
Hybrid Textons:
Modeling Surfaces with Reflectance and Geometry ∗

Jing Wang and Kristin J. Dana
Electrical and Computer Engineering Department

Rutgers University
Piscataway, NJ, USA

{jingwang,kdana}@caip.rutgers.edu

Abstract

The appearance of surface texture as it varies with angular
changes of view and illumination is becoming an increas-
ingly important research topic. The bidirectional texture
function (BTF) is used in surface modeling because it de-
scribes observed image texture as a function of imaging
parameters. The BTF has no geometric information, as it
is based solely on observed texture appearance. Compu-
tational tasks such as recognizing or rendering typically re-
quire projecting a sampled BTF to a lower dimensional sub-
space or clustering to extract representative textons. How-
ever, there is a serious drawback to this approach. Specifi-
cally, cast shadowing and occlusions are not fully captured.
When recovering the full BTF from a sampled BTF with
interpolation, the following two characteristics are difficult
or impossible to reproduce: (1) the position and contrast
of the shadow border, (2) the movement of the shadow bor-
der when the imaging parameters are changed continuously.
For a textured surface, the nonlinear effects of cast shadows
and occlusions are not negligible. On the contrary, these
effects occur throughout the surface and are important per-
ceptual cues to infer surface type. In this paper we present a
texture representation that integrates appearance-based in-
formation from the sampled BTF with concise geometric
information inferred from the sampled BTF. The model is
a hybrid of geometric and image-based models and has key
advantages in a wide range of tasks, including texture pre-
diction, recognition, and synthesis.

1 Introduction

The appearance of surface texture as it varies with angular
changes of view and illumination is becoming an increas-
ingly important research topic. Since objects are comprised
of surfaces and scenes are comprised of objects, surface ap-
pearance is a fundamental issue in developing algorithms
in vision and graphics. Ubiquitous high resolution imag-
ing has made the quest for more advanced surface models
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Figure 1: Cast shadows cannot be obtained via interpolation. Top
Row: Image of crumpled paper with the illumination L = 22.6◦

(left) and L = 45◦ (right). Bottom Row: Image of crumpled pa-
per with L = 67.5◦(left) and the predicted image for L = 67.5◦

obtained by a linear combination of the images in the top row. Pre-
dicting texture images that are not in the sampled BTF is typically
done by interpolation or a linear transformation of the BTF sample
images. But as this figure illustrates, interpolation cannot account
for cast shadows. A dual effect occurs with occlusions. The ar-
tifacts in prediction appearance are especially apparent when the
illumination or viewing direction changes in a continuous manner.

a timely priority. Also, recent refinement of standard vi-
sion and graphics algorithms means performance expecta-
tions have increased. Simple shading and texture models
are no longer satisfactory for real world scenes.

At a point on the surface, the reflectance depends on
two directions, the incident light L and the camera direc-
tion V. In a region on the surface, the reflectance varies spa-
tially and we assume it has certain uniform statistics so that
the observed region is an image texture. This image tex-
ture also varies with L and V , so that it is natural to think
of it as a bidirectional texture function (BTF) denoted by
f(x, y, L, V ) where x, y are the local coordinates on a sur-
face patch. For fixed imaging parameters L0 and V0, the
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Figure 2: An illustration of the creation of a shadow on a rough
surface. The shadow length is determined by the illumination di-
rection. As the illumination direction changes from L1 to L2 the
shadow grows accordingly. The location, length, and continuous
change of the shadow can be determined using geometric consid-
erations. However, predicting cast shadows (that are not observed
in the BTF sample images) is not possible with a purely image-
based approach.

BTF value f(x, y, L0, V0) is an image. Note that the BTF
has no geometric information. Complex light interactions
that occur on non-smooth surfaces such as shadowing, oc-
clusion and local foreshortening are part of the observed
image texture.

Models for bidirectional texture and bidirectional re-
flectance sometimes are obtained by analyzing physical
models of the surface as in [13][14][15][7][17][3]. Con-
sidering the complexity and variety of real-world sur-
faces, physical models of the BTF may be quite compli-
cated. Current physically based models are more suit-
able for reflectance prediction as opposed to texture. As
such, appearance-based or image-based approaches have
gained favor in the literature. Texture recognition meth-
ods using representations based on measured BTFs in-
clude [4][9][1][2][18]. Texture synthesis or rendering meth-
ods using appearance-based texture representations include
[12][10][16][8][11][6].

The underlying commonality in most existing texture
representations is the use of a collection of images and in-
terpolate new views using a compression of these images.
Generating the texture between the set of sampled imag-
ing parameters requires some type of interpolation. This is
a fundamental limitation of image-based approaches espe-
cially if the number of images (BTF samples) is small. Con-
sider a simple example for clarity. Figure 1 shows the two
images of texture obtained with the illumination direction
at 22.5◦ and 45◦. The predicted texture at 67.5◦ is obtained
by a linear combination of the input textures at L = 22.5◦

and L = 45◦. Also shown for comparison is the actual tex-
ture at L = 67.5◦. The inaccuracies in the predicted texture
are clearly visible. Often in a static image, the inaccuracies,
while visible, are not particularly disturbing. But if we con-
sider the continuous change of illumination direction, these

inaccuracies become large visual artifacts.
Figure 2 shows the cross section of a geometric structure

and the cast shadow that appears for the illustrated illumi-
nation. Consider that as the illumination changes continu-
ously, the shadow shape changes continuously. Movement
of the shadow borders is an important perceptual cue that
provides and impression of the 3D nature of the geomet-
ric structure, and therefore improves the appearance of the
actual surface texture.

In this paper we present a new model of surface tex-
ture that incorporates both reflectance (images) and limited
but useful geometric information. We recognize that while
reflectance alone is not sufficient for modeling texture, a
full geometry based approach is neither practical (it’s hard
to measure fine-scale geometry) nor sufficient (even if you
have geometry you need the texture and shading for accu-
rate modeling). Our model is a hybrid of geometry and re-
flectance models and has key advantages in a wide range of
applications. Notably, for appearance prediction, the repre-
sentation that can handle the non-linear effects of cast shad-
ows and occlusions. While we have motivated the problem
with rendering, the representation has significant implica-
tions in the areas of texture classification, point correspon-
dences, as well as texture synthesis.

2 Method

2.1 Geometric Textons

Our method assumes that the local geometry in a surface
texture consists of a finite number of geometric configura-
tions called geometric textons. Furthermore, we assume that
these geometric textons can be estimated using image obser-
vations. We are given N images of a surface texture corre-
sponding to N different combinations of L, V . This image
set is the sampled BTF. Standard stereo is not used in order
to avoid the task of point correspondences. Also, we don’t
use photometric stereo because the local surface normal is
not sufficient for cast shadows. Instead we estimate the lo-
cal geometric structure and absolute height using a finite
library of geometric primitives. This approach is motivated
by the surface structure comprising a fine-scale geometric
height variation that has limited range and exhibits some
degree of spatial invariance. That is, local structure repeats
and we expect the local structure to be well characterized
by a finite set of predefined primitives. Thus our method is
fundamentally different from [19], which explicitly recov-
ers dense shape using shadow graphs, shape-from-shadow
and shape-from-shading methods.

The basic schematics of our approach are illustrated in
Figures 3, 4 and 5. We begin by learning a library of geo-
metric textons. A key property of the geometric textons is
that they contain information about absolute height in addi-
tion to local surface normals in a small neighborhood (e.g.
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Figure 3: Example surfaces with known geometry are used to
learn repeating geometric configurations which are called geomet-
ric textons.
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Figure 4: Estimation of the local geometric texton. The sampled
BTF of a novel surface is given. Then, the normalized geometric
texton is estimated. Finally, the family of geometric textons with
the same surface normal configuration but different heights is then
considered and the closest match is used as the estimated geomet-
ric texton. To reconstruct geometry overlapping geometric textons
are averaged.

7 × 7). While the overall surface structure can be obtained
by the surface normals, absolute height is required to re-
cover cast shadows and occlusions. The next step is to label
observations of a novel sample by using the sparsely sam-
pled BTF to estimate the local geometric primitive at each
pixel. The estimation of the local primitive is done in a two
stage approach. First, primitives with surface normal in-
formation but no absolute height information are estimated.
We use the term normalized geometric textons when refer-
ring to these geometric primitives. Once the normalized ge-
ometric texton has been identified, the absolute height is
obtained by a comparison to the sampled BTF. After the
map of labeled surface points is established, we reconstruct
an estimate of the local fine-scale geometry. While this re-
construction is coarse, the key geometric structures which
contribute to cast shadows and occlusions are recovered.

2.2 Library of Geometric Textons

We assume that a finite library geometric textons can be
used to represent the local fine scale geometry. For example
these primitives correspond to height edges, ridges, etc. We
define this library of geometric textons using a set of train-
ing samples with known geometry and k-means clustering.
As in appearance-based texton methods such as [9][1, 2],
we use training images to obtain the library, however here
we cluster on geometry information instead of intensity in-
formation. The training surfaces are a set of surfaces that
exhibit sufficiently varied surface structure so that a library
can be created with these examples. The training surfaces
are not the surfaces of interest. Unlike the training images,
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Figure 5: The sampled BTF is used to obtain a reflectance based
estimate of the Ir. The reconstructed geometry is used to obtain
a different estimate Ig . When L, V is not in the set of sampled
imaging parameters and when the BTF sampling is sparse, the cast
shadow information in Ig will be much better than Ir . A blended
result I(L, V ) combines Ig and Ir.

the novel surface shown as the input in Figure 4 has no prior
geometric information. In fact, for our results we use syn-
thetic rough surfaces for training, generated by simulating
two dimensional gaussian random fields that has a gaus-
sian covariance function. By varying the roughness and the
effective correlation length, various input surfaces can be
achieved.

For clustering geometry, we consider a 7 × 7 patch of
surface height values, where the center value is subtracted
so that each patch as zero height in the center. In addition
we consider the surface normal in the center of the patch.
Therefore there is a 52 dimensional vector g at each surface
point is given by

g = [h(1) h(2) ... h(49) nx ny nz], (1)

where h is the height vector for the 7× 7 patch and the sur-
face normal is given by nx, ny, nz . In practice the surface
normal must be scaled so that it contributes to the clustering
result.

2.3 Estimating Geometric Texton Labels

A novel surface is assigned geometric texton labels in the
following manner. Assume that we have a sparsely sampled
BTF fs consisting of N images where

fs(x, y, i) = f(x, y, Li, Vi) i ∈ [1..N − 1]. (2)

We assume no prior geometry, e.g. from stereo, laser scan-
ning, or other methods. The hypothesis is that the local re-
flectance distribution observed under several viewing and
illumination directions is sufficient to infer the local geo-
metric primitive or texton.

Computationally the estimation of the local geometric
texton relies on comparing the observed BTF with the pre-
diction obtained by rendering the geometric texton. In or-
der to render the geometric texton, we must choose a shad-
ing model and for simplicity Lambertian shading is chosen.
However, any shading model, or multiple shading models,
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Figure 6: An illustration of the normalized geometric textons
with k = 20.

could be employed. Also, the surface need not strictly ad-
here to the shading model, as long as the best match to the
observed BTF is the correct geometric texton.

Let k denote the number of geometric textons. For each
of the k geometric textons and for each of the N imaging
parameters Li, Vi, we render a 7 × 7 image. The center
pixels of these images form a vector v of length N for each
of the k geometric textons. At each pixel x, y, we have an N
dimensional vector u from the sampled BTF fs(x, y). The
correct geometric texton label l at that pixel is given by

l = argmaxj (vj · u) j ∈ [1..k]. (3)

At this point, the geometric textons considered have zero
height at the center as described in Section 2.2. These tex-
tons are the normalized geometric textons. To get absolute
height instead of relative height, we consider linear transfor-
mations of the height vector h encoded within the primitive
g that best match fs. To reconstruct the geometry we put the
7×7 region of height information in the correct position and
average the overlapping regions.

2.4 Combining Reflectance and Geometry

Consider the goal of generating the full BTF f(x, y, L, V )
from the sampled BTF fs. Using only reflectance informa-
tion in the form of images, some type of interpolation is
needed. For example, if eigenspace methods are used, then
a linear combination of the basis images is required to give
us f(x, y, L, V ). Alternatively, if 3D textons are used as
in [9][10], then the appearance vectors associated with the
3D textons must be interpolated to get the correct texture
image.

For an arbitrary L, V , let Ir denote the texture image
obtained using only reflectance information fs as shown in
Figure 5. Let Ig be the image obtained by rendering the
reconstructed geometry. Figure 5 illustrates that a combina-
tion of this reflectance and geometric information is used to

obtain a prediction with accurate cast shadows. The basic
idea is that Ir is a good prediction except where there are
cast shadows. The location of the cast shadows can be pre-
dicted using Ig . Specifically, a binary mask M is created
to indicate the location of the cast shadows. In practice, the
mask is blurred to remove abrupt intensity changes. The
two images Ir and Ig are blended to get the result I given
by

I = IrM + Ig(1 − M). (4)

This equation explicitly shows that the representation is a
hybrid of reflectance and geometric methods and motivates
the name hybrid texton method. Note that because Ig is pri-
marily used for cast shadow information, the exact shading
model used in the intermediate rendering step in Figure 5 is
not critical.

3 Results

To illustrate how this representation can be used, we show
result of predicting texture appearance. Given a sampled
BTF fs, we wish to predict the image using imaging pa-
rameters L, V , where L, V is not in the set of N imaging
parameters Li, Vi. For our results, the number of classes
k = 20, and the number of BTF sample image N = 9. The
height data from the k geometric textons is illustrated in
Figure 6. Notice these local primitives correspond to basic
structural elements.

We use texture images in the CUReT database [5] from
Sample28 (crumpled paper) and Sample11(rough plaster).
An example of the 9 BTF images used in the estimation is
shown in Figure 7. The prediction results are shown in Fig-
ure 8, 9 and 10. In each of these results the frontal view
image with L = 67.4 is not included in the sampled BTF.
It is shown as ground truth to evaluate the quality of the
rendered result. In each result, the BTF images used for in-
terpolation to get Ir correspond to L = 22.5◦ and L = 45◦.
A simple interpolation is sufficient to match the intensities
everywhere except the cast shadow region. Since no simi-
lar cast shadows exist in the 9 BTF images, the cast shad-
ows cannot be predicted by any other linear combination of
these images. The figures show Ir, Ig and the final result.
By comparing the rightmost images (top and bottom row) it
is clear that the final result predicts the overall appearance
including cast shadows.

4 Implications for Vision

While we have motivated the problem with appearance pre-
diction, the representation has significant future implica-
tions in other areas. Texture recognition and classification
may be improved with this representation especially when
the training images are obtained with different imaging pa-
rameters than the testing conditions. The fundamental prob-
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Figure 7: BTF samples for crumpled paper used in generating the result in Figure 8. For these results, N = 9 which means fs consists of
9 texture images.

Figure 8: Predicted texture appearance using hybrid texton method using crumpled paper. Top row: texture image with L = 22.5◦ (left),
L = 45◦ (center), and L = 67.5◦ (right). The viewing direction is frontal for each of these images. The sampled BTF fs for this example
did not contain the rightmost image with L = 67.5◦. The goal in this result is to predict this texture image. Bottom row: Ir (left), Ig

(center), predicted image I(L,V ) with L = 67.5. Compare the rightmost image of both rows to compare ground truth (top row) with the
predicted image (bottom row).
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lem of point correspondences may be assisted because the
underlying surface representation can predict the appear-
ance of the corresponding region in the other image.

5 Summary and Conclusion

We present a hybrid texton method which explicitly esti-
mates concise geometric information in the form of geo-
metric textons that encode local height distribution. This
approach allows prediction of the key property of appear-
ance that can only be obtained using geometry, namely cast
shadows. While cast shadows may be cursory information
in some scenes, for rough surfaces and other 3D texture,
these cast shadows are abundant and important. Our ap-
proach can also be extended to predict occlusion areas and
since the problem of cast shadows and occlusions are essen-
tially the same geometric problem.
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Figure 9: Predicted texture appearance using hybrid texton method using another example of crumpled paper. Top row: texture image
with L = 22.5◦ (left), L = 45◦ (center), and L = 67.5◦ (right). The viewing direction is frontal for each of these images. The sampled
BTF fs for this example did not contain the rightmost image with L = 67.5◦. The goal in this result is to predict this texture image.
Bottom row: Ir (left), Ig (center), predicted image I(L, V ) with L = 67.5. Compare the rightmost image of both rows to compare ground
truth (top row) with the predicted image (bottom row).

Figure 10: Predicted texture appearance using hybrid texton method using rough plaster. Top row: texture image with L = 22.5◦ (left),
L = 45◦ (center), and L = 67.5◦ (right). The viewing direction is frontal for each of these images. The sampled BTF fs for this example
did not contain the rightmost image with L = 67.5◦. The goal in this result is to predict this texture image. Bottom row: Ir (left), Ig

(center), predicted image I(L,V ) with L = 67.5. Compare the rightmost image of both rows to compare ground truth (top row) with the
predicted image (bottom row).
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