
Customizing Aspect-Oriented Variabilities using Generative Techniques

Uirá Kulesza1 Carlos Lucena1 Paulo Alencar2 Alessandro Garcia3

1Software Engineering Laboratory – Computer Science Department – PUC-Rio – Brazil
{uira, lucena}@inf.puc-rio.br

2Computer Systems Group – Computer Science Department – University of Waterloo – Canada
palencar@csg.uwaterloo.ca

3Computing Department – InfoLab 21 – Lancaster University – UK
garciaa@comp.lancs.ac.uk

Abstract

With the emergence of aspect-oriented (AO)
techniques, crosscutting concerns can be now explicitly
modularized and exposed as additional variabilities in
program families. Hence, the development of highly
customizable software family architectures requires the
explicit handling of crosscutting variabilities through
domain engineering and application engineering steps.
In this context, this paper presents a generative model
that addresses the implementation and instantiation of
variabilities encountered in AO software family
architectures. The use of our model allows for an early
specification and preparation of AO variabilities,
which in turn can be explicitly customized by means of
domain engineering activities. All the variabilities of
the architecture are modeled using feature models. In
application engineering, developers can request an
instance of the AO architecture in a process of two
stages: (i) the definition of a feature model instance
which specifies the resolution of variabilities for the
AO family architecture; and (ii) the definition of a set
of crosscutting relationships between features.

1. Introduction
Aspect-oriented (AO) techniques have been proposed
as an approach which aims to separate and modularize
crosscutting concerns [7, 8]. Crosscutting concerns are
concerns that often crosscut several modules in a
software system. It encourages modular descriptions of
complex software by providing support for cleanly
separating the basic system functionality from its
crosscutting concerns. Hence, AO techniques can be
used now to exploit variabilities relative to crosscutting
concerns, thereby enhancing the reusability and
customizability of software family architectures.

Aspect-oriented programming (AOP) [8] proposes the
aspect abstraction and new composition mechanisms
which allow for the implementation of crosscutting
variabilities. Aspects are modular units that extend the
functionalities of classes in well-defined execution
points, the so-called join points. AspectJ [1] is the most
popular programming language that enriches the Java
language with AO extensions. It provides constructions
to specify more reusable and variable aspects, such as,
abstract aspects and abstract pointcuts.
Recent work [2, 9-13] has focused on the use of AO
techniques to enable the implementation of flexible and
customizable software family architectures. In these
research works, aspects are exclusively used to
modularize crosscutting variable (optional or
alternative) features encountered in the programming
of frameworks or software product lines. However,
there is a lack of support for software family architects
and application developers to respectively manage and
instantiate AO variabilities in different development
stages. It is important to define models which allows to
handle not only orthogonal variabilities enabled by
classical OO mechanisms (such as, OO framework
hotspots), but also the new ways of variabilities
supported by AOP.
In this context, this paper presents a generative model
[5] which provides explicit means to instantiate aspect-
oriented family architectures. Using our model, AO
variabilities are prepared to be customized through
domain engineering activities. All the variabilities of
the architecture are modeled using feature models. In
application engineering, developers can request an
instance of the AO architecture in a process of two
stages: (i) the definition of a feature model instance
which specifies the resolution of variabilities for the
AO family architecture; and (ii) the definition of a set
of crosscutting relationships between features. These
crosscutting relationships are used to customize

abstract pointcuts which define how aspects can affect
system classes.
The remainder of this paper is organized as follows.
Section 2 presents an overview of the variability
mechanisms supported by AOP. Section 3 describes
our generative model. Section 4 exemplifies our model
application to the customization of logging aspects. It
describes both domain implementation and application
engineering activities. Section 5 presents our
conclusion and points to directions for future work.

2. Variabilities in AOP
AO programming languages offer constructions to
specify a set of join points. The join point model
defined in such languages allows the aspect
implementation to extend the class functionalities in
specific points. Each aspect specifies a set of pointcuts
and advices to implement these extensions. Pointcuts
have a name and are collections of join points. Advices
are a special method-like construction of aspects which
are used to attach new crosscutting behaviors along the
aspect pointcuts. These mechanisms can address the
implementation of optional and alternative crosscutting
features encountered in the implementation of software
architectures.

As discussed in Section 1, AO languages, such as
AspectJ [1], also support the definition of abstract
aspects which can contain both abstract pointcuts and
methods. These constructions enable to postpone the
implementations of pointcuts and methods to concrete
subaspects. Each subaspect can customize these
elements considering a particular implementation of

interest. Thus, more reusable aspects can be specified
using these mechanisms.

Figure 1 presents an example of a Logging abstract
aspect. It defines the loggingJoinPoints() abstract
pointcut and the getLoggingPersistence() abstract
method. The former is used by the subaspects to
specify the join points in an application which will be
logged. The latter allows subaspects to define a
specific persistence mechanism to accomplish the
logging. Figure 1 also shows two subaspects which
implement in different ways the logging for a web
application. The BusinessLogging aspect defines that
the logging of the business services will be realized in
the database. The DatabaseLogging aspect specifies
the logging of the database accesses in a XML file.
Figure 2 shows the AspectJ source code of the Logging
abstract aspect and the BusinessLogging subaspect.

Business Layer

Data Layer

GUI Layer Logging Component

CustomerDAO

CustomerRegisterImpl

CustomerDAOImpl

ProductDAO

SellingServiceImpl

ProductDAOImpl

CustomerRegister

CustomerAction

SellingService

SellingAction

BusinessLogging
<<aspect>>

DatabaseLogging
<<aspect>>

<<crosscut>>

<<crosscut>>

<<crosscut>>

<<crosscut>>

Logging

pointcut loggingJoinPoints()
getLoggingPersistence()

<<aspect>>
LoggingPersistence

write()11

DatabasePersistence

XMLFilePersistence

Figure 1. Logging Aspects

public abstract aspect Logging {
 private LoggingPersistence log =
 getPersistenceLogging();

 abstract pointcut loggingJoinPoints();
 after(): loggingJoinPoints() {
 this.log.write(thisJoinPoint);
 }
 public abstract LoggingPersistence
 getLoggingPersistence();
}
public aspect BusinessLogging extends Logging {
 pointcut loggingJoinPoints():
 execution(CustomerService+.*) ||
 execution(SellingService+.*);

 public LoggingPersistence
 getLoggingPersistence(){
 return new DatabasePersistence();
 }
}

Figure 2. Source Code of Logging Aspects

The subaspects presented in Figures 1 and 2 were
manually codified to customize the Logging feature for
a specific web system. Different crosscutting features
could also be implemented as abstract aspects and be
reused in the implementation of subaspects. An
automated mechanism could support the generation of
these subaspects. It requires not only configuring
existing functional variabilities (such as, the alternative
persistence in the logging example), but also
generating specific pointcuts in the subaspects. In this
paper, we propose an aspect-oriented generative model
which aims to generate these subaspects, including the
customization of their pointcuts.

3. Approach Overview
Our approach is centered on the concepts of generative
programming. Generative Programming (GP) [5]
addresses the study and definition of methods and tools
that enable the automatic generation of software from a
given high-level specification language. It has been
proposed as an approach based on domain engineering
[5]. GP promotes the separation of problem and
solution spaces, giving flexibility to evolve both
independently. To provide this separation, GP proposes
the concept of a generative domain model.
A generative domain model is composed of three basic
elements: (i) problem space – which represents the
concepts and features existent in a specific domain; (ii)
solution space – which consists of the software
architecture and components used to build members of
a software family; and (iii) configuration knowledge –
which defines how specific feature combinations in the
problem space are mapped to a set of software
components in the solution space. Two new activities
need to be introduced to domain engineering methods
in order to address the goals of GP:
• development of proper means to specify specific

members of the software family. Domain-specific
languages (DSLs) must be developed to deal with this
requirement;
• modeling of the configuration knowledge in detail

in order to automate it by means of a code generator.

We have defined an AO generative model following
the model presented by Czarnecki and Eisenecker [5].
However, we propose the extension of that generative
model to support the instantiation and customization of
AO architectures. It allows configuring and generating
specific crosscutting and non-crosscutting variabilities.
Our generative model is composed by the following
elements:

(I) a feature model – this model works as a
configuration domain-specific language (DSL)
responsible to specify and collect the features to be
instantiated in the software family architecture. It is

used to collect information to configure both the
crosscutting and non-crosscutting variabilities. A set of
crosscutting relationships between features is used to
help the customization of aspects pointcuts.

(II) an AO architecture – it defines the main
components of a software family architecture. This
architecture defines a set of variabilities which need be
customized to define a complete application.
Crosscutting variabilities are implemented as aspects in
this architecture. Each component of the architecture is
specified as a set of classes, aspects and templates. The
latter ones define elements that will be customized
during the instantiation of the architecture. We also
provide guidelines to implement these AO
architectures by means of a base OO framework and a
set of aspects which define optional and alternative
crosscutting features existing in the OO framework.
More details on these guidelines are provided in [9];

(III) a configuration model – it specifies the mapping
between the features existing in the crosscutting feature
model and the components (or their respective sub-
elements, such as, class, aspect or templates) of the AO
architecture. The configuration model is used to
support the decision of which components must be
instantiated and what customizations must be realized
in those components considering a specific application.

There are several activities involved in the process of
development of the elements of our generative
approach. These activities are organized under the
perspectives of domain implementation and application
engineering. Next section details them in the context of
the Logging example presented in Section 2.

4. Customizing AOP Variabilities: a
Working Example
In this section, we illustrate our generative model by
showing the customization of an AO architecture. We
explore the customization of the Logging subaspects
presented in Section 2. This is an illustrative example
which allows to show how aspects can be customized
using our approach. The same strategies, that we are
going to show in the Logging example, can be used to
customize other and different reusable aspects in more
complex architectures, such as frameworks or product
lines [2, 9, 11].

4.1. Domain Implementation
We first present the domain implementation activities
which prepare an AO architecture to be automatically
instantiated.

Activity 1: AO Architecture Implementation.
The first activity of the domain implementation is to
implement an AO family architecture that addresses a

set of variabilities in a specific domain. The Logging
aspect example (presented in Section 2) defines two
variabilities: (i) the logging pointcuts – which represent
the execution join points in the web system that will be
logged; and (ii) the logging persistence mechanism –
which defines alternative persistence ways to store the
logging information. These variabilities are addressed
by the aspect/class hierarchy presented in Figure 1.
The Logging subaspects are the only elements which
need to be customized during the instantiation of a web
system. In our approach, every element (class, aspect,
interface or configuration file) which need to be
customized during application engineering is
implemented as a code template. Code templates allow
us to represent structure and behavior of specific
classes and aspects that we want to generate. Java
Emitter Templates (JET), a generic template engine of
the Eclipse Modeling Framework (EMF) [4], has been
used to specify our templates. Thus, to specify the
general structure of our Logging subaspects, we
defined the ConcreteLogging JET template. It is used
to generate specific logging subaspects. The
loggingJoinPoints pointcut and
getLoggingPersistence() method are customized
based on information collected by the feature model.
Our templates are processed by our code generator
during architecture customization.

Activity 2: Representation of the Variabilities in the
Feature Model.
After implementing all the variabilities of an AO
architecture, the next activity is to represent them in a
feature model. We use the feature model proposed in
[6], which allows modeling mandatory, optional and
alternative features, as well as their respective
cardinality. The feature modeling plugin (fmp) [3]
supports the modeling of feature models in Eclipse
platform.
In order to support the customization of aspects in our
approach, we have extended the feature model
proposed in [6]. We can assign the crosscutting or
joinpoint property to specific features. A crosscutting
feature is used to represent aspects which can extend
the behavior of other system features. A joinpoint
feature is used to specify specific execution points in
the system which can be extended by aspects.
Crosscutting relationships between these elements can
be defined in the application engineering (Section 4.2)
in order to customize aspects to affect specific parts of
the system.
Figure 3 shows the feature model of the Logging
example using the fmp plugin. We first represent the
business and data services which are provided by the
web system. These features are all represented as

mandatory (symbol), because they do not represent
variabilities in the web system. They were only
modeled because they represent possible features
which the application engineer can desire to log their

execution. Since they are all candidates to be extended
by crosscutting features, we call them joinpoint
features.
Figure 3 also presents the logging variabilities. The
logging feature is optional (symbol). It is composed
by a set of logging services. Each logging service
represents a possible logging subaspect to be created.
The definition of a logging service feature involves the
choice of one between two alternative persistence
mechanisms: Database or XML File features. Each
logging service needs also to be configured to extend
specific services of the web system. Because of that,
they are characterized as crosscutting features.

Activity 3: Specification of the Configuration Model.
The last activity of the domain implementation is the
configuration model specification. The configuration
model represents the configuration knowledge [5] in
generative programming. It is used mainly to define
how a specific configuration of features is mapped to a
configuration of architecture components. All the
information specified in the configuration model is
used by our code generator to enable the automatic
customization of AO architectures during application
engineering.
Our configuration model is composed by three
different elements: (I) description of dependency
relationships between the architecture model’s
components (and sub-elements) and the features
specified in the feature model; (II) definition of valid
crosscutting relationships between crosscutting and
joinpoint features; and (III) specification of the

Figure 3. Logging Feature Model

mapping between joinpoint features and specific
joinpoints in classes of the AO architecture. All these
elements are being implemented as wizards of Eclipse
[14] plugins.
The first element of our configuration model are the
dependency relationships between architecture
components (and sub-elements, such as, classes,
aspects and templates) and features. They are used to
define the mapping between the feature model and the
architecture components. They allow to specify which
components must be instantiated when specific
features are selected. The following guidelines are used
when defining the dependency relationships: (i) if a
component (or sub-element) must be instantiated to
every product of the product line, then no dependency
relationships needs to be specified; (ii) if a component
(or sub-element) depends on the occurrence of a
specific feature, a dependency relationship must be
created between them.
The dependency relationships are used by our code
generator to decide which classes and aspects will be
included in a product based on feature model instances
defined by application engineers. In case of templates,
the dependency relationships define if they will be
processed and included in the final product generated.
Every template element depends on specific features
which provide knowledge necessary for their
instantiation.
Figure 4 shows a set of dependency relationships
between the Logging component and its respective
feature model. It shows that the logging component
will be instantiated only if the logging feature is
selected by the application engineer. When the logging
feature is selected, every element inside the logging
component which does not have a dependency
relationship with any feature will be automatically
instantiated in the architecture. This is the case of the
Logging abstract aspect and the LoggingPersistence
class. Figure 4 also presents that the ConcreteLogging
aspect template has a dependency relationship with the
logging service feature. It means that a new different
concrete logging aspect will be created for each
logging service feature specified. Finally,
DatabaseLogging and XMLFileLogging classes will be
instantiated only if the database and XML file features,
respectively, were requested by the application
engineer.
The second element defined in our configuration model
is the potential relationships between crosscutting and
joinpoint features. This information is used by our
code generator to check if the application engineers
have specified valid crosscutting relationships. It
allows to restrict the set of valid crosscutting

relationships. Figure 4 shows the set of valid
crosscutting relationships for the Logging example. It
shows that every logging service feature can extend the
following features: register and selling services, and
product and customer data services features.
The third and last element of our configuration model
is the mapping between the joinpoint features and the
concrete joinpoints in classes of the AO architecture.
This information is used by our code generator to
customize pointcuts during the generation of aspects.
The mapping involves the identification of which parts
of classes (e.g.: constructor execution and method call)
correspond to specific joinpoint features. In our
particular implementation, the mapping refers to
specific and valid AspectJ joinpoints. Figure 4 shows
the joinpoint mapping for the Logging example. The
business and data services joinpoint features of the web
system are mapped to specific joinpoints existing in the
implementation of its components.

4.2. Application Engineering
In application engineering, developers request an
instance of the AO architecture by specifying all
desired variabilities. This request is composed of two
activities: (i) choice of variabilities in a feature model
instance; and (ii) choice of valid crosscutting
relationships between features. This latter step is used
to enable the customization of aspect pointcuts. A tool
uses the information collected by these steps and the
configuration model to generate an instance of the AO
architecture.
Figure 5 shows a feature model instance of the
Logging example. The application engineer is
requesting two different logging services. The first one

Configuration Model

Dependency Relationships

Logging component << depends >> Logging feature
ConcreteLogging template << depends >> Logging Service feature
DatabaseLogging class << depends >> Database feature
XMLFileLogging class << depends >> XMLFile feature

Valid Crosscut Relationships

Logging Service feature << crosscuts >> Customer Register feature
Logging Service feature << crosscuts >> Product Selling feature
Logging Service feature << crosscuts >> Customer Data feature
Logging Service feature << crosscuts >> Product Data feature

Joinpoint Mapping

Customer Register feature << maps >> execution (CustomerRegister+.*)
Product Selling feature << maps >> execution(SellingService+.*)
Customer Data feature << maps >> execution (CustomerDAO+.*)
Product Data feature << maps >> execution (ProductDAO+.*)

Figure 4. Logging Configuration Model

is used to log information about the registration and
selling business services. The other one logs
information about the database access of the selling
and data services. Each of them uses a different way to
persist the logging information. The crosscutting
relationships between features are specified separately
from the feature model instance. For the Logging
example, four crosscutting relationships must be
defined: (i) the “Business Services” logging service
crosscutting feature is related with the register and
selling business services joinpoint features; and (ii) the
“Data Services” logging service feature is related with
the product and customer data services joinpoint
features.
Using the feature model instance, the configuration
model and the AO architecture of the Logging
example, our code generator creates two Logging
subaspects which affect the business and data services
of the architecture. The complete algorithm of our code
generator is described in [10].

5. Conclusions and Future Work
This paper presented an aspect-oriented generative
model which addresses the instantiation of variabilities
encountered in AO architectures. We also described a
set of domain implementation and application
engineering activities which are adopted to prepare AO
architectures to be automatically instantiated. To the
best of our knowledge, the only research work which
explores the instantiation of AO architectures is the
Framed Aspects approach [13]. It proposes the
integration between Frame and AOP technologies. The
main difference between our and the Framed Aspects
approach, is that they define many of the decision steps
about the instantiation process in the template code of
frames by means of meta-tags. In our approach, the
decisions related to the architecture customization

process are described separately by our configuration
model. It makes easier to adapt or evolve the decisions
related to the architecture customization. We also use
feature model instances to gather all information
necessary for the resolution of AO variabilities.
We are currently implementing a tool, as an Eclipse
plug-in [14], which supports all the models presented
in the paper. Also, new case studies involving software
families from different domains are being realized to
validate our approach. We are also exploring the
instantiation of aspect libraries using our approach in
these case studies. Finally, we are also refining a set of
guidelines to modularize the implementation of
framework variabilities using aspects [9].

Acknowledgments. The authors have been partially
supported by CNPq, FAPERJ and European Network
of Excellence on AOSD (AOSD-Europe).

References
[1] AspectJ Team. The AspectJ Programming Guide.
http://eclipse.org/aspectj/.
[2] V. Alves, et al. “Extracting and Evolving Mobile Games
Product Lines”. In 9th International Software Product Line
Conference (SPLC'05), September 2005.
[3] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature
modeling plug-in for Eclipse, OOPSLA’04 Eclipse
Technology eXchange (ETX) Workshop, 2004.
[4] F. Budinsky, et al. Eclipse Modeling Framework.
Addison-Wesley, 2004.
[5] K. Czarnecki, U. Eisenecker. Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.
[6] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration using feature models. In Proceedings of the
Third Software Product-Line Conference, September 2004.
[7] R. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented
Software Development, Addison-Wesley, Boston, 2005.
[8] G. Kiczales, et al. “Aspect-Oriented Programming”. Proc.
of`ECOOP’97, LNCS 1241, Springer, Finland, June 1997.
[9] U. Kulesza, et al. “Improving Extensibility of Object-
Oriented Frameworks with Aspect-Oriented Programming”,
Proceedings of ICSR´2006, Turin, Italy, June 2006.
[10] U. Kulesza, et al. “Instantiating and Customizing
Product Line Architectures using Aspects and Crosscutting
Feature Models”. Proceedings of the Workshop on Early
Aspects, OOPSLA’2005, October 2005, San Diego.
[11] U. Kulesza, et al. “A Generative Approach for Multi-
Agent System Development”. In "Software Engineering for
MAS III". Springer, LNCS 3390, pp. 52-69, 2004.
[12] M. Mezini, K. Ostermann: “Variability management
with feature-oriented programming and aspects”.
Proceedings of FSE’2004, SIGSOFT, pp. 127-136, 2004.
[13] N. Loughran, A. Rashid. “Framed Aspects: Supporting
Variability and Configurability for AOP”. Proceedings of
ICSR’2004, pp. 127-140, 2004.
 [14] S. Shavor, et al. The Java Developer’s Guide to Eclipse.
Addison-Wesley, 2003.

Figure 5. Logging Feature Model Instance

