
Published (abridged) in IEEE Computer, Vol. 39, No. 11, November 2006.
Copyright 2006 by the National Research Council Canada.

Concerning Interruptions

Stephen B. Jenkins
Institute for Aerospace Research

National Research Council of Canada

Introduction

There’s a simple, harmless sounding, four-syllable
question that causes much wailing and gnashing of
teeth among programmers: “Got a minute?” I always
cringe if I hear those words while I'm coding, because
by the time I’ve looked up and answered “No!”, the
damage is often already done.

A couple of decades ago, near the beginning of my
programming career, I used to think that I was
unusually sensitive to disturbances , and thus that it was
up to me to overcome this "intolerance of
interruptions". In the years since, I’ve come to realize
that the effects of being interrupted are a problem for
the vast majority of programmers. But I don’t expect
you to take my word for it. To properly set the stage
for the rest of the discussion, I’d like to quote a few of
the things that other, far more qualified people have
written about interruptions.

First, on the topic of the frequency of interruptions in
the workplace:

My informal observations in the US indicate
that personnel in shared work spaces
experience some kind of interruption every 10
minutes.1

We found that…people spend on the average
eleven and a half minutes in continuous work
on a project or theme before they switch to
another.2

On average the subjects were being
interrupted just over 4 times every hour.3

Participants in our study reported an average
of 50 task shifts over the week .4

Now, you may be saying to yourself: “So what?
Everyone gets interrupted. What makes programmers
so special?”

Programmers […] have to build up a complex
mental model of the programming problem,
the state of the different variables, and so on.
That's why most people do not make good
programmers, but it is also why even the best
programmer gets into trouble when he or she
is interrupted. Bang! Down falls the carefully
constructed mental house of cards.5

This destruction of "complex mental models " has some
rather serious repercussions. On the subject of the
effect of interruptions on a programmer's productivity:

DeMarco reports that the recovery time after a
phone call is at least 15 minutes. Even though
we could not measure recovery time exactly,
we believe his estimate to be valid. If more
than 10 interrupts occur during a day, the time
between interrupts becomes too short to
accomplish product development work.6

I maintain that programming cannot be done
in less than three-hour windows. It takes three
hours to spin up to speed, gather your
concentration, shift into "right brain mode",
and really focus on a problem.7

What drives me crazy is that ever since my
first job I've realized that as a developer, I
usually average about two or three hours a
day of productive coding.8

The mere prospect of being interrupted is
enough to prevent hackers from working on
hard problems.9

The toll on a programmer's mental state due to the
cumulative effect of all of these interruptions is rather
disturbing:

…an average worker’s functioning IQ falls ten
points when distracted by ringing telephones
and incoming emails. This drop in IQ is more
than double the four point drop seen following
studies on the impact of smoking marijuana.
Similarly, research on sleep deprivation

2

suggests that an IQ drop of ten points is equal
to missing an entire night of sleep.10

Many programmers appear to be continually
frustrated in attempts to work. They are
plagued by noise and interruption, and
pessimistic that the situation will ever be
improved. The data recorded about actual
interruptions supports the view that the so-
called "work -day" is made up largely of
frustration time.11

The fact that the last quote is from a study published
more than 20 years ago unfortunately validates the
pessimistic outlook of those interviewed by DeMarco
and Lister. What was true in 1985 is still true today:
the mass of programmers lead lives of quiet frustration
(with apologies to Thoreau).

I hope this short introduction has been sufficient to
convince you of the seriousness of the problem. As
programmers, many of us – especially those who have
worked on low-level code or real-time systems – are
well aware of the problem of time lost due to context
switches in our operating systems, and how to minimize
its impact. We need to become even more aware of,
and concerned about, the high cost of cerebral context
switches.

Severity of an interruption

I've identified four separate factors that significantly
affect the severity, in terms of time lost, of an
interruption: its “time”, the person causing it, its
subject, and the type of work it disrupts. I should point
out that the following comments are not the result of
any in-depth, multi-person, time and motion study I’ve
performed (Dammit Jim, I’m a programmer, not an
efficiency expert!). Rather, they are merely personal
observations. Even assuming the most conservative
rate of interruption, though, I’ve probably had to deal
with more than 50,000 interruptions during my 20+
years as a professional software developer. That has to
count for something.

Time of interruption
By "time of interruption" I mean both its length and its
timing relative to other events. While many might
think that the length of an interruption is one of its most
defining characteristics, my own experience is that a
"mental core dump" happens within the first few
seconds. After that, the length of time is rather
insignificant. The shortest types of interruptions
however, someone else's phone ringing or some noise

in the hallway, are really only momentary distractions.
For some people, they seem to cause little or no
problems, while for others they are a source of
considerable disruption. It would appear that this is a
personal matter, not unlike being a light or heavy
sleeper, and beyond conscious control. The timing of
an interruption though, influences its severity to a much
greater degree. As seen in the introduction,
interruptions that occur within 15 or 20 minutes of each
other can cause your productivity to fall to near zero.

Person causing the interruption
Depending on your work environment, the person
causing the interruption can have a variable effect on its
severity. By using some of the techniques in the next
section, it is usually possible to reduce the problems
caused by intrusions from subordinates and even peers,
but it may not be as easy to keep your supervisor (or
anyone higher up the food chain) from interrupting you.

Subject of the interruption
The subject of the interruption can significantly affect
its severity. While a simple question, such as "Going
for coffee?" may not disturb you very much, someone
dropping in for a chat about the weekend can cause real
damage. I personally find that technical questions are
far worse though. Especially those that require some
degree of mental effort such as "Do you remember that
little app you wrote last year…" The worst types of
questions are those that require a complete mental
context switch: "I need help debugging my [insert
programming language you haven't used regularly in
over 10 years] code and the client is waiting down the
hall; he's really annoyed!" (Lest you think this a rather
contrived example, I'd like to point out that this exact
scenario happened to me recently.)

The type of work being interrupted
I believe that the type of work being interrupted is the
single most critical factor influencing the severity of the
damage done. While it seems that writing
documentation or doing background research are able
to withstand interruptions fairly well, designing
algorithms and generating code are far more fragile
endeavours. In my personal experience, the worst time
to be interrupted is while refactoring code. If I'm in the
middle of a large cut-and-paste session, moving and
consolidating multiple blocks of code, even a trivial
interruption can completely destroy my train of thought.
This means not only losing the time to get that train
back on the rails , but can also mean the loss of a
significant portion of the work done in the minutes
before the interruption occurred.

3

Dealing with interruptions

In dealing with interruptions, I recommend a two-
pronged approach: reduce their number and reduce their
severity. To that end, I've provided a few suggestions
of things you might try; they have worked for me in the
past and will work for you as well, hopefully. If the
corporate culture where you work is unnecessarily
interrupt driven, you'll be doing everyone a favour by
bringing about change. (Although they may not thank
you for it. Not only are there many people who dislike
and resist change, but there are some who actually
enjoy the uncertainty and lack of structure inherent in
an environment filled with interruptions.)

Reducing their number
Obviously, the best way to deal with an interruption is
to avoid it altogether. Here are several things that you
can do to try and reduce the number of interruptions to
which you are subjected.

1) Disseminate information.

Generate your own FAQ list, and get others to use
it. I created an HTML page titled "README if
SBJ is Away" and placed it on an internal web
server. Due to my use of the other six interrupt
reduction techniques in this list, people tend to go
to that page even when I'm not away.

2) Educate your coworkers, managers, admin

assistants, etc.
Be sure to let people know not only how harmful
interruptions are, but also when the best and worst
times for you to be interrupted are.

3) Communicate using email.
Rather than using the telephone or talking face-to-
face, encourage people to contact you via email
and respond to them that way too. There are
several benefits to be had. First, it allows you to
choose the best time to read and respond. Email
also tends to be more succinct, and less prone to
vague, rambling interactions. Lastly, the extra
work required in writing an email will filter out
many unimportant interruptions; people will opt to
RTFM ("read the fine manual") or STFW ("search
the fine web") instead of bothering you.

4) Isolate yourself physically.

If you have a door, close it. If you're not allowed
to close it due to departmental policies, use a signal
of some kind – a sign, a hat over the doorknob, etc.
– to let people know that they're not welcome. If
you don't have a door because you are in a cubicle,
there are still options. Can you move the partitions

around? Can you change your orientation, relative
to the opening of your cube, to cut down on the
number of passers by that decide to drop in for a
chat?

5) Isolate yourself electronically.
Get Caller-ID and voice mail, and use them. Resist
the urge to pick up the telephone merely because
it's ringing. Disable email notifiers. Wear
headphones – even if you don't listen to music!
Force people to work hard if they want to interrupt
you.

6) Deviate from normal work hours.

Modifying your hours will allow you to do the
things that are the most sensitive to interruptions
when others are not around. I suspect this is one
reason why so many programmers prefer to work
"odd" hours. While the stereotype is to come in
late – "at the crack of noon" – and leave very late, I
personally prefer to arrive at the office very early:
typically 6:00 AM. Yes, that’s a six.

7) Remonstrate against interruptions.

At a minimum, practice forming a nasty scowl, and
use it whenever anyone comes into your workspace
to interrupt you. Cultivate a reputation as a
curmudgeon. If being nasty isn't in keeping with
your character, try a pained, exasperated look
accompanied by a heavy sigh. Or, try rolling your
eyes towards the heavens while muttering "How
long, O Lord?" If you are interrupted to deal with
something that is documented in your FAQ, be sure
to let the person know, in some suitably unsubtle
manner, that they have bothered you needlessly.

Reducing their severity
For those interruptions that are unavoidable, here are
some suggestions that may help you to reduce their
severity.

1) Consolidate interruptions.

Combine interruptions and deal with several at
once. Try to foresee other disruptions from the
same person and deal with them right away.
Respond to email or phone messages right after
another interruption has already done its damage.
If possible, go to lunch/coffee early or late,
depending on the timing of other intrusions on your
concentration.

2) Anticipate interruptions.

If you're on a roll, and you know that you are
coming up to a forced interruption (a meeting,
lunch, etc.), try to break at a logical point at least
five minutes before you need to leave. Use the

4

time to make a few quick notes, right in the code if
nowhere else, of what you were intending to do
next; it will be much easier to get started again
when you return. This is especially true if you can
deliberately leave a simple or enjoyable task with
which to begin your next programming session.

3) Compensate by changing the way you work.
If possible, try modifying your development style
to a more agile approach. Using a rapid design-
write-test cycle can reduce the complexity of the
mental model required, minimizing the damage
caused by individual interruptions.

4) Procrastinate until a better time.
Once you've been dis turbed, if you expect further
interruptions in the near future, don’t try to write
code. You'll only frustrate yourself. Leave the
thought intensive stuff for another time. Consider
doing something other than programming. Write
some documentation. Read that
journal/textbook/trade magazine you've been
meaning to get to.

5) Capitulate to the situation.
Relax and take a deep breath. Go with the flow.
Don't beat yourself up about losing your
concentration and needing 15 minutes to get it back
– it's normal. If you're not convinced that it's
normal, read the papers and articles referred to in
the introduction. Getting stressed-out about the
loss of productivity will only make things worse.

If all else fails
As a last resort, if you are often interrupted and are
unable to reduce the frequency or severity to a level that
is acceptable, you may want to consider looking for
work elsewhere. While that may sound rather drastic,
the stress caused by high levels of frustration can lead
to significant health problems . Life is too short to
spend 40 or more hours a week doing something that
leaves you tense and upset. Even if you decide not to
take a job elsewhere, merely going through the process
and knowing that you have a way out (a current resume,
marketable skills, etc.) may help to lower your anxiety
level.

The worst-case scenario: deliberately
planned, chronic interruptions

So far, I’ve only discussed unplanned interruptions, but
what about planned interruptions? Obviously the
majority of the coping strategies of the previous section
cannot help in this case. After all that has been written

about the harm caused, you may be wondering “Who
on earth would deliberately plan to have programmers
chronically interrupted?” Unfortunately, this is
effectively what happens when a developer is required
to work on two or more projects simultaneously.

I feel like when I have two programming
projects on my plate at once, the task switch
time is something like 6 hours. In an 8-hour
day, that means multitasking reduces my
productivity to 2 hours per day. […] In fact,
the real lesson from all this is that you should
never let people work on more than one thing
at once.12 [Original emphasis]

I realize that sometimes, operational requirements
dictate that multiple projects absolutely have to be done
concurrently. Just keep in mind the dangers of juggling
several things that are costly, dissimilar, and fragile. (A
good mental picture might be to imagine your self
wearing a harlequin suit, and simultaneously tossing a
Tiffany lamp, a Swarovski vase, and a widescreen
laptop into the air.) The simplest way to dramatically
improve the productivity of programmers that must
undertake multiple projects is to allow them to work on
those projects serially (at least one full day on each),
rather than in parallel.

In defense of interruptions

Despite everything that’s been said so far, interruptions
are not always undesirable. Being interrupted by a fire
alarm is a bad thing when they’re just testing the
system; it’s a good thing when there’s a fire. Also,
what is time lost to you may be a net gain for your
organization. From a systemic point-of-view, the
interruptor may be helped more than the interruptee is
harmed.

If the times of frequent interruptions happen only
occasionally, they can be turned into a benefit by
prompting you to "shift gears" and do something other
than creating code. I actually wrote the majority of this
article during a week when I knew that I'd have a
constant stream of interruptions. I work at a research
laboratory and because the person responsible for the
day-to-day software needs of the experiment was away
on vacation, I was expected to take over most of his
duties. Somewhat ironically, the knowledge that I
would be continuously interrupted, and thus not very
productive as a programmer, encouraged me to use the
time to write about the problem of interruptions.

5

Concluding remarks

Now that you've read almost all the way through this
article, I have a confession to make. I didn't really
write this for you (programmers) to read – that would
be "preaching to the choir". I wrote it for your
subordinates , coworkers, and supervisors: please share
it with them; it might just make your life a little better.
In fact, if I want to be 100% honest, I wrote this for my
subordinates, coworkers, and supervisors to read. It
just shows you the lengths to which I'm willing to go in
order to reduce the number of interruptions I get.

References

1. C. Jones, How Office Space Affects Programming

Productivity, IEEE Computer, Vol. 28, No. 1, Jan.
1995, pp. 76-77.

2. V.M. González and G. Mark, "Constant, constant,

multi-tasking craziness": Managing Multiple
Working Spheres, CHI'04 – Conference on Human
factors in computing systems , ACM Press, April
2004, pp.113-120.

3. B. O’Connail and D. Frohlich, Timespace in the

workplace: dealing with interruptions, CHI '95 –
Conference on Human Factors in Computing
Systems, ACM Press, May 1995, pp. 262-263.

4. M. Czerwinski, E. Horvitz, and E. Wilhite, A Diary

Study of Task Switching and Interruptions,
Proceedings of CHI 2004, ACM Conference on
Human Factors in Computing Systems , Apr. 2004

5. J. Nielsen, Are developers people? , May, 2001;

http://www-106.ibm.com
/developerworks/library/it-nielsen4/?dwzone=ibm

6. R. van Solingen, E. Berghout, and F. van Latum,

Interrupts: Just a Minute Never Is, IEEE Software,
Vol. 15, No. 5, Sept. 1998, pp. 97-103.

7. O. Eichhorn, The Tyranny of Email, Mar. 2003;

http://www.w-uh.com
/articles/030308-tyranny_of_email.html

8. J. Spolsky, Fire And Motion, Jan. 2002;

http://www.joelonsoftware.com
/articles/fog0000000339.html

9. P. Graham, Great Hackers, July 2004;

http://www.paulgraham.com/gh.html

10. Hewlett-Packard Press Release, Abuse of

technology can reduce UK workers' intelligence,
Apr. 2005; http://h40059.www4.hp.com/
featurestories/pdf/Info-Mania_PressRelease.pdf

11. T. DeMarco and T. Lister, Programmer

performance and the effects of the workplace,
Proceedings of the 8th International Conference on
Software Engineering, Aug. 1985, pp.268-272.

12. J. Spolsky, Human Task Switches Considered

Harmful, Feb. 2001;
http://www.joelonsoftware.com/
articles/fog0000000022.html

Bio

Stephen B. Jenkins is the senior programmer/analyst at
the Aerodynamics Laboratory of the Institute for
Aerospace Research, National Research Council of
Canada. For the past decade, he has specialized in
developing web-based software tools using open source
software. Feel free to send email; just don’t expect him
to respond immediately.

For more information, go to www.erudil.com

