
Royal Institute of Technology

Concurrent Functional
Programming for

Telecommunications: A Case
Study of Technology Introduction

Bjarne Däcker

Computer Communication System Laboratory
Department of Teleinformatics
Royal Institute of Technology

Stockholm, SWEDEN

Royal Institute of Technology

Department of Teleinformatics
Computer Communication Systems Laboratory

Royal Institute of Technology
Stockholm, Sweden

Concurrent Functional
Programming for

Telecommunications: A Case
Study of Technology Introduction

Bjarne Däcker

October 2000

A thesis submitted to
the Royal Institute of Technology

in partial fulfillment of the requirements for
the Licentiate of Technology degree.

TRITA-IT AVH 00:08
ISSN 1403-5286

ISRN KTH/IT/AVH--00/08--SE

 2000 Bjarne Däcker

i

Abstract

This thesis deals with two important topics:

� The use of the best possible technology in the development of telecom-
munications systems in a world of rapid change and increasing
competition. The word “best” implies a technology that satisfies
the requirements of the application and a technology that enables
high design efficiency in bringing projects to rapid and successful
results.

� The introduction and exploitation of functional programming in in-
dustry. Functional programming is a long established discipline
within academia where its advantages are well known.

The thesis is built around the actual case of the concurrent func-
tional programming language Erlang which was developed at the Com-
puter Science Laboratory at Ericsson and which is now available as open
source. Erlang is now used in about 20 systems, notably the ATM
switching system AXD 301 where Ericsson in two years moved from
having no system to having a veritable flagship.

Starting as a purely technical project the progress of Erlang came to
touch upon many other topics such asManagement of Technologyand
Open Source.

ii

Acknowledgements

Acknowledgements are due above all to the Erlang Design Team (Joe
Armstrong, Claes Wikström, Mike Williams,andRobert Virding), mem-
bers of Erlang Systems, the OTP Product Unit, the Erlang application
projects and all the enthusiastic Erlang users around the world. I also
thank professor Gerald Q. Maguire Jr. who got me started writing and
supported me all through the process.

The following people have read and commented on the thesis: Joe
Armstrong, Roy Bengtsson, Catrin Granbom, Torbj¨orn Keisu, Kenneth
Lundin, Richard O’Keefe, Phil Wadler, Ulf Wiger, and Mike Williams.

Acknowledgements are not least due to Ericsson for supporting the
Erlang development consistently for many years and enabling Erlang to
be used for very large and important projects.

Bjarne Däcker, Stockholm, October 2000

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Background .. 1
1.3 Summary of Papers . 3
1.4 Layout of this Thesis 3

2 Management of Technology 5

3 The Problem 9
3.1 Telecommunications Programming and Chill 9
3.2 Programming Language Experiments 11

4 Development of Erlang 13
4.1 Prototype Developments . 13
4.2 Steps towards a Product . .. 15
4.3 Erlang Systems . 17
4.4 Further Technical Developments . 18
4.5 Early Marketing Efforts . 20
4.6 Erlang Summary . 20

4.6.1 Sequential Erlang . 20
4.6.2 Concurrency . 20
4.6.3 Distribution . 21
4.6.4 Robustness . 21
4.6.5 Software Upgrading in Running Systems 21
4.6.6 External Interfaces. 21
4.6.7 Portability 21
4.6.8 Program Development . 22

4.7 Match against Requirements . 22

5 Open Telecom Platform 25

6 Selected Industrial Applications 29
6.1 AXD 301 ATM Switch . 29
6.2 ANx Access Node 30
6.3 GPRS . 31
6.4 A Comment on Software Engineering 31
6.5 Experiences from the Field . 32
6.6 User Testimonies . 32
6.7 External Users and Consultants . 32

iii

iv CONTENTS

6.8 CeBit 1998 and Marketing Efforts 33
6.9 Refined Match against Requirements 34

7 Backlash 37

8 Open Source and Continued Research 39
8.1 Bluetail AB . 39
8.2 Erlang in the Research World . 40
8.3 Research Continues . 42

9 Discussion 45
9.1 Development of Programming Technology 45
9.2 On Applications of Functional Programming 46
9.3 Diffussion of Innovations . 47
9.4 The Magic of Words . 47
9.5 Symbolic Programming strikes Back 48

10 Conclusions 49

1 Introduction

1.1 Overview

This thesis traces the progress of Erlang from applied research in an industrial research
laboratory through productification, technology transfer to a product unit and further
dissemination through open source in parallel with widening use in application systems
for the market. My prime task in this process has been as manager of theComputer
Science Laboratory(CSLab) encouraging the work and helping to establish contacts
with external research and with prospective users.

1.2 Background

“Lisp” is an abbreviation of “list programming”, but often “symbolic programming”
is a more accurate term. The fact is that many programming problems in industry are
symbolic in nature and thus lend themselves naturally to programming languages like
Lisp [Wi81].

I learnt Lisp at a Summer school at Uppsala in 1974 and immediately saw its pos-
sibilities. I was then working with hardwareComputer Aided Design(CAD) systems
and had among other things spent one year once in designing a database in Fortran to
represent relay set circuit diagrams.

Soon a natural application presented itself. Ericsson then used two software tools
to aid in the design of circuit boards. One was a system for digital simulation and
test data generation. The other was a program to create the circuit board layout. Thus
one program dealt with logic entities like gates and flip-flops and the other dealt with
mechanical entities like discrete components and integrated circuits. The programs
had very different looking inputs and it was very difficult to ascertain that those were,
indeed, equivalent. Given the usual technology at the time, Fortran [Ek79] and PL/I
[Hu87], to create a program to convert between the two programs was almost impossi-
ble or would have led to a very large and complex project.

Lisp instead made it quite feasible to design a database that could represent both
the electronic and the mechanical aspects of a circuit board. The next step was to
create programs that could generate the database given the input to either of the CAD
programs. The step after that was to write programs that instead could generate their
respective inputs from the database.

The program needed some extra input when, for example, gates were designed
using discrete components, but it solved a tricky problem for the designers.

CAD represents a typical area for symbolic computation and when numerical com-
putations came in, it turned out that Lisp could handle them just as efficiently.

1

2 CHAPTER 1. INTRODUCTION

In 1982 another possible application presented itself. Ericsson’s AXE 10 [He76]
system was being sold around the world and increasing demands were made for higher
capacity and throughput. This led to the design of the APZ 212 [Hj90] processor. Thus
a compiler for the AXE programming language Plex [He76] had to be developed at
short notice. Even more important was an interactive interpreter since many programs
had to be developed and tested before the APZ 212 hardware would be available.

My suggestion was to use Lisp and I got the go-ahead. The first step was to write a
parser to create an internal representation of a Plex program for the interpreter to work
with. This could be stored using(write ...) and retrieved using(read ...) and
since it was only a large S-expression, it could easily be inspected for mistakes.

The next step was to develop a full screen interactive interpreter using VT100 ter-
minals attached to a VAX running UNIX [At84]. It turned out that the designers liked
the interpreter very much and also quickly got used to seeing their programs pretty
printed on the screen. The interpreter also contained an editor using the parser one
statement at a time.

There had been some concern that Lisp would lead to very long execution times.
However, nothing of this sort was noticed. Most execution times were dominated by
the time required to print output to the screen.

This interpreter was a prototype that handled only a central subset of Plex. How-
ever, it was taken over by a programming team that completed and productified it and
ported it to the IBM 370 computers which were used for program development for
AXE 10.

By chance a much larger project had been running to develop a Plex interpreter
using an IBM version of Pascal. For some time the two projects ran in parallel. The
good thing was that this provided large volumes of data for comparison. It turned out
that the interpreter in Lisp was smaller by a factor ranging from 7 to 10 for different
parts of the system [D¨a83, Al84].

For an industry concerned with the software “crisis” [Gi94] this should have been
very interesting news. The experiences from this application were high design ef-
ficiency and adequate execution performance. Our hopes was that this would have
opened the way for wide use of Lisp in the development of software development en-
vironments, but nothing happened. Everybody seemed to agree that using Lisp for this
type of application is more efficient than using languages like C or Pascal, yet it did
not catch on.

One of the key activities when starting a design project is the selection of the ap-
propriate technologies to be used. This means that there ought to be a list of candidate
technologies with descriptions of their respective properties. Then the characteristics
of the application have to be defined and the selection process becomes a matter of
matching. The characteristics must take into account many aspects such as cost, ca-
pacity, performance, documentation, standards compliance, design efficiency, support,
training, etc.

The Lisp experience described above indicated that there should be other interesting
technologies available for industrial exploitation. At that timeArtificial Intelligence
(AI) was a very hot topic and CSLab (see below) also built an operator support system
[Sk86] exploiting some AI technologies.

1.3. SUMMARY OF PAPERS 3

1.3 Summary of Papers

The key paper is [D¨a91] which presents the ideas of dealing with software technology
according to the same principles as older established engineering sciences, especially
with regard toapplied researchin the laboratory environment. The Erlang history is
one case demonstrating that those principles also work in practice.

The papers [D¨a83, Al84] describe the work of building the Plex interpreter us-
ing Lisp where I both took the initiative and built the first usable system. The paper
[Dä86] describes experiments with building prototype telecom systems using different
programming technologies where my contribution was the rule-based system.

The paper [D¨a93a] summarises Erlang design work carried out at CSLab and the
papers [Dä93b, Dä94a, Dä94b, Dä95] describe early experiences from the use of Er-
lang.

1.4 Layout of this Thesis

Chapter 2 provides a context for this thesis by describing the general principles behind
applied researchin the industrial environment. Chapter 3 defines the requirements put
on a software technology for telecommunications applications and also early experi-
ments at CSLab with different available programming technologies.

Chapter 4 introducesErlang and its development and matches it against the above
requirements. Chapter 5 describes the development of theOpen Telecom Platform
using Erlang and extending its usability and chapter 6 provides an overview of some
important Erlang applications which gives more detailed material to validate Erlang
against the telecommunications requirements.

Those chapters also describe the spread of Erlang within Ericsson and outside Er-
icsson primarily to academia and also attempts at marketing Erlang. Chapter 7 de-
scribes an internal set-back and chapter 8 the work of spreading Erlang through the
new medium ofopen source.

Chapter 9 discusses the spread and use of functional programming and, finally,
chapter 10 presents my conclusions on this matter based on the Erlang experience.

4 CHAPTER 1. INTRODUCTION

2 Management of Technology

Management of Technology [Gr82] is an area of study within Industrial Management
and Economy that focuses on the interaction between technical and economic changes
and on how this interaction can be influenced in desirable directions. Management of
Technology in large divisionalized companies like ABB and Ericsson involves many
complex aspects:

� The termResearch and Development(R&D) is often very loosely used. In in-
dustry development is by far the largest component and most research isapplied
in the form of trying out new techniques on old (or emerging) applications. The
term “research” is also often used to describe experiments prior to product de-
velopment.

� The purpose ofbasic researchis to find new knowledge for mankind whereas
the purpose ofapplied researchis to apply new knowledge to reality. Applied
research can betechnology drivenor market driven. In the first case some new
technology has been created, then work is done to find uses for it. In the latter
case some need or opportunity has arisen which cannot be adequately handled
with current technologies, see Figure 2.1.

� To qualify asapplied researchas different from regular product development,
the work needs to be of scientific quality, for example by being presented at
significant conferences or journals in the respective field.

� The organisation of research has to be a compromise between centralization and
decentralization since there has to be close contacts both with strategic planning

New Technology

Problems or
opportunities

Experiments Evaluation

Productification
and exploitation

Idea dropped

Figure 2.1: The process of Applied Research.

5

6 CHAPTER 2. MANAGEMENT OF TECHNOLOGY

Patents
Knowledge Papers at international conferences
standing References in internationally recognized journals

Publications in internationally recognized journals
Competitor Comparison with existing and potential
standing competitors to identify strong/weak points

Visits by customers
Knowledge Internal presentations/demonstrations

transfer Facts, based on prototyping etc., delivered
Ideas accepted by System & Technology development process
Guest researchers
Lectures given at universities

Interworking Working with recognized Centres of Excellence
Working with potential producers/users of the result
Participation in national/international research projects
Participation in national/international committees for research funding

Table 2.1: Evaluation criteria for Applied Research in Ericsson [Er95].

and with product development in the product divisions. If not handled well this
can give rise to conflicts and misunderstandings.

� Research can be placed in some central unit (like Bell Laboratories) or be spread
out as decentralized laboratories organised within the various divisions (or sub-
sidiaries) through some matrix organisation. The present situation within Erics-
son is a combination of both. Further reasons for locating research laboratories
within subsidiaries in different countries are to facilitate interaction with univer-
sity research in the different countries and access to qualified personnel. (The
termlaboratoryis henceforth used to denote an organisational unit working with
research.)

� Financing of research is often a combination of central financing with project
assignments from design departments in some suitable ratio 50/50 (ABB Cor-
porate Research) or 70/30 (Ericsson Research). That the design departments are
interested in having researchers participate in projects or are placing projects
in the laboratories is one test of the competence and co-operative spirit of the
laboratories.

� Evaluation of the performance of industrial research is a difficult matter. Uni-
versity research is evaluated based on its publication record and product devel-
opment on the profitability of its products. Table 2.1 lists the evaluation criteria
that were defined in 1995 for applied research laboratories in Ericsson [Er95].

� For companies developing systems it is important to note that every system is
dependent on many different technologies. This means that different laboratories
typically are either focused on some technology (like fibre optics) used in many
different systems or are focused on new applications where they start from many
different technologies (sometimes originating in other laboratories).

� A systems company might both use its own technology in its systems and sell
them as components, for example ABB both uses its own relays and sells them

7

and Ericsson’s power division sells both inside and outside the company. This
implies an internal technology market. (In January 2000 Ericsson divested its
energy business [Pr00a].)

� A laboratory can never take responsibility for a product either delivered to cus-
tomers as an application or delivered to design departments as a technology. This
requires quite a different organisation and a different mode of work, handling
new releases, handling error reports and user complaints, production of profes-
sional quality documentation, organisation of courses, training, consulting, etc.

� This in turn requires transfer of the results to another type of unit or perhaps
transforming the laboratory into a product design unit (department). In any case
the researchers have to take part in this and perhaps transfer out of the laboratory.

� There are different ways of manning a laboratory. One case could be to recruit
senior designers interested in research, another to take in young people from a
university who can learn the latest technology in the laboratory and then move
with their system out into the design organisation.

� Technology research has to be seen as part of the technology provisioning pro-
cess. Most technology will be obtained from suppliers. Results from the labora-
tories are the exception and there are primarily two reasons for using them:

– There are requirements which cannot be fulfilled by external technology.

– There are technologies which can provide competitive advantage. (In this
case patents are of the utmost importance.)

� Compliance with internationally accepted standards is essential to achieve in-
teroperability and to enable systems to be upgraded by renewing just parts of
them.

� Internally developed technology that gives advantages in the near term can cause
problems in the long term – especially if it is overtaken by external develop-
ments.

The primary difference between a research project and a regular development project
is that research has a greater uncertainty, but also offers hopes of greater gains if it is
successful. This means that research projects have to be carried out in moderately long
steps with careful monitoring of progress.

The important realization is that all the principles ofManagement of Technology
that are the results of many years of working with materials engineering, chemical
engineering, etc. actually can apply to software as well. This should give a new and
perhaps sounder interpretation of the term “software engineering” [D¨a91].

8 CHAPTER 2. MANAGEMENT OF TECHNOLOGY

3 The Problem

3.1 Telecommunications Programming and Chill

Applied research needs to start by defining “the problem”. Table 3.1 summarizes the
requirements on a programming technology for telecommunication switching systems.
These lead to both large systems and large projects. Thus a key question is that of
design productivity, i.e. how to be able to design such systems with smaller design
teams in a shorter time.

In the 1970’s there was much talk of the “software crisis” [Gi94] as a term to de-
scribe the problems of programming projects running late, using too much manpower,
and resulting in systems of unacceptably low quality. Most attempts at dealing with
this have been to introduce more formalized work methods. This is often termed “soft-
ware engineering” and the avowed aim has been that software should be produced in
an engineering fashion.

The telecommunications industry was early to use computers in their systems and
Ericsson installed its firststored program controlled(SPC) system AKE 12 [Ka68] in
Tumba in the Autumn of 1966. Since telecommunications lead to very large complex
systems and projects a special conference seriesSoftware Engineering for Telecommu-
nications Switching Systems(SETSS) was set up by the BritishInstitution of Electrical
Engineers(IEE).

The strange word is “crisis”. Projects in other engineering fields also experience
problems. A case in point is the tunnel building project through Hallands˚asen, Swe-
den [Da96]. Such occurrences, however, are not classified as crises, only as faulty
professionalism. The fact is that many programming projects run well even without
the formal “methods”. The keys, as in other engineering areas, are competent people,

1 Handling of a very large number of concurrent activities
2 Actions to be performed at a certain point in time or within a certain time
3 Systems distributed over several computers
4 Interaction with hardware
5 Very large software systems
6 Complex functionality such as feature interaction
7 Continuous operation for many years
8 Software maintenance (reconfiguration, etc.) without stopping the system
9 Stringent quality and reliability requirements

10 Fault tolerance both to hardware failures and software errors

Table 3.1: Requirements on a programming technology for telecommunication switch-
ing systems [D¨a93a].

9

10 CHAPTER 3. THE PROBLEM

appropriate architecture, good technology, and clear goals.
Problems are one thing, “crises” another. The word implies a feeling of lack of

control, i.e., that software is inherently something strange and unpredictable. Software
is not strange to people working in the field, but probably was to an industry getting
increasingly dependent upon it a couple of decades ago.

There are different ways of improving project performances. Methods represent the
organisational approach, i.e., that the work is reasonably well structured and properly
carried out. Another is qualified (and motivated) personnel. Another often overlooked
factor is technology. This thesis examines the introduction of new software technology.

Software development is a matter of programming. Some systems aim to accept
specifications and then generate code. Such systems approach the problem top down.
A complementary approach is to raise the level of programming by using a language
technology at a high abstraction level which provides built-in support required by the
application domain. This thesis deals with the latter approach. (Edward Yourdon
places “better programming languages” at the top of his personal list of “silver bul-
lets” [Yo92].)

Fortran [Ek79] was developed around 1957, Pascal [Je75] around 1970 and C
[Ke78] in the middle 1970’s. It is remarkable that today most programs are still de-
veloped in languages of these types while computer hardware has gone from discrete
components to VLSI.

Pascal was originally developed as a language to teach students programming. Sig-
nificant additions in Modula [Wi76] weremodulesandprocesses. Modules are nec-
essary for building large systems and processes are necessary to describe concurrency.
Each process instance functions like a sequential program on its own computer through
a timesharing scheme [Bu90]. Other programming languages of this class are Chill
[CC84b] and Ada [Ad83].

The C.C.I.T.T. standardised programming language Chill provided three mecha-
nisms for communication and synchronization between processes:

� Regions,

� Buffers (message mailboxes),

� Signals(messages).

Quote “there are several reasons why Chill provides three different mechanisms for
process communication:

� The ideas about what is the best method of communication between processes
have not yet been stabilised in the world of programming language design. It
would be too early to supply only one method of communication.

� Experience with communication between processes in a distributed system (with-
out common memory between processors) is very limited. One communication
mechanism may not be able to function optimally in both distributed and com-
mon memory architectures.” [Sm83]

The effect of this was that each company that used it chose some suitable subset.
In late 1999 C.C.I.T.T. stopped maintaining the Chill standard.
In 1979 I was responsible for the creation of the in-house programming language

EriPascal [Dä79, Bå84] for a new processor APN 167 [Ma86]. EriPascal was similar
to a subset of Chill but with a Pascal like syntax. Like Modula it contained modules

3.2. PROGRAMMING LANGUAGE EXPERIMENTS 11

and processes. In EriPascal only messages were used. There were also plans to create
an EriChill by using a different compiler front-end which accepted a Chill like syntax,
but there were no user requests for it.

Still the basic sequential programming paradigm remained at the level of Fortran
and Pascal even though the whole idea of functional and logic programming had been
around almost as long as Fortran. For example, Lisp [Mc65] was created already in
1958 [We81].

3.2 Programming Language Experiments

In 1984 theComputer Science Laboratory(CSLab) [Csw] at Ericsson was formally
established by myself and three colleagues, G¨oran Båge, Seved Torstendahl, and Mike
Williams. Further colleagues joined. CSLab has had a low personnel turnover and has
averaged between 12 and 15 people.

The laboratory soon was equipped with a VAX 750 running one of the first UNIX
systems at Ericsson and an MD 110 private exchange. Per Hedeland modified the
MD 110 so that it could be controlled from the VAX. At that time telephony (or any
real time) programming involved two computers, ahost computerwhere editing, com-
pilation and linking took place and atarget computerembedded in the actual system.
The VAX combined the functions of both which reduced the turn around time consid-
erably and created an excellent environment for experimentation.

Based on this environment a series of experiments were carried out with differ-
ent programming languages and paradigms which involved at least five persons in the
laboratory. The following techniques were tried [D¨a84a, Dä86]:

� Imperative programming languages: Concurrent Euclid [Ho83b] and Ada
[Ad83].

� Declarative programming languages:PFL [Ho83a] and Prolog [Cl81].

� Rule based programming:OPS4 [Fo79].

� Object oriented languages:Frames [We83] and CLU [Li79].

My contribution was the experiment with rule based programming using OPS4.
This could express many requirements very neatly. One problem in conventional
telecommunications programming is that a subscriber may hang up at any time dur-
ing a call. This means that all equipment involved has to be reset. In relay systems
it sufficed to release the holding wire. With OPS4 this became equally simple. One
resetting rule for each type of equipment was all that needed to be defined. This rule
triggered whenever it applied, even in different states of a call.

Rules will trigger whenever they apply regardless of their order in the source code
so that when sequencing is required this has to be specified using some state variable.
One problem, of course, was how to handle really large systems of many rules. The
good feature of rule based programming is that it encourages a very declarative style of
programming. It also leads to highly parallel designs as only when rules are sequenced
do they have to be applied in order. Thoughtful use of guards and pattern matching can
achieve a programming style similar to rule based programming.

One conclusion was that telephony systems obviously could be programmed in any
language and the different implementations displayed rather similar structure. How-
ever, certain desirable properties of a programming technology for telephony became
apparent:

12 CHAPTER 3. THE PROBLEM

� Massive fine grained concurrency:Complex real time systems usually have to
handle several concurrent activities which, in turn, normally are handled through
someprocess(or thread) concept. However, typical for telecommunications are
the large amount of equipment and the great number of simultaneous calls which
means that the processes have to be verylight weight.

� Asynchronous message passing:This seemed to be a very typical and normal
requirement. Both Plex [He76] from Ericsson and SDL [CC84a] from C.C.I.T.T.
are based on message passing. Also message passing naturally extends to dis-
tributed systems.

Unfortunately there was no Chill implementation available for the UNIX VAX.
However, the system programmed in Concurrent Euclid [Ho83b] was structured along
the same lines as would be a system written in Chill.

The report of these programming language experiments ended with the following
conclusion:

� “It is becoming obvious that future telecommunication systems cannot be pro-
grammed with one language using one methodology. Future systems will proba-
bly be built using many of the techniques used in these experiments. For example
expert system technology might be used for the maintenance functions and the
man machine interface, logic programming might be suitable for programming
the signal system interfaces and parts of traffic handling and the underlying oper-
ating system might be programmed in an advanced imperative language.” [D¨a86]

4 Development of Erlang

The primary aim of this exercise, however, was not merely to see if it was possible to
program telephony systems in a variety of ways, but also to find which style of pro-
gramming lead to the shortest and mostbeautifulprograms closest to the level of formal
specifications. These features have the greatest impact on quality and programmer ef-
ficiency since it has been shown that programmer productivity in number of error free
lines of code per day is largely independent of the programming language

The language experiments had given many new insights [D¨a86], but had not reached
a conclusion that one specific language was “the best”. Of all the languages tried only
Prolog could handle updating of software in running systems. The Ericsson AXE 10
[He76] can handle update of running code through the use of special hardware and
switch over between the duplicated processors such that one processor carries on the
traffic processing while the other loads the new version of the code.

4.1 Prototype Developments

Joe Armstrong led the next round of experiments and started with Prolog, because
of its terse and clear style, and added concurrency. However, the language began to
change in the direction of a functional style [Ar92b]. For example, one of the key
characteristics of Prolog is backtracking and this could not be used because it is not
possible to backtrack over hardware. (A tone signal once sent out cannot be taken back
[Ar86].)

The name given to this experimental language wasErlang after the Danish mathe-
matician Agner Krarup Erlang, creator of theErlang loss formula[Erl]. This followed
the tradition of naming programming languages after dead mathematicians, other ex-
amples are Pascal, Euclid, and Occam [Jo88]. Erlang is aptly described as aconcurrent
functionalprogramming language combining two main traditions, Figure 4.1:

� Concurrent programming languages: Modula, Chill, Ada, etc. from which
Erlang inherits modules, processes, and process communication.

� Functional and logic programming languages:Haskell [Haw], ML [Wi87,
Mlw], Miranda [Th95], Lisp [Wi81], etc. from which Erlang inherits atoms,
lists, guards, pattern matching,catchandthrow, etc.

13

14 CHAPTER 4. DEVELOPMENT OF ERLANG

Concurrent systems programming
languages like Ada, Modula or Chill languages like ML or Miranda

Functional programming

Concurrent functional
programming language
 Erlang

Figure 4.1: The ancestry of Erlang.

Significant design decisions behind the development of Erlang:

� It should be built on a virtual machine which handles concurrency, memory man-
agement, etc., thus making the language independent of the operating system and
ensuring program portability.

� It should be asymboliclanguage with garbage collection, dynamic typing, data
types like atoms, lists, and tuples.

� It should supporttail recursion [Ok90] so that all loops, even infinite like in
drivers, can be handled by recursion.

� It should supportasynchronous message passingand a selective messagereceive
statement.

� It should enable default handling of errors, for example throughtrap exits. This
also enables an aggressive style of programming.

Erlang is a simple language to learn in that it contains very few concepts. Pattern
matching enables a very declarative (and self documenting) style of programming.

Programming languages form an intermediate level between the computer hard-
ware and the application. It is necessary that the language provides powerful concepts
that can facilitate the application; yet it is equally necessary that those concepts can
be efficiently implemented. The first large Pascal program developed was the Pascal
compiler. This enabled Niklaus Wirth to find the right compromise between concepts
for a complex application and their implementability.

A significant occurrence at the end of 1987 was that CSLab came to cooperate with
a telecommunications prototyping team lead by KerstinÖdling atEricsson Business
Communications AB(EBC). Team members were H˚akan Karlsson, H˚akan Larsson and
Åke Rosberg. Based on a study of several different existingPrivate Branch Exchange
(PABX) systems they had defined an improved PABX architecture,Audial Communi-
cation System(ACS), and the next natural step was to build a prototype. For this they
needed a suitable programming technology and for this they chose Erlang which itself
was still a prototype.

This lead to a highly constructive collaboration during 1988 and 1989. The project,
named ACS/Dunder, was reported in December 1989 [Pe89, D¨a89,Öd93]. By this time
a prototype system with a functionality corresponding to about 1/10 of the complete
MD 110 [Mö82, Mdw] had been designed and verified. Based on the ACS architecture

4.2. STEPS TOWARDS A PRODUCT 15

Figure 4.2: My original Erlang logotype.

and the Erlang programming language the prototype showed an improvement in design
efficiency by a factor of 20 over current technology.

The ACS architecture structured the system into aBasic Operating System(BOS),
an Applications Operating System(AOS), and the applications. BOS had some very
sophisticated structures for supervising the system, which were later used for theOpen
Telecom Platform(see below).

Erlang itself underwent many changes during this work – which the users patiently
endured. Most notable was a major syntax revision from a Prolog style to a functional
style.

Declarative programming and Erlang were mentioned in a presentation by Lars
Ramqvist on Strategies and Technologies for the 1990’s [Ra88].

In May-June 1990, theXIII International Switching Symposium(ISS’90) took place
at Älvsjö Exhibition Centre in Stockholm with about 2000 participants. ISS is the
major event in telecommunications and this is where Joe Armstrong and Robert Virding
first officially presented Erlang to the world [Ar90]. Erlang was also demonstrated
during a technical visit which was shown to eight different groups during a hectic day.
I had written the demonstration telephony application that was used.

The original purpose of this demonstrator was to experiment with ways to structure
a telephony system with features such as call back, short number, conference call, etc.
Ideally each feature should be represented as a separate program module. However,
since every feature comes in at many different points in the system a system usually
becomes a complex weave when all of them are combined. In the demonstrator the
features were structured as increments that were invoked from the outgoing call and
incoming call state machines.

The presentation at ISS was noted by theRoyal Swedish Academy of the Engineer-
ing Sciences(IVA) in their yearly summary of technical progress in Sweden [Iv90].

4.2 Steps towards a Product

ACS/Dunder was based on an Erlang interpreter written in Prolog. This was acceptable
for a prototype, but not for a real product. (For one thing a real time system cannot be
allowed to stop for a couple of seconds now and again for garbage collection. A proper
implementation would have to include an incremental real time garbage collector.) The
users at EBC also required a speed-up by at least a factor 40.

The Erlang design team consisting of Joe Armstrong, Mike Williams and Robert

16 CHAPTER 4. DEVELOPMENT OF ERLANG

Virding started experimenting. One attempt was a cross compiler to Strand [Fo89]. Fi-
nally an abstract machine,Joe’s Abstract Machine(JAM), was invented inspired by the
Warren Abstract Machine [Ma88] with added primitives for concurrency and exception
handling [Ar92a]. Joe wrote the compiler, Mike the emulator and Robert the support
libraries. This turned out to be 70 times faster than the original Prolog interpreter.
Although the EBC group by now had escalated their demands the JAM implementa-
tion proved that concurrent functional programming could be used for “soft real time”
system products, i.e. response times measured in milliseconds.

In telecommunication systems “hard real time” is usually handled by dedicated
(device or regional) processors close to the hardware, and thus feature response times
of microseconds.

In 1990, Erlang was recommended for prototyping purposes within Ericsson and
several different system were designed for very different purposes. A group at ERA
(Ericsson Radio AB) built a demo system [Ah92] to control a cordless exchange. G¨oran
Båge at CSLab built a control system for a photonic switch which was shown at Tele-
com’91 in Geneva. Sebastian Strollo (also at CSLab) built a demo system [Bu92]
which was displayed at theEuropean Conference on Optic Communication(ECOC) in
Paris in 1992. Both these systems were set up for permanent display at the switching
laboratories in Ericsson. Claes Wikstr¨om and Sebastian Strollo also built a demo sys-
tem for TELI of their planned Ermes pan-European paging system [Erm]. (TELI was
a subsidiary of Televerket later Telia, the Swedish national telecom operator.)

Erlang was used inResearch in Advanced Communication for Europe(RACE)
projects such as Biped [Mo93], but an interesting observation was that it was only used
in hardware oriented projects. In such projects it was necessary to create a functioning
prototype system to control some hardware in a short time using only a few people.
The software oriented RACE projects were much more concerned with methodology
than with technology.

In December 1989 the Erlang Design Team and myself were invited to Bellcore to
present Erlang and to give an Erlang course. This lead to John Unger building a large
subsystem of Cruiser, a system for multi-media communication, in Erlang. This was
also the start of a regular course activity and the design team worked out a four day
course which was given at CSLab and I found myself in the role of course organiser. In
1991 we gave three courses atEllemtel Utvecklings AB(EUA), Stockholm, plus one at
Ericsson in Rome and one at Ericsson in Melbourne. In 1992 there were further courses
plus one at Telef´onica in Madrid. The course was also held at theRoyal Institute of
Technology(KTH) in Stockholm and became part of their course on programming of
parallel systems. At Uppsala a student project, Distorsion [Di91], based on a telephone
exchange and Erlang, involving about 20 students, was carried out in 1991 which led
to seven students doing their Master’s Theses at CSLab.

In 1992 the decision was taken to develop Erlang into a product for use in produc-
tion projects. EBC also decided to build the Mobility Server based on the ACS/Dunder
prototype (see above). The Erlang Design Team got permission to write a regular text
book, which becameConcurrent Programming in Erlang[Ar93] printed by Prentice
Hall Ltd.

In October 1992, theXIV International Switching Symposiumtook place in Yoko-
hama, Japan. Ericsson presented only four regular papers of which no less than three
dealt with prototype systems developed using Erlang [Ah92, Bu92, Er92]. At the ple-
nary summary at the end of the symposium the software expert, Peter Cashin from Bell
Northern Research, stated that:

4.3. ERLANG SYSTEMS 17

Figure 4.3: Erlang Systems logotype.

� “We should take our hats off to Ericsson for looking at software design in a whole
new way.”

Although Ericsson had been rather inconspicuous during the symposium it was the
only company to be mentioned when the symposium was summed up.

4.3 Erlang Systems

In 1993Erlang Systems ABwas established as a subsidiary ofEricsson Infocom AB.
The business idea was to sell Erlang as a tool in the external market and also to provide
training and consulting. It turned out that the market was more difficult than expected
and Erlang Systems was subsequently made into a regular department withinErics-
son Software Technology AB. Roy Bengtsson was then appointed manager of Erlang
Systems.

The immediate effect of Erlang Systems was the development of documentation
and course material of professional quality. Also teaching and consulting were carried
out in a way that was beyond what a research laboratory could handle. The customers
were and still are primarily from various projects within Ericsson.

During 1998 and 1999 there was almost one course every week, see Figure 4.4.
Most courses were given at their premises in Kista, north of Stockholm. However,
often it has been more practical for the teacher to travel to the site of the application
project.

18 CHAPTER 4. DEVELOPMENT OF ERLANG

0

5

10

15

20

25

30

35

40

45

50

1988 1990 1992 1994 1996 1998 2000

Figure 4.4: Total number of courses given per year. There are 10-12 pupils at each
course.

The initial course offering consisted of the following course program:

� Basic Erlang, 4 days,

� Interoperability, 4 days,

� Tools and libraries, 4 days,

� Advanced Erlang, 4 days.

Table 10.2, page 51, details the course curriculae during 1998 and Table 10.3,
page 51, the number of students and courses during 1997-1999.

In 1993Concurrent Programming with Erlang[Ar93] was published. Erlang be-
came known around the world primarily in academic circles and CSLab delivered sys-
tems around the world (by sending magnetic tapes through the regular mail).

4.4 Further Technical Developments

In 1992 Claes Wikstr¨om at CSLab developed an ASN.1 [St90] compiler [Wi92]. This
was the first telecommunications oriented “tool” written in and for Erlang. Claes also
joined the design team when he developed Distributed Erlang [Wi94] in 1993. Pro-
cesses in different Erlang systems (termed nodes) can communicate through message
passing as easily as between processes within one Erlang system. Erlang nodes can re-
side in different processors in a network. Claes also extended the Erlang error handling
mechanisms to deal with errors in the communication or when nodes go down. This

4.4. FURTHER TECHNICAL DEVELOPMENTS 19

1

10

100

1000

10000

1988 1990 1992 1994 1996 1998

Figure 4.5: Total number of external deliveries of Erlang per year free of charge for
academic or evaluation purposes prior to theopen source. External marketing was
stopped during 1995.

was yet a further break-through since distributed programming is notoriously very dif-
ficult. Claes became coauthor of the second edition ofConcurrent Programming with
Erlangwhich appeared in 1996 [Ar96a].

In 1994 Magnus Fr¨oberg, also at CSLab, developed a translator from theSpecifi-
cation and Description Language(SDL) [CC84a, Ro85] to Erlang [Fr93]. SDL is a
system description language created by C.C.I.T.T. which is widely used in telecommu-
nications. For example, many communication protocols are described using SDL. SDL
exists both in a graphical flow chart like form and in a textual form looking much like
a program. It turned out that the generated Erlang code was about the same volume as
the SDL textual form. Despite the interest in SDL and that many have asked about this
tool there have been no users. Probably Erlang programmers do not see the need for
SDL and vice versa. (A later Master’s Thesis [Wi95] developing an application first
using Erlang and then using SDL/SDT showed that the Erlang design took only half
the time. However, the programmer had a functional programming background.)

Having Erlang as a distributed concurrent functional language enabled CSLab to
attack further complex applications. In 1995 Hans Nilsson and Claes Wikstr¨om de-
veloped a distributed real time database with transactions and query processing called
Amnesia [Ni96a, Ni96b]. This was later productified and renamed Mnesia [Ma99].

In October 1993 Erlang V4.1, the first commercial release, was delivered. In 1995
Erlang Systems took over the academic distribution of Erlang. After some time this was
made into a free distribution over Internet for research and education, see Figure 4.5.

Erlang Systems also issues academic licences which gives free access to all teach-
ing material. Table 10.4, page 52, lists the academic licence holders in 1999.

20 CHAPTER 4. DEVELOPMENT OF ERLANG

On May 4-5, 1994, I organised theFirst International Erlang User Conference
together with Erlang Systems. It was held at Ellemtel with about 100 participants.
This has now become a yearly event (see Appendix 2 and 3, page 69 and 70). The
conference in 2000 gathered 145 participants which filled the lecture hall and a waiting
list was in operation from four weeks before the event.

Over the years a large number of Master’s Theses (see Appendix 1, page 66) have
been written on subjects related to Erlang, some of which have been quite advanced
such as an implementation of Erlang based on OS threads [He98]. Another dealt with
the design of an SNMP [St99a] agent [Bj95] which was later turned into a regular
product as part of OTP (see below).

4.5 Early Marketing Efforts

Mike Williams, Roy Bengtsson and Per Erik Witasp, who was in charge of external
marketing (but with a very limited budget), made a couple of lecture tours round Swe-
den and USA presenting Erlang but with little success. They had discussions with
Integrated Systems, Inc. [Isw] about possible cooperation but this fell through when
the key contact person left ISI.

4.6 Erlang Summary

Theopen sourceErlang White Paper [Whp] provides an overview as well as 14 pro-
gram examples.

4.6.1 Sequential Erlang

Erlang is a single assignment, functional programming language language with dy-
namic typing not unlike Scheme. Its syntax, however, is more like ML.

Erlang has data types like atoms, numbers, lists, and tuples and usespattern match-
ing to select between alternatives. The only loop construct is recursion.

An Erlang program is built up of modules and modules are separately compiled and
loaded. Only explicitly exported functions can be called from another module.

4.6.2 Concurrency

Functions can bespawnedto create a concurrent process (or thread of control). Con-
currency is supported by the Erlang implementation without help from the operating
system. Processes have no shared memory and communicate by sending and receiv-
ing messages asynchronously. Receiving processes select messages through pattern
matching.

Processes in Erlang processes are extremely lightweight and their memory require-
ments can vary dynamically. Erlang implementations support applications with very
large numbers of concurrent processes (typically in the region of 20,000-30,000).

Erlang supports programming “soft” real time systems, which require response
times on the order of milliseconds. Long garbage collection delays in such systems
are unacceptable, so Erlang is able to reclaim memory in small parts of the system
every time the garbage collector is invoked.

4.6. ERLANG SUMMARY 21

4.6.3 Distribution

Erlang permits transparent distribution. An Erlang program running on a computer is
termed an Erlang node. A distributed Erlang system consists of several Erlang nodes
spread over many computers (perhaps running different operating systems) connected
over a network.

One Erlang node can create concurrent processes running on other nodes and Er-
lang processes in different nodes can communicate through message passing in the
same way as processes within one node with automatic marshalling.

4.6.4 Robustness

An Erlang process can crash (because of type error, division by zero etc.) but this
will only bring down that process not the entire system (or node). Erlang processes,
however, can monitor each other so that an error can be received as an error message.
This enables the design of robust systems where supervisor processes can take action,
reclaim resources, log errors, restart a transaction etc.

These mechanisms extend also over different nodes in a distributed system. For
example, a distributed system can be configured to fail-over to other nodes in case of
failures and automatically migrate back to recovered nodes.

This enables the design of soft-fail systems where in a telecommunications system
an error in one call may bring down that call while the rest of the system is not affected.

4.6.5 Software Upgrading in Running Systems

Erlang allows program code to be changed in a running system (“hot” code loading).
When a new version of a module is loaded, newly spawned processes will run the new
version while on-going processes continue and finish undisturbed. It is thus possible
to install bug fixes and upgrades in a running system without disturbing its (currently
running) operation.

Users can control in detail how code is loaded. In embedded systems, all code is
usually loaded at boot time. In development systems, code is loaded when it is needed,
even when the system is running. If testing uncovers bugs, only the buggy code need
be replaced.

4.6.6 External Interfaces

Erlang processes communicate with the outside world using the same message passing
mechanism as is used between Erlang processes. This mechanism is used for commu-
nication with the host operating system and for interaction with programs written in
other languages. If required for reasons of efficiency, a special version of this concept
allows C programs to be directly linked into the Erlang runtime system.

4.6.7 Portability

Since Erlang is implemented in C it is essentially available on all systems that run C. Er-
lang is at present supported for the following operating systems; Solaris, Windows NT,
VxWorks, and Linux, see Table 4.1.

22 CHAPTER 4. DEVELOPMENT OF ERLANG

Processor
SPARC Pentium PowerPC

Sun Solaris 2 X - -
Sun Solaris x86 - X -

Operating VxWorks X - X
System Windows NT 4.0 - X -

Windows 95 - X -
Linux - X -

Table 4.1: Supported platforms, March 1999. Erlang can be ported to any system
running C. Open source Erlang has also been ported to FreeBSD by an external user
and included in their latest release.

4.6.8 Program Development

Erlang allows the same rapid prototyping and interactive development as, for example,
Lisp but extended into the world of concurrency and distribution. The error handling
mechanisms and hot code loading allow the design of high availability, robust, non-stop
systems.

4.7 Match against Requirements

Table 4.2 matches Erlang against the requirements defined in Section 3 and Table 3.1
above.

Programming is both atop downactivity from requirements and overall structure
of the system and abottom upactivity based on theabstractionsprovided by the pro-
gramming language. Abstractions such asmodules, processes, higher order functions,
etc. are to the programmer like transistors, capacitors, resistors, etc. to the hardware
designer. It is important that the abstractions be few, simple to understand and yet pow-
erful and provide the needed functionality. For example, if the application is inherently
concurrent it would be very difficult to program without some process concept. In that
case the application program itself would have to include some form of scheduler. Dis-
tribution, error handling, and hot code loading are extremely complicated requirements
and the support for them provided by Erlang enables the programmer to concentrate on
the application rather than on the basic programming technology.

4.7. MATCH AGAINST REQUIREMENTS 23

1 Handling of a very large
number of concurrent ac-
tivities

Concurrency is provided through alight weight processconcept
and a typical Erlang implementation can handle 20-30,000 con-
current processes in one node.

2 Actions to be performed at
a certain point in time or
within a certain time

Erlang handlessoftreal time.

3 Systems distributed over
several computers

An Erlang system may contain nodes distributed over many
computers running different operating systems over a network.

4 Interaction with hardware Erlang can easily communicate with hardware drivers.
5 Very large software sys-

tems
Modularisation is supported by themoduleconcept. W.r.t. ac-
tual size, see Section 6.

6 Complex functionality such
as feature interaction

Depends on the applications, see Section 6.

7 Continuous operation for
many years

Depends on the applications, see section 6.

8 Software maintenance (re-
configuration, etc.) with-
out stopping the system

Erlang permitshotcode loading.

9 Stringent quality and relia-
bility requirements

Depends on the applications, see Section 6.

10 Fault tolerance both to
hardware failures and soft-
ware errors

Erlang contains mechanisms to catch and contain errors and to
design supervision structures.

Table 4.2: Matching Erlang against the requirements on a programming technology for
telecommunication switching systems.

24 CHAPTER 4. DEVELOPMENT OF ERLANG

5 Open Telecom Platform

In late 1995, a remote access system was being developed atEricsson Telecom AB
(ETX) usingAsymmetrical Digital Subscriber Line(ADSL) technology which enables
fast transmission over copper wires and a decision had to be made regarding the se-
lection of an appropriate programming technology. Three different proposals were
prepared; one of which came from CSLab, termed theOpen Systemproposal.

Joe Armstrong, Mike Williams, and myself had long proposed an open system ap-
proach where different technologies, computers, languages, databases, management
systems, etc. could cooperate. Many such system components would come from sup-
pliers and some from Ericsson’s own developments (where either no existing compo-
nent was available or Ericsson had technology that provided a commercial advantage).

The proposal [An95] from CSLab was based upon:

� Commercial processors,

� Commercial operating systems,

� Erlang,

� The productified Amnesia DBMS, renamed Mnesia,

� The productified SNMP agent,

� The BOS from the Mobility Server, rewritten and better integrated with Erlang,
renamedSystem Architecture Support Libraries(SASL1),

� Productified development tools (debugger, interpreter, etc.),

� Interworking with device processors (usually programmed in C),

� Interworking with other software (protocol stacks, routing software, etc. usually
written in C).

Careful estimates of execution times were also made. As it turned out the Open
System proposal was given the go ahead with a tight schedule to produce a prototype
system in six months, i.e., to deliver by the end of May 1996. I was appointed project
manager of the first phase of the project and Mike Williams was appointed systems
designer of the access node project.

Immediately after the start of this project an even more important application project
started, the development of an ATM switch. The large AXE/N project (where Erlang
was not used) which had been running during 1987-95 had been closed down, which
also caught the notice of the press [Ol95, Wa95a, Wa95b] and it was a matter of great

1The name SASL usually meansSt Andrews Static Languagewhich was a precursor to Miranda.

25

26 CHAPTER 5. OPEN TELECOM PLATFORM

urgency to rapidly fill this gap in the product range. The new project involved about
200 people among them at least 60 Erlang programmers. Erlang Systems became
deeply involved with teaching and consulting.

At this point external marketing of Erlang for product development was stopped
since all efforts were to be concentrated on the Open System project. Erlang Systems
had worked for a couple of years on external marketing which turned out to be very
difficult since few dared to use a programming language from Ericsson which was not
widely used by Ericsson itself. Now when that situation had changed Erlang Systems
could have made a large marketing push, but instead had to close down the external
marketing. However, it was still permitted to deliver Erlang for research, education
and prototyping, primarily to universities.

For some time the access node and the ATM switch projects were the only projects
permitted to use the the emerging open system and for the same reason, to focus the
“resources”. Other projects had to apply to the steering group for permission.

The system was namedOpen Telecom Platform(OTP) and the project delivered the
first prototype system on time at the end of May 1996. From the beginning it was clear
that management of OTP [To97] would have to be handled by a specific product unit
and this was being created in parallel. After the first prototype phase Catrin Granbom
took over as project manager and Seved Torstendahl as product manager.

Two weeks later the ATM project had passed their first dead-line. After that both
OTP and the ATM project have stuck to their time schedules and the ATM product was
announced in March 1998.

OTP system components:

� Distributed application management,

� SASL - error logging, release handling,

� OS resource monitoring,

� EVA - protocol independent event/alarm handling,

� Mnesia - real time active data replication,

� SNMP - operations and maintenance interface,

� INETS - simple HTTP support.

A key subsystem in OTP is theSystem Architecture Support Libraries(SASL)
which give a framework for writing applications. SASL provides:

� Start-up scripts,

� An application concept,

� Behaviours (design patterns),

� Error handling,

� Debugging,

� High-level software upgrades in runtime without shutdown.

Thebehavioursprovide the programmer with yet higher level abstractions for effi-
cient program design [Dpw]:

27

� Supervision,

� Servers,

� Event handling,

� Finite State Machines.

SASL raises the level of abstraction and gives the system designers a powerful
framework for systems design with built-in support for distribution, incremental code
loading, error handling (and logging), etc. Mnesia and other OTP components are
handled as “applications” by SASL.

SASL consolidated ideas on programming patterns that came both from the Erlang
group at CSLab and the BOS developed by the prototyping team at EBC.

A new unit was created for management, support, and further development of OTP.
Early 1997 theOTP product unitwas formally established with Torbj¨orn Johnson as
manager. Upon his retirement he was replaced by Mike Williams and in 1998, when
he in turn moved on within Ericsson, Kenneth Lundin took over.

Technology transfer from CSLab to the OTP product unit was handled as follows:

� Already in the first prototype phase, the product unit took over systems integra-
tion and release management.

� From the second development phase, the product unit took over project leader-
ship and product management.

� Designers from the product unit joined the different design teams (for complier,
SASL, etc.) and CSLab personnel were phased out over a longer period.

� CSLab and the OTP product unit are still colocated.

By the end of 1998 the OTP unit numbered about 20 people and had taken com-
plete control over the system. With successive releases new functionality has been
added such as an implementation of theCommon Object Request Broker Architecture
(CORBA) [Omg, Si96]. This has been available since OTP release R5B in February
1998.

Erlang Systems adjusted their courses and developed anOTP Programmingcourse.

28 CHAPTER 5. OPEN TELECOM PLATFORM

6 Selected Industrial Applications

6.1 AXD 301 ATM Switch

The AXD 301 [Axd, Bl98, Bl99] is a new generation high performanceAsynchronous
Transfer Mode(ATM) switching system. It is extremely compact and has linear scal-
ability of switching and control capacity. The system is intended for public network
operators andInternet Service Providers(ISP’s).

The AXD 301 is a key building block in Ericsson’s multi-service network solution.
Applications include ATM connectivity networks, scalable Frame Relay / ATM net-
works andMultiprotocol Label Switching(MPLS) for efficient handling of IP traffic as
well as multi-service business networks and residential broadband networks. AXD 301
can also be combined with Ericsson’s AXE narrow band switching system to provide a
full range of narrow band services over ATM. All of these applications can run simul-
taneously on the same switch.

Main features:

� Scalability: From 10 Gbit/s in one subrack up to 160 Gbit/s,

� Carrier class: Non-stop operation,

� Modularity: Extendible with new functions,

� Functionality: All ATM Forum and ITU signalling and service categories,

� Manageability: Embedded web based element manager with a standard inter-
face to management systems (i.e., SNMP).

The internal computing resources of the 10 Gbit/s switching system consist of:

� Two general-purpose control processors which handle network-signalling termi-
nation, call control, and operation & maintenance,

� Simple device-control processors, one on each ATM termination board and switch-
core board for low-level control of the switch hardware.

For inter-processor communication and network signalling, every processor is con-
nected to the ATM switch core. The device processors on the ATM termination boards
are connected through the local switch port, the control processors and device proces-
sors on the switch core boards are connected (via the subrack backplane) to the switch
port of the nearest ATM termination board.

During normal operation, one control processor handles calls, while the other pro-
cessor handles operation and maintenance. In addition, each processor acts as a standby

29

30 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

for its counterpart. In the event that one of the processors should fail or be taken out of
operation, the system automatically switches over to single-processor mode.

An internal, distributed, real time database management system (based on Mnesia)
copies data to each control processor, ensuring that configuration data and all data
relating to operator ordered connection setup are protected from processor failure.

AXD 301 was announced in March 1998. Quote “with Erlang/OTP as the core tech-
nology, an open architecture was built, enabling the use of Erlang, C, Java [Go96] and
dynamically generated HTML/JavaScript in the areas appropriate for each language:

� C for drivers, low level protocols and integrating third party components (280,000 lines).

� Java, JavaScript and HTML for the management interface. (2,500 lines of Java
and 110,000 lines of JavaScript and HTML (generated code).)

� Erlang for control and management functions (290,000 lines).” [Wi98a]

This gives a nice illustration of the assumption made above that telecommunication
systems would likely be designed using a combination of technologies.

The sourced software are from previous Ericsson projects but most importantly
80,000 lines of C from Trillium Software for handlingPrivate Network-Network Inter-
face(PNNI) routing.

(These figures have grown considerably since then, see Table 6.1, page 35, row 5.)
Even more important was that the project has been able to work in successive in-

cremental prototypes. One drawback with the sequential “waterfall” [Yo92] model is
the difficulty to go back when errors in design such as capacity problems occur. Func-
tional but limited AXD 301 systems were available at a very early stage, thus enabling
measurements and allowing the designers to evaluate their design. Successive versions
refined the system and added new functionality.

To date 250 AXD 301 systems have been delivered to 20 countries. The AXD 301
system is also an integral part of Ericsson’s ENGINE concept [Pr99c] which has been
ordered by operators such as British Telecom and Telef´onica.

6.2 ANx Access Node

ANx-DSL [Ni98] is Ericsson’s access solution for delivery of high speed IP/ATM
based services to medium, small business and residential users over existing copper
networks.

The ANx-DSL system usesAsymmetric Digital Subscriber Line(ADSL) technol-
ogy to dramatically increase bandwidth in the existing copper access network. This
means that people working from home can download large data files faster than ever
before. An additional advantage is that Ericsson’s ANx ADSL platform supports digi-
tal video services.

The ANx-DSL equipment is installed in the operator’s central office, where a split-
ter and a multiplexer separate voice and data signals to and from the subscriber, and
concentrate data channels for forwarding to the data network backbone. Even at low
take-up rates, this is a flexible and scaleable system, easy to install and extremely cost-
effective.

The control system is based on OTP and Erlang. The database and the hard disk for
secure storage of permanent data are also located at the control processor. Each board

6.3. GPRS 31

in the system has a device processor or a board controller, which is a low-end micropro-
cessor. The device processor communicates with the control processor through in-band
ATM communication or via a separate Ethernet LAN. The board controllers commu-
nicate via ATM with one of the device processors, which acts as a shelf controller; in
other words, the device processor contains specific software for maintaining the board
controllers. In ANx-DSL, the ADSL boards and the network termination boards have
board controllers, whereas the exchange termination boards have device processors.

In October 1998 Ericsson signed an agreement with Telia to supply ANx during a
two year period [Pr98].

6.3 GPRS

General Packet Radio Service(GPRS) [Gprs, Gr99] is a standard from theEuropean
Telecommunications Standards Institute(ETSI) on packet data in GSM systems. By
adding GPRS functionality to the public land mobile network, operators can give their
subscribers resource-efficient access to external IP networks and enable them to stay
always connected.

GPRS offers air-interface transfer rates up to 115 kbit/s subject to mobile terminal
capabilities and carrier interference. Moreover, GPRS allows several users to share the
same air-interface resources and enables operators to base charging on the amount of
transferred data instead of on connection time.

The world’s first demo of GPRS (which had been developed in Erlang) was shown
at CeBit 1998 and the two nodes, SGSN and GGSN, are developed based on Er-
lang/OTP. By the beginning of year 2000 Ericsson holds more than 50% of the world
market in GPRS and in February, 2000, Ericsson presented the first live GPRS phone
in the first end-to-end live GPRS network demo [Pr00b].

6.4 A Comment on Software Engineering

Experiences from the use of Erlang in many sometimes very large projects indicate
clearly the two different traditions withinsoftware engineering. The most successful
projects are run by enthusiastic teams, working hands-on and producing rapid results.
The prime examples is the AXD 301 which developed a small executable system very
early and then continued by building successive increments, carefully adding new func-
tionality and all the time monitoring system performance.

Less successful has been the top-down methodological waterfall approach where
several teams (perhaps spread over several countries) specify and code the whole sys-
tem and then send their parts for integration test. With this approach there is much
poorer feed-back to the designers and the whole idea of interactive programming (one
of the strong points of functional programming) is lost.

Design efficiency is the key issue. All the telecoms requirements listed in Section 3
above can be solved with various techniques, even assembler, but then with a huge
effort. Internal studies [Wi98b] show an increased productivity by at least a factor four
compared to conventional (C, C++, Java ...) technologies. This enabled the AXD 301
project to apply an incremental work method. It should perhaps be added that most
programmers like Erlang as, like other interpretative languages (Lisp, Java, etc.), it
adds to their work satisfaction to see quick results [He00b].

32 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

6.5 Experiences from the Field

The Mobility Server has been delivered in about 450 systems on 15 markets and the
designers have considerable experience working with the system:

� “We have 250,000 lines of code today, distributed among 500 modules in the
Mobility Server 1 and only two or three fault reports from the whole world come
in each month. That gives very low sustaining costs. Erlang has got a high level
of abstraction, which allows the designers to concentrate on what they do, not
how. That contributes to there being fewer flaws in the code.” [Fe98]

Not only are there fewer faults but they are easier to find. Conventional systems
produce hexadecimal dumps which are very difficult to interpret but Erlang produces
symbolicinformation, lists, tuples, etc. This is the power of functional programming.
Erlang is sometimes described as an untyped programming language, but the truth is
that it is dynamically typed. All data items carry type information with them.

6.6 User Testimonies

The following statements have been made by users and have been used in marketing
by Erlang Systems [En98]:

� “We believe from project start, and still believe, that if we had tried to use any
other technology, we would not even remotely have been able to, within the
desired time frame of roughly 1.5 years, reach the desired level of functionality,
system software maturity and stability.”fAXD 301g

� “Also, the short time for writing and testing Erlang code has enabled a truly
incremental approach to software development.”fAXD 301g

� “I would say that without Erlang/OTP we could never have accomplished the
required functionality in the short time frame ...”fGPRSg

� “It takes 2 years to make a Plex programmer productive, it took 2 months in
Erlang.”fEricsson AS,Norwayg

6.7 External Users and Consultants

In March 1999 the following external companies used Erlang on licence from Erlang
Systems:

� Beijing Telestar Telecom Technology Institute, China, Service Creation Envi-
ronment,

� Borsalino, France, Business Tools,

� Brainpool, Sweden, SMS services [St99b],

� Motivity, Canada, Protocol converter,

� one2one, UK, IN services [Hi00],

6.8. CEBIT 1998 AND MARKETING EFFORTS 33

� Telia Promotor, Sweden, Telia Call Guide [Na99].

Since then Brainpool has dropped their Erlang based product. On the other hand
Sendmail Inc [Smw] has joined as Erlang user [Fr00].

The following external consultancy companies offer Erlang consultancy services
and have been certified by Erlang Systems:

� Certeam,

� Cesarini Consulting Ltd,

� Connecta Teknik AB,

� ENEA Data,

� Sjöland & Thyselius,

� UPEC.

Erlang Systems and the OTP product unit operate a commercial Erlang web site
[Erw] which contains documentation, information about current courses etc.

6.8 CeBit 1998 and Marketing Efforts

In 1998 there were about 14 projects ongoing based on Erlang/OTP. In addition there
were many projects using just Erlang. At the CeBit international trade fair in Hannover
in April 1998 there were no less than nine Erlang based system products on display in
the Ericsson stand [Wa98a, Wa98b]:

� Auto generatedGraphic User Interface(GUI) for Intelligent Network(IN) ser-
vices,

� ANx-DSL fast access system,

� AXD 301 ATM switch,

� Database Access Gateway,

� GPRS packet switch over GSM,

� Mobility Server,

� Network Intelligent Call Centre,

� Telia Internet Conference Set-Up,

� Professional Mobile Radio over GSM.

In April 1997 the ban on external marketing was lifted and Erlang Systems em-
ployed Jane Walerud as Sales Manager in October. The marketing goals were set high.
Erlang/OTP was to have 10,000 users and be used in product development in 5 com-
panies other than Ericsson by the end of the year 2001. The agreed marketing strategy
was to find major partners to take over the technology and to concentrate on one niche
market at a time time while stepping up the publicity efforts.

During 1998, most possible major partners, including SUN and MicroSoft, de-
clined the Erlang/OTP technology. Erlang Systems then concentrated on two niches:

34 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

� Embedded systemsin a partnership with Wind River Systems [Wrw] with an
implementation of Erlang/OTP on the VxWorks operating system [Wre].

� High availability telephony in a partnership with Natural Micro Systems [Nmw]
who have a leadership in the compact PCI technology.

These partnerships would not get all the way to the goal of 10,000 users in three
years, so starting in June 1998, Jane Walerud instead concentrated on theopen source
initiative (see below).

6.9 Refined Match against Requirements

Table 6.1 makes a further match of Erlang against the requirements defined in Section 3
and Table 3.1 above.

6.9. REFINED MATCH AGAINST REQUIREMENTS 35

1 Handling of a very large
number of concurrent ac-
tivities

There are about 200-4000 concurrent processes active in AXD 301.

GPRS release 1 has about 500 concurrent processes. The next release
is expected to have about 1000-2000 concurrent processes.
Mobility Server has about 200 static processes and generates six dy-
namic processes for each call.

2 Actions to be performed at
a certain point in time or
within a certain time

In AXD 301 performance measurements, equipment supervision and
output of charging (billing) information is carried out at regular inter-
vals. (The same applies to GPRS.)

Implementations of communication protocols contain many timers
supported in Erlang by the time-out mechanism in thereceivestate-
ment and built-in timers.

3 Systems distributed over
several computers

The 40 Gbit/s version of AXD 301 consists of 8 control processors and
64 device processors.

4 Interaction with hardware Interaction with switching hardware is often done through device pro-
cessors which can handle the “hard” real time requirements at low
level.
There are standard methods for interaction with C and for communica-
tion with hardware drivers.

5 Very large software sys-
tems

AXD 301 release 3 consists of about 525 KLOC Erlang, 608 KLOC C
and 8 KLOC Java (plus the OTP).

6 Complex functionality such
as feature interaction

AXD 301 supports all ITU and ATM Forum protocols and interwork-
ing between them.

GPRS consists of many cooperating protocols.
7 Continuous operation for

many years
The Mobility Server was released as a product in 1994 and there are
now more than 400 units in operation around the world. Very few er-
rors in the field are reported and most problems now relate to hardware
(like fan motors giving up).

8 Software maintenance (re-
configuration, etc.) with-
out stopping the system

AXD 301 supports soft upgrades. The system itself figures out how it
should be upgraded, processes suspended, code loaded into the system,
etc.

9 Stringent quality and relia-
bility requirements

AXD 301 requirements specify service stops of no more than 6 min-
utes/year. At the present time the system has about 60 execution years
in the laboratory. (20 test channels in operation for 3 years.)
GPRS is expected to have a system availability of 99.995 %. This
corresponds to a system downtime of about 26 minutes/year.

10 Fault tolerance both to
hardware failures and soft-
ware errors

In AXD 301 either central processor can take over the other. The sys-
tem is built using supervision hierarchies as supported by OTP/SASL.
The design rules specify that functions either handle correct inputs or
crash. In the latter case the supervisor at a higher level will identify
and handle the error.
GPRS is built aroundn processors and if one goes down during opera-
tion it will only cause a slight degrading of capacity.

Table 6.1: Further match of Erlang against the requirements on a programming technol-
ogy for telecommunication switching systems. KLOC = 1,000 lines of non-commented
code. OTP itself contains about 240 KLOC Erlang.

36 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

7 Backlash

Once upon a time C++ [St91] was the contender vs. Erlang. However, after some large
project failures C++ fell into disrepute and instead Java [Go96] appeared. Java is like
a tidied up version of C++ without pointers and with builtin garbage collection. Java
also supports concurrency in the form of threads (which, however, are implementation
dependent). The question is whether Java is a suitable programming language for large
robust systems where Erlang is currently used. Many systems (such as the AXD 301
noted above) use Erlang for servers and the telecommunications application and Java
for the graphics oriented management system, i.e., clients. (Present Java implementa-
tions have much longer context switching times than Erlang, but this might be changed
in the future such that Java could also be used for large embedded applications like
Erlang.)

In February 1998, Erlang was banned withinEricsson Radio AB(ERA) for new
product projects aimed for external customers because:

� “The selection of an implementation language implies a more long-term com-
mitment than selection of processors and OS, due to the longer life cycle of
implemented products. Use of a proprietary language, implies a continued effort
to maintain and further develop the support and the development environment. It
further implies that we cannot easily benefit from, and find synergy with, the evo-
lution following the large scale deployment of globally used languages.” [Ri98]

Ongoing Erlang user projects were also required to make a plan for how to remove
the Erlangdependence. This policy was issued without prior notice to the OTP Product
Unit or to CSLab which were then part ofEricsson Telecom AB(ETX).

This was part of a scheme to outsource software technology at Ericsson to Rational
Inc. [Raw], a provider ofComputer Aided Software Engineering(CASE) tools. The
Joint Development Initiative(JDI) agreement between Ericsson and Rational was con-
cluded in 1997. Rational acquired the Swedish software company SoftLab AB [Sow]
which had a long history of working with Ericsson and, indeed, was responsible for
maintenance and further development of the Plex compilers, a core technology for Er-
icsson. Rational, however, wanted to turn SoftLab into a sales and consulting company
which caused some turmoil [Pe98] and in late 1998 part of SoftLab was taken over by
Ericsson [Cs99].

Although the Erlang policy only applies to ERA, no major Erlang based projects
were started at Ericsson during 1998 or 1999. However, with the ongoing projects using
Erlang, the volume of training and consulting remains at the same level as before.

37

38 CHAPTER 7. BACKLASH

8 Open Source and Continued
Research

Software has been available asfreewarefor many years, but this had not gained re-
spectability in industry. In 1997 a new term appeared,open source, to describe the
remarkable success of the Linux [Re97] development and also to provide a legal frame-
work for handling maintenance and user’s improvements to the system. Open source
[Opd, Jo00b] also implies a way of spreading software where users need not feel locked
in by single vendors that might disappear. Theopen sourcephenomenon was described
by Eric S. Raymond in a paper [Ra99] that influenced Netscape’s decision to release
the Communicator 5.0 source code.

During the Autumn of 1998 a discussion was raised about releasing Erlang as open
source in order to facilitate its spread externally and hopefully attract even Ericsson
competitors to use it. A small group visited Red Hat Inc. [Rew], the company that
distributes Linux, and preparations started at CSLab to create an open source web site.
On December 2 the OTP steering group gave its permission and one week lateropen
source Erlang[Opw] was released.

The earlier marketing efforts had concentrated on making a business from mar-
keting Erlang as a programming language with an implementation. The focus now
changed tospreadingthe language and to eradicate the “proprietary” image. In ad-
dition, the open source distribution is a considerably more mature product in that it
contains the full OTP implementation (SASL, Mnesia, libraries, etc.) as well.

During December 1998 there were 72,933 requests to the open source Erlang site
although no press release had been issued. This dropped the following month and
then kept a level of about 35,000 requests for several months. However, from October
1999 this figure has been rising steadily and there were 126,341 requests in September
2000, see Figure 8.1. Four mirror sites [Miw] were established, KTH, University of
Uppsala, University of Vienna andSoftware Engineering Research Centre(SERC) in
Melbourne.

A second release of open source Erlang was made in early December 1999 and
a couple of articles on Erlang were published in Computer Sweden in February 2000
[He00a, He00b]. Open source Erlang is now maintained by the OTP product unit.

8.1 Bluetail AB

Eddie was an “innovation cell” using Erlang to “provide the tools which allow the con-
struction of mission critical internet sites” [Edw]. In the middle of December 1998
the Eddie team handed in their notices to leave Ericsson to set up their own company,
Bluetail AB[Blw], based on external venture capital. (A new design team was found

39

40 CHAPTER 8. OPEN SOURCE AND CONTINUED RESEARCH

0

20000

40000

60000

80000

100000

120000

140000

160000

98-10 99-01 99-04 99-07 99-10 00-01 00-04 00-07 00-10

Figure 8.1: Total number of user requests per month towww.erlang.org .

in Melbourne on my suggestion and have also set up a commercial company,Lodbro-
ker Pty[Low].)

Bluetail “develops and sells software products to Internet organisations and thereby
supplies reliability, scalability and managability to Internet services”. Soon after sev-
eral more people at CSLab, SARC (se below), the OTP product unit and Erlang Sys-
tems (in all about 15 people) left to join Bluetail. Among them were Joe Armstrong,
Claes Wikstr¨om, and Robert Virding. Jane Walerud became Managing Director. I was
invited to the board of Bluetail and participated with Ericsson’s permission.

Bluetail received a lot of attention in the press [Ka00a, Sm00a]. Their first product
was theMail Robustifierand early in year 2000 they brought out theWeb Prioritizer
[Me00, Tå00]. Among Bluetail’s customers were TeleNordia and SPRAY. At the be-
ginning of year 2000, Bluetail signed a partnering agreement with Sendmail Inc [Smw].

In late August 2000 Alteon [Alw], a major US supplier of web switches, announced
that they were in the process of acquiring Bluetail at a price of 1,4 billion SEK [Ka00b,
Ol00, Pr00d, Sm00b]. Earlier in 2000 ADC Telecommunications bought Altitun for
7,9 billion SEK and Cisco bought Qeyton for 7,3 billion SEK. Altitun and Qyeton
were, like Bluetail, Swedish startup companies founded largely by former Ericsson
technicians [Au00].

By coincidence, Alteon is being bought by Nortel [Pr00c].

8.2 Erlang in the Research World

Over the years a number of papers [Ar92b, D¨a93b, Ha93, Vi93, Wi94, Ar95, Vi95,
Wi96, Ar97a, Ar97b, Ar97c, Ar98, Da98, Ar99b, Ar99c, Ma99] have been presented

http://www.erlang.org/

8.2. ERLANG IN THE RESEARCH WORLD 41

0

100

200

300

400

500

600

700

800

98-11 99-01 99-03 99-05 99-07 99-09 99-11 00-01

Figure 8.2: Total number of source code downloads per month fromwww.erlang.org .
1st release December 1998. Bug fix release February 1999. 2nd release Novem-
ber 1999.

http://www.erlang.org/

42 CHAPTER 8. OPEN SOURCE AND CONTINUED RESEARCH

on the development and use of Erlang in prestigious conferences and this has received
much attention in the research world. As a consequence Joe Armstrong was invited as
keynote speaker to theACM SIGPLAN International Conference on Functional Pro-
grammingon June 9-13, 1997, which took place in Amsterdam [Ar97b].

CSLab has worked with many distinguished researchers on Erlang and Erlang re-
lated topics, notably professors Marc Feeley (Montr´eal), Bengt Jonsson (Uppsala),
Richard O’Keefe (Otago), and Philip Wadler (Glasgow, now at Lucent).

It has been a drawback, though, that theSwedish Institute of Computer Science
(SICS) [Siw] has been so preoccupied with developing Oz [Moz]. However, distribu-
tion and error handling in Oz have been influenced by Erlang [Ha99].

Erlang has also helped to inspire work on distributed Haskell [Hu00, Po00].
At theTwelfth International Workshop on Implementation of Functional Languages

[Mo00] in Aachen on September 4-7, 2000, there was a half-day session on Erlang
thanks to Thomas Arts’ initiative.

8.3 Research Continues

The wide exploitation of Erlang technology in the form of OTP did not mean the end of
Erlang related research. Instead Erlang opened many constructive paths for continued
research with a view to further industrial uses:

� Bogumil Hausman worked from 1992 on compiling Erlang to C with the aim
of gaining execution speed. The compiled code obviously is considerably larger
than the JAM byte code.Bogdan’s Erlang Abstract Machine(BEAM) [Ha93,
Ha94] uses the same run time library as JAM. In 1999 BEAM replaced JAM
which is no longer supported [Ka99].

� Robert Virding developed an alternative implementation calledVirding’s Erlang
Engine(VEE) using different techniques, notably generational garbage collec-
tion. In 1999 a new compiler was released which was based on VEE [Ka99].

� A Scheme [Dy96] implementation of Erlang. This is an ongoing project [Fe99]
(partly funded by CSLab) at the University of Montr´eal lead by Marc Feeley,
creator of Gambit Scheme [Gaw]. The purpose is to create an alternative Erlang
implementation in the public domain.

� High Performance Erlang(HiPE) [Hiw, Jo99, Li99, Jo00a] is a project atCom-
puting Science Department(CSD) [Csd], Uppsala University, to compile Erlang
into Sun Microsystems Sparc native code using very aggressive optimization
techniques. HiPE starts from the JAM byte code and concentrates on code gen-
eration. However, it is being redesigned to work from BEAM instead.

� Geoff Wong atSoftware Engineering Research Centre(SERC) [Sew], Melbourne,
is performing research intocontinuous system monitoring[Wo98] whereby a
separate computer monitors non-functional aspects like reliability, capacity, etc.
during the actual operation.

� List comprehensions, recordsandhigher order functions[Er44] have been added
to Erlang. Most of this work has been done by Robert Virding.

8.3. RESEARCH CONTINUES 43

1984-6 Language experiments
1987 Early Erlang

1988-9 ACS/Dunder application prototype
JAM emulator

1990 Erlang presented at ISS’90
Use for prototyping

1991 First fast implementation
ASN.1 compiler to Erlang

1992 User product projects (Mobility Server) started
1993 Distributed Erlang
1994 User products launched

SDL translator
Several user projects started

1995 SNMP Master’s Thesis
Amnesia DBMS prototype

1996 OTP development started
Type system and program verification

1997 General availability
1998 Open source distribution

Type system and program verification
1999 BEAM replaces JAM

Table 8.1: Erlang Development.

� A formal language specificationfor Erlang is nearing completion. This work
was started by Jonas Barklund of CSD [Csd] and is being finished by Robert
Virding. It is available together with the open source release. The grammar used
“is almost, but not quite, an LALR(1) grammar” [Ers].

� Core Erlang[Cew] is an intermediate representation of Erlang, intended to lie at
a level between source code and the intermediate code typically found in com-
pilers developed primarily by CSD [Csd].

� Richard O’Keefe from the University of Otago, New Zealand, has studied Erlang
with tools and libraries very carefully and has proposed certain changes [Ok98]
to the language and its libraries to widen the applicability of Erlang for very large
applications.

� Further work onreal time garbage collection[Vi95, Bo97].

� Simon Marlow and Phil Wadler of the University of Glasgow have developed a
type systemfor Erlang [Ma97]. This was taken over by Thomas Arts at CSLab
who has reworked the system [Tyw] and is beginning to find users for it. The
vision is to be able to cover the entire spectrum from untyped fast prototyping to
well controlled typed systems for production.

� A program verificationsystem [Vew] for Erlang is being developed in co-operation
with Swedish Institute of Computer Science(SICS) [Siw] and Thomas Arts of
CSLab. This system is beginning to be used for finding bugs in protocol imple-
mentations [Ar98, Da98, Ar99a, Ar99b, Ar99c].

44 CHAPTER 8. OPEN SOURCE AND CONTINUED RESEARCH

� Sven-Erik Nystr¨om from CSD [Csd] has worked onstatic analysisof Erlang
programs.

� Dan Sahlin at CSLab and Lawrie Brown from University College of New South
Wales have worked onSafe Erlang[Br99], an extension of Erlang with capabil-
ities to be able to handle imported software in a secure manner.

� A couple of prototype projects have implementedintelligent agentsusing Dis-
tributed Erlang notably a large student project at Uppsala [Jo97].

� Department of Computer Systems(DoCS) [Dow] at Uppsala University has in-
vestigated implementation of Erlang for very small operating systems and have
made a preliminary implementation of Erlang on ExoKernel [Exw] which had
been developed at M.I.T.

� Claes Wikstr¨om and Tony Rogvall proposed a further extension of Erlang with
a bit syntax[Ro99] which significantly improves Erlang’s capabilities for pro-
gramming communication protocol stacks. This was implemented by Patrik Ny-
blom and available from the Erlang/OTP release in September 2000 [Ny00].

CSLab has close co-operation with several universities and from 1997 I was ap-
pointed chairman of the board ofAdvanced Software Technology(ASTEC) [Asw], a
competence centre supported by NUTEK [Nuw] and primarily based at Uppsala uni-
versity. The HiPE and Erlang verification projects are both run under ASTEC.

In March 1998, theSoftware Architecture Laboratory(SARC) with Håkan Mill-
roth as manager was spawned off from CSLab. H˚akan came from CSD [Csd] and was
appointed adjunct professor at Uppsala. SARC works closely with CSLab and there is
some overlap, but SARC will focus on higher levels of system architecture for example
defining recommended standard solutions (design patterns) to typical subsystems re-
curring in telecommunications systems. When H˚akan left for Bluetail he was replaced
by Torbjörn Keisu.

9 Discussion

9.1 Development of Programming Technology

Once upon a time I imagined the development of programming language technology
as a path towards successively higher levels of abstraction, see Figure 9.1.

� Machine code,

� Assembler programming,

� Higher Order Languages (Fortran, Pascal, etc.),

� Declarative (i.e. functional and logic) programming,

� Very high level, perhaps A.I. based ...

� ... and so on ...

Seen from a perspective of the 1970’s (when the design of compilers and operating
systems had just started to be done in higher order languages) we should now be well
headed towards Very High Level Languages for yet the next generation. This has not
happened and perhaps there will not be any development of this kind. Perhaps this
view (inspired from developments in hardware from discrete components to VLSI) is
a misunderstanding.

In fact, declarative languages are just about the same age as higher order languages
since Lisp appeared only shortly after Fortran. This means that the different types of
languages exist in parallel. Figure 9.2 is perhaps more appropriate.

Returning to the conclusion in the paper [D¨a86] describing the experiments using
different programming languages and techniques (see above) that a complete system
likely would be built using a combination of techniques suitable for different purposes,
the question could be rephrased as why there is not a greater use of functional and logic
programming? After all, they should be part of any programmer’s “tool box”.

Machine level

Assembler level

High-level

Declarative

Figure 9.1: Successive programming language generations.

45

46 CHAPTER 9. DISCUSSION

Declarative

Object-oriented

Imperative

Concurrent

1960 1970 1980 1990

Lisp Prolog ML Erlang Mercury

Simula Smalltalk C++ Java

Fortran Cobol PL/I Pascal C

Simula Modula Chill Ada Erlang Java

Figure 9.2: Concurrent programming language generations.

9.2 On Applications of Functional Programming

Phil Wadler [Wa98d] presents the following list of possible reasons for the resistance
to functional programming languages:

� Compatibility,

� Libraries,

� Portability,

� Availability,

� Packagability,

� Tools,

� Training,

� Popularity.

Most of these are self-defeating: because of the lack of X, no X will be created. All
points except the last one are of a technical nature and can easily be remedied. The key
point is the last which is a bit like aCatch 22. Lisp has been around a long time and
proved itself many times without making the real break-through. There are also other
functional programming languages of industrial quality, notably Clean [Clw], Mercury
[Mew], and Oz [Moz].

It might well be that it is difficult to introduce functional programming into an old
and established company culture. This, on the other hand, leaves the field wide open
for exploitation by new companies free from tradition.

The 1st International Workshop on Practical Aspects of Declarative Languages
took place on January 18-19, 1999, at San Antonio, Texas. However, the only paper
delivered by an industry representative was a paper on Mnesia [Ma99].

9.3. DIFFUSSION OF INNOVATIONS 47

Cumulative % of
Stages Actors Actors Adopting

Pioneer Innovators 0-5 %
Early expansion Early adopters 5-15 %
Takeoff Popularizers 15-30 %
Bandwagon Followers 30-80 %
Late Conservatives 85-95 %
Terminal Resistors 95-100 %

Table 9.1: Acceptance of New Technology.

9.3 Diffussion of Innovations

Everett Rogers in his bookDiffussion of Innovations[Ro82] describes a series of
“stages of adoption” for new technologies, see Table 9.1.

An important point in this model is that there is no smooth transition from one stage
to the next. This applies especially when moving from thetakeoffto thebandwagon
since the first group are interested in the new technology and its possible uses whereas
the second group is primarily interested in functionality which might, for example, be
available to competitors.

With reference to Erlang’s prototype projects, the early products and the projects
following OTP development could be seen as theearly expansion. Erlang/OTP was
on the verge oftakeoffin the form of projects that had seen these successes but were
halted by the ERA policy.

9.4 The Magic of Words

This brings the question around tomarketingwhere CSLab may have failed miserably.
Technical merits may impress the technicians but something else is required to gain the
acceptance of decision makers. It was mentioned above how “freeware” was treated
with suspicion but when “open source” appeared (with an appropriate legal framework)
it gained much higher respectability.

Recently we have seen another such case, “daily build”. For many years the stan-
dard method for program system development has been the “water fall model” [Yo92]
starting with specifications, ending with system integration. Against this has often been
proposed “rapid prototyping” as a means to get an early check on implementability
and performance. This essentially conservative and realistic approach is now gaining
respectability as “daily build”:

� “Focus on customer requirements and code -Code is King,

� Shorter distance between customer and programmer, who gets better understand-
ing of the final product,

� The customer is able to see real progress in the form of executable code,

� Avoid a large integration problem at the end of the project.” [Ol99]

48 CHAPTER 9. DISCUSSION

Thus this apparently undisciplinedbottom-upway of working gets accepted for its
merits under a new term. The good point is that people who disliked fast prototyping
can now embrace its advantages without having to concede that they could have been
wrong earlier.

Also technicians working with applied research need to understand this magic of
words. The term “functional programming” is old and worn and its marketing might
need some new term.

9.5 Symbolic Programming strikes Back

One of the nice aspects of Lisp (mentioned above) is the use of S-expressions as an
efficient way to save and read complex data structures, which also have the advantage
that they can be easily inspected. This compares with hard coded binary structures and
hexadecimal dumps.

The trend now is towards textual forms on a large scale, IETF protocols, postscript,
HTML, and XML [Xmw]. Quote Phil Wadler:

� “In fact, XML is little more than a notation for trees and for tree grammars, a
verbose variant of Lisp S-expressions coupled with a poor man’s BNF (Backus-
Naur form). [- - -] There is much for the language designer to contribute here.
As all this is based on a sort of S-expression, is there a role for a sort of Lisp?”
[Wa99]

10 Conclusions

For Erlang to be used inside Ericsson it was required that it was used outside and for
Erlang to spread outside Ericsson there had to be wide use of it inside. The only way
to get around this was a steady spread of the language in both spheres. In fact, in the
dynamic world of telecommunications, the history of Erlang has proceeded in a see-
saw fashion with focus alternating between internal and external use, see Table 10.1.

The development and use of Erlang shows that for a new programming language to
be reasonably successful there are, at least, the following prerequisits:

� There has to be a sizeable and stable support organisation. The OTP product unit
numbers 18-20 people financed by the in-house Ericsson projects.

� There must be training and consultants available.

� There has to be some niche that is sufficiently interesting and important for large
sectors of industry. In Erlang’s case high-availability, reliable, distributed sys-
tems and rapid design through high abstraction level and prototyping.

� The language must be reasonably simple to learn and to implement.

A most remarkable observation is that while hardware developments go ahead at
great speed (note Moore’s law) basic programming still remains at about the same level
of technology as 30 years ago. Tremendous efforts are made on various methodolgies
and the visions in industry seem to be in the direction of “software factories” where the
work can be reduced to mere “coding”.

Today when large numbers of people are available with university degrees in Com-
puter Science there should be a greater emphasis on better technologies. Functional
programming has been around just as long and difficult problems such as hot code
loading and distributed programming can only reasonably be handled through better
technology such as Erlang provides.

Was it worth the effort? Did the Erlang development produce the desired technical
result and did it serve the needs for product development? The answer must be “yes”
on both accounts. Erlang has also shown that:

� Functional programming can be used for very large applications involving large
project teams.

� Functional programming can be used for industrial real time embedded applica-
tions.

� Functional programming gives significant commercial advantages in raising de-
sign productivity and enabling rapid developments through prototypes and suc-
cessive increments.

49

50 CHAPTER 10. CONCLUSIONS

Internal usage External usage Comments
1984-6 - - Technology evaluations
1987-9 - Experimental developments

Use in prototypes Presented at ISS’90
1990-2 Academic distribution Experimental developments

Noted at ISS’92
1993-5 Limited use in products External marketing Erlang Systemsestablished
1996 External marketing OTP development

Use for strategic halted OTP product unitestablished
1997 product development External marketing

restarted
Nine products 3,323 evaluation OTP development

1998 displayed at CeBit systems delivered and deployment
Erlang stopped Open source

at ERA release
1999 AXD 301 and GPRS Growing use for Bluetailstarted
2000 win important orders product development AlteonbuysBluetail

Table 10.1: The history of Erlang summarized.

Erlang provides many examples of the difficulty of technology introduction, no-
tably:

� Erlang and functional programming in general both enable and require a new
way of working with much more interactivity. The top-down waterfall method-
ologies were designed to handle conventional programming languages. Technol-
ogy and methodology both have to be changed.

� Marketing a new programming language and a new way of working requires
a huge effort and investment. Twice Erlang Systems has tried marketing Erlang
with limited resources and with meager results. Sun has probably spent a fortune
on Java but that has paid back in the form of increased demand for computer
equipment. Ericsson is a telecommunications company and selling Erlang would
not sell more switches.

� Open sourcecombined with a good support organisation provided the real break-
through. Many more programmers can try Erlang and companies know that
support and education are available if needed.

When CSLab was established its aim was described thus

� “CSLab’s responsibility in the long term is to create a basic software technology
for future telecom systems and support systems and in the near term to contribute
to the introduction of new software technology in current systems.” [D¨a84b]

With Erlang/OTP CSLab achieved this aim and has in the process shown thatap-
plied researchin an industrial laboratory environment, indeed, works as was the propo-
sition in the key paper [D¨a91]. While technical progress has continued steadily – mar-
keting, dissemination, and other interaction with the external world have shown a much
more uneven progress. However, it is hoped that these experiences can be useful for
other software developers and hence they have formed the main theme of this thesis.

51

1 Sequential Erlang
Basic Erlang 2 Concurrent Erlang

3 Error Handling
4 POTS and Advanced Topics

1 Repetition, More about data types, Erlang 4.4 extensions
Continued Erlang 2 ETS and TV, Code loading, Distributed Erlang

3 Ports, Funs, List comprehensions
4 Catch and throw, Robustness and efficiency, Cover, Graphics

1 Overview, Behaviours, Behaviours: Servers
OTP Programming 2 Behaviours: Finite state machines, Supervisors

3 Behaviours: Events, Applications, Special processes
4 System configuration, Introduction to Mnesia

1 Ports, The interface generator
Advanced Erlang 2 Linked-in drivers, Sockets

3 erl-interface, C nodes
4 Jive (interface to Java), Inets

Table 10.2: Course Curriculae (day by day), 1998.

No of No of No of
Year Course days courses students

Basic Erlang 4 18 191
Continued Erlang 4 7 91
OTP Programming 4 6 71

1997 Advanced Erlang 4 2 11
SNMP 2 1 5
User adapted 1-5 7 87
Total 41 456

Basic Erlang 4 21 230
Continued Erlang 4 6 51

1998 OTP Programming 4 13 153
Advanced Erlang 4 2 14
Total 42 448

Basic Erlang 4 22 229
Continued Erlang 4 5 48

1999 OTP Programming 4 9 80
Erlang Literacy 5 1 14
Seminars and Special Courses 1-5 6 72
Total 43 443

Table 10.3: Courses 1997-1999. TheUser Adaptedcourses combined material from
the other courses adapted for the needs of the particular project. TheErlang Literacy
course is adapted for test and installation personnel. Most courses were given at Erlang
Systems’ premises in Kista north of Stockholm. Courses have also been given at the
users’ locations like Athlone (Ireland), Aachen and Hildersheim (Germany), Budapest
(Hungary), Grimstad (Norway), Montr´eal (Canada), and Raleigh and Dallas (USA).

52 CHAPTER 10. CONCLUSIONS

Adelaide Univ. CTIN
Australia Australian Defence Force Academy

SERC, Melbourne
University of Adelaide
Centre de r´echérche informatique de Montr´eal

Canada Simon Fraser University, Vancover
Université de Montréal

China Beijing University of Posts & Telecom
Shanghai JiaoTong University

Costa Rica Inst. Technologica de Costa Rica
Croatia University of Zagreb
Germany Rheinisch-Westfalische Technische Hochschule

Universität Kaiserslautern
Greece National Technical University of Athens, CS dept

National Technical University of Athens (NOC)
Hungary Technical University Budapest, Math dept

Bengal Eng. College, Howrah
India Indian Inst. of Tech., Dehli

Malaviya Regional Eng. College, Jaipur
Ireland Trinity College Dublin
Italy Coritel
Malaysia University Teknologi Malaysi
The Netherlands Katholike Universiteit Nijmegen
Russia Tomsk State University

Jaume I University
Spain LFCIA

Universidad Politecnica de Madrid
AMU-Gruppen Syd
Chalmers Tekniska H¨ogskola
Högskolan Ronneby/Karlskrona
Ingenjörssskolan/KTH Haninge
Ingenjörsskolan/KTH Kista

Sweden Linköping University
Mälardalens H¨ogskola
Royal Institute of Technology/NADA
Royal Institute of Technology/Teleinformatics
Stockholm University
Swedish Institute of Computer Science
Uppsala University

Thailand Khon Kaen University
University of Glasgow

UK University of Hull
University of York
Central Michigan University
UCSD

USA University of California/LANL
University of Minnesota-Morris
University of Missouri
University of Pennsylvania

Table 10.4: Academic licences, use of teaching materials, March 1999.

Bibliography

[Ad83] Reference Manual for the Ada Programming Language. ANSI/MIL-
STD 1815, 1983.

[Ah92] Ingemar Ahlberg, John-Olof Bauner and Anders Danne. Prototyping Cordless
using Declarative Programming.XIV International Switching Symposium.Yoko-
hama, October 25-30, 1992.

[Ah93] Ingemar Ahlberg, John-Olof Bauner and Anders Danne. Prototyping Cordless
using Declarative Programming.Ericsson Review, no 2, 1993.

[Al84] Magnus Alburg and Bjarne D¨acker. Comparison between Lisp and Pascal for
Use in Developing Programming Support Environments.NT-P Symposium on
Languages and Methods for Telecommunications Applications.Åbo, March 6-8,
1984.

[Alw] Alteon WebSystems. Web sitehttp://www.alteonwebsystems.com

[An95] Matz Andersson, Joe Armstrong, Lars Borg, Bjarne D¨acker (chairman), Per
Hedeland, Hans Heilborn, Tommy Johansson, Sebastian Strollo, Tony Rogvall,
Claes Wikstr¨om and Mike Williams. ATM Control System, Proposal from the
Open Platform Group. EUA/SU 95 038. 1995-10-10. Internal paper.

[Ar86] Joe Armstrong, Nabiel Elshiewy and Robert Virding. The Phoning Philoso-
phers’ Problem or Logic Programming for Telecommunications Applications.
Third IEEE Symposium on Logic Programming.Salt Lake City, September 23-
26, 1986.

[Ar90] Joe Armstrong and Robert Virding. Erlang - An Experimental Telephony
Programming Language.XIII International Switching Symposium.Stockholm,
May 27-June 1, 1990.

[Ar92a] Joe Armstrong, Bjarne D¨acker, Robert Virding and Mike Williams. Imple-
menting a Functional Language for Highly Parallel Real Time Applications.
Software Engineering for Telecommunication Systems and Services.Florence,
March 30-April 1, 1992.

[Ar92b] Joe Armstrong, Robert Virding and Mike Williams. Use of Prolog for De-
veloping a new Programming Language.The Practical Application of Prolog.
London, April 1-3, 1992.

[Ar93] Joe Armstrong, Robert Virding and Mike Williams. Concurrent Programming
in Erlang. Prentice-Hall, 1993, ISBN 0-13-285792-8, 1st edition.

53

http://www.alteonwebsystems.com/

54 BIBLIOGRAPHY

[Ar95] Joe Armstrong and Robert Virding. One Pass Real Time Generational Mark-
sweep Garbage Collection.International Workshop on Memory Management.
Kinross, Scotland, September 27-29, 1995.

[Ar96a] Joe Armstrong, Robert Virding, Claes Wikstr¨om and Mike Williams. Concur-
rent Programming in Erlang. Prentice-Hall, 1996, ISBN 0-13-285792-8, 2nd edi-
tion.

[Ar96b] Joe Armstrong. Erlang - A Survey of the Language and its Industrial Appli-
cations.Ninth Exhibition and Symposium on Industrial Applications of Prolog.
Tokyo, October 16-18, 1996.

[Ar97a] Joe Armstrong. Design Patterns for Designing Switching Software.High
Level Concurrent Languages.Schloss Dagstuhl, January 20-22, 1997.

[Ar97b] Joe Armstrong. The Development of Erlang.ACM SIGPLAN International
Conference on Functional Programming.Invited paper. Amsterdam, June 9-13,
1997.

[Ar97c] Joe Armstrong and Thomas Arts. Erlang and its Applications.Workshop on
Constraint Programming for Time Critical Applications.Invited paper. Schloss
Hagenberg, Austria, October 27-28, 1997.

[Ar98] Thomas Arts, Mads Dam, Lars-Åke Fredlund and Dilian Gurov. System De-
scription: Verification of Distributed Erlang Programs.Fifteenth International
Conference on Automated Deduction.Lindau, July 5-10, 1998.

[Ar99a] Thomas Arts and Izak van Langevelde. How muCRL supported a Smart Re-
design of a Real-life Protocol.International workshop on Formal Methods in In-
dustrial Critical Systems.Trento, July, 1999.

[Ar99b] Thomas Arts and J¨urgen Giesl. Applying Rewriting Techniques to the Verifi-
cation of Erlang Processes.Computer Science Logic.Madrid, September, 1999.

[Ar99c] Thomas Arts and Mads Dam. Verifying a Distributed Database Lookup Man-
ager written in Erlang.World Congress on Formal Methods.Toulouse, September,
1999.

[Asw] Advanced Software Technology. Competence center at Uppsala university. Web
sitehttp://www.docs.uu.se/astec/

[At84] The UNIX System.AT&T Bell Laboratories Technical Journal, vol 63, no 8,
part 2, October, 1984.

[Au00] Tomas Augustsson.Svenska Dagbladet, August 30, 2000.

[Axd] AXD 301 High-Performance IP & ATM Switch. Web site
http://www.ericsson.se/datacom/products/wan core/axd301

[Ba86] Victor R. Basili, Richard W. Selby and David H. Hutchens. Experimentation
in Software Engineering.IEEE Transactions on Software Engineering, no 7, July,
1986.

[Bj95] Martin Björklund and Klas Eriksson. A Framework for SNMPv2 in Erlang.
KTH/NADA, Master’s Thesis, 1995.

http://www.docs.uu.se/astec/
http://www.ericsson.se/datacom/products/wan core/axd301

BIBLIOGRAPHY 55

[Bl98] Staffan Blau and Jan Rooth. AXD 301 - A new Generation ATM Switching
System.Ericsson Review, no 1, 1998.

[Bl99] Staffan Blau, Jan Rooth, J¨orgen Axell, Fiffi Hellstrand, Magnus Buhrgard,
Tommy Westin and G¨oran Wicklund. AXD 301: A new Generation ATM Switch-
ing System.Computer Networks, no 31, 1999, pp 559-582.

[Blw] Bluetail AB. Web sitehttp://www.bluetail.com

[Bo97] Kent Boortz and Dan Sahlin. A Compacting Garbage Collector for Unidi-
rectional Heaps.Ninth International Workshop on Implementation of Functional
Languages.St Andrews, Scotland, September 1997. Selected Papers, Springer-
Verlag LNCS Vol 1467.

[Br75] Fred P. Brooks. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing Company, 1975.

[Br99] Lawrie Brown and Dan Sahlin. Extending Erlang for Safe Mobile Code Exe-
cution.The Second International conference on Information and Communication
Security.Sydney, Australia, November, 1999.

[Bu90] Alan Burns and Andy Wellings. Real-time Systems and their Programming
Languages. Addison-Wesley Publishing Company Inc, 1990, ISBN 0-201-17529-
0.

[Bu92] M Buhgard, P Granestrand, M Lindblom and L Thyl´en. Photonic Switching
in High Capacity Networks.XIV International Switching Symposium.Yokohama,
1992.

[Bå84] Göran Båge. The Programming Language EriPascal. LME/UE 83 018, 1984-
05-04. Internal paper.

[Ca99] Maurice Castro. Erlang in Real Time. ISBN: 0864447434. 1999.
Web site http://www.serc.rmit.edu.au/˜maurice/erlbk/

[CC84a] Specification and Description Language SDL. C.C.I.T.T. Recommendation
Z.100, 1984.

[CC84b] CCITT High Level Language CHILL. C.C.I.T.T. Recommendation Z.200,
1984.

[Cew] Core Erlang Initiative.
Web sitehttp://www.csd.uu.se/projects/hipe/corerl/

[Cl81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
1981.

[Clw] Concurrent Clean Home Page.
Web site http://www.cs.kun.nl/˜clean/

[Cs99] Ericsson k¨oper del av SoftLab.Computer Sweden, January 18, 1999.

[Csd] Computing Science Department (CSD). Uppsala University.
Web sitehttp://www.csd.uu.se

http://www.bluetail.com/
http://www.serc.rmit.edu.au/~maurice/erlbk/
http://www.csd.uu.se/projects/hipe/corerl/
http://www.cs.kun.nl/~clean/
http://www.csd.uu.se/

56 BIBLIOGRAPHY

[Csw] Computer Science Laboratory. Ericsson Utvecklings AB.
Web sitehttp://www.ericsson.se/cslab

[Da96] Hans Dahlquist. Tunnelbygget blir flera hundra miljoner dyrare.Ny Teknik,
no 40, 1996.

[Da98] Mads Dam, Dilian Gurov and Lars-˚ake Fredlund. Compositional Verification
of Erlang Programs.Third International Workshop on Formal Methods for Indus-
trial Critical Systems.Amsterdam, May 25-26, 1998.

[Di91] Distorsion. Student project with 17 participants. UU/DoCS, 1991.

[Dow] Department of Computer Systems (DoCS). Uppsala University.
Web sitehttp://www.docs.uu.se

[Dpw] Erlang Programming Rules and Conventions.
Web sitehttp://www.erlang.se/doc/programming rules.shtml

[Dy96] Kent Dybigg. The Scheme Programming Language: ANSI Scheme. Prentice-
Hall. ISBN 0-13-454646-6.

[Dä79] Bjarne Däcker. EriChill/EriPascal Programmeringsspr˚ak. Förslag.
LME/X/Td 2419. 1979-06-15. Internal paper.

[Dä83] Bjarne Däcker. Using Lisp to Develop Programming Support Environments
in the Industrial Environment.International Workshop on Software Development
Tools for Telecommunication Systems.Anaheim, April 6-8, 1983.

[Dä84a] Bjarne D¨acker, Nabiel Elshiewy, Per Hedeland, Carl Wilhelm Welin, and
Mike Williams. Experiments with Programming Languages and Techniques for
Telecommunications Applications. ETX/XT/DU 84 030. January, 1984. Internal
paper.

[Dä84b] Bjarne D¨acker. XT/DU Datalogi. Ansvarsbeskrivning. ETX/XT/DU 84 048.
April, 1984. Internal paper.

[Dä86] Bjarne Däcker, Nabiel Elshiewy, Per Hedeland, Carl Wilhelm Welin, and
Mike Williams. Experiments with Programming Languages and Techniques for
Telecommunications Applications.Software Engineering for Telecommunication
Switching Systems.Eindhoven, April 14-18, 1986.

[Dä89] Bjarne Däcker and Kerstin̈Odling. ACS/DUNDER. Software Architecture and
Technology. EBC/KX/DM 89 101. December, 1989. Internal paper.

[Dä91] Bjarne Däcker. Management of Technology with Regard to Software.First
Australian Conference on Telecommunications Software.Invited paper. Mel-
bourne, April 22-24, 1991.

[Dä93a] Bjarne D¨acker. Erlang - A New Programming Language.Ericsson Review,
no 2, 1993.

[Dä93b] Bjarne D¨acker. Breakthrough in Software Design Productivity through the
Use of Declarative Programming.Eighth World Productivity Congress.Stock-
holm, May 23-27, 1993.

http://www.ericsson.se/cslab/
http://www.docs.uu.se/
http://www.erlang.se/doc/programming rules.shtml

BIBLIOGRAPHY 57

[Dä94a] Bjarne D¨acker. Introducing Concurrent Functional Programming into the
Telecommunications Industry.TELECOM’94.Varna, September 20-22, 1994.

[Dä94b] Bjarne D¨acker. Industrial Applications of Declarative Programming.
SOFT 13 - Improved Productivity of Quality Software.Linköping, October 3-4,
1994.

[Dä95] Bjarne Däcker. The Development and Use of Erlang. Concurrent Functional
Programming in Industry.ConTel’95. Conference on Telecommunications.Za-
greb, June 7-9, 1995.

[Edw] The Eddie Open Source Project. Web sitehttp://www.eddieware.org

[Ek79] T Ekman and G Eriksson. Programmering i Fortran 77. Studentlitteratur 1979.
ISBN 91-44-16663-X.

[En98] Erlang/OTP News, CeBit Special, April, 1998.

[Er44] Erlang Extensions Since 4.4
Web sitehttp://www.erlang.org/doc/r7a/doc/extensions/part frame.html

[Er92] Dick Eriksson, Mats Persson and KerstinÖdling. A Switching Software Ar-
chitecture Prototype Using Real Time Declarative Language.XIV International
Switching Symposium.Yokohama, 1992.

[Er95] Bernt Ericson. Applied Research at Ericsson. LME/DT-95:3003 Ue. January,
1995. Internal paper.

[Erl] Table of the Erlang Loss Formula. Telefon AB LM Ericsson. X/Yg 102 903 Ue.
Stockholm, 1979.

[Erm] Enhanced Radio MEssaging System (ERMES).
Web sitehttp://www.ermes.org

[Ers] Erlang Language Specification.
Web sitehttp://www.erlang.org/download/erl spec47.ps.gz

[Erw] Erlang Systems. Web sitehttp://www.erlang.se

[Euc99] Fifth International Erlang/OTP User Conference, Stockholm, September 30,
1999. Web sitehttp://www.erlang.se/euc/99

[Euc00] Sixth International Erlang/OTP User Conference, Stockholm, October 3,
2000. Web sitehttp://www.erlang.se/euc/00

[Exw] ExoKernel Home Page.
Web sitehttp://www.pdos.lcs.mit.edu/exo.html

[Fe98] Anna Fedoriw. Easy Design, Fewer Flaws and Low Sustaining Costs.Er-
lang/OTP News, February 1998.

[Fe99] Marc Feeley, Patrick Pich´e, Sylvain Beaulieu, Martin Larosse, and Mario La-
tendresse. Status Report on the ETOS Erlang to Scheme Compiler.Fifth Interna-
tional Erlang/OTP User Conference.Stockholm, September 30, 1999.

http://www.eddieware.org/
http://www.erlang.org/doc/r7a/doc/extensions/part frame.html
http://www.ermes.org/
http://www.erlang.org/download/erl spec47.ps.gz
http://www.erlang.se/euc/99/
http://www.erlang.se/euc/00
http://www.pdos.lcs.mit.edu/exo.html
http://www.erlang.se/

58 BIBLIOGRAPHY

[Fo79] C. L. Forgy. OPS4 User’s Manual. Technical Report CMU-CS-79-132. Depart-
ment of Computer Science. Carnegie-Mellon University, 1979.

[Fo89] I. Foster and S. Taylor. STRAND. New Concepts in Parallel Processing.
Prentice-Hall, 1989.

[Fr93] Magnus Fr¨oberg. Automatic Code Generation from SDL to a Declarative Pro-
gramming Language.Sixth SDL Forum.Darmstadt, October 11-15, 1993.

[Fr00] Scott Lystig Fritchie, Jim Larson, Nick Christenson, Debi Jones, Lennart
Öhman. Sendmail Meets Erlang: Experiences Using Erlang for Email Applica-
tions.Sixth International Erlang/OTP User Conference.Stockholm, October 3,
2000.

[Gaw] Gambit Scheme Home Page.
Web site http://www.iro.umontreal.ca/˜gambit

[Gi94] W. Wayt Gibbs. Software’s Chronic Crisis.Scientific American.September,
1994.

[Go96] James Gosling, Bill Joy and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[Gprs] Always “on-line” with GPRS. Web site
http://www.ericsson.se/wireless/products/mobsys/gsm/subpages/wise/gprs.shtml

[Gr82] Ove Granstrand. Technology, Management and Markets. Pinter. London, 1982.

[Gr99] Håkan Granbohm and Joakim Wiklund. GPRS - General Packet Radio Service.
Ericsson Review, no 2, 1999.

[Ha93] Bogumil Hausman. Turbo Erlang.International Logic Programming Sympo-
sium.Vancouver, October 26-29, 1993.

[Ha94] Bogumil Hausman. Turbo Erlang: Approaching the Speed of C. InImplemen-
tations of Logic Programming Systems, pp. 119-135. Kluwer Academic Publish-
ers, 1994.

[Ha99] Seif Haridi. Missförstånd om Mozart. Letter to the Editor.Datateknik 3.0, no 6,
1999.

[Haw] Haskell Home Page. Web sitehttp://haskell.cs.yale.edu

[He76] Göran Hemdal. AXE 10 - Software Structure and Features.Ericsson Review,
no 2, 1976.

[He98] Pekka Hedqvist. A Parallel and Multi-threaded Erlang Implementation.
UU/CSD, Master’s Thesis, 1998.

[He00a] Thomas Hedlund. Spr˚aket bäst i komplexa realtidssystem.Computer Sweden,
no 11, 2000.

[He00b] Thomas Hedlund. Roligt att utveckla i Erlang.Computer Sweden, no 11,
2000.

http://www.iro.umontreal.ca/~gambit/
http://www.ericsson.se/wireless/products/mobsys/gsm/subpages/wise/gprs.shtml
http://haskell.cs.yale.edu/

BIBLIOGRAPHY 59

[Hi00] Sean Hinde. Use of Erlang/OTP as a Service Creation Tool for IN Services.
Sixth International Erlang/OTP User Conference.Stockholm, October 3, 2000.

[Hiw] High Performance Erlang.
Web sitehttp://www.csd.uu.se/projects/hipe/osh

[Hj90] Thomas Hjalmarsson. AXE 10 Central Processors.Ericsson Review, no 1,
1990.

[Ho83a] Sören Holmstr¨om. PFL - A Functional Language for Parallel Programming.
Report no 83.03-R, Programming Methodology Laboratory. Chalmers University
of Technology, 1983.

[Ho83b] R. C. Holt. Concurrent Euclid, the UNIX System and TUNIS. Addison-
Welsley, 1983.

[Hu87] Joan Kirkby Hughes. PL/I Structured Programming. John Wiley & Sons Inc,
1987.

[Hu89] John Hughes. Why Functional Programming Matters.The Computer Journal,
vol 32, no 2, 1989.

[Hu00] Frank Huch and Ulrich Norbisrath. Distributed Programming in Haskell with
Ports.Twelfth International Workshop on Implementation of Functional Lan-
guages.Aachen, September 4-7, 2000.

[Isw] Integrated Systems, Inc. Web sitehttp://www.isi.com

[Iv90] Ny generation av programspr˚ak på väg. Framsteg inom forskning och teknik
1990.IVAs årsbok 1990.

[Je75] Kathleen Jensen and Niklaus Wirth. Pascal - User Manual and Report. Springer-
Verlag, 1975.

[Jo88] Geraint Jones and Michael Goldsmith. Programming in Occam2. Prentice-Hall,
1988.

[Jo97] Ing-Marie Jonsson, Dan Sahlin et al. A Platform for Secure Mobile Agents.
Practical Applications of Agents and Mobility.London, April 21-23, 1997.

[Jo99] Erik Johansson, Sven-Olof Nystr¨om, Mikael Pettersson, and Konstantinos Sag-
onas. HiPE: High Performance Erlang. ASTEC Technical Reports 1999. Web site
http://www.docs.uu.se/astec/Reports

[Jo00a] Erik Johansson, Mikael Pettersson, and Konstantinos Sagonas. A High Perfor-
mance Erlang System.2nd International Conference on Principles and Practice
of Declarative Programming.Montréal, September 20-22, 2000.

[Jo00b] Torbjörn Johnson. Open Source Software - Industriell Anv¨andning. Sveriges
Verkstadsindustrier, 2000 (to be published).

[Ka68] K. Katzeff and T. Andersson. The Tumba Stored Program Controlled Tele-
phone Exchange.Ericsson Review, no 3, 1968.

[Ka99] Magnus Karlson. Coming Releases of Erlang/OTP.Fifth International Er-
lang/OTP User Conference.Stockholm. September 1999.

http://www.csd.uu.se/projects/hipe/osh/
http://www.isi.com/
http://www.docs.uu.se/astec/Reports/

60 BIBLIOGRAPHY

[Ka00a] Lars Anders Karlberg. Genombrott f¨or forskarna som Ericsson inte ville ha.
Dagens IT, no 7, February 16, 2000.

[Ka00b] Lars Anders Karlberg. Nortel k¨oper avhoppade Ericsson-forskare.Dagens IT,
August 28, 2000.

[Ke78] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-
Hall, 1978.

[Li79] Barbara Liskov et al. CLU Reference Manual. MIT/LCS/TR-225, 1979.

[Li99] Thomas Lindgren and Christer Jonsson. The Design and Implementation of a
High-Performance Erlang Compiler. ASTEC Technical Reports 1999.

[Low] Lodbroker Pty. Web sitehttp://www.lodbroker.com/

[Ma86] Peter Magn´eli. Communications Computer APN 167 with ERIPASCAL.Er-
icsson Review, no 4, 1986.

[Ma88] D. Maier and D. S. Warren. Computing with Logic: Logic Programming with
Prolog. Benjamin Cummings, 1988.

[Ma97] Simon Marlow and Philip Wadler. A Practical Subtyping System for Erlang.
ACM International Conference on Functional Programming. 1997.

[Ma99] Håkan Mattsson, Hans Nilsson and Claes Wikstr¨om. Mnesia - A Distributed
Robust DBMS for Telecommunications Applications.First International Work-
shop on Practical Aspects of Declarative Languages.San Antonio, Texas, Jan-
uary 18-19, 1999.

[Mc65] LISP 1.5 Programmer’s Manual. J. McCarthy et al. M.I.T. Press, Cambridge,
1965.

[Mdw] MD110 BC10.
Web sitehttp://www.ericsson.se/enterprise/portfolio/system

[Mew] The Mercury Project.
Web sitehttp://www.cs.mu.oz.au/research/mercury/

[Me00] Jan Melin. Trogna bes¨okare får gräddfil på Internet.Ny Teknik, no 8, 2000.

[Mi98] Håkan Millroth. Platform for High-Availability Applications: Erlang/OTP vs
Java. Internal paper.

[Miw] Open Source Erlang. Mirror Sites.
Web sitehttp://www.erlang.org/mirrors.html

[Mlw] The ML language.
Web sitehttp://burks.bton.ac.uk/burks/language/ml/

[Mo93] Francisco Monfort. Control Switching Implementation of the BIPED Demon-
strator.Second Australian Conference on Telecommunications Software.Sydney,
1993.

[Mo00] Markus Mohnen and Pieter Koopman, editors. Proceedings of the 12th In-
ternational Workshop on Implementation of Functional Languages. Aachen,
September 4-7, 2000. Aachener Informatik-Berichte, ISSN 0935-3232.

http://www.lodbroker.com/
http://www.ericsson.se/enterprise/portfolio/system
http://www.cs.mu.oz.au/research/mercury/
http://www.erlang.org/mirrors.html
http://burks.bton.ac.uk/burks/language/ml/

BIBLIOGRAPHY 61

[Moz] Mozart Programming System. Web sitehttp://www.mozart-oz.org

[Mö82] Rolf Mörlinger. MD 110 - a Digital SPC PABX.Ericsson Review, no 1, 1982.

[Na99] Hans Nahringbauer. Telia Call Guide.Fifth International Erlang/OTP User
Conference.Stockholm. September 1999.

[Nmw] Natural Micro Systems.
Web sitehttp://www.naturalmicrosystems.com

[Ni96a] Hans Nilsson. Amnesia - An Industrial Deductive DBMS with Transac-
tions and Distribution.Logic Databases and the Meaning of Change.Dagstuhl,
September 23-27, 1996.

[Ni96b] Hans Nilsson and Claes Wikstr¨om. Mnesia - An Industrial DBMS with Trans-
actions, Distribution and a Logical Query Language.International Symposium on
Co-operative Database Systems for Advanced Applications.Kyoto, 1996.

[Ni98] Patrik Nilsson and Michael Persson. ANx - High speed Internet Access.Eric-
sson Review, Special Issue on Internet Access, 1998.

[Nuw] NUTEK - Närings och teknikutvecklingsverket.
Web sitehttp://www.nutek.se

[Ny00] Patrik Nyblom. The Bit Syntax - The Released Version.Sixth International
Erlang/OTP User Conference.Stockholm, October 3, 2000.

[Ok90] Richard O’Keefe. The Craft of Prolog. The MIT Press, 1990.

[Ok98] Richard O’Keefe. Abstract Patterns for Erlang.Fourth International Er-
lang/OTP User Conference.Stockholm, September 22-23, 1998.

[Ol00] Nils-Olof Ollevik. Alteon köper Bluetail. Svenska Dagbladet. August 28, 2000.

[Ol95] Hans Olsson. Ericsson l¨agger ner utveckling. Dagens Nyheter. December 8,
1995.

[Ol99] Kent Olsson and Even-Andr´e Karlsson. Daily Build - Rapid Development and
Control.Sveriges Verkstadsindustrier, 1999.

[Omg] Object Management Group. Web sitehttp://www.omg.org

[Opd] Open Source Definition.
Web sitehttp://www.opensource.org/osd.html

[Opw] Open Source Erlang.
Web sitehttp://www.erlang.org
Current statisticshttp://www.erlang.org/stats.html

[Pe89] Mats Persson. ACS/Dunder Prototyping Report. Executive Sum-
mary/Management Report. EBC/KX/DC 89:069. December, 1989. Internal
paper.

[Pe98] Eia Persson. 20 jobb ¨ar i farozonen.Östg̈otacorrespondenten, November 21,
1998.

http://www.nutek.se/
http://www.opensource.org/osd.html
http://www.erlang.org/
http://www.erlang.org/stats.html
http://www.mozart-oz.org/
http://www.naturalmicrosystems.com
http://www.omg.org

62 BIBLIOGRAPHY

[Po00] R F Pointon, P W Trinder, and H-W Loidl. The Design and Implementation of
Glasgow distributed Haskell.Twelfth International Workshop on Implementation
of Functional Languages.Aachen, September 4-7, 2000.

[Pr98] Ericsson signs two year contract for ADSL with Telia.Ericsson Press Releases.
October 19, 1998.

[Pr99a] Ericsson wins groundbreaking GBP 270 million contract with BT.Ericsson
Press Releases.January 21, 1999.

[Pr99b] Ericsson and T-Mobil in world’s first GPRS contract.Ericsson Press Releases.
January 26, 1999.

[Pr99c] Ericsson presents ENGINE.Ericsson Press Releases.November 16, 1999.

[Pr00a] Ericsson sells its Energy Systems business to Emerson Electric.Ericsson
Press Releases.January 18, 2000.

[Pr00b] Ericsson shows first live GPRS phone in first end-to-end live GPRS network
demo.Ericsson Press Releases.February 2, 2000.

[Pr00c] Nortel Networks to Acquire Alteon WebSystems for US$7.8 Billion.Alteon
Press Releases.July 28, 2000.

[Pr00d] Alteon WebSystems to Acquire Bluetail for $152 Million.Alteon Press Re-
leases.August 28, 2000.

[Ra88] Lars Ramqvist. Ericsson’s Strategies and Technologies for the 1990’s.Ericsson
Review,no 3, 1988.

[Raw] Rational Inc. Web sitehttp://www.rational.com

[Ra99] Eric S. Raymond. The Cathedral and the Bazaar. Web site
http://www.tuxedo.org/˜esr/writings/cathedral-bazaar

[Re97] Red Hat Linux 5.0. The Official Red Hat Linux Installation Guide. Red Hat
Software Inc., 1997.

[Rew] Red Hat Inc. Web sitehttp://www.redhat.com

[Ri98] Tommy Ringqvist. BR Policy concerning Use of Erlang. ERA/BR/TV-98:007.
March 12, 1998. Internal paper.

[Ro82] Everett Rogers. Diffussion of Innovations. Free Press, Chicago, 1982.

[Ro85] Anders Rockstr¨om. An Introduction to the C.C.I.T.T. SDL. Televerkets tryck-
eri. Stockholm. 1985

[Ro99] Tony Rogvall and Claes Wikstr¨om. Protocol Programming in Erlang using
Binaries.Fifth International Erlang/OTP User Conference.Stockholm. Septem-
ber 30, 1999.

[Sa96] Dan Sahlin. The Concurrent Functional Programming Language Erlang - An
Overview.Joint International Conference and Symposium on Logic Program-
ming.Bonn, September 2-6, 1996.

http://www.rational.com/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar
http://www.redhat.com

BIBLIOGRAPHY 63

[Sew] Software Engineering Research Centre.
Web sitehttp://www.serc.rmit.edu.au

[Si96] Jon Siegel. CORBA. Fundamentals and Programming. John Wiley and Sons
Inc. 1996.

[Siw] Swedish Institute of Computer Science.
Web sitehttp://www.sics.se

[Sk86] Roger Skagerwall and Carl Wilhelm Welin. Design of an Expert System and
Man-Machine Interface for Operation and Maintenance of AXE Telephone Ex-
changes.International Seminar on Digital Communications.Zürich, March 11-
13, 1986.

[Sm83] C. H. Smedema, P. Medema and M. Boasson. The Programming Languages
Pascal, Modula, CHILL and Ada. Prentice-Hall, 1983, ISBN 0-13-729756-4.

[Sm00a] Johan Smitt. USA n¨asta för uppstickare.Dagens Nyheter, February 20, 2000.

[Sm00b] Johan Smitt. Miljardklipp f¨or Bluetail.Dagens Nyheter, August 29, 2000.

[Smw] Sendmail, Inc. Web sitehttp://www.sendmail.com

[Sow] SoftLab AB. Web sitehttp://softlab.ericsson.se/

[St90] D. Steedman. Abstract Syntax Notation One (ASN.1) Tutorial and Reference.
Technology Appraisals, 1990.

[St91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

[St99a] William Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-
Wesley, 1999.

[St99b] Fredrik Str¨om. Use of Erlang/OTP in the Brainpool M/3 Communication Sys-
tem.Fifth International Erlang/OTP User Conference.Stockholm, September 30,
1999.

[Th95] Simon Thompson. Miranda. The Craft of Functional Programming. Addison-
Wesley, 1995.

[To97] Seved Torstendahl. Open Telecom Platform.Ericsson Review, no 1, 1997.

[Tyw] Erlang Type System.
Web site http://www.ericsson.se/cslab/˜thomas/types.shtml

[Tå00] Jan T˚angring. Gå före i kön till webbplatsen.Datateknik 3.0, no 3, 2000.

[Vew] Verification of Erlang Programs.
Web sitehttp://www.sics.se/fdt/Erlang

[Vi93] Robert Virding. Erlang.FORTE - Sixth International Conference on Formal
Description Techniques.Boston, October 26-29, 1993.

[Vi95] Robert Virding. A Garbage Collector for the Concurrent Real-Time Language
Erlang. International Workshop on Memory Management.Kinross, Scotland,
September 27-29, 1995.

http://www.serc.rmit.edu.au
http://www.sics.se
http://www.sendmail.com
http://softlab.ericsson.se
http://www.ericsson.se/cslab/~thomas/types.shtml
http://www.sics.se/fdt/Erlang

64 BIBLIOGRAPHY

[Wa95a] Anders Wallerius. Ericsson ger upp framtidens telen¨at. Ny Teknik/Teknisk
Tidskrift, no 50-52, 1995.

[Wa95b] Anders Wallerius. Programmeringen blev f¨or svår. Ny Teknik/Teknisk Tid-
skrift, no 50-52, 1995.

[Wa98a] Jane Walerud. The Hidden Asset at CeBit. Erlang/OTP behind many Suc-
cesses at the Hannover Trade Fair.Erlang/OTP News, CeBit Special, April, 1998.

[Wa98b] Jane Walerud. Professional Mobile Radio over GSM. The Ninth Erlang based
System at CeBit.Erlang/OTP News, May, 1998.

[Wa98c] Jane Walerud. From Idea to Reality in Six Months.Erlang/OTP News,
September, 1998.

[Wa98d] Philip Wadler. Why No One Uses Functional Languages.SIGPLAN Notices
- Functional Programming Column.August 1998, pp 23-27.

[Wa99] Philip Wadler. The Next 700 Markup Languages.Second Conference on
Domain-Specific Languages.Invited paper. Austin, October 3-5, 1999.

[We81] Richard L. Wexelblat, editor. History of Programming Languages. Academic
Press Inc. 1981, ISBN 0-12-745040-8.

[We83] Carl Wilhelm Welin. The Frames System. LME/XT/DU 83 159, 1983, Internal
paper.

[We95] Bruce F. Webster. Pitfalls of Object-Oriented Development. M&T Books,
1995.

[Whp] Open-source Erlang - White Paper.
Web sitehttp://www.erlang.org/white paper.html

[Wi76] Niklaus Wirth. Modula: A Language for Modular Multiprogramming. Eid-
genössische Technische Hochschule. Z¨urich, 1976.

[Wi81] Patrick H. Winston and Berthold K. P. Horn. LISP. Addison-Wesley Publishing
Company. 1981.

[Wi87] Åke Wikström. Functional Programming Using Standard ML. Prentice-Hall,
1987.

[Wi92] Claes Wikström. Processing ASN.1 Specifications in a Declarative Language.
Software Engineering for Telecommunication Systems and Services.Florence,
March 30-April 1, 1992.

[Wi94] Claes Wikström. Distributed Programming in Erlang.First International Sym-
posium on Parallel Symbolic Computation.Linz, September 26-28, 1994.

[Wi95] Martin Wikborg. Comparing Erlang and SDL/SDT for Software Development.
UU/DoCS, Master’s Thesis, 1995.

[Wi96] Claes Wikström. Implementing Distributed Real-time Control Systems in a
Functional Language.IEEE Workshop on Parallel and Distributed Real-Time Sys-
tems.Honolulu, April 15-16, 1996.

http://www.erlang.org/white paper.html

BIBLIOGRAPHY 65

[Wi98a] Ulf Wiger. Ericsson ATM Switch AXD 301 - A New Way to Design Systems.
Erlang/OTP News, April, 1998.

[Wi98b] Mike Williams. Erlang/OTP Economics. ETX/DN/S-98:353, May 25, 1989.
Internal paper.

[Wo98] Geoff Wong. Continuous System Monitoring. Ph.D. Thesis under way. RMIT,
November 1998.

[Wre] Wind River Systems Erlang Home Page.
Web sitehttp://www.wrs.com/products/html/erlang.html

[Wrw] Wind River Systems. Web sitehttp://www.wrs.com

[Xmw] The XML Industry Portal. Web sitehttp://www.xml.org

[Yo92] Edward Yourdon. Decline and Fall of the American Programmer. Yourdon
Press, PTR Prentice Hall, 1992.

[Öd93] KerstinÖdling. New Technology for Prototyping New Services.Ericsson Re-
view, no 2, 1993.

http://www.wrs.com/products/html/erlang.html
http://www.wrs.com/
http://www.xml.org/

66 BIBLIOGRAPHY

Appendix 1: Master’s Theses and Students’ Projects

The following is a list of theses and projects which have either contributed to the
Erlang system or utilized it to implement applications and systems.

� P-A Eriksson and J Tjernlund. Erlang och realtidskontrollerad j¨arnväg. Tekniska
Högskolan, Lule˚a, 1990.

� Martin Sköld. Distributed Real Time Databases. LiTH/IDA, 1990.

� Adam Aquilon. Automatic Code Generation from Sequence Charts. KTH/EIT,
1991.

� Rudolf Hersén. Sequence Chart Editor. KTH/EIT, 1991.

� Jörgen Bergstedt and Thomas Persson. Intelligent Network. Tekniska H¨ogskolan,
Luleå, 1991.

� Distorsion. Student project with 17 participants. UU/DoCS, 1991. Also as
[Di91].

� LennartÖhman. Framprovocering av fel i programkod. UU/DoCS, 1992.

� Anders Dahlin and Peter Jansson. SUN Controlled Telephone. UU/DoCS, 1992.

� Klas Mikaelsson and Henrik Forsgren. Demonstrationssystem f¨or telefoni im-
plementerat i Erlang. UU/DoCS, 1992.

� Patric Jansson and Bj¨orn Axelsson. Direktledningssignalsystem f¨or en MD 110
växel. UU/DoCS, 1992.

� Björn Bergqvist. Testmilj¨o för accessignalering. KTH/EIT, 1992.

� Joakim Greben¨o and Niklas Hanberger. An Object Oriented Call Model (OOCM).
UU/DoCS, 1993.

� Magnus Höglund. Distributed Telephony with Erlang. LiTH/IDA, 1993.

� Li Wei. Gateway between Packet and Switched Networks for Speech Commu-
nication. KTH/EIT, 1994.

� Lars Björup. The Connection Model Implemented in Erlang. LiTH/IDA, 1994.

� Johan Thureson. Q.93B Test Tool. KTH/EIT, 1994.

� Beshar Zudhy. Erlang Port to the Parsytec MIMD Parallel Platform. LiTH/IDA,
1994.

� Andreas Ermedahl. Discrete Event Simulation in Erlang. UU/CSD, 1994.

� Ali Imitiaz Shah. Design and Implementation of ET-155 Device Processor Soft-
ware. KTH/EIT, 1994.

� Jan-Erik Thomasson. Hantering av telefonisystem med hj¨alp av Erlang. KTH/NADA,
1994.

� Tobias Lindgren. An Erlang Interface to SQL. LiTH/IDA, 1994.

BIBLIOGRAPHY 67

� Anders Frank and Ola Samuelsson. A Graphical User Interface for Erlang.
UU/CSD, 1994.

� Sim94 - A Concurrent Simulator for Plan-driven Troops. Student project with
about 27 participants. UU/UPMAIL Technical Report 98, February 15, 1995.
ISSN 0283-359X.

� Martin Björklund and Klas Eriksson. A Framework for SNMPv2 in Erlang.
KTH/NADA, 1995. Also as [Bj95].

� Kent Engstr¨om. Parallel Erlang. LiTH/IDA, 1995.

� Samuel Tronje. Process-based Simulation of Interactive Agents in a Dynamic
Terrain. UU/CSD, 1995.

� Greger Ottosson. An Extension of Erlang with Finite Domain Constraints. UU/CSD,
1995.

� Martin Wikborg. Comparing Erlang and SDL/SDT for Software Development.
UU/DoCS, 1995. Also as [Wi95].

� Johan Agat and Lennart Dahlstr¨om. En unders¨okning av två deklarativa pro-
gramspråk. CTH/IDV, 1995.

� Tomas Aronsson and Johan Grafstr¨om. A Comparison between Erlang and C++
for Implementation of Telecom Applications. LiTH/IDA, 1995.

� Plan95: A Distributed Planning System. UU/UPMAIL Technical Report 122,
1996.

� Niklas Kaltea. A Specification Language for Intelligent Agents. UU/CSD, 1996.

� Johan Carleson. Industriella Erfarenheter av Erlang. LiTH/IDA, 1996.

� Jian-Liang Cai. Implementation of an Object-Oriented DBMS Using the Erlang
Programming Language. RMIT, 1996.

� Kristina Sirhuber. YERL - A Literate Documenting Tool and a Program Devel-
opment Environment for Erlang. UU/DoCS, 1996.

� Peter Molin and Fredrik Str¨om. A GUI Builder for Erlang/GS. UU/CSD, 1996.

� Anders Lindgren. A Prototype of a Soft Type System for Erlang. UU/CSD,
1996.

� Erik Johansson and Christer Jonsson. Native Code Compilation for Erlang.
UU/CSD, 1996.

� Babbis Xagorarakis. Java RMI Interface to Erlang, Implementation och Utv¨ardering.
UU/CSD, 1997.

� Richard Carlsson. Towards a Deadlock Analysis for Erlang Programs. UU/CSD,
1997.

� Gustaf Naeser. Safe Erlang. UU/CSD, 1997.

68 BIBLIOGRAPHY

� Hans Danielsson and Kent Olsson. How to Measure Reliability in an Erlang
System. LTH/DCS, 1998.

� Pekka Hedqvist. A Parallel and Multi-threaded Erlang Implementation. UU/CSD,
1998. Also as [He98].

� Ronny Andersson. SQL Compiler For the Mnesia DBMS. CTH, 1998.

� Johanna Isaksson and Elinor Sturesson. Design Guidelines for Erlang. CTH and
RMIT, 1999.

� Hans Danielsson and Kent Olsson. How to Measure Reliability in an Erlang
System. LTH and RMIT, 1999.

� Clara Benac-Earle. Symbolic Program Execution using the Erlang Verification
Tool. UU/CSD, 2000.

� Raimo Niskanen. Integration of Erlang and TelORB. KTH/IT, 2000.

� Rickard Green. Enhancing Security in Distributed Erlang by Access Control.
KTH/IT, 2000.

� Bertil Karlsson. Secure Distributed Communication in SafeErlang. KTH/IT,
2000.

� Peter Andersson and Markus Kvisth. A General Protocol Stack Interface in Er-
lang. UU/CSD, 2000.

BIBLIOGRAPHY 69

Appendix 2: User Conference, September 30, 1999

Papers presented at theFifth International Erlang/OTP User Conference. Web site
http://www.erlang.se/euc/99

� Hans Nahringbauer, Telia Promotor AB. Telia Call Guide. Also as [Na99].

� Fredrik Ström, Brainpool AB. Use of Erlang/OTP in the Brainpool M/3 Com-
munication System. Also as [St99b].

� Marc Feeley, Patrick Pich´e, Sylvain Beaulieu, Martin Larosse, and Mario Laten-
dresse, Universit´e de Montréal. Status Report on the ETOS Erlang to Scheme
Compiler. Also as [Fe99].

� Håkan Millroth, Bluetail AB. Mail Robustifier Product based on Erlang/OTP.

� Per Bergqvist, Ericsson Radio AB. Hatchet.

� Johan Blom, Ericsson Wireless Internet AB. A Modular WAP Reference Stack
Protocol Implementation.

� Hans Nilsson, Ericsson Utvecklings AB. An Experimental SIP Implementation
in Erlang.

� Magnus Karlson, Ericsson Utvecklings AB. Coming Releases of Erlang/OTP.
Also as [Ka99].

� Maurice Castro, SERC. Towards an Event Modelling Language.

� Tony Rogvall and Claes Wikstr¨om, Bluetail AB. Protocol Programming in Er-
lang using Binaries. Also as [Ro99].

http://www.erlang.se/euc/99/

70 BIBLIOGRAPHY

Appendix 3: User Conference, October 3, 2000

Papers and demos presented at theSixth International Erlang/OTP User Confer-
ence. Web sitehttp://www.erlang.se/euc/00

� Sean Hinde, one2one. Use of Erlang/OTP as a Service Creation Tool for IN
Services. Also as [Hi00].

� Scott Lystig Fritchie, Jim Larson, Nick Christenson, Debi Jones, and Lennart
Öhman. Sendmail Meets Erlang: Experiences Using Erlang for Email Applica-
tions. Also as [Fr00].

� Per Bergqvist, CellPoint. MPowered by Erlang.

� Bengt Tillman, Ericsson Radio Systems AB. NETSim - Six Years with Erlang.

� Mikael Pettersson, Uppsala University. A High Performance Erlang System.

� Robert Tjärnström and Peter Lundell, Ericsson Telecom. ECOMP - an Erlang
Processor.

� Richard A. O’Keefe, Otago University. An Erlang DTD.

� Ulf Wiger, Ericsson Telecom. XMErl - Interfacing XML and Erlang.

� Mickaël Rémond, IDEALX. XML and Erlang: Building a Powerful Data Man-
agement Tool.

� Richard Carlsson, Uppsala University. Extending Erlang with structured Module
Packages.

� Kenneth Lundin, OTP Product Unit. Highlights from Erlang 5.0 / OTP R7B.

� Jakob Cederlund, OTP Product Unit. COMET - An Erlang-to-COM Port.

� Patrik Nyblom, OTP Product Unit. The Bit Syntax - The Released Version. Also
as [Ny00].

� Lars-Åke Fredlund, SICS. A Tool for Verifying Software Written in Erlang.

� Miguel Barreiro, Victor M. Gulias, and Juan J. Sanchez, Universidade da Coru˜na.
A Monitoring and Instrumentation Tool Developed in Erlang.

http://www.erlang.se/euc/00/

ry

TRITA
IS

Bjarne_Dacker-Back-Cover.fm5 Page 71 Thursday, March 22, 2001 11:15 AM
Computer Communication Systems Laborato
Department of Teleinformatics
Royal Institute of Technology
Electrum 204

-IT AVH 00:08
SN 1403-5286

	Concurrent Functional Programming for Telecommunications: A Case Study of Technology Introduction
	Abstract
	Acknowledgements
	Contents
	Introduction
	Overview
	Background
	Summary of Papers
	Layout of this Thesis

	Management of Technology
	The Problem
	Telecommunications Programming and Chill
	Programming Language Experiments

	Development of Erlang
	Prototype Developments
	Steps towards a Product
	Erlang Systems
	Further Technical Developments
	Early Marketing Efforts
	Erlang Summary
	Sequential Erlang
	Concurrency
	Distribution
	Robustness
	Software Upgrading in Running Systems
	External Interfaces
	Portability
	Program Development

	Match against Requirements

	Open Telecom Platform
	Selected Industrial Applications
	AXD 301 ATM Switch
	ANx Access Node
	GPRS
	A Comment on Software Engineering
	Experiences from the Field
	User Testimonies
	External Users and Consultants
	CeBit 1998 and Marketing Efforts
	Refined Match against Requirements

	Backlash
	Open Source and Continued Research
	Bluetail AB
	Erlang in the Research World
	Research Continues

	Discussion
	Development of Programming Technology
	On Applications of Functional Programming
	Diffussion of Innovations
	The Magic of Words
	Symbolic Programming strikes Back

	Conclusions
	Bibliography
	Appendix 1: Master's Theses and Students' Projects
	Appendix 2: User Conference, September 30, 1999
	Appendix 3: User Conference, October 3, 2000

