage, whose syntax is given in Figure 7. The
monadic metalanguage extends the λ-calculus with a monadic type con-
structor and associated operations. These operations include return
and >>=, which explain how to sequence the effects in question, together
with additional monad-specific operations. In our case, these operations
are newPrompt, pushPrompt, withSubCont, and pushSubCont. The
monadic metalanguage is typed, but we defer the type issues until
Section 5.
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16 Dybvig, Peyton Jones, Sabry

M[[x]] = x
M[[λx.e]] = λx.M[[e]]
M[[e1e2]] = M[[e1]](M[[e2]])

M[[return e]] = λκ.κ (M[[e]])
M[[e1 >>= e2]] = λκ.M[[e1]] (λv.M[[e2]] v κ)

M[[pushPrompt p e]] = λκ.λγ.M[[e]] κ0 (p : κ : γ)
M[[withSubCont p f ]] = λκ.λγ.f (κ : γp

↑) κ0 γp
↓

M[[pushSubCont s e]] = λκ.λγ.M[[e]] κ0 (s++(κ : γ))

M[[newPrompt]] = λκ.λγ.λp.κ p γ (p + 1)

Figure 9. CPS translation of monadic metalanguage

The monadic translation is in Figure 8. For function applications
and withSubCont, the effects of the subexpressions are performed from
left to right before the application. For pushPrompt and pushSubCont,
only the effects of e1 are performed before the application, while the
effects of e2 are performed after the prompt or the subcontinuation are
pushed. Notice that the translation says nothing about the semantics
of the control operators that appear in the target of the translation; it
simply enforces the proper sequencing.

4.2. Semantics of the Monadic Metalanguage

The monadic metalanguage is now translated to the CPS calculus of
Section 3.1. The translation M is given in Figure 9. In the presenta-
tion of the translation, we have grouped the term constructors in four
groups. The first group consists of the pure λ-calculus constructors
whose semantics knows nothing about continuations or metacontin-
uations. The second group is the standard monadic constructors re-
turn and >>= which are given the standard definitions for the CPS
monad (Moggi, 1991), i.e., they manipulate a concrete representation
of the continuation but know nothing about the metacontinuation. The
third group consists of the control operators other than newPrompt.
The semantics of these control operators manipulate the continuation
(but not its representation) and manipulate a concrete representation of
the metacontinuation. Finally the semantics of the last control operator
newPrompt refers to the continuation, the metacontinuation, and the
counter used to generate unique names.

4.3. Relating the CPS and Monadic Semantics

The semantics are equivalent in the sense of the following proposition.
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PROPOSITION 4.1. For any expression e defined in Figure 1, we have
P[[e]] =M[[T [[e]]]] in the CPS calculus.

Proof. By induction on the structure of e proceeding by cases:

− e = x.
The left-hand side is λκ.κ x.
The right-hand side is M[[T [[x]]]] =M[[return x]] = λκ.κ x.

− e = λx.e′

The left-hand side is λκ.κ (λx.λκ′.P[[e′]] κ′).
The right-hand side is:

M[[return (λx.T [[e′]])]] = λκ.κ (M[[λx.T [[e′]]]])
= λκ.κ (λx.M[[T [[e′]]]])
= λκ.κ (λx.λκ′.P[[e′]] κ′)

− e = e1e2

The left-hand side is λκ.P[[e1]] (λf.P[[e2]] (λa.f a κ)).
The right-hand side is:

M[[T [[e1]] >>= λf.T [[e2]] >>= λa.f a]]
= λκ.P[[e1]] (λf.M[[T [[e2]] >>= λa.f a]] κ)
= λκ.P[[e1]] (λf.M[[T [[e2]]]] (λa.M[[f a]] κ))
= λκ.P[[e1]] (λf.P[[e2]] (λa.f a κ))

− e = newPrompt
The left-hand side is λκ.λγ.λp.κ p γ (p + 1).
The right-hand side is M[[newPrompt]] = λκ.λγ.λp.κ p γ (p + 1)

− e = pushPrompt e1 e2

The left-hand side is λκ.P[[e1]] (λp.λγ.P[[e2]] κ0 (p : κ : γ)).
The right-hand side is:

M[[T [[e1]] >>= λp.pushPrompt p T [[e2]]]]
= λκ.M[[T [[e1]]]] (λp.M[[pushPrompt p T [[e2]]]] κ)
= λκ.P[[e1]] (λp.λγ.M[[T [[e2]]]] κ0 (p : κ : γ))
= λκ.P[[e1]] (λp.λγ.P[[e2]] κ0 (p : κ : γ))

− e = withSubCont e1 e2

The left-hand side is λκ.P[[e1]] (λp.P[[e2]] (λf.λγ.f (κ : γp
↑) κ0 γp

↓)).
The right-hand side is:

M[[T [[e1]] >>= λp.T [[e2]] >>= λf.withSubCont p f ]]
= λκ.M[[T [[e1]]]] (λp.M[[T [[e2]] >>= λf.withSubCont p f ]] κ)
= λκ.P[[e1]] (λp.M[[T [[e2]]]] (λf.M[[withSubCont p f ]] κ))
= λκ.P[[e1]] (λp.P[[e2]] (λf.λγ.f (κ : γp

↑) κ0 γp
↓))
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18 Dybvig, Peyton Jones, Sabry

− e = pushSubCont e1 e2

The left-hand side is λκ.P[[e1]] (λγ′.λγ.P[[e2]] κ0 (γ′++(κ : γ))).
The right-hand side is:

M[[T [[e1]] >>= λs.pushSubCont s T [[e2]]]]
= λκ.M[[T [[e1]]]] (λs.M[[pushSubCont s T [[e2]]]] κ)
= λκ.P[[e1]] (λs.λγ.M[[T [[e2]]]] κ0 (s++(κ : γ)))
= λκ.P[[e1]] (λs.λγ.P[[e2]] κ0 (s++(κ : γ)))

In summary, the CPS semantics of Figure 5 has been teased into
two parts that can be studied (and implemented as we see in Section 6)
independently. The aspects relevant to the order of evaluation are fac-
tored out in the translation to the monadic metalanguage. The pure
functional terms remain pure, and the monadic constructs are aware
of the continuation but not the metacontinuation or the generation
of new names; the latter are manipulated exclusively by our control
operators, which themselves do not manipulate the representation of
the continuation.

5. Monadic Types in Haskell

In order to study the monadic types in a concrete setting, we implement
the monadic metalanguage of the preceding section in Haskell. This
implementation allows us not only to use advanced type features like
interfaces, type classes, nested polymorphism, and existentials, but also
to provide an executable specification of our control operators.

From the semantic perspective, i.e., based on Figure 9, the monadic
metalanguage can be easily mapped to Haskell. Since Haskell is an
extended λ-calculus, it directly embodies the pure λ-calculus terms
of the monadic metalanguage. Furthermore, Haskell provides direct
syntactic support for monadic programming.

So the plan is this. We will write programs directly in Haskell,
in effect relying on the programmer to perform the monadic trans-
lation T [[e]]. Then we need only to provide Haskell definitions for the
monadic constructors return and >>=, and the control operators, which
can be done in a Haskell library. The result is a typed, executable
program that uses delimited continuations. It may not be an efficient
implementation of delimited continuations, but it serves as an excel-
lent design laboratory, as we will see in Section 6. Furthermore, as
we explore in this section, the typed framework allows us to securely
encapsulate algorithms that use control effects internally, but which are
entirely pure when seen from the outside.
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A Monadic Framework for Subcontinuations 19

5.1. Haskell as an Implementation of the Monadic
Metalanguage

Defining the monadic constructors in Haskell is directly achieved by
defining an instance of the Monad type class. Specifically, we must
introduce a type constructor, say CC, that describes the notion of effect
we are interested in, and make CC an instance of the class Monad by
providing definitions of the two methods return and >>=. For example,
if e1 and e2 are expressions whose evaluation may have control effects,
we can write:

e1 >>= (λx1 → e2 >>= (λx2 → return (x1+x2)))

The evaluation of the expression first executes e1 and its control effects.
The value returned by the execution of e1 is bound to x1 and then
the same process is repeated with e2. Haskell provides the following
convenient syntactic sugar for the above pattern:

do x1 ← e1

x2 ← e2

return (x1+x2)

Finally we must provide definitions for the control operators. Nat-
urally these operators use the definition of the CC monad and in fact
they are the only operations that need access to that definition.

In other words, we can embed the monadic metalanguage in Haskell
by simply defining a library which exports the monadic type construc-
tor CC and the control operations. In the remainder of this section, we
present the interfaces of two such libraries and evaluate them using
examples.

5.2. Monad with Fixed Observable Type

We first introduce the simplest types for the monadic library.

data CC a -- Abstract
data Prompt a -- Abstract
data SubCont a b -- Abstract
type Obs = ... -- Arbitrary but fixed

instance Monad CC

runCC :: CC Obs → Obs

newPrompt :: CC (Prompt a)

pushPrompt :: Prompt a → CC a → CC a
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20 Dybvig, Peyton Jones, Sabry

withSubCont :: Prompt b → (SubCont a b → CC b) → CC a

pushSubCont :: SubCont a b → CC a → CC b

The interface includes the type constructor CC (which must be an
instance of the class Monad) and two abstract type constructors for
prompts Prompt and subcontinuations SubCont. Following conventional
continuation semantics, the type of observables is of an arbitrary but
fixed type Obs. The type CC a is the type of computations returning
a value of type a to their continuation. The type Prompt a is the
type of prompts to which a value of type a can be returned. The type
SubCont a b is the type of subcontinuations to which a value of type a
can be passed and which return a value of type b. To execute a complete
program the function runCC takes a computation which returns a value
of the fixed type Obs and supplies it with the initial context (initial
continuation, metacontinuation, and counter for prompt names) to get
the final observable value.

The types of the control operators are a monadic variant of the
types given by Gunter et al. (1995) for the similar operators. Each
occurrence of newPrompt generates a new prompt of an arbitrary but
fixed type a. The type of pushPrompt shows that a prompt of type
Prompt a can only be pushed on a computation of type CC a which
expects a value of type a. If the type of withSubCont p f is CC a
then the entire expression returns a value of type a to its continuation;
the continuation is assumed to contain a prompt p of type Prompt b;
the portion of the continuation spanning from a to b is captured as a
value of type SubCont a b which is passed to f. Since the remaining
continuation expects a value of type b, the return type of f is CC b. A
similar scenario explains the type of pushSubCont.

Wadler (1994) studies several systems of monadic types for compos-
able continuations. His first system is similar to the one we consider
in this section. Written in our notation, the types he considers for the
operators are:

runCC :: CC Obs → Obs

pushPrompt :: CC Obs → CC Obs

withSubCont :: (SubCont a Obs → CC Obs) → CC a

pushSubCont :: SubCont a Obs → CC a → CC Obs

Indeed our interface reduces to the above, if we remove the ability to
generate new prompts and use one fixed and implicit prompt of the
observable type instead.
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5.3. Examples

The following short examples aim to give a little more intuition of the
monadic interface. The examples use the following Haskell conventions:

− A λ-expression \x -> e extends as far to the right as possible.

− A sequence of monadic computations is usually expressed using
do-notation but we occasionally use the bind operator >>=.

− Whitespace (instead of semi-colons) is often used as a separator
of monadic actions with indentation (instead of braces) indicating
grouping.

− We make heavy use of the right-associating, low-precedence infix
application operator $, defined like this f $ x = f x. Its pur-
pose is to avoid excessive parentheses; for example, instead of
(f (g (h x))) we can write (f $ g $ h x).

Thus given the above conventions the term:

withSubCont p $ λk →

pushSubCont k $

do x ← do y1 ← e1

e2

e

parses as:

withSubCont p (λk →

pushSubCont k (do { x ← (do { y1 ← e1; e2}); e}))

We first revisit our examples with the top-level prompt p0 and
callcc from Section 2.2. The top-level prompt has type Prompt Obs
and the definitions of abort and callcc can be typed as follows:

abort :: CC Obs → CC a

abort e = withCont (λ _ → e)

callcc :: ((a → CC b) → CC a) → CC a

callcc f = withCont $ λk →

pushSubCont k $

f (λv → abort (pushSubCont k (return v)))

As expected the type of abort refers to the top level type of observ-
ables. The type of callcc makes it explicit that the argument to a
continuation must be a value, of type a, rather than a computation of
type CC a. This interface of callcc has a well-known stack-space leak,
however. For example, consider:
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loop :: Int → CC Int

loop 0 = return 0

loop n = callcc (λk → do { r ← loop (n−1); k r })

When the recursive call to loop (n-1) returns, the continuation k is
invoked, which abandons the entire current stack, using the call to
abort inside the definition of callcc. So the recursive call to loop
takes place on top of a stack that will never be used. If the recursive
call increases the size of the stack before looping, as is the case here, the
result is that the stack grows proportional to the depth of recursion.

The usual solution to this problem is to thunkify the argument to the
continuation, passing a value of type (() -> a ) instead of a value of
type a. In our monadic framework, we can be more explicit by defining
callcc as follows:

callcc :: ((CC a → CC b) → CC a) → CC a

callcc f = withCont $ λk →

pushSubCont k $

f (λc → abort (pushSubCont k c))

where it is explicit that the continuation is applied to a computation
of type CC a. Using the new variant of callcc we can write our loop
example as follows:

loop :: Int → CC Int

loop 0 = return 0

loop n = callcc (λk → k (loop (n−1)))

Now the context is aborted before the recursive call to loop is made,
and the function becomes properly tail-recursive.

5.4. Encapsulation

The monadic interface we have considered so far has the advantage of
being simple, but it has a major limitation: the fact that the interface
of runCC specifies a fixed type Obs. One really wants to be able to run
monadic computations that return values of arbitrary types. Näıvely
replacing Obs by an arbitrary type is however unsound as it would
allow interactions among control operations executing under different
occurrences of runCC. For example, changing the type of runCC to:

runCC :: CC a → a

would permit the following:
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abortP :: Prompt r b → CC r b → CC r a

abortP p e = withSubCont p (λ _ → e)

badc = let p1 :: Prompt Int = runCC newPrompt

p2 :: Prompt Bool = runCC newPrompt

in 1 + runCC (pushPrompt p1

(abortP p2 (return True)))

Because it has a pure type, the result of runCC e for any e must
be a pure expression without any side-effects. In particular the two
occurrences of runCC in the body of badc cannot interact via a global
symbol table or anything similar to guarantee that they return distinct
prompts p1 and p2. Therefore, nothing forces the two prompts p1 and
p2 to have different internal representations. In the case when they
do have the same representation, i.e., they are intentionally equal, the
jump to p2 reaches p1 instead which causes the evaluation to add 1 to
True.

The solution to this type soundness problem is to confine the control
effects to certain regions. (This is also desirable from the perspective of
programming methodology. For a longer discussion of this point, we re-
fer the reader to the arguments leading to the design of spawn (Hieb and
Dybvig, 1990).) As Thielecke (2003) recently showed, there is an inti-
mate relation between regions and the type of observables. Indeed what
defines a region of control is that the type of observables can be made
local to the region. Fortunately this situation is rather similar to the
well-understood situation of encapsulating state in Haskell (Launch-
bury and Peyton Jones, 1995), and our solution is quite similar. We
add a region parameter r to every type constructor and enforce non-
interference and localization of control actions by using polymorphism.
The refined interface becomes:

data CC r a -- Abstract
data Prompt r a -- Abstract
data SubCont r a b -- Abstract

instance Monad (CC r)

runCC :: (∀ r⋅ CC r a) → a

newPrompt :: CC r (Prompt r a)

pushPrompt :: Prompt r a → CC r a → CC r a

withSubCont :: Prompt r b → (SubCont r a b → CC r b) →

CC r a

pushSubCont :: SubCont r a b → CC r a → CC r b
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In the new interface, the types CC, Prompt, and SubCont are each
given an additional type parameter r which represents their control
region as far as the type system is concerned. The type of each operator
insists that its arguments and results come from a common region. So,
for example, one cannot push a prompt of type Prompt r1 a if the
current computation has type CC r2 a where r1 and r2 are different
regions. The type of runCC shows that it takes an effectful computa-
tion, of type CC r a, runs it, and returns an ordinary, pure, value of
type a. This encapsulation is enforced by giving runCC a rank-2 type:
its argument must be polymorphic in the region r.

5.5. Examples

Encapsulation using runCC provides a convenient way to isolate regions
of control from each other. If a computation labeled by r1 pushes a
prompt, then a computation labeled by a different r2 cannot access
that prompt and hence cannot abort or duplicate computations up
to that prompt. Moreover the type system will enforce this restriction:
there is no way for the prompt to somehow leak using a global reference
or higher-order function.

The following two expressions can be encapsulated either because
they perform no effects at all (g0), or because their effects are com-
pletely localized and hence invisible to the outside world (g1):

g0 = 1 + runCC (do x ← return 1; return (x+1))

g1 = 1 + runCC (

do p ← newPrompt

pushPrompt p $

withSubCont p $ λ sk →

pushSubCont sk (pushSubCont sk (return 2)))

A more interesting example of encapsulation uses continuations in a
way similar to exceptions, to abort several recursive calls as an opti-
mization. The control effect is completely localized and hence encap-
sulated:

productM :: [Int] → Int

productM xs = runCC (do p ← newPrompt

pushPrompt p (loop xs p))

where loop [] p = return 1

loop (0:_) p = abortP p (return 0)

loop (x:xs) p = do r ← loop xs p; return (x*r)

In the example, we recursively traverse a list pushing multiplication
frames on the stack. Before starting the loop, we push a prompt on
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the stack to mark the point at which the recursion will eventually
return. If we reach the end of the list, we return normally, performing
the multiplications on the way back. If we encounter a 0, however, we
simply erase the pending multiplication frames and return the final
result 0 to the caller of loop.

The system with encapsulation is quite expressive. Wadler (1994)
studies several generalizations of the type system with a fixed observ-
able type, and only the most general system he considers (which is more
general than a monad) is expressive enough to typecheck the following
program:

let g = reset (if (shift (lambda (f) f)) then 2 else 3)
in (g True) + (g False)

This can be written in our framework without stepping outside the
world of monads. The following expression typechecks and evaluates
to 5 as desired:

data A r = Done Int | Sub (Bool → CC r (A r))

w = runCC (

do p ← newPrompt

Sub g ← pushPrompt p $

do b ← shift p (λs → return (Sub s))

if b

then return (Done 2)

else return (Done 3)

Done n1 ← g True

Done n2 ← g False

return (n1+n2))

Expressions may violate encapsulation for a variety of reasons:

b0 = runCC (do p ← newPrompt; return p)

b1 = do p ← newPrompt

pushPrompt p $

withSubCont p $ λ sk →

return (runCC (pushSubCont sk (return 1)))

Example b0 attempts to export a local prompt. Example b1 attempts
to use a subcontinuation captured from outside its region which is also
invalid, and is rejected by the type checker.
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6. Executable Specifications in Haskell

Having implemented the monadic metalanguage in Haskell, we can
turn the semantics of Figure 9 into an executable (as well as typed)
specification. We focus on the more interesting version of the monadic
types with regions (implementing the other basic interface is simpler).
We also provide three versions of the specification that differ in the
details of how the continuation is represented. Providing these three
typed specifications has several advantages:

− It clarifies some of the informal arguments we made about the
separation of concerns between the continuation, the metacontin-
uation, and the generation of prompts. Indeed we will show that
it is possible to focus on each aspect in a separate module;

− The semantics in Figures 5 and 9 is quite complex and the types
are non-trivial. We found the executable Haskell specification to
be invaluable in debugging the semantic definitions;

− The executable specification naturally provides an extension of
Haskell with our control operators, but it also provides a blueprint
for embedding our control operators in other languages like Scheme
or ML either by modifying the runtime system, or extending a CPS
compiler, or as a source level library which builds on top of callcc.

The implementation uses Haskell’s built-in error mechanism to avoid
cluttering the code with yet-another-monad to propagate errors. The
implementation also uses several constructs that are not part of Haskell
98, although they have become quite standard extensions to the basic
language. In particular, we use existential types to express the typing
of a sequence of function (continuation) compositions; and we use uni-
versal types for encapsulation of control effects, and for capturing an
invariant related to continuations and metacontinuations.

6.1. Generating Prompts

The module Prompt implements the dynamic generation of prompts.
It is isolated here because the issue of name generation is independent
of continuations, and because it allows us to isolate the only unsafe (in
the sense that the type system cannot prove it safe) coercion in our
code to this small module:

module Prompt where

data P r a -- Abstract
data Prompt r a -- Abstract
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instance Monad (P r)

runP :: (∀ r⋅ P r a) → a

newPrompt :: P r (Prompt r a)

eqPrompt :: Prompt r a → Prompt r b →

Maybe (a → b, b → a)

The module provides the abstract type of prompts and a monad (P r)
which sequences the prompt supply. This guarantees that generated
prompts are globally unique within all computations tagged by the
type parameter of the region r. The implementation of the module is
in Appendix A.

The operation runP plays the role of encapsulating a computation
that uses prompts, guaranteeing that no information about the prompts
is either imported by its argument or exported by it. The operation
eqPrompt compares two prompts of possibly different types by looking
at their internal representation. If the two prompts have a different
internal representation we just return the value Nothing. But if the
two prompts have the same internal representation, then they must
have the same type (if our implementation is correct and if the prompt
values are unforgeable). In this case we return two coercions to witness
the type equality. The coercions are implemented as identity functions,
but since the Haskell type system cannot be used to reason about this
type equality, the coercion functions are generated using an unsafe
implementation-dependent primitive.

The module Prompt is imported in each of the following imple-
mentations of the CC interface. The import is qualified so that uses
of component X of the Prompt module will appear as Prompt.X.

6.2. Sequences

All our implementations manipulate sequences of prompts and control
segments. The control segments are frames in the first case, functions
in the second case, and abstract continuations with an unknown rep-
resentation in the third case. We provide here a general sequence type
that can be instantiated for each case. The two operations we require
on sequences (split and append) need to be defined only once.

The basic structure of the Seq type is that of a list, which can be
empty (EmptyS) or has three “cons” variants each with another Seq in
the tail:

data Seq s r a b = EmptyS (a → b)

| PushP (Prompt.Prompt r a) (Seq s r a b)
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| ∀ c⋅ PushSeg (s r a c) (Seq s r c b)

| ∀ c⋅ PushCO (a → c) (Seq s r c b)

We first give the intuitive meaning of each type parameters and then
explain the various constructors in turn. The type parameters a and b
represent the type of values received and produced by the aggregate
sequence of prompts and segments. The type parameter r is used to
identify the region of control to which the prompts and control segments
belong. The type parameter s is the abstract constructor of control
segments that will be varied to produce the various implementations.
We now consider the constructors:

− We would really like to declare the empty sequence EmptyS as:

data Seq s r a b = EmptyS | ...

but then EmptyS would have the type Seq s r a b which is too
polymorphic. An empty sequence should have type Seq s r a a.
Haskell does not allow data types to be restricted in this way
(but see Xi et al. (2003) and Cheney and Hinze (2002) for possible
extensions and encodings), so we instead give EmptyS an argument
that provides evidence that a = b, in the form of a function from
a to b. Now we can define:

emptyS :: Seq s r a a

emptyS = EmptyS id

− The PushP constructor is simple: it simply pushes a (suitably-
typed) prompt onto the sequence.

− The PushSeg constructor pushes a control segment which repre-
sents either an individual frame or a continuation. When searching
for prompts in sequences, we never need to inspect control seg-
ments so the precise details of what constitutes a segment is not
relevant at this point. The “∀c” in the declaration is a widely-used
Haskell extension that allows an existentially-quantified type vari-
able c to be used in a data type declaration (Läufer and Odersky,
1992). It is used here to express the fact that if the control segment
takes a value of type a to one of type c, and the rest of the sequence
takes a value of type c to a value of type b, then the composition
of the two takes a value of type a to a value of type b.

− The PushCO constructor pushes a coercion function (again always
the identity in our code) onto a sequence. The coercions are the
ones obtained from the Prompt module that witness the type equal-
ity of two prompts.
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The implementation of the control operators described later may
push “empty” control segments which correspond to the identity con-
tinuation, or worse, sequences of coercions if the control operators are
used in certain recursive patterns. In both cases, it is possible to avoid
such inefficiencies by using “smart constructor” functions, and this is
absolutely essential if we are to maintain proper tail recursion as re-
quired for example by the semantics of Scheme. For example, instead of
using PushCO to construct the sequences, we use a function pushCO that
recognizes the special inefficient situation in which we push one coercion
on top of another and combines the two coercions. For control segments,
the situation is a little more subtle since it could be that continuations
are represented as functions, or even worse, continuations may have an
unknown representation, and hence it is not clear how to identify the
identity continuation. It may still be possible however even in those
situations to avoid pushing a control segment corresponding to the
identity continuation. For example, one can refine the representation
of continuations represented as functions to be Id | NonId (A -> B)
where the identity continuation is readily recognizable as such. It could
also be possible depending on the host language to compare continu-
ations of unknown representation for (pointer) equality, as is possible
for example in Chez Scheme where:

(call/cc (lambda (k1) (call/cc (lambda (k2) (eqv? k1 k2)))))

evaluates to true. As shown in Appendix C, this property can be used
to achieve proper tail recursion, i.e., no growth of any values holding
control information, including the implementation’s stack.

The operations to split and append sequences are defined below. To
split the sequence at a given prompt, we traverse it, comparing the
prompts along the way. If a prompt matches the desired prompt, we
use the eqPrompt function to obtain a coercion that forces the types
to be equal. To append functional sequences, we recursively traverse
the first until we reach its base case. The base case provides a coercion
function which can be used to build a coercion frame to maintain the
proper types.

splitSeq :: Prompt.Prompt r b → Seq s r a ans →

(Seq s r a b, Seq s r b ans)

splitSeq p (EmptyS _) =

error ("Prompt was not found on the stack")

splitSeq p (PushP p’ sk) =

case Prompt.eqPrompt p’ p of

Nothing → let (subk,sk’) = splitSeq p sk

in (PushP p’ subk, sk’)
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Just (a2b,b2a) → (EmptyS a2b, PushCO b2a sk)

splitSeq p (PushSeg seg sk) =

let (subk,sk’) = splitSeq p sk

in (PushSeg seg subk, sk’)

splitSeq p (PushCO f sk) =

let (subk,sk’) = splitSeq p sk

in (PushCO f subk, sk’)

appendSeq :: Seq s r a b → Seq s r b ans → Seq s r a ans

appendSeq (EmptyS f) sk = PushCO f sk

appendSeq (PushP p subk) sk = PushP p (appendSeq subk sk)

appendSeq (PushSeg seg subk) sk =

PushSeg seg (appendSeq subk sk)

appendSeq (PushCO f subk) sk =

PushCO f (appendSeq subk sk)

6.3. Continuations as Sequences of Frames

In this first implementation, the continuation and metacontinuation are
merged in one data-structure which consists of a sequence of frames and
prompts. Although we worked hard to avoid making this representation
the only representation possible, it is a possible representation which
is useful if one chooses to modify the runtime system to implement
the control operators (Gasbichler and Sperber, 2002). A frame of type
Frame r a b is a function which given a value of type a returns a
b-computation which performs the next computation step. The contin-
uation is a sequence of these frames and prompts which consumes values
of type a and returns an arbitrary (and hence universally quantified)
type obs. The final result should be of type obs but is slightly more
complicated since we are making the allocation of prompts explicit: the
final result is instead a computation which delivers the value of type
obs after possibly generating prompts. Thus the complete definitions
of the datatypes are:

data Frame r a b = Frame (a → CC r b)

type Cont r a b = Seq Frame r a b

data CC r a = CC (∀ obs⋅ Cont r a obs → Prompt.P r obs)

type Prompt r a = Prompt.Prompt r a

type SubCont r a b = Seq Frame r a b

Given these data types, here is how we make CC an instance of the
Monad class, by implementing return and (>>=):
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instance Monad (CC r) where

return v = CC (λ k → appk k v)

(CC e1) >>= e2 = CC (λ k → e1 (PushSeg (Frame e2) k))

appk :: Cont r a obs → a → Prompt.P r obs

appk (EmptyS f) v = return (f v)

appk (PushP _ k) v = appk k v

appk (PushSeg (Frame f) k) v = let CC e = f v in e k

appk (PushCO f k) v = appk k (f v)

runCC :: (∀ r⋅ CC r a) → a

runCC ce = Prompt.runP (let CC e = ce in e (EmptyS id))

The function appk serves as an interpreter, transforming a sequence
data structure, of type Cont r a obs, into a function. The implemen-
tation of appk is straightforward but needs a coercion in the EmptyS
case, without which the function would not be well-typed.

newPrompt :: CC r (Prompt r a)

newPrompt = CC (λk → do p ← Prompt.newPrompt; appk k p)

pushPrompt :: Prompt r a → CC r a → CC r a

pushPrompt p (CC e) = CC (λk → e (PushP p k))

withSubCont :: Prompt r b → (SubCont r a b → CC r b) →

CC r a

withSubCont p f =

CC (λk → case splitSeq p k of

(subk,k’) →

let CC e = f subk

in e k’)

pushSubCont :: SubCont r a b → CC r a → CC r b

pushSubCont subk (CC e) = CC (λk → e (appendSeq subk k))

As already apparent in the continuation semantics, the only control
operator that is aware of the prompt supply is newPrompt.

6.4. Continuations as Functions

In this second implementation, the continuation is represented as a
function from values to metaCPS terms. MetaCPS terms are CPS terms
that accept metacontinuations and deliver answers. Metacontinuations
are represented as sequences of continuations and prompts. The type
definitions are:
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data Cont r a b = Cont (a → MC r b)

type MetaCont r a b = Seq Cont r a b

data CC r a = CC (∀ b⋅ Cont r a b → MC r b)

data MC r b = MC (∀ ans⋅ MetaCont r b ans → Prompt.P r ans)

type Prompt r a = Prompt.Prompt r a

type SubCont r a b = Seq Cont r a b

The type ans is quantified as above. The type b used as an articulation
point between the continuation and metacontinuation is completely
arbitrary and hence universally quantified. This quantification captures
an invariant that the interface between a continuation and a metacon-
tinuation is arbitrary as long as they agree on it. Had we not quantified
the type variables b and ans in the definitions, then we would have had
to either fix them to arbitrary types or we would have had to make them
additional parameters to the type constructors.

In more detail, if we remove the quantification from the definitions
of the types CC and MC (and remove the tags to simplify the discussion),
we might get:

type CC r ans b a = (a → MC r ans b) → MC r ans b

type MC r ans b = MetaCont r b ans → Prompt.P r ans

The type variable ans that used to be quantified is now a parameter to
the MC constructor, which means it has also to be a parameter to the CC
constructor. The CC constructor also needs to take as a parameter the
type b that used to be quantified. If we ignore the dynamic generation
of prompts (and hence also the type parameter r) we get:

type CC ans b a = (a → MC ans b) → MC ans b

type MC ans b = MetaCont b ans → ans

which is identical to the “Murthy types” considered by Wadler (1994).
These types are however not expressive enough to type the exam-
ple in Section 5.2. Alternatively, the quantified type variables can be
eliminated by fixing the type ans to be an arbitrary but fixed type Obs:

type CC b a = (a → MC b) → MC b

type MC b = MetaCont b Obs → Obs

which is identical to the restricted two-level types considered by Wadler
(1994) and to our interface in Section 5.4.

The CC type provides the monadic combinators return and >>=:

instance Monad (CC r) where

return e = CC (λ (Cont k) → k e)

(CC e1) >>= e2 =

CC (λk → e1 (Cont (λv1 → let CC c = e2 v1 in c k)))
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The code above shows that the CC monad is a completely standard
continuation monad: in particular the monadic combinators (and hence
the translation of pure functions and applications) knows nothing about
the metacontinuation.

To run a complete computation, we must of course provide a con-
tinuation that knows about the metacontinuation. The function runCC
takes a computation and supplies it with the initial continuation; this
returns another computation which expects the initial metacontinua-
tion:

runC :: (Cont r a a → MC r a) → MC r a

runC e = e (Cont (λv → MC (λmk → appmk mk v)))

appmk :: MetaCont r a ans → a → Prompt.P r ans

appmk (EmptyS f) e = return (f e)

appmk (PushP _ sk) e = appmk sk e

appmk (PushSeg (Cont k) sk) e = let MC mc = k e in mc sk

appmk (PushCO f sk) e = appmk sk (f e)

runCC :: (∀ r⋅ CC r a) → a

runCC ce = Prompt.runP (let CC e = ce

MC me = runC e

in me (EmptyS id))

The exported operators are now implemented as follows:

newPrompt :: CC r (Prompt r a)

newPrompt = CC (λ (Cont k) →

MC (λmk → do p ← Prompt.newPrompt

let MC me = k p

me mk))

pushPrompt :: Prompt r a → CC r a → CC r a

pushPrompt p (CC e) =

CC (λk → MC (λmk → let MC me = runC e

in me (PushP p (PushSeg k mk))))

withSubCont :: Prompt r b → (SubCont r a b → CC r b) → CC r a

withSubCont p f =

CC (λk → MC (λmk →

let (subk,mk’) = splitSeq p mk

CC e = f (PushSeg k subk)
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MC me = runC e

in me mk’))

pushSubCont :: SubCont r a b → CC r a → CC r b

pushSubCont subk (CC e) =

CC (λk → MC (λmk →

let MC me = runC e

in me (appendSeq subk (PushSeg k mk))))

6.5. Continuations Reified by a Control Operator

This third implementation even more clearly formalizes the separa-
tion of concerns between continuation and metacontinuation: it uses
two CPS monads: an underlying monad CPS.M which manipulates a
concrete representation of the continuation CPS.K that is hidden from
the main monad implementing the CC-interface. The main monad can
capture and invoke the continuation manipulated by the underlying
monad but must treat the type CPS.K as an abstract type.

First we assume we are given an underlying CPS monad with the
following signature:

module CPS where

data K obs a -- Abstract
data M obs a -- Abstract

instance Monad (M obs)

c :: (K obs a → obs) → M obs a

throw :: K obs a → M obs a → M obs b

runM :: M obs obs → obs

The control operator c gives access to the continuation which is an
abstract type and aborts to the top level at the same time. The only
thing we can do with this continuation is to invoke it using throw. A
computation involving c and throw can be performed using runM to
return its final answer. The implementation of this monad is standard
and is included in Appendix B.

Given this underlying CPS monad, we implement CC as follows:

data Cont r a b = Cont (CPS.K (MC r b) a)

type MetaCont r a b = Seq Cont r a b
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data CC r a = CC (∀ b⋅ CPS.M (MC r b) a)

data MC r b = MC (∀ ans⋅ MetaCont r b ans → Prompt.P r ans)

type Prompt r a = Prompt.Prompt r a

type SubCont r a b = Seq Cont r a b

The type CC is simply a wrapper for CPS.M and its monadic op-
erations are identical to the ones of CPS.M modulo some tagging and
untagging of the values:

instance Monad (CC r) where

return e = CC (return e)

(CC e1) >>= e2 = CC (do v1 ← e1

let CC c = e2 v1

c)

When run, an underlying CPS.M computation must inspect the meta-
continuation and should return only when the sequence is empty. Hence
every CPS.M evaluation starts with an underflow frame that inspects
the stack. The definition of underflow is almost in one-to-one corre-
spondence with the definition of the initial continuation in the previous
section, and so are the functions runC and runCC:

runC :: CPS.M (MC s a) a → MC s a

runC e = CPS.runM (e >>= underflow)

underflow :: a → CPS.M (MC s a) (MC s a)

underflow v = return (MC (λsk → appmk sk v))

appmk :: MetaCont r a ans → a → Prompt.P r ans

appmk (EmptyS f) v = return (f v)

appmk (PushP _ sk’) v = appmk sk’ v

appmk (PushSeg (Cont k) sk’) v = let MC f = resumeC k v

in f sk’

appmk (PushCO f sk’) v = appmk sk’ (f v)

resumeC :: CPS.K (MC s b) a → a → MC s b

resumeC k v = CPS.runM (CPS.throw k (return v))

runCC :: (∀ s⋅ CC s a) → a

runCC ce = Prompt.runP (let CC e = ce

MC sf = runC e

in sf (EmptyS id))

The exported operations are now implemented as follows:
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newPrompt :: CC r (Prompt r a)

newPrompt =

CC (CPS.c (λk → MC (λsk →

do p ← Prompt.newPrompt

let MC sf = resumeC k p

sf sk)))

pushPrompt :: Prompt r a → CC r a → CC r a

pushPrompt p (CC e) =

CC (CPS.c (λk → MC (λsk →

let MC sf = runC e

in sf (PushP p (PushSeg (Cont k) sk)))))

withSubCont :: Prompt r b → (SubCont r a b → CC r b) →

CC r a

withSubCont p f =

CC (CPS.c (λk → MC (λsk →

let (subk,sk’) = splitSeq p sk

CC e = f (PushSeg (Cont k) subk)

MC sf = runC e

in sf sk’)))

pushSubCont :: SubCont r a b → CC r a → CC r b

pushSubCont subk (CC e) =

CC (CPS.c (λk → MC (λsk →

let sk’ = appendSeq subk (PushSeg (Cont k) sk)

MC sf = runC e

in sf sk’)))

This implementation of our control operators generalizes previous
direct-style implementations of shift and reset (Filinski, 1994; Filinski,
1996) and F and prompt (Sitaram and Felleisen, 1990).

7. Conclusions

We have presented a typed monadic framework in which one can define
and experiment with arbitrary control operators that manipulate sub-
continuations. This framework offers several advantages over previous
work:

− It provides a clear separation of several entangled issues that com-
plicate the semantics of such control operators: non-standard order
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of evaluation, manipulation and representation of the continua-
tion, manipulation and representation of the metacontinuation,
and generation of new prompt names.

− It is strongly typed and allows one to encapsulate control effects
to local regions of control.

− It can be implemented on top of any traditional implementation
of continuations, including a single, standard CPS translation.

We have also described how a CPS or direct-style implementation of
functional control operators can be made properly tail recursive.

Chung-chieh Shan (2004) has also recently shown that subcontinua-
tion control operators can be expressed using standard CPS, by defining
the various control operators in terms of shift and reset, which can
then in turn be implemented using CPS. Our method represents the
metacontinuation as a sequence and directly implements the most basic
of these operators, −F−, from which it is easy to implement any of the
others. In contrast, Shan’s method represents the metacontinuation as
a function and implements the least basic of these operators, +F+. To
implement the more basic operators, he introduces wrappers similar to
our underflow wrappers around each prompt to convert, in effect, the
metacontinuation into a sort of procedural list representation.

Our framework is implemented in an almost well-typed Haskell li-
brary which provides executable specifications of the control operators
as well as specifications of other possible implementations in other
languages and environments. This idea is illustrated by translating the
most interesting specification to Scheme (Appendix C), thereby giving
an implementation of our control operators on top of callcc.

We hope to be able to use our framework to tackle the difficult
question of tracking the lifetimes and extent (Moreau and Queinnec,
1994) of prompts and continuations in the presence of control operators.
This issue has two important practical applications.

First, in order to include the control operators in a production
language, it is necessary to understand how they interact with other
dynamic entities, such as exceptions. The situation is already compli-
cated without prompts, and implementations like SML/NJ provide two
variants of callcc: one that closes over the current exception handler
and one that does not. The implementation does not otherwise promise
to satisfy any invariants. In contrast, Scheme includes dynamic-wind,
which guarantees that certain actions are executed before control enters
a region and some other actions are executed before control exits a
region, even if the entering and exit are done using continuations. The
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interaction of such a primitive with arbitrary control operators is not
well-understood.

The second point is closely related to the first point above. If the
lifetime of prompts is well-understood, it should be possible to design
static checks to enforce that control operations always refer to existing
prompts. Recent work (Ariola et al., 2004; Nanevski, 2004) suggests
that one must move to a type-and-effect system in order guarantee
such properties, but such effects can in principle be expressed in the
monadic framework (Wadler, 1998). In the case of shift and reset,
Filinski (1999) does indeed propose a type-and-effect system for lay-
ered monadic effects that both keeps track of the interactions between
control abstractions (making some programs that mix them inappro-
priately ill-typed), and guarantees statically that well-typed programs
will not fail with “missing prompt” errors.
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Appendix

A. Implementation of the module Prompt

module Prompt (

P, Prompt, runP,

newPrompt, eqPrompt

) where

data P r a = P (Int → (Int,a))

data Prompt r a = Prompt Int

instance Monad (P r) where

return e = P (λs → (s,e))

(P e1) >>= e2 = P (λs1 → let (s2,v1) = e1 s1
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P f2 = e2 v1

in f2 s2)

runP :: (∀ r⋅ P r a) → a

runP pe = let P e = pe in snd (e 0)

newPrompt :: P r (Prompt r a)

newPrompt = P (λs → (s+1, Prompt s))

eqPrompt :: Prompt r a → Prompt r b → Maybe (a → b, b → a)

eqPrompt (Prompt p1) (Prompt p2)

| p1 ≡ p2 = Just (coerce id, coerce id)

| otherwise = Nothing

coerce :: a → b

coerce = ... -- implementation dependent

B. Implementation of the module CPS

module CPS (

M, K,

throw, c,

runM

) where

data K ans a = K (a → ans)

data M ans a = M (K ans a → ans)

instance Monad (M ans) where

return e = M (λ (K k) → k e)

(M e1) >>= e2 =

M (λk → e1 (K (λ v1 → let M c = e2 v1 in c k)))

callcc :: (K ans a → M ans a) → M ans a

callcc f = M (λk → let M c = f k in c k)

abort :: ans → M ans a

abort a = M (λ_ → a)

throw :: K ans a → M ans a → M ans b
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throw k (M e) = M (λ_ → e k)

c :: (K ans a → ans) → M ans a

c f = callcc (λk → abort (f k))

runM :: M ans ans → ans

runM (M e) = e (K id)

C. Implementation in Scheme

This appendix contains three implementations of our control operators
in Scheme. Section C.1 presents a transliteration of the Haskell code
of Section 6.5 to Scheme, using call/cc to implement C. Section C.2
simplifies the code by using call/cc directly and maintaining the meta-
continuation as a global variable. Section C.3 modifies the latter to
handle tail recursion properly by taking advantage of Chez Scheme’s
equality property for continuations.

C.1. Transliterating the Haskell Code

The code in this section is a literal translation to Scheme of the Haskell
code that appears in Section 6.5. We begin by defining the Seq datatype
and associated routines1.

1 define-datatype is a syntactic abstraction; its definition is not interesting here,
so it is omitted to save space. An implementation is available from the authors.
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(define-datatype Seq
(EmptyS)
(PushP p Seq)
(PushSeg k Seq))

(define (appendSeq seq1 seq2)
(Seq-case seq1

[(EmptyS) seq2]
[(PushP p subk ) (PushP p (appendSeq subk seq2))]
[(PushSeg k subk ) (PushSeg k (appendSeq subk seq2))]))

(define (splitSeq p seq)
(Seq-case seq

[(EmptyS) (error ’splitSeq “prompt ˜s not found on stack” p)]
[(PushP p∗ sk )
(if (not (eqv? p p∗))

(let-values ([(subk sk∗) (splitSeq p sk )])
(values (PushP p∗ subk ) sk∗))

(values (EmptyS) sk ))]
[(PushSeg k sk )
(let-values ([(subk sk∗) (splitSeq p sk )])

(values (PushSeg k subk ) sk∗))]))

The Haskell implementation expects C rather than callcc, so the Scheme
version of runM defines C in terms of call/cc. The operator C is defined
once at top-level where it is visible to the various control operators but
assigned its value once per invocation of runM so that it aborts back
to the continuation of the most recent call to runM. The computation
to be performed by runM is represented as a thunk.

(define C)
(define (runM th)

((call/cc
(lambda (abort )

(set! C
(lambda (p)

(call/cc
(lambda (k )

(abort (lambda () (p k )))))))
(let ([v (th)])

(C (lambda (k ) v )))))))
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The definitions of runC, runCC, underflow, and appmk mirror their
Haskell counterparts.

(define (runC th) (runM (lambda () (underflow (th)))))
(define (runCC th) ((runC th) (EmptyS)))
(define (underflow v ) (lambda (mk ) (appmk mk v )))

(define (appmk mk v )
(Seq-case mk

[(EmptyS) v ]
[(PushP mk∗) (appmk mk∗ v )]
[(PushSeg k mk∗) ((runM (lambda () (k v ))) mk∗)]))

Prompts are fresh strings. (Any mutable object would suffice.)

(define newPrompt (lambda () (string #\p)))

The pushPrompt and pushSubCont operators are syntactic ab-
stractions that expand into calls to $pushPrompt and $pushSubCont.
In each case, the body is represented as a thunk to delay its evaluation.

(define-syntax pushPrompt
(syntax-rules ()

[( p e1 e2 . . . )
($pushPrompt p (lambda () e1 e2 . . . ))]))

(define-syntax pushSubCont
(syntax-rules ()

[( subk e1 e2 . . . )
($pushSubCont subk (lambda () e1 e2 . . . ))]))

The definitions of the control operators are equivalent to their Haskell
counterparts.
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(define ($pushPrompt p th)
(C (lambda (k )

(lambda (mk )
((runC th) (PushP p (PushSeg k mk )))))))

(define ($pushSubCont subk th)
(C (lambda (k )

(lambda (mk )
((runC th) (appendSeq subk (PushSeg k mk )))))))

(define (withSubCont p f )
(C (lambda (k )

(lambda (mk )
(let-values ([(subk mk∗) (splitSeq p mk )])

((runC (lambda () (f (PushSeg k subk )))) mk∗))))))

C.2. Simplifying the Code

We can simplify the code above a bit by working with the native call/cc
directly and keeping the metacontinuation in a global variable instead
of passing it around in store-passing style.

Our new runCC sets up the initial metacontinuation mk and the
runC procedure. (We have no need of a separate runM procedure, since
the “virtual machine” is plain Scheme.)

(define mk )
(define runC)

(define (runCC th)
(set! mk (EmptyS))
(underflow

((call/cc
(lambda (k )

(set! runC k )
(runC th))))))

runC accepts a thunk and thaws it in a base continuation that encap-
sulates only the call to underflow.

The definition of underflow does the job of the original appmk, where
mk is maintained in a global variable via assignments.
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(define (underflow v )
(Seq-case mk

[(EmptyS) v ]
[(PushP mk∗) (set! mk mk∗) (underflow v )]
[(PushSeg k mk∗) (set! mk mk∗) (k v )]))

The control operators also maintain mk as a global variable, plus use
call/cc rather than C. Passing a thunk to runC, which thaws it in the
base continuation, effectively simulates the aborting effect of C.

(define ($pushPrompt p th)
(call/cc

(lambda (k )
(set! mk (PushP p (PushSeg k mk )))
(runC th))))

(define ($pushSubCont subk th)
(call/cc

(lambda (k )
(set! mk (appendSeq subk (PushSeg k mk )))
(runC th))))

(define (withSubCont p f )
(let-values ([(subk mk∗) (splitSeq p mk )])

(set! mk mk∗)
(call/cc

(lambda (k )
(runC (lambda () (f (PushSeg k subk ))))))))

This implementation effectively generalizes Filinksi’s implementation of
shift and reset using SML/NJ’s callcc and a metacontinuation cell (Fil-
inski, 1994) to our family of control operators, which can easily and
efficiently support the other control operators described in Section 2.

C.3. Proper Tail Recursion

The procedure below repeatedly captures and pushes an empty sub-
continuation.
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(define (tailtest)
(let ([p (newPrompt)])

(pushPrompt p
(withSubCont p

(lambda (s)
(pushSubCont s (tailtest)))))))

In a properly tail recursive implementation this test should run without
any growth in a process’s memory image.

The implementations presented above do not treat tail recursion
properly, since each pushSubCont of s adds a new (empty) subcon-
tinuation onto the metacontinuation and the metacontinuation grows
without bound. In order to recognize and avoid this situation, the code
must have some way to detect empty subcontinuations, as described
in Section 6.2. In Chez Scheme, this is accomplished by comparing the
current continuation against a base continuation using eqv?.

To do so, we modify runCC to reify the base continuation and store
it in the variable base-k.

(define mk )
(define base-k )
(define runC)

(define (runCC th)
(set! mk (EmptyS))
(underflow

(call/cc
(lambda (k1)

(set! base-k k1)
((call/cc

(lambda (k2)
(set! runC k2)
(runC th))))))))

We then define a wrapper for the PushSeg constructor that pushes a
continuation onto the stack only if it is not the base continuation.

(define (PushSeg/t k seq)
(if (eqv? k base-k )

seq
(PushSeg k seq)))
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This wrapper is used in place of PushSeg in the implementations of our
control operators.
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