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Abstract

This paper considers the objectivesof accurate stereo
matching, especially at object boundaries, robustness
againstrecording or illumination changesandef�ciency of
thecalculation.Theseobjectivesleadto theproposedSemi-
Global Matching methodthat performspixelwisematching
basedon Mutual Informationand the approximationof a
global smoothnessconstraint. Occlusionsare detectedand
disparitiesdeterminedwith sub-pixelaccuracy. Addition-
ally, an extensionfor multi-baselinestereo images is pre-
sented.Thereare twonovelcontributions.Firstly, a hierar-
chical calculationof Mutual Informationbasedmatchingis
shown,which is almostasfastasintensitybasedmatching.
Secondly, an approximationof a global costcalculationis
proposedthat can be performedin a time that is linear to
the numberof pixelsand disparities. The implementation
requiresjust 1 secondon typical images.

1. Intr oduction

Accurate,densestereomatchingis animportantrequire-
mentfor many applications,like 3D reconstruction.Most
dif�cult areoften theboundariesof objectsand�ne struc-
tures,which canappearblurred.Additional practicalprob-
lemsoriginatefrom recordingandillumination differences
or re�ections, becausematchingis often directly basedon
intensitiesthat can have quite different valuesfor corre-
spondingpixels. Furthermore,fast calculationsare often
required,eitherbecauseof real-timeapplicationsor because
of large imagesor many imagesthat have to be processed
ef�ciently .

An applicationwereall of thethreeobjectivescometo-
getheris thereconstructionof urbanterrain,capturedby an
airbornepushbroomcamera.Accuratematchingat object
boundariesis importantfor reconstructingstructuredenvi-

ronments.Robustnessagainstrecordingdifferencesandil-
lumination changesis vital, becausethis often cannotbe
controlled. Finally, ef�cient (off-line) processingis neces-
sary, becausetheimagesanddisparityrangesarehuge(e.g.
several100MPixel with 1000pixel disparityrange).

2. RelatedLiteratur e

There is a wide rangeof densestereoalgorithms[8]
with differentproperties.Local methods,which arebased
on correlationcanhave very ef�cient implementationsthat
aresuitablefor real time applications[5]. However, these
methodsassumeconstantdisparitieswithin a correlation
window, which is incorrectat discontinuitiesand leadsto
blurredobjectboundaries.Certaintechniquescan reduce
this effect [8, 5], but it cannotbe eliminated. Pixelwise
matching[1] avoids this problem,but requiresother con-
straintsfor unambiguousmatching(e.g.piecewisesmooth-
ness).DynamicProgrammingtechniquescanenforcethese
constraintsef�ciently , but only within individual scanlines
[1, 11]. This typically leadsto streakingeffects.Globalap-
proacheslikeGraphCuts[7, 2] andBeliefPropagation[10]
enforcethe matchingconstraintsin two dimensions.Both
approachesarequite memoryintensive andGraphCuts is
ratherslow. However, it hasbeenshown [4] that Belief
Propagationcanbeimplementedveryef�ciently .

The matchingcostis commonlybasedon intensitydif-
ferences,which may be samplinginsensitive [1]. Inten-
sity basedmatchingis very sensitive to recordingand il-
lumination differences,re�ections, etc. Mutual Informa-
tion hasbeenintroducedin computervision for matching
imageswith complex relationshipsof correspondinginten-
sities,possiblyeven imagesof differentsensors[12]. Mu-
tual Informationhasalreadybeenusedfor correlationbased
stereomatching[3] andGraphCuts[6]. It hasbeenshown
[6] thatit is robustagainstmany complex intensitytransfor-
mationsandevenre�ections.
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3. Semi-GlobalMatching

3.1. Outline

The Semi-GlobalMatching(SGM) methodis basedon
the ideaof pixelwisematchingof Mutual Informationand
approximatinga global,2D smoothnessconstraintby com-
bining many 1D constraints.Thealgorithmis describedin
distinctprocessingsteps,assuminga generalstereogeom-
etry of two or moreimageswith known epipolargeometry.
Firstly, the pixelwise costcalculationis discussedin Sec-
tion 3.2. Secondly, the implementationof the smoothness
constraintis presentedin Section3.3. Next, thedisparityis
determinedwith sub-pixelaccuracy andocclusiondetection
in Section3.4. An extensionfor multi-baselinematchingis
describedin Section3.5.Finally, thecomplexity andimple-
mentationis discussedin Section3.6.

3.2. PixelwiseCost Calculation

Thematchingcostis calculatedfor a baseimagepixel p
from its intensityIbp andthesuspectedcorrespondenceImq
atq = ebm(p;d) of thematchimage.Thefunctionebm(p;d)
symbolizestheepipolarline in thematchimagefor thebase
imagepixel p with the line parameterd. For recti�ed im-
agesebm(p;d) = [px � d;py]T with d asdisparity.

An importantaspectis thesizeandshapeof theareathat
is consideredfor matching.Therobustnessof matchingis
increasedwith largeareas.However, the implicit assump-
tion aboutconstantdisparity inside the areais violatedat
discontinuities,which leadsto blurredobjectbordersand
�ne structures.Certainshapesandtechniquescanbeused
to reduceblurring, but it cannotbeavoided[5]. Therefore,
theassumptionof constantdisparitiesin thevicinity of p is
discarded.This meansthatonly the intensitiesIbp andImq
itself canbeusedfor calculatingthematchingcost.

Onechoiceof pixelwisecostcalculationis thesampling
insensitive measureof Birch�eld andTomasi[1]. Thecost
CBT(p;d) is calculatedastheabsoluteminimumdifference
of intensitiesat p andq = ebm(p;d) in the rangeof half a
pixel in eachdirectionalongtheepipolarline.

Alternatively, the matching cost calculation is based
on Mutual Information (MI) [12], which is insensitive to
recordingandillumination changes.It is de�ned from the
entropy H of two images(i.e. their informationcontent)as
well astheir joinedentropy.

MII1;I2 = HI1 + HI2 � HI1;I2 (1)

Theentropiesarecalculatedfrom theprobabilitydistri-
butionsP of intensitiesof theassociatedimages.

HI = �
Z 1

0
PI (i) logPI (i)di (2)

HI1;I2 = �
Z 1

0

Z 1

0
PI1;I2(i1; i2) logPI1;I2(i1; i2)di1di2 (3)

For well registeredimagesthe joined entropy HI1;I2 is
low, becauseoneimagecanbepredictedby theother, which
correspondsto low information. This increasestheir Mu-
tual Information.In thecaseof stereomatching,oneimage
needsto be warpedaccordingto thedisparityimageD for
matchingthe other image,suchthat correspondingpixels
are at the samelocation in both images,i.e. I1 = Ib and
I2 = fD(Im).

Equation(1)operatesonfull imagesandrequiresthedis-
parity imagea priori. Both preventtheuseof MI asmatch-
ing cost. Kim et al. [6] transformedthecalculationof the
joinedentropy HI1;I2 into a sumof datatermsusingTaylor
expansion.Thedatatermdependson correspondinginten-
sitiesandis calculatedindividually for eachpixel p.

HI1;I2 = å
p

hI1;I2(I1p; I2p) (4)

ThedatatermhI1;I2 is calculatedfrom theprobabilitydis-
tribution PI1;I2 of correspondingintensities.Thenumberof
correspondingpixelsis n. Convolutionwith a 2D Gaussian
(indicatedby 
 g(i;k)) effectively performsParzenestima-
tion [6].

hI1;I2(i;k) = �
1
n

log(PI1;I2(i;k) 
 g(i;k)) 
 g(i;k) (5)

Theprobabilitydistribution of correspondingintensities
is de�ned with theoperatorT[], which is 1 if its argumentis
trueand0 otherwise.

PI1;I2(i;k) =
1
n å

p
T[(i;k) = (I1p; I2p)] (6)

Kim et al. arguedthat the entropy HI1 is constantand
HI2 is almostconstantasthedisparityimagemerelyredis-
tributesthe intensitiesof I2. Thus,hI1;I2(I1p; I2p) servesas
cost for matchingthe intensitiesI1p and I2p. However, if
occlusionsareconsideredthensomeintensitiesof I1 andI2
do not have a correspondence.Theseintensitiesshouldnot
beincludedin thecalculation,whichresultsin non-constant
entropiesHI1 andHI2. Therefore,it is suggestedto calculate
theseentropiesanalogto thejoinedentropy.

HI = å
p

hI (Ip), hI (i) = �
1
n

log(PI (i) 
 g(i)) 
 g(i) (7)
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The probability distribution PI must not be calculated
over the whole imagesI1 andI2, but only over the corre-
spondingparts(otherwiseocclusionswould beignoredand
HI1 andHI2 would bealmostconstant).That is easilydone
by justsummingthecorrespondingrowsandcolumnsof the
joined probability distribution, e.g. PI1(i) = å k PI1;I2(i;k).
Theresultingde�nition of Mutual Informationis,

MII1;I2 = å
p

miI1;I2(I1p; I2p) (8a)

miI1;I2(i;k) = hI1(i) + hI2(k) � hI1;I2(i;k). (8b)

This leadsto thede�nition of theMI matchingcost.

CMI (p;d) = � miIb; fD(Im)(Ibp; Imq)with q = ebm(p;d) (9)

Theremainingproblemis that thedisparityimageis re-
quiredfor warpingIm, before mi() canbecalculated.Kim
et al. suggestedan iterative solution, which startswith a
randomdisparityimagefor calculatingthe costCMI . This
costis thenusedfor matchingboth imagesandcalculating
a new disparityimage,which servesasthebaseof thenext
iteration. The numberof iterationsis ratherlow (e.g. 3),
becauseevenwrongdisparityimages(e.g.random)allow a
goodestimationof theprobabilitydistributionP. Thissolu-
tion is well suitedfor iterative stereoalgorithmslike Graph
Cuts[6], but it would increasetheruntimeof non-iterative
algorithmsunnecessarily.

Therefore,a hierarchicalcalculationis proposed,which
recursively usesthe (up-scaled)disparity image, that has
beencalculatedat half resolution,asinitial disparity. If the
overall complexity of thealgorithmis O(WHD) (i.e. width
� height� disparityrange),thentheruntimeat half reso-
lution is reducedby factor23 = 8. Startingwith a random
disparityimageataresolutionof 1

16th andinitially calculat-
ing 3 iterationsincreasestheoverall runtimeby thefactor,

1+
1
23 +

1
43 +

1
83 + 3

1
163 � 1:14. (10)

Thus,thetheoreticalruntimeof thehierarchicallycalcu-
latedCMI would be just 14% slower than that of CBT, ig-
noringtheoverheadof MI calculationandimagescaling.It
is noteworthy that thedisparityimageof the lower resolu-
tion level is usedonly for estimatingtheprobabilitydistri-
bution P andcalculatingthe costsCMI of the higherreso-
lution level. Everythingelseis calculatedfrom scratchto
avoid passingerrorsfrom lower to higherresolutionlevels.

3.3. Aggregationof Costs

Pixelwise cost calculationis generallyambiguousand
wrong matchescan easily have a lower cost than correct

ones,dueto noise,etc. Therefore,anadditionalconstraint
is addedthatsupportssmoothnessby penalizingchangesof
neighboringdisparities.Thepixelwisecostandthesmooth-
nessconstraintsareexpressedby de�ning theenergy E(D)
thatdependson thedisparityimageD.

E(D) = å
p

C(p;Dp) + å
q2Np

P1T[jDp � Dqj = 1]

+ å
q2Np

P2T[jDp � Dqj > 1]
(11)

The �rst term is the sum of all pixel matchingcosts
for the disparitiesof D. The secondterm addsa constant
penaltyP1 for all pixels q in the neighborhoodNp of p,
for which the disparity changesa little bit (i.e. 1 pixel).
The third term addsa larger constantpenaltyP2, for all
larger disparitychanges.Using a lower penaltyfor small
changespermitsanadaptationto slantedor curvedsurfaces.
The constantpenaltyfor all larger changes(i.e. indepen-
dentof theirsize)preservesdiscontinuities[2]. Discontinu-
itiesareoftenvisibleasintensitychanges.This is exploited

by adaptingP2 to the intensitygradient,i.e. P2 = P0
2

jIbp� Ibq j .
However, it hasalwaysto beensuredthatP2 � P1.

Theproblemof stereomatchingcannow beformulated
as �nding the disparity image D that minimizes the en-
ergy E(D). Unfortunately, suchaglobalminimization(2D)
is NP-completefor many discontinuitypreservingenergies
[2]. In contrast,the minimizationalong individual image
rows (1D) canbeperformedef�ciently in polynomialtime
usingDynamicProgramming[1, 11]. However, Dynamic
Programmingsolutionseasilysuffer from streaking[8], due
to thedif�culty of relatingthe1D optimizationsof individ-
ual imagerows to eachotherin a 2D image.Theproblem
is, that very strongconstraintsin onedirection(i.e. along
imagerows) arecombinedwith noneor muchweaker con-
straintsin theotherdirection(i.e. alongimagecolumns).

This leads to the new idea of aggregating matching
costsin 1D from all directionsequally. The aggregated
(smoothed)costS(p;d) for a pixel p anddisparityd is cal-
culatedby summingthecostsof all 1D minimumcostpaths
thatendin pixel p atdisparityd (Figure1). It is noteworthy
that only the costof the path is requiredandnot the path
itself.

Let L0
r bea paththat is traversedin thedirectionr . The

costL0
r (p;d) of the pixel p at disparityd is de�ned recur-

sively as,

L0
r (p;d) = C(p;d) + min(L0

r (p � r ;d);

L0
r (p � r ;d � 1) + P1;L0

r (p � r ;d+ 1) + P1;

min
i

L0
r (p � r ; i) + P2).

(12)

ThepixelwisematchingcostC canbeeitherCBT orCMI .
The remainderof the equationaddsthe lowestcostof the
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Figure 1. Aggregation of costs.

previouspixel p � r of the path,including the appropriate
penaltyfor discontinuities.Thisimplementsthebehavior of
equation(11)alonganarbitrary1D path.Thiscostdoesnot
enforcethe visibility or ordering constraint,becauseboth
conceptscannotbe realizedfor pathsthat are not identi-
cal to epipolarlines. Thus, the approachis more similar
to ScanlineOptimization[8] thantraditionalDynamicPro-
grammingsolutions.

The valuesof L0 permanentlyincreasealong the path,
which may lead to very large values. However, equation
(12)canbemodi�ed by subtractingtheminimumpathcost
of thepreviouspixel from thewholeterm.

Lr (p;d) = C(p;d) + min(Lr (p � r ;d);

Lr (p � r ;d � 1) + P1;Lr (p � r ;d+ 1) + P1;

min
i

Lr (p � r ; i) + P2) � min
k

Lr (p � r ;k)
(13)

This modi�cation does not change the actual path
throughdisparityspace,sincethe subtractedvalueis con-
stantfor all disparitiesof apixel p. Thus,thepositionof the
minimum doesnot change.However, the upperlimit can
now begivenasL � Cmax+ P2.

The costsLr aresummedover pathsin all directionsr .
Thenumberof pathsmustbeat least8 andshouldbe16 for
providing a goodcoverageof the2D image.

S(p;d) = å
r

Lr (p;d) (14)

The upper limit for S is easily determinedas S �
16(Cmax+ P2).

3.4. Disparity Computation

ThedisparityimageDb thatcorrespondsto thebaseim-
ageIb is determinedasin local stereomethodsby selecting
for eachpixel p thedisparityd thatcorrespondsto themin-
imum cost, i.e. mind S(p;d). For sub-pixel estimation,a
quadraticcurve is �tted throughtheneighboringcosts(i.e.
at thenext higheror lowerdisparity)andthepositionof the
minimumis calculated.

Usingaquadraticcurveis theoreticallyjusti�ed only for
a simplecorrelationusingthe sumof squareddifferences.
However, is is usedasanapproximationdueto thesimplic-
ity of calculation.

The disparity imageDm that correspondsto the match
imageIm canbedeterminedfrom thesamecosts,by travers-
ing theepipolarline, thatcorrespondsto thepixel q of the
matchimage.Again, thedisparityd is selected,which cor-
respondsto the minimum cost, i.e. mind S(emb(q;d);d).
However, the costaggregationstepdoesnot treatthe base
andmatchimagessymmetrically. Therefore,betterresults
canbeexpected,if Dm is calculatedfrom scratch.Outliers
are �ltered from Db andDm, usinga median�lter with a
smallwindow (i.e. 3� 3).

The calculationof Db aswell asDm permitsthe deter-
minationof occlusionsandfalsematchesby performinga
consistency check. Eachdisparityof Db is comparedwith
its correspondingdisparity of Dm. The disparity is set to
invalid (Dinv) if bothdiffer.

Dp =

(
Dbp if jDbp � Dmqj � 1, q = ebm(p;Dbp),

Dinv otherwise.
(15)

The consistency check enforcesthe uniquenesscon-
straint, by permittingoneto onemappingsonly.

3.5. Extensionfor MultiBaseline Matching

The algorithm could be extended for multi-baseline
matching,by calculatinga combinedpixelwise matching
cost of correspondencesbetweenthe baseimage and all
matchimages.However, valid andinvalid costswould be
mixedneardiscontinuities,dependingon thevisibility of a
pixel in amatchimage.Theconsistency check(Section3.4)
canonly distinguishbetweenvalid (visible)andinvalid (oc-
cludedor mismatched)pixels,but it cannot separatevalid
andinvalid costsafterwards. Thus, the consistency check
would invalidateall areasthat arenot seenby all images,
which leadsto unnecessarilylarge invalid areas. Without
theconsistency check,invalid costswould introducematch-
ing errorsneardiscontinuities,which leadsto fuzzy object
borders.

Therefore,it is betterto calculateseveral disparity im-
agesfrom individual imagepairs,excludeall invalid pixels
by theconsistency checkandthencombinetheresult. Let
the disparityDk be the resultof matchingthe baseimage
Ib againsta matchimageImk. Thedisparitiesof theimages
Dk arescaleddifferently, accordingto somefactortk. For
recti�ed images,this factorcorrespondsto thelengthof the
baselinebetweenIb andImk.

Therobustcombinationselectsthemedianof all dispar-
ities

Dkp
tk

for a certainpixel p. Additionally, the accuracy
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is increasedby calculatingtheweightedmeanof all correct
disparities(i.e. within the rangeof 1 pixel aroundtheme-
dian).This is doneby usingtk asweightingfactor.

Dp =
å k2Vp Dkp

å k2Vp tk
, Vp = f kj

�
�
�
�
Dkp

tk
� med

i

Dip

ti

�
�
�
� �

1
tk

g (16)

This combinationis robust againstmatchingerrors in
somedisparityimagesandit alsoincreasestheaccuracy.

3.6. Complexity and Implementation

Thecalculationof thepixelwisecostCMI startswith col-
lectingall allegedcorrespondences(i.e. de�ned by an ini-
tial disparity as describedin Section3.2) and calculating
PI1;I2. The sizeof P is the squareof the numberof inten-
sities,which is constant(i.e. 256� 256). The subsequent
operationsconsistof Gaussianconvolutionsof P andcalcu-
lating the logarithm. The complexity dependsonly on the
collection of alleged correspondencesdue to the constant
sizeof P. Thus,O(WH) with W asimagewidth andH as
imageheight.

The pixelwisematchingcostsfor all pixelsp at all dis-
paritiesd arescaledto 11 bit integer valuesandstoredin
a 16 bit arrayC(p;d). Scalingto 11 bit guaranteesthatall
aggregatedcostsdonotexceedthe16bit limit. A second16
bit integerarrayof thesamesizeis usedfor theaggregated
cost valuesS(p;d). The array is initialized with 0. The
calculationstartsfor eachdirectionr at all pixels b of the
imageborderwith Lr (b;d) = C(b;d). Thepathis traversed
in forward directionaccordingto equation(13). For each
visitedpixel p alongthepath,thecostsLr (p;d) areadded
to S(p;d) for all disparitiesd. Thecalculationof equation
(13) requiresO(D) stepsat eachpixel, sincetheminimum
costof thepreviouspixel (e.g.mink Lr (p � r ;k)) is constant
for all disparitiesandcanbe pre-calculated.Eachpixel is
visitedexactly16 times,which resultsin a total complexity
of O(WHD). The regular structureandsimpleoperations
(i.e. additionsandcomparisons)permitparallelcalculations
usingintegerbasedSIMD1 assemblerinstructions.

The disparity computationand consistency check re-
quiresvisiting eachpixel at eachdisparitya constantnum-
berof times.Thus,thecomplexity is O(WHD) aswell.

The 16 bit arraysC and S have a size of W � H � D,
which canexceedthe availablememoryfor larger images
anddisparityranges.The suggestedremedyis to split the
input image into tiles, which are processedindividually.
Thetiles overlapeachotherby a few pixels,sincethepix-
els at the imageborderreceive supportby the global cost
functiononly from oneside.Theoverlappingpixelsareig-
noredfor combiningthe tiles to the �nal disparity image.

1SingleInstruction,Multiple Data

This solutionallows processingof almostarbitrarily large
images.

4. Experimental Results

4.1. StereoImageswith Ground Truth

Threestereoimagepairswith groundtruth [8, 9] have
beenselectedfor evaluation(�rst row of Figure 2). The
images2 and4 have beenusedfrom theTeddyandCones
imagesequences.All imageshave beenprocessedwith a
disparityrangeof 32pixel.

The MWMF methodis a local, correlationbased,real
time algorithm[5], which hasbeenshown [8] to produce
betterobjectborders(i.e. lessfuzzy) thanmany otherlocal
methods.The secondrow of Figure2 shows the resulting
disparityimages.The blurring of objectbordersis typical
for local methods.The calculationof Teddyhasbeenper-
formedin just0.071sona Xeonwith 2.8GHz.

Belief Propagation(BP) [10] minimizes a global cost
function (e.g. equation(11)) by iteratively passingmes-
sagesin a graphthat is de�ned by the four connectedim-
agegrid. Themessagesareusedfor updatingthenodesof
thegraph.Thedisparityis in theendselectedindividually
at eachnode. Similarly, SGM canbedescribedaspassing
messagesindependently, from all directionsalong1D paths
for updatingnodes.This is donesequentiallyaseachmes-
sagedependson onepredecessoronly. Thus,messagesare
passedthroughthewholeimage.In contrast,BPsendsmes-
sagesin a 2D graph. Thus,the scheduleof messagesthat
reacheseachnodeis differentandBP requiresan iterative
solution. Thenumberof iterationsdeterminesthedistance
from which informationis passedin theimage.

The ef�cient BP algorithm2 [4] usesa hierarchicalap-
proachandseveraloptimizationsfor reducingthecomplex-
ity. Thecomplexity andmemoryrequirementsareverysim-
ilar to SGM. Thethird row of Figure2 shows goodresults
of Tsukuba.However, the resultsof Teddyandespecially
Conesareratherblocky, despiteattemptsto getthebestre-
sultsby parametertuning. The calculationof Teddytook
4.5son thesamecomputer.

The Graph Cuts method3 [7] iteratively minimizes a
global cost function (e.g. equation(11) with P1 = P2) as
well. The fourth row of Figure2 shows the results,which
aremuchbetterfor TeddyandCones,especiallynearob-
ject bordersand �ne structureslike the leaves. However,
thecomplexity of thealgorithmis muchhigher. Thecalcu-
lationof Teddyhasbeendonein 55sonthesamecomputer.

Theresultsof SGM with CBT asmatchingcost(i.e. the
sameasfor BPandGC)areshown in the�fth row of Figure

2http://people.cs.uchicago.edu/p̃ff/bp/
3http://www.cs.cornell.edu/People/vnk/software.html
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Belief Propagation
(BP)

SGM with BT
(i.e. intensity based
matching cost)

SGM with HMI,

Mutual Information
as matching cost)

(i.e. hierarchical

(MWMF)
Local, correlation

Teddy (450 x 375, Disp. 32) Cones (450 x 375, Disp. 32)

Left Images

Tsukuba (384 x 288, Disp. 32)

Graph Cuts (GC)

Figure 2. Comparison of diff erent stereo methods.
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Left Image Modified Right Image Resulting Disparity Image (SGM HMI)

Figure 3. Result of matc hing modi�ed Teddy images with SGM (HMI).

2, usingthebestparametersfor thesetof all images.The
quality of the resultcomescloseto GraphCuts. Only, the
texturelessareaon theright of theTeddyis handledworse.
Slantedsurfacesappearsmootherthanwith GraphCuts,due
to sub pixel interpolation. The calculationof Teddy has
beenperformedin 1.0s. Costaggregationrequiresalmost
half of theprocessingtime.

The last row of Figure2 shows the resultof SGM with
the hierarchicalcalculationof CMI asmatchingcost. The
disparityimageof TsukubaandTeddyappearequallywell
andConesappearsmuchbetter. This is an indicationthat
thematchingtoleranceof MI is bene�cialevenfor carefully
capturedimages.Thecalculationof Teddytook 1.3s.This
is just30%slowerthanthenon-hierarchical,intensitybased
version.

Thedisparityimageshavebeencomparedto theground
truth. All disparitiesthat differ by morethan1 aretreated
aserrors. Occludedareas(i.e. identi�ed usingtheground
truth) have beenignored. Missing disparities(i.e. black
areas)havebeeninterpolatedby usingthelowestneighbor-
ing disparities.Figure4 presentstheresultinggraph.This
quantitativeanalysiscon�rms thatSGMperformsaswell as
otherglobalapproaches.Furthermore,MI basedmatching
resultsin evenbetterdisparityimages.
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ConesTeddyTsukuba
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Errors of different methods

MWMF
BP
GC

SGM (BT)
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Figure 4. Errors of diff erent stereo methods.

Thepowerof MI basedmatchingcanbedemonstratedby
manuallymodifying theright imageof Teddyby dimming
theupperhalf andinvertingtheintensitiesof thelowerhalf
(Figure3). Suchanimagepaircannotbematchedby inten-
sity basedcosts. However, the MI basedcosthandlesthis
situationeasilyasshown ontheright. Moreexamplesabout
thepower of MI basedstereomatchingareshown by Kim
et al. [6].

4.2.StereoImagesof anAirbor nePushbroomCam
era

The SGM (HMI) methodhasbeentestedon hugeim-
ages(i.e. several 100MPixel) of an airbornepushbroom
camera,which records5 panchromaticimagesin different
angles.Theappropriatecameramodelandnon-linearityof
the �ight pathhasbeentaken into accountfor calculating
theepipolarlines.

A dif�cult testobject is Neuschwansteincastle(Figure
5a),becauseof high walls andtowers,which resultin high
disparitychangesandlargeoccludedareas.Thecastlehas
beenrecorded4 times using different �ight paths. Each
�ight path results in a multi-baselinestereoimage from
which the disparityhasbeencalculated.All disparity im-
ageshavebeencombinedfor increasingrobustness.

Figure 5b shows the end result, using a hierarchical,
correlationbasedmethod[13]. The objectbordersappear
fuzzy andthe towersaremostly unrecognized.The result
of theSGM (HMI) methodis shown in Figure5c. All ob-
jectbordersandtowershavebeenproperlydetected.Stereo
methodswith intensitybasedpixelwise costs(e.g. Graph
Cuts and SGM (BT)) failed on theseimagescompletely,
becauseof large intensitydifferencesof correspondences.
This is causedby recordingdifferencesaswell asunavoid-
ablechangesof lighting andthesceneduringthe�ight (i.e.
correspondingpointsarerecordedat differenttimeson the
�ight path).Nevertheless,theMI basedmatchingcosthan-
dlesthedifferenceseasily.

The processingtime is onehouron a 2.8GHzXeon for
matching11MPixelof abaseimageagainst4 matchimages
with anaveragedisparityrangeof 400pixel.
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(a) Top View of Neuschwanstein (b) Result of Correlation Method (c) Result of SGM (HMI)

Figure 5. Neusc hwanstein castle (German y), recor ded by an airborne pushbr oom camera.

5. Conclusion

It hasbeenshown that a hierarchicalcalculationof a
Mutual Informationbasedmatchingcostcanbeperformed
at almost the samespeedas an intensity basedmatching
cost.Thisopensthewayfor robust,illumination insensitive
stereomatchingin a broadrangeof applications.Further-
more,it hasbeenshown thata globalcostfunctioncanbe
approximatedef�ciently in O(WHD).

The resulting Semi-Global Matching (SGM) method
performsmuchbettermatchingthanlocal methodsandis
almostasaccurateas global methods. However, SGM is
muchfasterthanglobalmethods.A nearreal-timeperfor-
manceonsmallimageshasbeendemonstratedaswell asan
ef�cient calculationof hugeimages.
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