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Abstract

This paper consides the objectivesof accurate steeo
matding, especially at object boundaries, robustness
againstrecoding or illumination changesand ef ciency of
thecalculation. Theseobjectivedeadto theproposedsemi-
Global Matching methodthat performspixelwisematding
basedon Mutual Informationand the approximationof a
global smoothnessonstrint. Occlusionsare detectedand
disparitiesdeterminedwith sub-pixelaccuracy. Addition-
ally, an extensionfor multi-baselinestereo imagesis pre-
sented.Thele are two novel contributions. Fir stly, a hierar-
chical calculationof Mutual Informationbasedmatdingis
shownwhich is almostasfastasintensitybasedmatding.
Secondlyan approximationof a global costcalculationis
proposedthat can be performedin a time that is linear to
the numberof pixels and disparities. Theimplementation
requiresjust 1 secondn typicalimages.

1. Intr oduction

Accurate densestereamatchingis animportantrequire-
mentfor mary applications]ike 3D reconstruction.Most
dif cult areoftenthe boundarie®f objectsand ne struc-
tures,which canappeamblurred. Additional practicalprob-
lemsoriginatefrom recordingandillumination differences
or re ections, becausenatchingis often directly basedon
intensitiesthat can have quite different valuesfor corre-
spondingpixels. Furthermore fast calculationsare often
requiredgitherbecausef real-timeapplicationor because
of largeimagesor mary imagesthat have to be processed
ef ciently.

An applicationwereall of the threeobjectvescometo-
getheris thereconstructiorof urbanterrain,capturedoy an
airbornepushbroomcamera. Accuratematchingat object
boundariess importantfor reconstructingstructuredenvi-

ronments.Rokustnessagainstrecordingdifferencesandil-
lumination changess vital, becausehis often cannotbe
controlled. Finally, ef cient (off-line) processings neces-
sary becaus¢heimagesanddisparityrangesarehuge(e.g.
several 100MPixel with 1000pixel disparityrange).

2.RelatedLiteratur e

Thereis a wide range of densestereoalgorithms[8]
with differentproperties.Local methodswhich are based
on correlationcanhave very ef cient implementationshat
aresuitablefor real time applicationg5]. However, these
methodsassumeconstantdisparitieswithin a correlation
window, which is incorrectat discontinuitiesand leadsto
blurred objectboundaries.Certaintechniquesanreduce
this effect [8, 5], but it cannotbe eliminated. Pixelwise
matching[1] avoids this problem, but requiresother con-
straintsfor unambiguousnatching(e.g. piecavise smooth-
ness).DynamicProgrammingtechniquesanenforcethese
constraintsef ciently, but only within individual scanlines
[1, 11]. Thistypically leadsto streakingeffects.Globalap-
proachesike GraphCuts[7, 2] andBeliefPropagation[10]
enforcethe matchingconstraintdn two dimensions.Both
approachesre quite memoryintensive and GraphCutsis
ratherslow. However, it hasbeenshowvn [4] that Belief
Propagatiortanbeimplementedrery ef ciently .

The matchingcostis commonlybasedon intensity dif-
ferences,which may be samplinginsensitve [1]. Inten-
sity basedmatchingis very sensitve to recordingand il-
lumination differences e ections, etc. Mutual Informa-
tion hasbeenintroducedin computervision for matching
imageswith comple relationshipsof correspondingnten-
sities, possiblyevenimagesof differentsensorg12]. Mu-
tual Informationhasalreadybeenusedfor correlationbased
stereomatching[3] andGraphCuts[6]. It hasbeenshovn
[6] thatit is robustagainsimary complec intensitytransfor
mationsandevenre ections.
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3. Semi-GlobalMatching
3.1 Outline

The Semi-GlobalMatching (SGM) methodis basedon
the ideaof pixelwise matchingof Mutual Informationand
approximatinga global,2D smoothnessonstrainty com-
bining mary 1D constraints.The algorithmis describedn
distinct processingteps,assuminga generalstereogeom-
etry of two or moreimageswith known epipolargeometry
Firstly, the pixelwise cost calculationis discussedn Sec-
tion 3.2. Secondlythe implementatiorof the smoothness
constraints presentedn Section3.3. Next, thedisparityis
determinedvith sub-pibel accurag andocclusiondetection
in Section3.4. An extensionfor multi-baselinematchingis
describedn Section3.5. Finally, thecompleity andimple-
mentationis discussednh Section3.6.

3.2 PixelwiseCost Calculation

Thematchingcostis calculatedor a baseimagepixel p
from its intensityly, andthe suspectedorrespondenchkyy
atg = eym(p; d) of thematchimage.Thefunctioneyn(p;d)
symbolizegheepipolatine in thematchimagefor thebase
imagepixel p with the line parameted. For recti ed im-
ageseom(p;d) = [px  d;py]" with d asdisparity

An importantaspecits the sizeandshapeof theareathat
is consideredor matching. The robustnessf matchingis
increasedvith large areas.However, the implicit assump-
tion aboutconstantdisparity inside the areais violated at
discontinuities which leadsto blurred object bordersand
ne structures.Certainshapesandtechniquesanbe used
to reduceblurring, but it cannotbe avoided[5]. Therefore,
theassumptiorof constandisparitiesn thevicinity of p is
discarded.This meangthatonly the intensitieslpp and
itself canbe usedfor calculatingthe matchingcost.

Onechoiceof pixelwise costcalculationis the sampling
insensitve measureof Birch eld andTomasi[1]. The cost
Cs1(p;d) is calculatedasthe absoluteminimumdifference
of intensitiesat p andq = eyn(p;d) in therangeof half a
pixelin eachdirectionalongthe epipolarline.

Alternatively, the matching cost calculationis based
on Mutual Information (MI) [12], which is insensitve to
recordingandillumination changes.lt is de ned from the
entropy H of two imagesg(i.e. theirinformationcontent)as
well astheir joinedentroyy.

Ml = Hiyp+ Hi,  Hig, (1)

The entropiesare calculatedfrom the probability distri-
butionsP of intensitiesof the associatedmages.

H

. R (i) logh (i)di &)
212,
Hig, = . P, (i1;i2) logPy i, (in;i2)dizdiz  (3)

For well registeredimagesthe joined entropy Hj,., is
low, becauseneimagecanbepredictedoy theother, which
correspondgo low information. This increasegheir Mu-
tual Information. In the caseof stereomatching,oneimage
needsto be warpedaccordingto the disparityimageD for
matchingthe otherimage, suchthat correspondingpixels
are at the samelocationin both images,i.e. 11 = I and
l2= fo(lm).

Equation(1) operate®nfull imagesandrequireghedis-
parity imagea priori. Both preventthe useof Ml asmatch-
ing cost. Kim etal. [6] transformedhe calculationof the
joined entrogy Hy,;1, into a sumof datatermsusing Taylor
expansion.The datatermdepend®n correspondingnten-
sitiesandis calculatedndividually for eachpixel p.

Hizt, = & Mo (11p3120) (4)
p

Thedatatermh;, is calculatedrom theprobabilitydis-
tribution B, of correspondingntensities.The numberof
correspondingpixelsis n. Corvolutionwith a2D Gaussian
(indicatedby ¢(i;k)) effectively performsParzenestima-
tion [6].

hii, (5K) = %'09(F’|1;|2(i;k) oi;k) g(izk)  (5)

The probability distribution of correspondingntensities
is de ned with theoperatofT[], whichis 1 if its agumentis
trueandO otherwise.

A= TATIR = (pilz] (O
p

Kim et al. amguedthatthe entropy Hy, is constantand
Hi, is almostconstantasthe disparityimagemerelyredis-
tributesthe intensitiesof 1,. Thus,hy;1,(11p; 12p) Senesas
costfor matchingthe intensitiesly, andla,. However, if
occlusionsareconsideredhensomeintensitiesof 11 andl»
do not have a correspondencel heseintensitiesshouldnot
beincludedin thecalculationwhichresultsin non-constant
entropiedH;, andH,,. Thereforejt is suggestetb calculate
theseentropiesanalogto thejoinedentropy.

Hi=ah(y), h)= %|OQ(F’|(i) g 9@ ()
p
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The probability distribution P, must not be calculated
over the whole imagesl; andl,, but only over the corre-
spondingparts(otherwiseocclusionswvould beignoredand
Hi, andH,, would be almostconstant).Thatis easilydone
by justsummingthecorrespondingowsandcolumnsof the
joined probability distribution, e.g. P, (i) = &Py, (i;K).
Theresultingde nition of Mutual Informationis,

|\/|||1;|2 = é mi|1;|2(|1p; IZD) (8a)
p

Miig, (i5K) = h (1) + hi, (K hg, (5 K). (8b)

This leadsto thede nition of the Ml matchingcost.

Cwi(p;d) =

Theremainingproblemis thatthe disparityimageis re-
quiredfor warpinglm, before mi() canbe calculated.Kim
et al. suggestedn iterative solution, which startswith a
randomdisparityimagefor calculatingthe costCy;. This
costis thenusedfor matchingbothimagesandcalculating
anew disparityimage,which senesasthe baseof the next
iteration. The numberof iterationsis ratherlow (e.g. 3),
becausevenwrongdisparityimagege.g.random)allow a
goodestimationof the probability distribution P. This solu-
tion is well suitedfor iterative sterecalgorithmslike Graph
Cuts[6], but it would increasethe runtime of non-iteratve
algorithmsunnecessarily

Therefore a hierarchicalcalculationis proposedwhich
recursvely usesthe (up-scaled)disparity image, that has
beencalculatedat half resolution asinitial disparity If the
overall compleity of thealgorithmis O(WHD) (i.e. width

height disparityrange),thenthe runtimeat half reso-
lution is reducedby factor2® = 8. Startingwith a random
disparityimageataresolutionof 1—16th andinitially calculat-
ing 3 iterationsincreasesheoverallruntimeby thefactor,

Mij,: £ (1) (Tops Img)With g = epm(p; d)  (9)

1 1 1 1
8 + Y + & + 3163 1:14. (20)
Thus,thetheoreticaruntimeof the hierarchicallycalcu-
latedCyy; would be just 14% slower thanthat of Cgr, ig-
noringthe overheadf MI calculationandimagescaling.It
is notevorthy that the disparityimageof the lower resolu-
tion level is usedonly for estimatingthe probability distri-
bution P and calculatingthe costsCy, of the higherreso-
lution level. Everythingelseis calculatedfrom scratchto
avoid passingerrorsfrom lower to higherresolutionlevels.

1+

3.3 Aggregationof Costs

Pixelwise cost calculationis generallyambiguousand
wrong matchescan easily have a lower costthan correct

ones,dueto noise,etc. Therefore,anadditionalconstraint
is addedhatsupportssmoothnesby penalizingchange®f
neighboringdisparities. Thepixelwisecostandthesmooth-
nessconstraintareexpressedy de ning theenegy E(D)
thatdepend®nthedisparityimageD.

E(D)= & C(piDp)+ & PLTiDp Dgj= 1]
p 92Np
o , : (11)
+ a P.T[Dp Dgj>1]
aZNp
The rst term is the sum of all pixel matching costs
for the disparitiesof D. The secondterm addsa constant
penalty Py for all pixels g in the neighborhood\, of p,
for which the disparity changesa little bit (i.e. 1 pixel).
The third term addsa larger constantpenalty P,, for all
larger disparity changes.Using a lower penaltyfor small
changegermitsanadaptatiorio slantecor curvedsurfaces.
The constantpenaltyfor all larger changeqi.e. indepen-
dentof theirsize)preseresdiscontinuitied2]. Discontinu-
ities areoftenvisible asintensitychangesThis is expl%ited

by adaptingP; to the intensitygradient,i.e. P> = m.pp—zlbqj
However, it hasalwaysto beensuredhatP, Pj.

The problemof stereomatchingcannow be formulated
as nding the disparity image D that minimizesthe en-
ergy E(D). Unfortunately sucha globalminimization(2D)
is NP-completdfor mary discontinuitypreservingenegies
[2]. In contrast,the minimizationalongindividual image
rows (1D) canbe performedef ciently in polynomialtime
using Dynamic Programmind1, 11]. However, Dynamic
Programmingsolutionseasilysuffer from streakind8], due
to thedif culty of relatingthe 1D optimizationsof individ-
ualimagerows to eachotherin a 2D image. The problem
is, that very strongconstraintdn onedirection(i.e. along
imagerows) arecombinedwith noneor muchwealer con-
straintsin theotherdirection(i.e. alongimagecolumns).

This leadsto the new idea of aggreating matching
costsin 1D from all directionsequally The aggreyated
(smoothedkostS(p;d) for a pixel p anddisparityd is cal-
culatedby summingthecostsof all 1D minimumcostpaths
thatendin pixel p atdisparityd (Figurel). It is notevorthy
that only the costof the pathis requiredand not the path
itself.

Let LY beapaththatis traversedin the directionr. The
costL9(p;d) of the pixel p at disparityd is de ned recur
sively as,

L(p;d) = C(p;d) + min(L(p  r;d);

L(p rd D+P;LAp rid+ D+Py (12
minL%p r;i)+ P2).

|

The pixelwisematchingcostC canbeeitherCgt or Cy .
The remainderof the equationaddsthe lowestcostof the
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Figure 1. Aggregation of costs.

L.

N

previouspixel p r of the path,including the appropriate
penaltyfor discontinuities.Thisimplementghebehaior of
equation(11)alonganarbitrary1D path. This costdoesnot
enforcethe visibility or ordering constraint,becauseboth
conceptscannotbe realizedfor pathsthat are not identi-
cal to epipolarlines. Thus, the approachis more similar
to ScanlineOptimization[8] thantraditionalDynamicPro-
grammingsolutions.

The valuesof L° permanentlyincreasealong the path,
which may lead to very large values. However, equation
(12) canbemodi ed by subtractinghe minimum pathcost
of the previouspixel from thewholeterm.

Lr(p;d) = C(p;d) + min(L;(p r;d);
Le(p r;d L+ PiL(p r;d+ 1)+ Py (13)
miinLr(p r;i)+ P) mkinLr(p r;K)

This modi cation does not changethe actual path
throughdisparity space sincethe subtractedralueis con-
stantfor all disparitiesof a pixel p. Thus,thepositionof the
minimum doesnot change. However, the upperlimit can
now begivenasL  Cpaxt Po.

The costsL, aresummedover pathsin all directionsr.
Thenumberof pathsmustbeatleast8 andshouldbe 16 for
providing agoodcoverageof the 2D image.

S(p;d) = & Li(p; d) (14)

The upper limit for S is easily determinedas S
16(Crax* P2).

3.4. Disparity Computation

ThedisparityimageDy, thatcorrespondso the baseim-
agelp is determinedasin local stereomethodsy selecting
for eachpixel p thedisparityd thatcorresponds$o the min-
imum cost,i.e. mingS(p;d). For sub-pixel estimation,a
quadraticcurveis tted throughthe neighboringcosts(i.e.
atthenext higheror lower disparity)andthe positionof the
minimumis calculated.

Usingaquadraticcurveis theoreticallyjusti ed only for
a simple correlationusingthe sum of squaredifferences.
However, is is usedasanapproximatiordueto thesimplic-
ity of calculation.

The disparityimage D, that correspondgo the match
imagel, canbedeterminedrom thesamecosts by travers-
ing the epipolarline, that correspondso the pixel g of the
matchimage.Again, thedisparityd is selectedwhich cor-
respondgo the minimum cost, i.e. ming Senx(q;d);d).
However, the costaggreyationstepdoesnot treatthe base
andmatchimagessymmetrically Therefore betterresults
canbe expected,f Dy, is calculatedrom scratch.Outliers
are ltered from Dy and Dy, usinga median Iter with a
smallwindow (i.e.3  3).

The calculationof Dy aswell asDp, permitsthe deter
mination of occlusionsandfalsematchesby performinga
consisteng check. Eachdisparity of Dy, is comparedwith
its correspondinglisparity of Dy,. The disparityis setto
invalid (Diny) if bothdiffer.

Diny Otherwise.

Dp = (15)

The consisteng check enforcesthe uniquenesscon-
straint, by permittingoneto onemappingonly.

3.5 Extensionfor Multi-Baseline Matching

The algorithm could be extendedfor multi-baseline
matching,by calculatinga combinedpixelwise matching
cost of correspondenceletweenthe baseimage and all
matchimages. However, valid andinvalid costswould be
mixed neardiscontinuitiesdependingn the visibility of a
pixelin amatchimage.Theconsisteng check(Section3.4)
canonly distinguishbetweervalid (visible) andinvalid (oc-
cludedor mismatchedpixels, but it cannot separatevalid
andinvalid costsafterwards. Thus, the consisteng check
would invalidateall areasthat are not seenby all images,
which leadsto unnecessarilyarge invalid areas. Without
theconsisteng check,invalid costswould introducematch-
ing errorsneardiscontinuitieswhich leadsto fuzzy object
borders.

Therefore,it is betterto calculateseveral disparity im-
agesfrom individualimagepairs,excludeall invalid pixels
by the consisteng checkandthencombinetheresult. Let
the disparity Dy be the resultof matchingthe baseimage
Ip againsta matchimagel . Thedisparitiesof theimages
Dy arescaleddifferently, accordingto somefactorty. For
recti ed imagesthisfactorcorrespondso thelengthof the
baselinebetweeny, andl .

Therobustcombinationselectshe medianof all dispar

ities E:—E” for a certainpixel p. Additionally, the accurag
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is increasedy calculatingthe weightedmeanof all correct
disparities(i.e. within therangeof 1 pixel aroundthe me-
dian). Thisis doneby usingtx asweightingfactor

_ kv, Dip

. D Di 1
p= Vo=l = med—P =g (16)
i k

kv, i i
This combinationis robust againstmatchingerrorsin
somedisparityimagesandit alsoincreasesheaccurag.

3.6. Complexity and Implementation

The calculationof thepixelwisecostCy, startswith col-
lecting all allegedcorrespondencegs.e. de ned by anini-
tial disparity as describedin Section3.2) and calculating
P;1,. Thesizeof P is the squareof the numberof inten-
sities,which is constant(i.e. 256 256). The subsequent
operationgonsistof Gaussiarcorvolutionsof P andcalcu-
lating the logarithm. The compleity dependsonly on the
collection of alleged correspondencedue to the constant
sizeof P. Thus,O(WH) with W asimagewidth andH as
imageheight.

The pixelwise matchingcostsfor all pixelsp at all dis-
paritiesd arescaledto 11 bit integer valuesand storedin
a 16 bit arrayC(p;d). Scalingto 11 bit guaranteethatall
aggrejatedcostsdonotexceedthe 16 bit limit. A secondL6
bit integerarrayof the samesizeis usedfor the aggreyated
costvaluesS(p;d). The arrayis initialized with 0. The
calculationstartsfor eachdirectionr at all pixelsb of the
imageborderwith L, (b;d) = C(b;d). Thepathis traversed
in forward directionaccordingto equation(13). For each
visited pixel p alongthe path,the costsL, (p;d) areadded
to S(p;d) for all disparitiesd. The calculationof equation
(13) requiresO(D) stepsat eachpixel, sincethe minimum
costof the previouspixel (e.g.mingL;(p r;K)) is constant
for all disparitiesand canbe pre-calculated Eachpixel is
visitedexactly 16 times,which resultsin atotal complexity
of O(WHD). The regular structureand simple operations
(i.e. additionsandcomparisonspermitparallelcalculations
usingintegerbasedSIMD?! assembleinstructions.

The disparity computationand consisteng check re-
quiresvisiting eachpixel at eachdisparitya constanthum-
berof times. Thus,the compleity is O(WHD) aswell.

The 16 bit arraysC and S have asizeof W H D,
which can exceedthe available memoryfor largerimages
anddisparityranges.The suggestedemedyis to split the
input image into tiles, which are processedndividually.
Thetiles overlapeachotherby a few pixels, sincethe pix-
els at the imageborderreceive supportby the global cost
functiononly from oneside. Theoverlappingpixelsareig-
noredfor combiningthe tiles to the nal disparityimage.

1singlelnstruction,Multiple Data

This solutionallows processingdf almostarbitrarily large
images.

4. Experimental Results

4.1 Stereolmageswith Ground Truth

Threesterecimage pairswith groundtruth [8, 9] have
beenselectedfor evaluation( rst row of Figure 2). The
images2 and4 have beenusedfrom the TeddyandCones
imagesequencesAll imageshave beenprocessedvith a
disparityrangeof 32 pixel.

The MWMF methodis a local, correlationbased,real
time algorithm[5], which hasbeenshavn [8] to produce
betterobjectborderg(i.e. lessfuzzy) thanmary otherlocal
methods. The secondrow of Figure2 shavs the resulting
disparityimages. The blurring of objectbordersis typical
for local methods.The calculationof Teddyhasbeenper
formedin just0.071sona Xeonwith 2.8GHz.

Belief Propagation(BP) [10] minimizesa global cost
function (e.g. equation(11)) by iteratively passingmes-
sagesin a graphthatis de ned by the four connectedm-
agegrid. The messageareusedfor updatingthe nodesof
the graph. The disparityis in the endselectedndividually
at eachnode. Similarly, SGM canbe describedas passing
messagemdependentlyfrom all directionsalongl1D paths
for updatingnodes.This is donesequentiallyaseachmes-
sagedepend®n onepredecessasnly. Thus,messageare
passedhroughthewholeimage.In contrastBP sendanes-
sagedsn a 2D graph. Thus,the scheduleof messagethat
reachesachnodeis differentand BP requiresan iterative
solution. The numberof iterationsdetermineghe distance
from whichinformationis passedn theimage.

The efcient BP algorithn? [4] usesa hierarchicalap-
proachandseveraloptimizationsor reducingthe complex-
ity. Thecompleity andmemoryrequirementareverysim-
ilar to SGM. Thethird row of Figure2 shons goodresults
of Tsukuba.However, the resultsof Teddyand especially
Conesareratherblocky, despiteattemptgo getthe bestre-
sultsby parametetuning. The calculationof Teddytook
4.5sonthe samecomputer

The Graph Cuts method [7] iteratively minimizes a
global costfunction (e.g. equation(11) with P, = P,) as
well. Thefourth row of Figure2 shaws the results,which
aremuchbetterfor Teddy and Cones,especiallynearob-
ject bordersand ne structuredike the leaves. However,
the compleity of the algorithmis muchhigher Thecalcu-
lation of Teddyhasbeendonein 55sonthe samecomputer

The resultsof SGM with Cgt asmatchingcost(i.e. the
sameasfor BP andGC)areshonvnin the fth row of Figure

2http://people.cs.uchagaedu/pff/bp/
Shttp://wwwcs.cornell.edu/Peaplnk/sofwarehtml
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Tsukuba (384 x 288, Disp. 32) Teddy (450 x 375, Disp. 32)

Left Images

Local, correlation
(MWMF)

Belief Propagation
(BP)

Graph Cuts (GC)

SGM with BT
(i.e. intensity based
matching cost)

SGM with HMI,
(i.e. hierarchical
Mutual Information
as matching cost)

Figure 2. Comparison of diff erent stereo methods.
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Left Image

Modified Right Image

Resulting Disparity Image (SGM HMI)

Figure 3. Result of matching modied Teddy images with SGM (HMI).

2, usingthe bestparametergor the setof all images.The
quality of the resultcomescloseto GraphCuts. Only, the
texturelessareaon the right of the Teddyis handledworse.
Slantedsurfacesappeasmoothethanwith GraphCuts,due
to sub pixel interpolation. The calculationof Teddy has
beenperformedin 1.0s. Costaggreyationrequiresalmost
half of the processindime.

The lastrow of Figure2 shavs the resultof SGM with
the hierarchicalcalculationof Cy; as matchingcost. The
disparityimageof Tsukubaand Teddyappearequallywell
and Conesappearsnuchbetter Thisis anindicationthat
thematchingtoleranceof Ml is bene cial evenfor carefully
capturedmages.The calculationof Teddytook 1.3s. This
is just30%slowerthanthenon-hierarchicalintensitybased
version.

Thedisparityimageshave beencomparedo theground
truth. All disparitiesthat differ by morethanl aretreated
aserrors. Occludedaread(i.e. identi ed usingthe ground
truth) have beenignored. Missing disparities(i.e. black
areashave beeninterpolatedoy usingthelowestneighbor
ing disparities.Figure4 presentghe resultinggraph. This
guantitatveanalysiscon rms thatSGM performsaswell as
otherglobal approachesFurthermoreMI basedmatching
resultsin evenbetterdisparityimages.

Errors of different methods
18

MWMF ==

16 BP m==m T
14 GC B i
SGM (BT)
< 121 SGM (HMI) e ]
W 10F .
S st §
o gL i
4 i
i inll :
0

Tsukuba Teddy Cones

Figure 4. Errors of diff erent stereo methods.

Thepowerof Ml basednatchingcanbedemonstratetly
manuallymodifying the right imageof Teddyby dimming
theupperhalf andinvertingthe intensitiesof the lower half
(Figure3). Suchanimagepair cannotbe matchedy inten-
sity basedcosts. However, the Ml basedcosthandlesthis
situationeasilyasshavn ontheright. More examplesabout
the power of MI basedstereomatchingare shavn by Kim
etal. [6].

4.2 Stereolmagesof an Airbor nePushbroomCam-
era

The SGM (HMI) methodhasbeentestedon hugeim-
ages(i.e. several 100MPixel) of an airbornepushbroom
camerawhich records5 panchromatiémagesin different
angles.The appropriatecameranodelandnon-linearityof
the ight pathhasbeentakeninto accountfor calculating
theepipolarlines.

A dif cult testobjectis Neuschvansteincastle(Figure
5a),becausef high walls andtowers,which resultin high
disparitychangesindlarge occludedareas.The castlehas
beenrecorded4 times using different ight paths. Each
ight path resultsin a multi-baselinestereoimage from
which the disparity hasbeencalculated. All disparityim-
ageshave beencombinedfor increasingobustness.

Figure 5b shawvs the end result, using a hierarchical,
correlationbasedmethod[13]. The objectbordersappear
fuzzy andthe towersare mostly unrecognized.The result
of the SGM (HMI) methodis shavn in Figure5c. All ob-
jectbordersandtowershave beenproperlydetectedStereo
methodswith intensity basedpixelwise costs(e.g. Graph
Cutsand SGM (BT)) failed on theseimagescompletely
becausef large intensity differencesof correspondences.
Thisis causedy recordingdifferencesaswell asunavoid-
ablechange®f lighting andthe sceneduringthe ight (i.e.
correspondingpointsarerecordedat differenttimeson the
ight path).Neverthelessthe MI basedmatchingcosthan-
dlesthedifferencesasily

The processingime is onehouron a 2.8GHz Xeon for
matchingl 1MPixel of abaseémageagainst matchimages
with anaveragedisparityrangeof 400 pixel.
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(a) Top View of Neuschwanstein

(b) Result of Correlation Method

(c) Result of SGM (HMI)

Figure 5. Neuschwanstein castle (Germany), recorded by an airborne pushbr oom camera.

5. Conclusion

It hasbeenshownn that a hierarchicalcalculationof a
Mutual Informationbasedmatchingcostcanbe performed
at almostthe samespeedas an intensity basedmatching
cost. Thisopengheway for robust,illuminationinsensitve
stereomatchingin a broadrangeof applications.Further
more,it hasbeenshavn thata global costfunction canbe
approximatecf ciently in O(WHD).

The resulting Semi-Global Matching (SGM) method
performsmuch bettermatchingthanlocal methodsandis
almostas accurateas global methods. However, SGM is
muchfasterthanglobal methods.A nearreal-timeperfor
manceon smallimageshasbeendemonstratedswell asan
efcient calculationof hugeimages.
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