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Abstract. In this paper we present a new methodology of class discovery and
clustering validation tailored to the task of analyzing gene expression data. The
method can best be thought of as an analysis approach, to guide and assist in
the use of any of a wide range of available clustering algorithms. We call the new
methodology consensus clustering, and in conjunction with resampling techniques, it
provides for a method to represent the consensus across multiple runs of a clustering
algorithm and to assess the stability of the discovered clusters. The method can also
be used to represent the consensus over multiple runs of a clustering algorithm with
random restart (such as K-means, model-based Bayesian clustering, SOM, etc.), so
as to account for its sensitivity to the initial conditions. Finally, it provides for a vi-
sualization tool to inspect cluster number, membership, and boundaries. We present
the results of our experiments on both simulated data and real gene expression data
aimed at evaluating the effectiveness of the methodology in discovering biologically
meaningful clusters.

1. Introduction

The problem of discovering new taxonomies (classifications of objects
according to some natural relationships) from data has received con-
siderable attention in the statistics and machine learning community.
In this paper, we are concerned with a particular type of taxonomy
discovery, namely, cluster analysis, the discovery of distinct and non-
overlapping sub-populations within a larger population, the member
items of each sub-population sharing some common features or proper-
ties deemed relevant in the problem domain of study [17]. This type of
unsupervised analysis is of particular significance in the emerging field
of functional genomics and gene expression data analysis, where the
need for the molecular-based refinement of broadly defined biological
classes is an active field of study, with potentially high payoffs in cancer
diagnosis, prognosis, and treatment, among others.

Fundamental issues to be addressed when clustering data include:
i) how to determine the number of clusters; and ii) how to assign
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confidence to the selected number of clusters, as well as to the in-
duced cluster assigments. The latter issue is particularly important in
gene expression data analysis, where the problem of a relatively small
sample size is compounded by the very high dimensionality of the data
available, making the clustering results especially sensitive to noise and
susceptible to over-fitting.

Recent proposals exist for the use of resampling and cross validation
techniques to simulate perturbations of the original data set, so as
to assess the stability of the clustering results with respect to sam-
pling variability [3, 4, 10, 18, 22, 31]. In particular, in [4] the use of
bootstrapping to assess clustering stability and to validate the results
output by hierarchical clustering was introduced. In this paper we build
upon some of those ideas, and develop a general, model-independent
resampling-based methodology of class discovery and clustering valida-
tion and visualization tailored to the task of analyzing gene expression
data. One of the important features of the proposed methodology is
that all of the information provided by the analysis of the resampled
data can be graphically visualized, and incorporated in the decisions
about clusters’ number and cluster membership. As we will show, the
inspection of the visualized data can often help gain additional insight
into the recommendations returned by the algorithm.

We call the new methodology consensus clustering, as it provides for
a method to represent the consensus across multiple runs of a clustering
algorithm, to determine the number of clusters in the data, and to
assess the stability of the discovered clusters. The method can also be
used to represent the consensus over multiple runs of a clustering al-
gorithm with random restart (such as K-means, model-based Bayesian
clustering, SOM, etc.), so as to account for its sensitivity to the initial
conditions. Finally, it provides for a visualization tool to inspect cluster
number, membership, and boundaries.

The remainder of this manuscript is organized as follows. In Sec-
tion 2, we briefly discuss some related work and some outstanding issues
in cluster analysis. Section 3 describes the proposed methodology in
detail. In particular, we formally define consensus and methods for its
measurement and visualization. In Section 4, we present the results of
our experiments on both simulated data and real gene expression data
aimed at evaluating the effectiveness of the methodology in discovering
biologically meaningful clusters. We conclude the manuscript with a
discussion of the results and of possible directions for further research.
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2. Background

In this section, we briefly survey some of the more commonly used
clustering algorithms. This is not meant to be a comprehensive review.
Rather, it is aimed at emphasizing some of the outstanding issues in
cluster analysis. The interested reader can find a more comprehensive
survey of the topic in several recent books and papers (e.g., [10, 15, 17]).

In functional genomics, agglomerative hierarchical clustering (HC)
has been widely adopted as the unsupervised analysis tool of choice,
mainly because of its intuitive appeal and its visualization proper-
ties [12]. By not committing to a specific number of clusters, HC
provides for a multi-resolution view of the data that can be extremely
useful in exploratory data analysis. On the other hand, the method
is exposed to the risk of incorporating the biases and preconceptions
of the analyst because it does not provide for an “objective” criterion
to establish the number of clusters and the clusters’ boundaries. Fur-
thermore, the resulting trees can lock in accidental features reflecting
idiosyncrasies of the agglomeration rule. This is due to the determin-
istic nature of the agglomeration rule and the bottom-up direction of
the agglomeration. An interesting recent proposal tries to circumvent
some of HC’s limitations, by providing for a principled model-based
agglomeration rule that allows for the automatic determination of the
number of clusters [27]. However, the proposed rule, which is based on
a Bayesian score, was devised for the clustering of genes only.

Iterative descent clustering methods, such as the self-organizing map
(SOM) [20, 21, 30] and K-means clustering [15], circumvent some of the
shortcomings of HC by providing for univocally defined clusters and
cluster boundaries. However, they lack the intuitive and visual appeal
of HC, and the number of clusters must be chosen a priori. Methods of
model-based probabilistic clustering [1, 6, 33, 38] automatically select
the number of clusters. These methods are often based on the Bayesian
paradigm, thus allowing for the seamless combination of prior knowl-
edge and observational data. A possible difficulty in their use is due to
the distributional assumptions on which they are based. In particular,
most of these methods are based on asymptotic approximations of the
marginal likelihood, whose accuracy tends to decrease as the sample size
decreases [7, 19]. This can clearly be a problem in the “large N , small
p” paradigm (i.e., high dimension and small sample size) typical of gene
expression data [35, 36]. An additional shortcoming common to all the
iterative, greedy search-based clustering methods is their sensitivity to
the search’s starting point. This makes the clustering results harder to
trust, since it may be difficult to reconcile inconsistent results returned
by multiple runs of the algorithm.
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In addition to model-based clustering, several other strategies have
been proposed for automatically selecting the number of clusters [10,
23, 32, 39]. Most of these strategies attempt to minimize some measure
of cluster compactness, that is, of the within-cluster vs between-cluster
variability. Since this measure is bound to decrease even in the ab-
sence of a multi-cluster signature, some form of penalty for “model
complexity” is required. Some of these penalties represent analytically
derived measures of the minimum improvement in cluster compactness
that can be expected as the number of clusters is increased under a
null hypothesis encoding for the absence of clusters [14, 39]. In most
cases, an appropriate encoding of the null hypothesis does not allow
for the analytical derivation of the corresponding penalty. An empirical
estimate of the penalty can then be computed based on some form of
permutation test, so as to try to capture as much as possible of the
idiosyncrasies of the data distribution of interest [10, 32].

An extremely important issue in cluster analysis is the validation
of the clustering results, that is, how to gain confidence about the
significance of the putative clusters, both in terms of cluster numbers
and in terms of cluster assignments. Lacking an external objective cri-
terion — the equivalent of a known class label in supervised learning
— this validation becomes somewhat elusive. While some principled
statistical procedures exist for testing the significance of a clustering
result [5], these have only been derived for low-dimensional data, and
it is not clear how well they apply to high-dimensional gene expression
data. Similarly, Bayesian approaches to model-based clustering provide
for measures such as the Bayes factor [19] to assign confidence to the
attained results. However, as already pointed out, the computation of
the Bayes factor is often based on asymptotic approximations whose
accuracy deteriorates as the sample size decreases [7, 19]. This clearly
does not detract from these methods, since virtually every clustering
method is based — whether implicitly or explicitly — on several as-
sumptions about the data-generating process. However, it points to the
fact that the last word on their usefulness must come from an empirical
evaluation of their performance when applied to gene expression data,
such as in [38].

An alternative approach to cluster validation is based on resam-
pling [3, 4, 10, 18, 22, 31]. Methods adopting this approach use different
resampling schemes to simulate perturbations of the original data set,
so as to assess the stability of the clustering results with respect to
sampling variability. The underlying assumption is that the more stable
the results are with respect to the simulated perturbations, the more
these results are to be trusted. One of the appeals of some of these
methods is that, by using the data itself to simulate the perturbations,
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the resulting perturbed data can incorporate the relevant dependencies
among the observed features. Clearly, whether or not these dependen-
cies are then modeled depends on the clustering algorithm used. A
possible drawback of these methods is in the fact that by not explicitly
modeling the assumptions underlying the data-generating process, it is
sometime difficult to rigorously evaluate the significance of the results
produced. The empirical evaluation of these methods on real data thus
becomes all the more important.

The clustering methodology we propose in this paper falls squarely
in the category of resampling-based methods. The extensive exper-
imental evaluation reported in Section 4 tries to address the latter
concern.

3. Methodology

The main motivation for the proposed methodology is the need to assess
the “stability” of the discovered clusters, that is, the robustness of the
putative clusters to sampling variability. The basic assumption of this
method is intuitively simple: if the data represent a sample of items
drawn from distinct sub-populations, and if we were to observe a differ-
ent sample drawn from the same sub-populations, the induced cluster
composition and number should not be radically different. Therefore,
the more the attained clusters are robust to sampling variability, the
more we can be confident that these clusters represent real structure.

To this end, perturbations of the original data can be simulated by
resampling techniques. The clustering algorithm of choice can then be
applied to each of the perturbed data sets, and the agreement, or con-
sensus, among the multiple runs can be assessed. Consensus clustering
simply formalizes this procedure, and it is summarized in pseudo-code
format in Figure 1. In the remainder of this section we illustrate in
detail each of the procedure’s steps.

3.1. Notation

Given a data set of interest D = {e1, e2, . . . , eN}, the goal of clus-
tering is to partition the observed data into a set of exhaustive and
non-overlapping clusters. Formally, a K-cluster partition P of D can
be defined as P ≡ {P1, P2, . . . , PK}, such that

⋃K
k=1 Pk = D, and

Pi ∩ Pj = ∅, ∀i,j : i 6= j.
While the proposed methodology is quite general, and can be both

applied to the clustering of genes and samples/experiments, we will
mainly focus on the latter task. However, in order to emphasize the
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Procedure Consensus Clustering

input: a set of items D = {e1, e2, . . . , eN}
a clustering algorithm Cluster
a resampling scheme Resample
number of resampling iterations H
set of cluster numbers to try, K = {K1, . . . ,Kmax}

for K ∈ K do
M ← ∅ {set of connectivity matrices, initially empty}
for h = 1, 2, . . . ,H do

D(h) ← Resample(D) {generate perturbed version of D}
M (h) ← Cluster(D(h),K) {cluster D(h) into K clusters}
M ←M ∪M (h)

end {for h}
M(K) ← compute consensus matrix from M = {M (1), . . . ,M (H)}

end {for K}
K̂ ← best K ∈ K based on consensus distribution ofM(K)’s {§ 3.3.1}
P ← Partition D into K̂ clusters based onM(K̂)

return P and {M(K) : K ∈ K}

Figure 1. High level pseudo-code for the consensus clustering procedure.

generality of the method, we will mostly refer to the elements being
clustered (the ei ∈ D) as items, and the “coordinates” of the data

Table I. Summary of the notation used.

Symbol Description

D = {e1, . . . , eN} Generic dataset (ei’s are the items to be clustered)
N Number of items in a dataset
P = {P1, . . . , PK} Partition of D into K clusters
K, Kmax Number of clusters, max number of clusters
Nk Number of items in cluster k

H Number of resampling iterations
D(h) Dataset obtained by resampling D (h-th iteration)
M, M (h) Connectivity matrix, corresponding to h-th iteration
M,M(K) Consensus matrix, corresponding to K clusters
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space as features. When clustering genes, these will be the items, and
the features will be the observations of a gene across many experiments.
When clustering experiments, these will be the items, and the features
are the genes whose expression is measured for each experiment. Table I
presents a summary of the symbols used throughout the paper.

3.2. Measuring consensus

Assuming a resampling scheme and a clustering algorithm have been
selected, we need to devise a method for representing and quanti-
fying the agreement among the clustering runs over the perturbed
datasets. To this end, we define a consensus matrix. A consensus matrix
is an (N × N) matrix that stores, for each pair of items, the pro-
portion of clustering runs in which two items are clustered together.
The consensus matrix is obtained by taking the average over the con-
nectivity matrices of every perturbed dataset. More specifically, let
D(1), D(2), . . . , D(H) be the list of H perturbed datasets obtained by
resampling the original dataset D. Also, let M (h) denote the (N ×N)
connectivity matrix corresponding to dataset D(h) (more precisely, cor-
responding to the result of applying the clustering algorithm of choice
to dataset D(h)). The entries of this matrix are defined as follows:

M (h)(i, j) =
{

1 if items i and j belong to the same cluster ,
0 otherwise .

(1)

Finally, let I(h) be the (N ×N) indicator matrix such that its (i, j)-th
entry is equal to 1 if both items i and j are present in the dataset D(h),
and 0 otherwise. The need for the indicator matrix is due to the use
of resampling. Most resampling schemes — such as bootstrapping, or
subsampling — yield datasets that do not include all items from the
original dataset. We thus need to keep track of the number of iterations
in which two items are both included in the resampled dataset.

The consensus matrix M can then be defined as a properly nor-
malized sum of the connectivity matrices of all the perturbed datasets
{D(h) : h = 1, 2, . . . ,H}:

M(i, j) =
∑

h M (h)(i, j)∑
h I(h)(i, j)

. (2)

That is, the entry (i, j) in the consensus matrix records the number
of times items i and j are assigned to the same cluster divided by the
total number of times both items are selected. It should be clear that
the consensus matrix is symmetric, in that M(i, j) = M(j, i), for all
i and j. We will refer to the entry (i, j) in the consensus matrix as

consensus4pdflatex.tex; 9/12/2003; 16:48; p.7



8 Stefano Monti et al.

the consensus index for the corresponding item pair (irrespective of the
items’ order).

As defined, each entry inM is a real number between 0 and 1, and
perfect consensus corresponds to a consensus matrix M with all the
entries equal to either 0 or 1. Furthermore, if the items in the matrix
were arranged so that items belonging to the same cluster are adjacent
to each other, perfect consensus would translate into a block-diagonal
matrix with non-overlapping blocks of 1’s along the diagonal — each
block corresponding to a different cluster — surrounded by 0’s.

Another important property of the consensus matrix is that it pro-
vides for a similarity measure that can be used in conjunction with
an agglomerative hierarchical tree construction algorithm to yield a
dendogram of item adjacencies. That is, 1−M defines a new distance
matrix that can be used in place of the usual measures, such as Eu-
clidean distance, Pearson correlation, or Kullback-Leibler divergence,
among others. This is a point to which we will return.

3.2.1. Consensus matrix reordering and visualization
The consensus matrix lends itself naturally to be used as a visual-
ization tool to help assess the clusters’ composition and number. In
particular, if we associate a color gradient to the 0-1 range of real
numbers, so that white corresponds to 0, and dark red corresponds to
1, and if we assume the matrix is arranged so that items belonging
to the same cluster are adjacent to each other (with the same item
order used to index both the rows and the columns of the matrix), a
matrix corresponding to perfect consensus will be displayed as a color-
coded heat map characterized by red blocks along the diagonal, on a
white background. Figure 2 shows the color-coded heat maps obtained
by applying consensus clustering to two simulated datasets, Uniform1
and Gaussian3. Dataset Uniform1 is generated from a uniform 600-
dimensional hypercube. Dataset Gaussian3 represents the union of
three Gaussian distributions in a 600-dimensional space. The heat maps
shown in Figure 2 represent the consensus over 500 iterations for K = 3
(details about the data and the consensus clustering settings needed to
produce the matrices of Figure 2 are given in Section 4). It is evident
from Figure 2 that the heat map corresponding to Gaussian3 displays
a well defined 3-block structure, while the heat map corresponding to
Uniform1 shows no such structure.

In the example of Figure 2, since the datasets were artificially cre-
ated, the items are already sorted by their known cluster membership
(so that items belonging to the same cluster are displayed next to each
other) thus yielding the block-diagonal structure shown. In general,
however, the cluster membership is not known in advance, and an
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Figure 2. Color-coded heat maps corresponding to the consensus matrices
M(3) for Uniform1 and Gaussian3.

item order needs to be chosen. We can use the consensus matrix itself
to determine the optimal item order. In particular, if we carry out
hierarchical clustering with the consensus matrix as similarity matrix,
the induced dendogram will have its leaves arranged so as to have items
with highest consensus index adjacent to each other, thus maximizing
the block-diagonal nature of the heat map ordered accordingly (it is
important to emphasize again that the same item order is used to index
both the rows and the columns of the matrix). For the leaf-ordering
task, we use the optimal leaf-ordering algorithm described in [2].

As we will show, the visualization of a consensus matrix provides
for a very powerful tool to assess the stability of the putative clusters,
as well as their optimal number.

3.2.2. Consensus’ summary statistics
Based on the consensus matrix, we can define summary statistics ac-
counting for the stability of a given cluster as well as of a cluster’s
members. These statistics can be used to establish a ranking of the
clusters in terms of their stability, as well as to identify the more
representative items within each clusters. For each cluster k ∈ K, we
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define the cluster consensus m(k) and, for each item ei ∈ D and each
cluster k, we define the item consensus mk(i).

Let us first define Ik as the set of indices of items belonging to cluster
k, that is, Ik = {j : ej ∈ k}. We can then define a cluster’s consensus
as follows:

m(k) =
1

Nk(Nk − 1)/2

∑
i,j∈Ik

i<j

M(i, j) , (3)

that is, as the average consensus index between all pairs of items be-
longing to the same cluster. Furthermore, for each item ei, and each
cluster k, the corresponding item consensus can be defined as

mi(k) =
1

Nk − 1{ei ∈ Ik}
∑
j∈Ik
j 6=i

M(i, j) , (4)

where 1{cond} is the indicator function that is equal to 1 when cond is
true, and 0 otherwise. The item consensus mi(k) measures the average
consensus index between item ei and all the (other) items in cluster k.
For example, in case of perfect consensus (i.e., of a consensus matrix
containing 0’s and 1’s only), the cluster consensus m(k) would be 1 for
all k’s. Similarly, for a given k the item consensus mi(k) would be 1 for
all items ei ∈ k, and 0 for the others.

These measures can be used to quantify the stability of each cluster,
and to rank items within clusters in terms of how representative of
a given cluster they are (e.g., when clustering experiments, how the
expression pattern of the observed genes for a given experiment is
prototypical of the experiments within that cluster).

3.3. Determining the number of clusters

The properties of the consensus matrix illustrated in the previous sec-
tion also suggest a method for finding the number of clusters that
best fits the data. In particular, given that perfect consensus translates
into a consensus matrix with all the entries set to either 1 or 0, we
should interpret deviation from this optimal scenario as an indication
of lack of stability of the putative clusters. At the most general level,
the idea is to construct a consensus matrix M(K) for each of a series
of cluster numbers (K = 2, 3, . . . ,Kmax), to compare the resulting
consensus matrices, and to select the cluster number corresponding
to the “cleanest” matrix (i.e., a matrix containing 0’s and 1’s only).
In this section, we introduce and discuss a measure of consensus based
on the matrix M. We refer to this measure as consensus distribution,
as it is based on an assessment of how the entries of the consensus
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matrix are distributed within the 0-1 range. The extent to which this
distribution is skewed toward 0 and 1 is taken as an indication of good
clustering. The measure we propose is closely related to the concept of
concentration of a distribution [8]. As we will show in the experimental
evaluation of Section 4, this measure works remarkably well when tested
on both simulated and gene-expression datasets.

3.3.1. Consensus distribution
If we were to plot a histogram of a consensus matrix entries (i.e., a
histogram of the N(N − 1)/2 entries M(i, j)’s for i < j), perfect
consensus would translate into two bins centered at 0 and 1. The
histogram corresponding to a noise cloud devoid of any signal would
translate in the limit into a single bin centered at some fractional
value between 0 and 1 (the exact fractional value would depend on the
number K of clusters requested, and it would decrease as K increases,
reducing to 0 when K equals the number of items in the dataset). This
is a consequence of the fact that any two items would have an equal
probability of being clustered together.

With these considerations in mind, we return to the two simulated
datasets, Uniform1 and Gaussian3, introduced in the previous section,
and whose consensus matrices are shown Figure 2. Figure 3.a shows
the corresponding histograms of consensus indices. Notice the bimodal
nature of the histogram for Gaussian3 (with modes around 0 and 1),
and the largely unimodal nature of the histogram for Uniform1. Few
words of explanation regarding the histogram for Uniform1 are in order.
The nature of hierarchical clustering is such that, even in the absence
of a multi-cluster signature, the procedure will still establish a ranking
of items according to their distance from one another. Furthermore,
the relative distance between item pairs remains the same under the
resampling scheme adopted (subsampling, see Section 3.4). Therefore,
when no detectable multi-cluster structure is present in the data, the
procedure will tend to group most of the items in a single cluster
(corresponding to the large mode around 1 in the histogram), with
few singleton items to account for the other clusters (corresponding to
the trailing long tail toward 0 in the histogram).

For a given histogram, we can define and plot the corresponding
empirical cumulative distribution (CDF) defined over the range [0, 1]
as follows:

CDF(c) =
∑

i<j 1{M(i, j) ≤ c}
N(N − 1)/2

, (5)
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Figure 3. Measuring consensus for different K’s on the simulated datasets
of Figure 2: a) histograms of the entries of the consensus matrices M(3);
b) empirical CDFs corresponding to the entries of consensus matrices M(K)

for K = 2, 3, . . . , 6; c) proportion increase ∆(K) in the area under the CDF.

where 1{. . .} denotes the indicator function,M(i, j) denotes entry (i, j)
of the consensus matrixM, and N is the number of rows (and columns)
ofM.

Figure 3.b shows plots of the CDFs for the histograms of Figure 3.a.
The plots also include the CDFs corresponding to consensus matrices
obtained for K’s other than 3 (namely, K = 2, 3, . . . , 6). For Gaussian3,
it is clear how the predominance of 0’s and 1’s affects the shape of the
corresponding CDFs, with a step around 0 (the magnitude of which is
equivalent to the proportion of 0’s in the matrix), a flat line reaching
across the 0-1 range, and a second step around 1. Notice how for K = 3
and higher, the shape of the curve approaches the ideal step function,
and how this shape hardly changes as we increase K past 3. The CDF
for Uniform1, on the other hand, displays quite a different shape, with
a gradual climb of values between 0 and 1, reflecting the lack of stability
in cluster membership. The difference between the two CDFs can be
partially summarized by measuring the area under the two curves. The
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area under the CDF corresponding toM(K) is computed based on the
following formula:

A(K) =
m∑

i=2

[xi − xi−1]CDF(xi) , (6)

where the set {x1, x2, . . . , xm} is the sorted set of entries of the consen-
sus matrixM(K) (with m = N(N − 1)/2).

Notice that the area for Gaussian3 is considerably greater than the
area for Uniform1. However, the important comparison is not between
CDFs corresponding to different datasets, but between CDFs for dif-
ferent K’s computed over the same dataset. The plot of the CDFs for
Gaussian3, shown in Figure 3.b, illustrates the typical bimodal shape
and the progression of curves to be observed when the analyzed dataset
contains actual clusters. As K is increased, the area under the CDF
markedly increases as long as K is less than or equal to Ktrue (as
a consequence of the increase in the number of 0’s in the consensus
matrix). However, when Ktrue is reached, any further increase in the
number of clusters does not lead to a corresponding marked increase
in the CDF area. This is because as we start introducing spurious
clusters, these are inherently unstable, thus leading to an increase in
the number of fractional entries in the consensus matrix (hence, away
from 0). Conversely, for Uniform1 the bimodal shape of the CDFs is
clearly absent, and the area under the CDF keeps increasing in a stable
manner.

This behavior can be summarized by plotting the proportion in-
crease in the CDF area as K increases, computed as follows:

∆(K) =


A(K) if K = 2

A(K+1)−A(K)
A(K) if K > 2 ,

(7)

where A(K) denotes the area under the CDF for the consensus matrix
corresponding to K clusters. The special treatment of K = 2 is due
to the fact that A(1) = 0 (the consensus matrix for K = 1 contains
only 1’s), thus not allowing for the standard computation of relative
increase in the area for K = 2. This “impropriety” of ∆(K) also points
to the fact that it cannot be sensibly used to choose between 1 and 2
clusters, and that inspection of the corresponding CDF curves will be
needed for this purpose.

Figure 3.c plots the value of ∆(K) for different numbers of clusters
K’s. As shown, for Gaussian3 the ∆(K) is significantly larger than 0
only up to K = 3, at which point it levels off (with values close to 0%).
Conversely, for Uniform1, as K increases, the corresponding ∆(K)’s
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remain large (well above a 30% increase, with a maximum of >100%
at K = 3).

It should be pointed out that while the area under the CDF is guar-
anteed to increase when consensus clustering uses hierarchical cluster-
ing in the inner loop, this is not true in general. When using hierarchical
clustering, an increase from K to K +1 clusters is obtained by splitting
one of the available K clusters. The clusters’ boundaries are thus in
agreement, and the consensus matrix M(K+1) is guaranteed to have
a number of 0’s greater than or equal to the number of 0’s in M(K).
Consequently, the area under the CDF is bound not to decrease as K
increases. This is not true of other clustering algorithms. For example,
if we use SOM in the inner-loop, when searching for K+1 clusters, these
do not necessarily follow the boundaries of the clusters obtained when
searching for K clusters. Consequently, the number of 0’s inM(K) is not
a monotonic function of K. In this case, we redefine ∆(K) to measure
the relative area increase with respect to the largest area observed
for any K ′ < K. That is, we replace A(K) with Â(K) in Equation (7),
where Â(K) = maxK′∈{2,...,K} A(K ′). In so doing, we assess the relative
improvement with respect to the best result (the best K) obtained thus
far.

To summarize, the CDFs and the corresponding ∆(K)’s try to quan-
tify the concentration [8] of the consensus distribution. The goal is to
find the K that maximizes this concentration. The selection of the
appropriate number of clusters proceeds by inspection of the CDFs’
shape and progression as K increases. The inspection of a CDF shape
is to assess its bimodality, which suggests the presence of clusters. The
inspection of the CDF progression is to select the largest K that induces
a large enough increase in the area under the corresponding CDF.

3.4. Resampling schemes

In this section, we briefly discuss some of the possible resampling
schemes that can be used within the consensus clustering procedure
illustrated in Figure 1.

A well established resampling scheme is bootstrapping [11], whereby
items are sampled with replacement from the original dataset. One
of the desirable features of this resampling scheme is in its producing
perturbed datasets that have the same size (i.e., the same number of
items) as the original one. This is particularly relevant when trying to
determine the number of clusters present in the data, an assessment
that can be highly dependent on the sample size. However, bootstrap-
ping produces datasets with identical replicate items, thus artificially
inflating the compactness of the resulting dataset (e.g., if a given item
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is selected n times in a bootstrap dataset, the clustering algorithm
might deem those n items – which are actually n replicates of the same
item – worth a cluster by themselves). In light of this shortcoming,
we will mainly focus on subsampling techniques, whereby a subset of
items is sampled without replacement from the original dataset. While
subsampling produces datasets smaller than the original one, our ex-
perimental evaluation shows that this does not have an adverse effect
on the successful estimate of the “correct” number of clusters.

Given the very high dimensionality of the gene-expression data,
when clustering samples it is possible to adopt gene resampling schemes,
where the perturbations of the original dataset are obtained by selecting
different subsets of genes, with or without replacement, at each iter-
ation. That is, at each iteration clustering is performed based on the
projection of the original dataset onto the subspace of selected genes.

Variations of this basic scheme can be obtained by associating non-
uniform weights to the candidate genes, so that different genes will be
sampled with different frequency. With this approach, we can incor-
porate prior information in the clustering process by assigning higher
weight to genes considered more informative by some external criterion.
For example, we might want to favor genes associated to biological
pathways deemed particularly relevant to the phenotype of interest.

Feature selection for clustering purposes is a particularly difficult
task, since a class label to guide this selection is not available. A wel-
come benefit of using gene resampling is that it allows us to evaluate
how sensitive the clustering results are to the particular choice of genes
included in the dataset used for analysis.

4. Experimental evaluation

We tested our clustering methodology on several simulated and real
datasets. In this section, we first summarize the evaluation methodology
and the evaluation metrics used. We then briefly describe the simulated
and real datasets used for the evaluation. Finally, we report and discuss
the results of the evaluation.

4.1. Evaluation methodology

The evaluation we carry out is aimed at assessing how good the pro-
posed clustering method is at recovering known clusters from both
simulated and gene-expression microarray data. To this end, we con-
sider several datasets for which a multi-class distinction (a phenotype)
is available. Each of this data sets constitutes the gold standard against
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which we evaluate the clustering results. We refer to the gold standard
partition as classes, while we reserve the word clusters for the partition
returned by the clustering algorithm.

4.1.1. Evaluation metrics
The cluster composition can be evaluated by measuring the agreement
of the cluster partition with the known phenotype. If the number of
clusters were always correct (i.e., equal to the known number of classes),
we could use the classification error rate as the measure of agreement.
That is, once we establish a mapping between cluster labels and known
class labels, we can interpret cluster assignment as a conventional clas-
sification task, and measure its error rate. However, the error rate is
harder to interpret when the number of clusters is incorrect. To this
end, we use the adjusted Rand index [16], a measure of agreement
between alternative data partitions that can be used even when con-
sidering partitions with different numbers of clusters [24]. The adjusted
Rand index ranges between 0 and 1, with 1 corresponding to perfect
agreement, and 0 corresponding to the expected value of the index
for two random partitions under the assumption of a hypergeometric
distribution for the model of randomness (see Appendix A for details
about its computation).

4.1.2. Experimental design
The details of the experimental design are as follows:

– We apply consensus clustering to the dataset of choice. The output
will include an estimate of the number of clusters K and, for a given
K, a cluster assignment, both of which can be evaluated against the
gold standard. When the estimated number of clusters K is different
from the known number Ktrue, we report the value of the Rand index
for both K and Ktrue. The latter provides additional information
about how well the clustering procedure respects the known class
boundaries.

– As a term of comparison, we also apply the Gap statistic proposed
in [32]. Following [32], let WK denote the within-cluster sum of
squares, and let W ∗

Kb denote the same quantity obtained after ran-
domly permuting the genes/features within each item/experiment.
Then the Gap statistic for K clusters, computed based on B permu-
tation iterations, yields:

Gap(K) =
1
B

[
B∑

b=1

log(W ∗
Kb)

]
− log(WK) . (8)
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The quantity sK = sd(K)
√

1 + 1/B denotes the corresponding stan-
dard deviation corrected for the simulation error. Given a set of
cluster numbers K = {1, 2, . . . ,Kmax}, the selection criterion pro-
posed in [32] returns the first K ∈ K such that Gap(K) ≥ Gap(K +
1)− sK+1. This is also the selection criterion we will use.

– We compare the cluster assignment produced based on the appli-
cation of HC to the consensus matrix, with the cluster assignment
produced by application of HC to the raw data. This comparison is
to evaluate whether we can obtain more accurate cluster assignments
if we use the consensus matrix as a similarity measure in place of the
usual Euclidean distance.

– Since different datasets are inherently more or less difficult to cluster,
in order to evaluate the partition induced by the clustering algorithm,
we compare it to the baseline Rand index produced by a näıve-Bayes
(NB) classifier [9] trained on the same dataset by leave-one-out cross-
validation. It is important to emphasize that the training of the NB
is based on the supervised samples (i.e., the samples including the
class labels), thus making the learning task considerably simpler. The
NB’s error rate gives an indication of the clustering accuracy we may
hope to achieve under much more favorable conditions.

As noted, we have included in the evaluation the results of the ap-
plication of the Gap statistics for the estimation of the number of
clusters. We use the Gap statistic because, similar to our method, it is
model-independent, thus allowing for its adoption in conjunction with
different clustering algorithms. However, we want to emphasize that the
comparison of our method with another model-independent method
is somewhat beside the point. In fact, our proposed methodology is
meant to go beyond the estimation of the number of clusters, by also
providing for a resampling-based method of cluster assignment and
visualization. In other words, the goal of our evaluation, is not to carry
out an exhaustive comparison of methods for estimating the number
of clusters, nor to prove the superiority of our method in this regard.
The main purpose of the inclusion of the Gap statistic is as a term of
reference, so as to be able to relate our results to those obtained based
on a well accepted metric that has been shown to perform reasonably
well in several studies [3, 10, 32].

4.1.3. Consensus clustering settings
We apply consensus clustering to a given data set as outlined in Fig-
ure 1. Consensus clustering requires the specification of a clustering
algorithm (the algorithm Cluster in Figure 1). For this purpose, we
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explore the use of two algorithms: i) hierarchical clustering with average
linkage; and ii) the self organizing map (SOM). For each K we run
H = 500 resampling iterations (H = 200 with SOM, since it takes much
longer to run). At each iteration, the perturbed data set is obtained
by sampling, without replacement, 80% of the items from the original
data. The results produced by consensus clustering include: i) a set of
ordered consensus matrices, one for each of the K’s considered; ii) an
estimate of the number of clusters; and iii) the corresponding cluster
assignment. Cluster number and assignment can be evaluated against
the gold standard.

To determine the number of clusters based on consensus clustering,
we use the consensus distribution, and the proportion change in the
area under the consensus CDF (see Section 3.3.1). The selected K̂
will correspond to the number of clusters where the CDF levels off
and the corresponding ∆(K̂) gets close to zero. Often, this selection
criterion identifies a range of K’s, rather than a single one. However, in
combination with the inspection of the consensus matrix progression,
it is usually possible to unambiguously select a single best K̂. When
ambiguities remain, these will be duly reported in the text and the
corresponding tables.

In most cases we tried up to Kmax = 9 clusters. In some of the larger
datasets (Novartis, St. Jude, and Normal tissues) we set Kmax = 15.
Once the optimal number of clusters K̂ is chosen, we establish the
clusters’ boundaries by using the corresponding consensus matrixM(K̂)

as a similarity measure to feed to a hierarchical clustering algorithm
with average linkage, and by stopping the agglomeration procedure
when K̂ branches are left. The resulting subtrees determine the cluster
members.

The data used were row- and column-normalized (so that both rows
and columns sum to 0 and have a standard deviation of 1). This is
necessary when using consensus clustering with HC, because it yields
well-balanced hierarchical trees, which can in turn be split into non-
trivial (i.e., non-singleton) clusters. Although this data-normalization
is not necessary when using SOM, for comparative purposes we use the
normalized data in all cases.

4.2. Datasets

In this section, we only describe the datasets used, which are listed in
Table II, together with some of their relevant characteristics, such as
number of classes, number of features/genes, and number of items/sam-
ples. The first six datasets represent simulated data, while the last six
represent gene-expression microarray data.
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4.2.1. Simulated data
Uniform1 and Gaussian1 are two datasets generated in order to eval-
uate the behavior of the clustering methodology when applied to data
known not to contain distinct sub-populations. We considered both
the uniform and the Gaussian distributions, as they represent rather
different generating processes, and we were interested in examining how
the corresponding consensus matrices and CDFs would look.

Gaussian3 is the 3-cluster, 60-sample dataset introduced in the ex-
ample of Section 3, Figure 2. It is generated by having 200 distinct
features out of the 600 assigned to each cluster. The data simulates a
pattern whereby a distinct set of 200 genes is up-regulated in one of
three clusters, and down-regulated in the remaining two clusters.

Gaussian4 and Gaussian 5 represent standard mixtures of Gaus-
sians models. In particular, Gaussian4 represents the union of observa-
tions from four bivariate Gaussians, with the same diagonal covariance
matrix Σ = 0.25I, and centered at the four corners of a square with
side length λ = 2. A total of 200 samples, 50 per class, were generated.
Similarly, Gaussian 5 represents the union of observations from 5 bi-
variate Gaussians, 4 of which are centered at the corners of the square
of side length λ, with the 5th Gaussian centered at (λ/2, λ/2). A total
of 250 samples, 50 per class, were generated. We used two values of λ,
namely, λ = 2 and λ = 3, to investigate different levels of overlapping
between clusters.

Finally, we considered a dataset with unequal-size clusters and “gene”
markers of different strength. Simulated6 consists of a 600-gene by 60-
sample dataset. It can be partitioned into 6 classes with 8, 12, 10,
15, 5, and 10 samples respectively, each marked by 50 distinct genes
uniquely up-regulated for that class. Additionally, 300 noise genes (i.e.,
genes having the same distribution within all clusters) are included.
The genes for the different clusters are of varying “sharpness”. That is,
the 50 genes marking the first class are the sharpest — whith highest
differential expression and lowest variation — followed by the 50 genes
for the second cluster, etc. Figure 5.a depicts the expression profile of
the 600 genes within each cluster. Simulated4 is simply a subset of
Simulated6, obtained by removing the two sharpest clusters (clusters
1 and 2).

4.2.2. Gene-expression microarray data
The gene-expression datasets used are listed in Table II, and a very
short description of their content is given in Table III. Further biological
details about these data sets can be found in the referenced papers.
Most data were processed on the Human Genome U95 Affymetrix c©
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Table II. Description of the simulated and real dataset used in the experimental
evaluation.

Dataset # of # of # of Chip
classes samples features type

Uniform1 1 60 600
Gaussian1 1 60 600
Gaussian3 3 60 600
Gaussian4 4 400 2
Gaussian5 5 500 2
Simulated6 6 60 600
Leukemia [13] 3 38 999 HU6800
Novartis multi-tissue [29] 4 103 1000 U95
St. Jude Leukemia [37] 6 248 985 U95
Lung cancer [4] 4+ 197 1000 U95
CNS tumors [25] 5 48 1000 U95
Normal tissues [26] 13 99 1277 U95

microarrays. The leukemia dataset is from the previous-generation Hu-
man Genome HU6800 Affymetrix c© microarray.

To make sure that the known phenotype for a given data set is the
dominant signature in the data, we project the dataset on the space
of gene markers for that phenotype. This is necessary, since we are
using the given phenotype’s information (i.e., its number of classes and
its label assignments) as the gold standard against which to test the
clustering method.1 We use a simple signal-to-noise ratio (SNR) to rank
genes [28], and the final gene pool is obtained by selecting the most up-
regulated genes for each class, where the exact number depends on the
dataset. In particular for a K-class dataset, we select the top n up-
regulated genes for each class by considering the K one-vs-all binary

1 This necessity is best explained by considering a simple, although admittedly
extreme, example. Assume that the dataset of interest consists of breast, prostate,
and lung cancer tissues for which long term survival information is available. Assume
also that this tissue-type phenotype were unknown to us, and that we were to
use, e.g., the 5-year survival as the phenotype against which to test our clustering
algorithm. It is clear that the survival signature, if it exists at all, would be over-
whelmed by, among others, the much stronger (but unknown) tissue-type signature.
Therefore, using the 2-class survival distinction as our gold standard would be totally
inappropriate since clearly it is not the dominant signature in the data.
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Table III. Description of the class types included in the gene-expression data sets.

Dataset Description

Leukemia [13] Bone marrow samples obtained from acute leukemia pa-
tients at the time of diagnosis: 11 acute myeloid leukemia
(AML) samples; 8 T-lineage acute lymphoblastic leukemia
(ALL) samples; and 19 B-lineage ALL samples.

Novartis multi-tissue
[29]

Tissue samples from four distinct cancer types: 26 breast,
26 prostate, 28 lung, and 23 colon samples.

St. Jude Leukemia
[37]

Diagnostic bone marrow samples from pediatric acute
leukemia patients corresponding to 6 prognostically impor-
tant leukemia subtypes: 43 T-lineage ALL; 27 E2A-PBX1,
15 BCR-ABL, 79 TEL-AML1, and 20 MLL rearrange-
ments; and 64 “hyperdiploid>50” chromosomes.

Lung cancer [4] Includes 4 known classes: 139 adenocarcinomas (AD), 21
squamous cell carcinomas (SQ), 20 carcinoids (COID), and
17 normal lung (NL). The AD class is highly heteroge-
neous, and substructure is known to exist, although not
well understood [4].

CNS tumors [25] Embryonal tumors of the central nervous system (CNS):
10 medulloblastomas (MD); 8 primitive neuroectodermal
tumors (PNET); 10 atypical teratoid/rhabdoid tumors
(Rhab); 10 malignant gliomas (Glio); and 4 normal cere-
bellum (Ncer).

Normal tissues [26] Includes 13 distinct tissue types: breast (5), prostate (9),
lung (7), colon (11), germinal center cells (6), bladder (7),
uterus (6), peripheral blood monocytes (5), kidney (12),
pancreas (10), ovary (4), whole brain (5), cerebellum (3).

distinctions. The number n of gene markers depends on how many
genes are differentially expressed with a sufficiently high significance
level (0.05) as determined by permutation test [28].

4.3. Results

Tables IV and V summarize the results of the evaluation on simulated
data. Tables VI and VII summarize the results on real gene-expression
data.

4.3.1. Simulated data
We used several simple simulated datasets in order to better understand
the proposed methodology, and to answer some basic questions. What
would the clustering methodology find in a dataset with no clusters (the
datasets Uniform1 and Gaussian1)? How would the proposed method-
ology behave in the optimal scenario where all features are unam-
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Table IV. Estimated number of clusters by consensus clustering (CC) and
by the Gap statistic, in combination with hierarchical clustering (HC) and
self-organizing map (SOM). Application to simulated data. The numbers between
parentheses represent local maxima of the Gap statistic (see text).

Dataset Ktrue CCHC CCSOM GapHC GapSOM

Uniform1 1 1 1 1 1
Gaussian1 1 1 1 3 1
Gaussian3 3 3 3 3 3
Gaussian4 4 4 4 1 1 (4)
Gaussian5 (λ = 3) 5 5 5 1 (5) 1 (5)
Gaussian5 (λ = 2) 5 4–5 4 1 1
Simulated6 6–7 7 6 7 3
Simulated4 4 4 4 4 2

Table V. Adjusted Rand index for näıve-Bayes (NB), hierarchical clustering
(HC), consensus clustering with hierarchical clustering (CCHC), and consensus
clustering with SOM (CCSOM).

Dataset NB HC CCHC CCSOM

Uniform1 — — — —
Gaussian1 — — — —
Gaussian3 1.000 1.000 1.000 1.000
Gaussian4 0.896 0.768 0.915 0.908
Gaussian5 (λ = 3) 0.951 0.932 0.932 0.941
Gaussian5 (λ = 2) 0.667 0.522 0.589 0.592
Simulated6 0.906 0.986 0.986 0.986
Simulated4 1.000 1.000 1.000 1.000

biguously informative about the given cluster distinction (the datasets
Gaussian4 and Gaussian5)? Would the presence of non-discriminant
features — features whose distribution of values does not change among
clusters — worsen the performance of the method, and would the
presence of clusters with feature markers of different strength make
some cluster harder to find than others (datasets Simulated4 and
Simulated6)?
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Figure 4. Results of consensus clustering applied to the simulated data
Gaussian5 with distance λ between Gaussians’ centers λ = 2 (top) and λ = 3
(bottom): a) raw data; b) consensus matrices M(K) for K = 4, 5; c) CDF
plots corresponding to the consensus matrices in the range K = 2, 3, . . . , 9.

The general answer is that the simulated data we used do not present
a real challenge for the proposed methodology. In most cases we are able
to recover the correct number of clusters and to correctly classify most
items (those items wrongly classified are items falling in the overlapping
region between clusters). A summary of the clustering results is given
in Tables IV and V. A few comments on some of the datasets follow.

As expected, for the dataset Gaussian5 with λ = 3 (where λ is
the distance between Gaussian centers, see the dataset description in
Section 4.2.1), the clustering procedure is able to easily recover the
correct cluster structure, and to make very few errors when drawing the
cluster boundaries. On the other hand, for λ = 2, the identification of
the 5 clusters becomes harder. In this case, 33% of the items generated
from the (λ/2, λ/2) cluster lie closer to the center of some other cluster,
thus making the 5-cluster structure harder to detect. Figure 4 shows
the plots of the data for λ = 2 and λ = 3, the corresponding consensus
matrices for K = 4 and K = 5, and the corresponding CDF plots
for the consensus matrices in the range K = 2, . . . , 9. The increased
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Figure 5. Application of consensus clustering to the simulated data
Simulated6: a) expression profiles for each gene within each cluster; b) con-
sensus matrices M(K) for K = 4, 5, 6, 7. Notice the presence of a singleton
cluster, corresponding to sample 8, in all four matrices (see text).

difficulty of the clustering task, resulting from the increased overlapping
among clusters, is reflected in the corresponding Rand indices, shown
in Table V. They correspond to an error rate of about 2% for λ = 3,
increasing to about 20% for λ = 2.

Application of the Gap statistic to the datasets Gaussian4 and
Gaussian 5 yields puzzling results. In all cases, if we accept the pro-
posed selection criterion, we should select 1 as the correct number of
clusters. If we look at the plot of the Gap statistic values for different
values of K (not shown), a local maximum at the correct K is present
(with the exception of the Gap statistic for HC applied to Gaussian4).
However, the proposed selection procedure would not allow us to reach
that maximum.

Finally, we come to the dataset Simulated6. When we created this
dataset, we unintentionally introduced an additional complication: the
8th sample is claimed by both the first and the second cluster (that is,
in sample 8 both the genes associated with cluster 1 and cluster 2 are
up-regulated). As a result, this sample cannot be exclusively claimed
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by either clusters. This is manifested in the consensus matrices shown
in Figure 5.b; sample 8 claims a cluster for itself. As a consequence, the
cleanest consensus matrix is obtained for K = 7 rather than 6, which
is confirmed by looking at the plot of the corresponding CDFs, and the
corresponding ∆(K)’s, which level off at K = 7 (not shown). With the
exception of sample 8, all other samples are correctly classified, thus
yielding a very high value of the Rand index. We described this case in
some detail because a very similar pattern of behavior is observed in
the analysis of the St. Jude leukemia data described in the next section.

4.3.2. Gene-expression data
In general, when applied to gene-expression data, consensus cluster-
ing with HC outperformed consensus clustering with SOM, and both
methods outperformed the Gap statistic as a method to estimate the
number of clusters. In most datasets, consensus clustering was able
to select the correct number of clusters, and to establish the cluster
membership with a high level of accuracy (as measured by the adjusted
Rand index). Predictably, the estimation of the number of clusters and
cluster assignment was most difficult in the CNS tumors and the Nor-
mal tissues datasets, given the relatively small sample size for the given
number of classes. A few comments on some of the datasets follow.

When applied to the leukemia dataset [13], consensus clustering with
HC selects 5 clusters as its optimal number, with two of the clusters
corresponding exactly to AML and T-lineage ALL, and with the three
remaining clusters further partitioning the B-lineage ALL (with 4,
4, and 11 items respectively). It is interesting to note that the Gap
statistic also selects 5 as the optimal number of clusters. Consensus
clustering with SOM selects 4 clusters, with two clusters splitting the
B-lineage type. It is widely accepted that the class of acute lymphoblas-
tic leukemia can be farther partitioned into biologically meaningful
sub-classes (see, for example, the St. Jude leukemia data, discussed
later in this section), although the composition and nature of these
sub-classes is not as well accepted. Therefore, it is possible that the
subclass structure we discover within the B-lineage ALLs reflects a
biologically meaningful distinction.

When applying consensus clustering with HC to the St. Jude leuke-
mia dataset [37], if we only take into account the consensus distribution
(and the proportion increase in the area under the CDF), the suggested
number of clusters is 5. This is also the number suggested by the Gap
statistic. However, if we look at the consensus matricesM(K) for K be-
tween 5 and 9, shown in Figure 6, a 6-cluster structure clearly emerges,
and with cleaner boundaries than for K = 5. The best separation is
obtained at K = 7, where 6 of the clusters correspond almost perfectly
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Table VI. Estimated number of clusters by consensus clustering (CC) and by the
Gap statistic, in combination with hierarchical clustering (HC) and self-organizing
map (SOM). Application to gene-expression data. In parentheses is the estimated
number of clusters based on visual inspection of the consensus matrices (when this
differ from the one based on the consensus distribution).

Dataset Ktrue CCHC CCSOM GapHC GapSOM

Leukemia 3 5 4 5 4
Novartis 4 4 4 4 4
St. Jude 6 5 (6) 5/7 (6) 5 11
Lung cancer 4+ 5 5 (7) 5 7
CNS tumors 5 5 5/6 6 4
Normal tissues 13 7 4/5 12 7

Table VII. RAND index for näıve-Bayes (NB), hierarchical clustering (HC), con-
sensus clustering with hierarchical clustering (CCHC), and consensus clustering
with SOM (CCSOM). In parentheses is the Rand index corresponding to the
partition into Ktrue classes (when this differ from the estimated K).

Dataset NB HC CCHC CCSOM

Leukemia 1.00 0.648 (0.46) 0.648 (1.0) 0.721 (0.6)
Novartis-tissue 0.946 0.83 0.921 0.897
St. Jude 0.971 0.949 0.948 0.825
Lung cancer 0.904 0.307 (0.28) 0.310 (0.28) 0.233 (0.22)
CNS tumors 0.632 0.628 0.549 0.429
Normal tissues 0.655 0.457 (0.572) 0.457 (0.572) 0.214 (0.487)

to the 6 known sub-types, and the remaining cluster contains a single
sample (a “hyperdiploid>50” sample, see Table III). This one-sample
cluster is also the reason why the consensus matrix for K = 6 fails
to perfectly separate two of the six known subtypes, as one of the
six clusters is “sacrificed” to this single outlyer sample. This pattern
of behavior is very similar to the one encountered when analyzing the
simulated dataset Simulated6. These two datasets allow us to illustrate
the advantage of being able to visually inspect the cluster structure and
stability by looking at the consensus matrices, which in turn allows us to
correct the cluster number estimates based exclusively on the consensus
distribution.
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Figure 6. Consensus clustering applied to the St. Jude leukemia data: consen-
sus matrices M(K) for K = 5, 6, 7, 9.

Application of consensus clustering with HC to the lung cancer tis-
sues dataset [4] yields an estimated number of clusters of 5. Three of
the five clusters correspond rather cleanly to the non-AD types, namely,
COID, SQ, and NL, while the additional two classes correspond to ADs.
All the errors in cluster assignment (29/197) involve AD samples.2

Application of consensus clustering with SOM also yields an estimated
number of clusters of 5 based on the consensus distribution. However,
if we inspect the consensus matrices (not shown), we clearly see that
the matrices between 5 and 7 all have a very clean profile, with cleanly
demarcated diagonal red blocks on a perfectly white background. The
7-cluster partition is also in better agreement with the known 4 types.
In fact, this partition identifies the three non-AD types rather cleanly,
while allocating the remaining 4 clusters to the AD samples.

Application of consensus clustering to the normal tissues dataset [26]
did not return the correct number of clusters. However, it should be
clear that given the large number of classes (13), and the small number

2 The class of adenocarcinomas is highly heterogeneous, and it is widely accepted
that clinically relevant AD subtypes exist, although their molecular and clinical
profile is not well established or understood [4].
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Figure 7. Consensus clustering applied to the normal tissues data.

of samples per class (for a total of 90 samples), the hope of recovering
a 13-class distinction was rather slim. By looking at the consensus
distribution (by both considering the proportion increase of the area
under the CDF, and by visual inspection of the CDFs and the heat
maps), K = 7 is the largest number of clusters that we can reasonably
consider. If we follow the algorithm recommendation, and stop the
partitioning of the data at 7 clusters, it is worth pointing out that most
of the discovered clusters correspond to fairly clean unions of known
types. Application of consensus clustering with SOM estimates an even
lower number of clusters. Inspection of the consensus distributions and
of the consensus matrices suggests not going above 5 clusters. The low
Rand index confirms the fact that most clusters are a mixture of several
tissue types, with several tissue types distributed across more than one
cluster.

4.4. Discussion

The results of the application of consensus clustering to both simulated
and real data are encouraging. In most cases the methodology is capable
of recovering the correct number of clusters, and assigning most items
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to the correct clusters. Furthermore, when partitioning the data using
the consensus matrix as the similarity measure rather than the usual
Euclidean distance, the cluster assignments tend to be more accurate.
This can be seen by comparing the Rand indices for the two methods
(the columns HC and CCHC in Tables V and VII).

As expected, the data set where the method performed worse was
the normal tissue data (given the small sample size relative to the
number of classes). We believe the main lesson to be learned from
the analysis of this data set is that cluster analysis can only go as
far, and that an effort should be made to collect fairly homogeneous
data sets where we can expect the number of clusters to be reasonably
small and commensurate to the sample size available. In other words,
this is an example of what a poorly designed experimental design for
cluster analysis might look like, rather than evidence for or against the
proposed clustering methodology.

It is important to notice that the results are dependent on the
inner-loop clustering of choice (HC and SOM in the experiments), with
consensus clustering based on HC producing slightly better results than
consensus clustering based on SOM. This points to the fact that every
clustering method has its own idiosyncrasies, related to the (implicit
or explicit) measure of similarity it uses to compare and group data
items.

A related issue is data normalization, and how the choice of nor-
malization can affect the clustering results. As previously pointed out,
the data used with HC were of necessity row- and column-normalized,
so as to produce fairly balanced hierarchical trees. The reported SOM
results were also based on the same normalized data. Although not
reported, we also applied SOM to non-normalized data, and the results
did not always agree with those based on normalized data. Therefore,
the selection of the inner-loop clustering algorithm, as well as the choice
of the data normalization methodology to be used, are both sensitive
issues that need to be taken into account when performing clustering
analysis.

Finally, the experimental evaluation shows that the consensus dis-
tribution described in Section 3.3.1 is a useful criterion to select the
number of clusters, but we do not advocate its use in isolation. Of-
ten, the visual inspection of the ordered consensus matrices can be as
informative, and help disambiguate the information provided by the
consensus distribution. Ultimately, in the experiments we carried out,
what seemed to work best was a model selection process based on a
combination of the information coming from the consensus distribution
and from the visual inspection of the ordered consensus matrices.
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5. Conclusions

In this paper we introduced a clustering methodology based on re-
sampling that allows for the estimation of the number of clusters in a
dataset, the assessment of the stability of the putative clusters found,
and the visualization of the clustering results. The method, by captur-
ing the consensus among several clustering runs, attempts to produce
data partitions that are more robust than the ones we may expect to
obtain by application of a single clustering algorithm to the observed
data.

A natural extension of the method is to use it to represent the “meta-
consensus” across clustering algorithms. For example, with regard to
the experiments described in the previous section, we could combine
the consensus matrices corresponding to HC and SOM.

Another extension, partially explored in [4], is to use consensus
clustering with probabilistic model-based clustering in the inner-loop
(e.g., AutoClass [6]). Since methods of model-based clustering usually
provide their own estimate of the number of clusters, the consensus
matrix in this case would represent the consensus across multiple runs
with each run returning a partition into a possibly different number
of clusters. In other words, rather than having several consensus ma-
trices for different K’s, we would have a single consensus matrix. This
would preclude us from using the consensus distribution to estimate the
number of clusters. However, the visualization of the sorted consensus
matrix could still be used to validate the recommended number of
clusters, as well as to determine the cluster assignments.

On a related subject, it should be noted that the consensus ma-
trix can easily accommodate the fractional cluster assignments usually
output by probabilistic clustering algorithms. The entries of the con-
nectivity matrix of Equation 1 will need to be properly modified so
as to reflect the uncertainty in cluster membership. In particular, let
P (i ∈ Ck |D) denote the probability output by the clustering algorithm
that item i belongs to cluster Ck, and let K be the number of clusters.
Then, the connectivity matrix entries will be computed as follows:

M (h)(i, j) =
K∑

k=1

P (i ∈ Ck |D)P (j ∈ Ck |D) . (9)

with Equation (9) reducing to Equation (1) when all probabilities
output by the clustering algorithms are either 0 or 1.

Finally, in this paper we have described the consensus distribution as
summarized in the CDFs and the ∆(K)’s as the measure of consensus
we use to estimate the number of clusters. However, once we abstract
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the problem into one of finding the number of clusters that yield the
“cleanest” consensus matrix, it may be possible to devise other mea-
sures that try to quantify this cleanliness. We are in the process of
evaluating some of these alternative measures.

The methodology for consensus clustering described here, with HC
and SOM as choices, was implemented in Java, and will be made part
of the next release of GeneCluster [34].
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Appendix

A. The adjusted Rand index

The adjusted Rand index is a measure of agreement between alternative
data partitions that can be used even when considering partitions with
different numbers of clusters [16, 24]. In this appendix, we only give
the formula for its computation. For examples and a more detailed
explanation of its derivation, see, e.g., [38].

Let P a = {Pa1, Pa2, . . . , PaKa} and P b = {Pb1, Pb2, . . . , PbKb
} be

two partitions of the dataset D, with Ka and Kb not necessarily equal.
The adjusted Rand index assumes the generalized hypergeometric dis-
tribution as the model of randomness, i.e., the P a and P b partitions are
picked at random but with the constraint that the number of objects
in the classes and the numbers of clusters are fixed.

Let Nij be the number of items of D that are both members of
cluster Pai and of cluster Pbj . These Nij entries basically define a con-
fusion matrix (with rows indexed by P a, and columns indexed by P b)
relating the cluster assignments in P a with the cluster assignments in
P b. Accordingly, let Ni. denote column sums (i.e., the number of items
members of cluster Pai irrespective of their membership in P b), and let
N.j denote row sums (i.e., the number of items members of cluster Pbj

irrespective of their membership in P a).
Then the adjusted Rand index r is computed as follows:

r =

∑
ij

(Nij

2

)
−

[∑
i

(Ni.
2

) ∑
j

(N.j

2

)]
/
(N

2

)
1
2

[∑
i

(Ni.
2

)
+

∑
j

(N.j

2

)]
−

[∑
i

(Ni.
2

) ∑
j

(N.j

2

)]
/
(N

2

) . (10)
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The measure thus defined ranges between 0 and 1, with 1 corresponding
to perfect agreement between the two partitions. It can be shown that
the adjusted Rand index has an expected value of 0 for two random
partitions.
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