
Visual Modeling of OWL DL Ontologies Using
UML

Sara Brockmans, Raphael Volz, Andreas Eberhart, and Peter Löffler

Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe
{brockmans, volz, eberhart, loeffler}@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/WBS/

Abstract. This paper introduces a visual, UML-based notation for
OWL ontologies. We provide a standard MOF2 compliant metamodel
which captures the language primitives offered by OWL DL. Similarly,
we invent a UML profile, which allows to visually model OWL ontologies
in a notation that is close to the UML notation. This allows to develop
ontologies using UML tools. Throughout the paper, the significant dif-
ferences to some earlier proposals for a visual, UML-based notation for
ontologies are discussed.

1 Introduction

An ontology defines a common set of concepts and terms that are used to describe
and represent a domain of knowledge. Recently, several standardization commit-
tees have taken up research results form the AI community and defined standard
ontology languages. For example, the Word Wide Web Consortium (W3C) has
recently finished its work on the Web Ontology Language (OWL) [5].

The utility of a visual syntax for modelling languages has been shown in
practice and visual modelling paradigms such as the Entity Relationship (ER)
model or the Unified Modelling Language (UML) are used frequently for the
purpose of conceptual modeling. Consequently the necessity of a visual syntax
for knowledge representation (KR) languages has been argued frequently in the
past [7,14]. Particular KR formalisms such as conceptual graphs [19] or Topic
Maps [1] are based on well-defined graphical notations.

Description logic based ontology languages such as OWL, however, are usu-
ally defined in terms of an abstract (text-based) syntax and most care is spent
on the formal semantics. The absence of a visual syntax1 has lead to several
proposals. [7] proposed a particular visual notation for the CLASSIC description
logic. Newer developments have abandoned the idea of a proprietary syntax and
proposed to rely on UML class diagrams. [4] suggested to directly use UML
as an ontology language, whereas [2] proposed to predefine several stereotypes
such that a more detailed mapping from UML to the primitives offered by the
DAML+OIL description logic can be achieved. [2] further argue that the UML
1 Which can be seen as a direct result of the criticisms about the semantics of early

diagrammatic semantic networks [21,3].

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 198–213, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Batang /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Batang /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Visual Modeling of OWL DL Ontologies Using UML 199

metamodel should be extended with elements such as property and restriction
such that UML is more compatible with KR languages such as OWL.

A metamodel for the purpose of defining ontologies, called Ontology Defi-
nition Metamodel (ODM), has recently been requested by the OMG [18], with
specific focus on the OWL DL language. In answer to this request four proposals
were submitted. [12] defines stereotypes for representing the new aspects intro-
duced by ontologies in UML. In our opinion, the proposal has several weaknesses.
For example, OWL properties are visually modelled as UML classes instead of
mapping them to UML associations. Similarly, the different kind of class con-
structors found in OWL are reflected by associations, while we believe that an
appropriate specialization of UML classes is more appropriate. Obviously there
are no strict metrics for intuitiveness and clarity. Consequently, in this paper
we argue by showing head to head comparisons of the different representations.
Ultimately, the choice is up to the reader.

[8] follows the RDF serialization of OWL documents and represents the ontol-
ogy in a graph-like notation that is close to the actual RDF serialization. Also
various kinds of OWL properties are modeled as a hierarchy of UML classes.
Complex OWL class definitions, i.e. using union and other operators, are mod-
eled as comments associated to a class.

[13] departs from the OMG request and introduces a metamodel for the
Open Knowledge Base Connectivity (OKBC) standard. [6] suggests the OWL
Full language, but neither provides a visual syntax nor introduces a metamodel.

At the moment [12,6,8,13] are merged into one proposal. While this is work
in progress, a first presentation [10] suggests that the proposal will be based
on OWL Full and is being extended to capture further KR languages such as
Simple Common Logic (SCL). Obviously the scope of this merged proposal is
quite extensive.

The benefit from this design decision is that different ontology formats such
as KIF, Description Logics, or Topic Maps can be mapped into one very general
and expressive metamodel. Also, a single mapping to the visual UML profile in
which actual ontologies are defined suffices.

However, these advantages do not come for free. By encompassing many
paradigms, the resulting ODM and the mappings become quite complex. We
believe that, for the sake of readability and usability, several separate metamod-
els should be introduced for each KR, e.g. OWL DL. In order to map between
the individual KRs the requested metamodel mapping facilities [17] can be used.
While this results in a higher number of mappings, the individual mappings will
be a lot more lightweight and easier to specify.

Therefore this paper defines an ODM for OWL DL. Our goals are to achieve
an intuitive notation, both for users of UML and OWL DL. Naturally, the pro-
posed metamodel has a one-to-one mapping to the abstract syntax of OWL DL
and thereby to the formal semantics of OWL.

The remainder of this paper is organized as follows: Section 2 introduces
the Meta Object Facility (MOF). Section 3 introduces our Ontology Definition
Metamodel for OWL DL. Section 4 introduces a UML Profile for ontology mod-

200 S. Brockmans et al.

eling and explains the major design choices taken in order to make the notation
readable for both users with UML and users with OWL background. We con-
clude by summarizing our work and listing points for future work.

2 UML-MOF

This section introduces the essential ideas of the Meta Object Facility (MOF)
of UML 2.0 and shows how an Ontology Definition Metamodel (ODM) fits into
the overall picture. The need for a dedicated ontology modeling language stems
from the observation that an ontology cannot be sufficiently represented in UML
[11]. Both representations share a set of core functionalities such as the ability
to define classes, class relationships, and relationship cardinalities. Despite this
overlap, there are many features which can only be expressed in an ontology
language. Examples for this disjointness are transitive and symmetric properties
in OWL or methods in UML.

UML methodology, tools and technology, however, seem to be a feasible
approach for supporting the development and maintenance of ontologies. Con-
sequently, the OMG issued a request for proposals for an Ontology Definition
Metamodel (ODM) [9]. The following key requirements were given:

1. As shown in Figure 1, an ODM has to be grounded in the Meta Object Fa-
cility (MOF2), which is explained in the following section. This requirement
is common for any other metamodel, e.g. UML.

2. A UML profile defining a visual notation for ontologies must be provided.
Furthermore, partial mappings in both directions between the metamodel
and this profile need to be established.

3. From the ODM, one must be able to generate an ontology representation in
a language such as OWL DL. Figure 1 shows this process. In particular a
mapping to OWL DL was requested.

4. An XMI serialization and exchange syntax for ODM must be provided. This
XMI format allows exchanging an ODM metamodel between tools.

We target the first two requirements in this paper, since the remaining two
requirements directly follow from a good ODM.

2.1 Meta Object Facility

The Meta Object Facility (MOF) is an extensible model driven integration
framework for defining, manipulating and integrating metadata and data in a
platform independent manner. The aim is to provide a framework that supports
any kind of metadata, and that allows new kinds to be added as required. MOF
plays a crucial role in OMG’s four-layer metadata architecture shown in Figure
2. The bottom layer of this architecture encompasses the raw information to
be described. For example, Figure 2 contains information about a person called
Pete and a car with the license plate ABC-1234. The model layer contains the

Visual Modeling of OWL DL Ontologies Using UML 201

Fig. 1. A partial ontology to UML mapping allows existing tools to operate on com-
patible aspects of ontologies.

MOF - Meta meta model
MetaClass, MetaAttr, ...

Meta model:
MetaClass(“Record“), MetaClass(“Field“), ...

Model:
Record(“Car“), Record(“Person “), ...

Information:
Person: Pete, Car: Car with license plate ABC-1234

Fig. 2. OMG Four Layer Metadata Architecture.

definition of the required structures. Our domain might use records for grouping
information. Consequently, the records car and person are defined. If these are
combined, they describe the model for the given domain. The metamodel defines
the terms in which the model is expressed. In our example, we would state that
models are expressed with records and fields by instantiating the respective meta
classes. Finally, the MOF lies at the top. This layer is called the meta meta
model layer. Note that MOF is hard wired, while the other layers are flexible
and allow to express various metamodels such as the UML metamodel.

We provide the ODM for OWL DL in the following section using the core
modeling features provided by MOF. We primarily use classes, attributes and
associations, the notation of which is well-known from UML. Additionally, our
metamodel is augmented with OCL constraints which specify invariants that
have to be fulfilled by all models that instantiate the ODM. Such models are
visually encoded using the UML profile introduced in Section 4.

202 S. Brockmans et al.

3 Ontology Definition Metamodel

3.1 Design Considerations

A metamodel for a language that allows the definition of ontologies naturally
follows from the modelling primitives offered by the ontology language. OWL
ontologies themselves are RDF documents. They instantiate the RDF data
model, and use URIs to name entities. The formal semantics of OWL is derived
from Description Logics (DL), an extensively researched KR formalism. Hence,
most primitives offered by OWL can also be found in a Description Logic. Three
species of OWL have been defined. One variant called OWL Full can represent
arbitrary RDF components inside of OWL documents. This allows, for example,
to combine the OWL language with arbitrary other representation languages.
From a conceptual perspective a metamodel for OWL Full necessarily has to
include elements for the representation of RDF.

Another variant called OWL DL states syntactic conditions on OWL docu-
ments, which ensure that only the primitives defined within the OWL language
itself can be used. OWL DL closely corresponds to the SHOIN(D) descrip-
tion logic and all language features can be reduced2 to the primitives of the
SHOIN(D) logic. Naturally, a metamodel for OWL DL is smaller and less com-
plex than a metamodel for OWL Full. Similarly, a OWL DL metamodel can
be built in a way such that all elements can be easily understood by people
familiar with description logics. A third variant called OWL Lite disallows some
constructors of OWL DL, specifically number restrictions are limited to cardi-
nalities 0 and 1. Furthermore, the oneOf class constructor is missing. Other
constructors such as class complement, which are syntactically disallowed in
OWL Lite, can nevertheless be represented via the combination of syntactically
allowed constructors [20][Corollary 3.4.1]. Hence, a metamodel for OWL DL
necessarily includes OWL Lite.

3.2 An ODM for OWL DL

The rest of this section will provide a summary of the OWL language whilst in-
troducing our metamodel. Interested readers may refer to the specifications [16]
for a full account of OWL. The metamodel is augmented with several OCL
constraints. Some important constraints are given here in footnotes.

3.2.1 Ontologies. URIs are used to identify all objects in OWL. In order
to provide an efficient notation, we replicate the namespace concept of XML
and introduce a separate Namespace metaclass which manages the abbreviation
(name) that is assigned to a certain URI (cf. Figure 3). Every element of an
ontology is a NamedElement and hence a member of a Namespace. All elements
of an Ontology are specializations of OntologyElement3 which is itself derived
2 Some language primitives are shortcuts for combinations of primitives in the logic.
3 member->forAll(ocllsKindOf(OntologyElement))

Visual Modeling of OWL DL Ontologies Using UML 203

Fig. 3. Ontologies and Namespaces

Fig. 4. Properties and property axioms

from NamedElement. Anonymous elements of the ontology belong to a dedicated
anonymous namespace4. The qualifiedName attribute is the global name of an
element and can be derived5 from the local name attribute and the Namespace
name.

3.2.2 Properties. Properties represent named binary associations in the
modeled knowledge domain. OWL distinguishes two kinds of properties, so
called object properties and datatype properties. Both are generalized by the

4 allInstances()->size(name->isEmpty())) <=1
5 name->notEmpty() and namespace.name->notEmpty() implies qualifiedName =
namespace.name.concat(":").concat(name).

204 S. Brockmans et al.

Fig. 5. Annotations

abstract metaclass Property. Properties can be functional, i.e. their range may
contain at most one element. Their domain is always a class. Object properties
may additionally be inverse functional, transitive, symmetric or inverse to an-
other property. Their range is a class6, while the range of datatype properties
is a datatype.

Users can relate properties by using two axioms. Property subsumption
(subPropertyOf)7 specifies that the extension of a property is a subset of the
related property. Similarly, property equivalence (equivalentProperty) defines
extensional equivalence. OWL DL disallows that object and datatype properties
are related via axioms.

3.2.3 Ontology properties. Ontologies themselves can have properties,
which are represented via the OntologyProperty metaclass. For example, the
ontology property owl:imports allows to logically include the elements of one
ontology in another ontology. OWL DL predefines several ontology properties
and allows users to define further ontology properties. A concrete instance of
an ontology property is represented through OntologyPropertyValue, which
instantiates a certain type of OntologyProperty and is a reference between two
ontologies.

3.2.4 Annotation properties. Given elements of an OWL ontology
can be annotated with metadata. Several annotation properties, e.g.
owl:versionInfo, are predefined and users can define further annotation prop-
erties. We treat annotation properties similarly to ontology properties. How-
ever, the subject of an AnnotationPropertyValue is an AnnotateableElement

6 OWL DL mandates that no complex role may be transitive:
complex=functional or inverseFunctional or NumberRestriction.
allInstances()->exists(onProperty=self) or inverseOf->exists(complex)
or subPropertyOf->exists(complex) and complex implies not transitive.

7 This association is transitive:
Property.allInstances()-> forAll(r,s,t|(r.subPropertyOf->includes(s)
and s.subPropertyOf->includes(t) implies r.subPropertyOf->includes(t))).

Visual Modeling of OWL DL Ontologies Using UML 205

Fig. 6. Class constructors and axioms

Fig. 7. OWL Restrictions

and the object is a Annotation, which can be either a DataValue, a URI or an
Individual (cf. Figure 5).

3.2.5 Class Constructors. In comparison to UML, OWL DL does not only
allow to define simple named classes. Instead, classes can be formed with several
class constructors (cf. Figure 6). One can conceptually distinguish the boolean
combination of classes, restrictions and enumerated classes. EnumeratedClass is
only available in OWL DL and is defined through a direct enumeration of named8

individuals. Boolean combinations of classes are provided through Complement9,
Intersection and Union.

Restrictions are class constructors that restrict the range of a property
for the context of the class (cf. Figure 7). Restrictions can be stated on
datatype and object properties, as indicated by toClass and toDatatype.

8 oneOf->forAll(name.notEmpty())
9 combinationOf->size()=1

206 S. Brockmans et al.

Accordingly they limit the value to a certain datatype or class extension10.
UniversalRestriction provides a form of universal quantification that restricts
the range of a class to the extension of a certain class or datatype11.

We introduce an abstract metaclass QualifiedNumberRestriction to re-
late unqualified cardinality restrictions (which are available in OWL) and
existential restrictions. Obviously the minimum cardinality is by default 0
and may not be negative12 while the maximum cardinality should not be
smaller than the minimum cardinality13. Unqualified number restrictions
(NumberRestriction) are available in OWL and define how many elements the
range of the given property has to have while not restricting the type of the
range14. (ExistentialRestriction) can logically and semantically be seen as
a special type of qualified number restrictions where the cardinality is fixed15.
OWL also provides HasValue, which is a special type of existential restriction
where the qualifying class is an enumeration containing a single individual16.

Figure 6 shows that classes can be related with each other using
class axioms, such as class subsumption (subClassOf), class equivalence
(equivalentClass)17 and class disjointness (disjointWith). These relations
between classes are naturally modelled as associations.

3.2.6 Datatypes. The datatype system of OWL is provided by XML Schema,
which provides a predefined set of named datatypes (PrimitiveType), e.g.
strings xsd:string. Additionally, users may specify enumerated datatypes
(EnumeratedDatatype) which consist of several data value of items (DataValue).

3.2.7 Knowledge Base. OWL does not follow the clear conceptual sep-
aration between terminology (T-Box) and knowledge base (A-box) that is
present in most description logics and in MOF, which distinguishes between
model and information. The knowledge base elements (cf. Figure 8) are
10 1. toClass->size()=1 xor toDatatype->size()=1

2. onProperty.ocllsKindOf(DatatypeProperty) implies toDatatype->size()=1
11 The reader may note that this is logically not understood as a constraint but as an

entailment rule.
12 minCardinality>=0
13 Even though OWL allows this by making the class definition become inconsistent.

We disallow this situation through the constraint:
maxCardinality>=minCardinality.

14 toClass=owl::Thing or toDatatype=rdfs::Literal
15 minCardinality=1 and maxCardinality=*
16 toClass.oclssTypeOf(EnumeratedClass) and

toClass.oclAsType(EnumeratedClass).oneOf->size()=1)
or (toDatatype.ocllsTypeOf(EnumeratedDatatype) and
toDatatype.oclsAsType(EnumeratedDatatype).oneOf->size()=1)

17 Every equivalent class is trivially a superclass:
subClassOf->includesAll(equivalentClass).

Visual Modeling of OWL DL Ontologies Using UML 207

Fig. 8. Knowledge Base Items and Axioms

Fig. 9. owl:imports

part of an ontology. An Individual is an instantiation of a Class and is
the subject of a PropertyValue, which instantiates a Property. Naturally,
an ObjectPropertyValue relates its subject with another Individual whilst
a DatatypePropertyValue relates its subject with a DataValue, which is an
instance of a primitive datatype.

Individuals can be related via three axioms. The sameAs association allows
users to state that two individuals (with different names) are equivalent. The
differentFrom association specifies that two individuals are not the same18.
AllDifferent is a simpler notation for the pairwise difference of several indi-
viduals.

4 A UML-Profile for Ontologies

This section describes a UML profile which supports reusing UML notation for
ontology definition. Since the UML profile mechanism supports a restricted form
of metamodeling, our proposal contains a set of extensions and constraints to the
UML metamodel. This tailors UML such that models instantiating the ODM
can be defined. We heavily rely on the custom stereotypes, which usually carry
the name of the corresponding OWL language element.

4.1 Ontologies

Figure 9 shows that a Namespace is represented by packages, while a stereo-
type indicates an Ontology. Ontology properties correspond to appropriately
stereotyped UML dependencies. The deprecation of a given element, e.g. the
deprecated class JugWine in Figure 10, is achieved using a stereotype.
18 The reader may note that OWL does not take the unique names assumption.

208 S. Brockmans et al.

Fig. 10. owl:DeprecatedClass Fig. 11. owl:EquivalentClass

(a) normal notation (b) alternative notation

Fig. 12. owl:intersectionOf

4.2 Classes

Atomic classes are depicted in the most trivial way, namely as UML classes. The
reader may note, that we only use the first segment of the UML class notation,
which contains the name of the class, stereotypes, and keyword-value pairs. The
second segment specifies concrete properties, while the third segment is missing,
since OWL does not contain methods. Class inclusion is depicted using the
UML generalization symbol, which is the most natural way.

Class equivalence could be expressed by two class inclusions. As a simpler
notation for two generalization arrows in the opposite direction next to each
other, the bi-directional generalization arrow is introduced. An example of this
notation is shown in Figure 11. Dependencies could also be used but are not
intuitive. [12,10] propose to use stereotyped UML associations to state class
axioms, which does not translate well to the UML object level. For this reason,
Class disjointness is depicted as a bi-directional, stereotyped dependency.

For the representations of OWL class constructors, we use individual stereo-
types and the UML class notation. Dependencies to the classes which form the
complement, part of the union or part of the intersection of a class are depicted
as UML dependencies. We suggest specific pictograms to be used instead of
dependencies as allowed in UML. Figure 12 depicts alternative graphical nota-
tions for an intersection of classes. An EnumeratedClass is connected to the
enumerated individuals by dependencies (cf. Figure 13). Alternatively, we allow
a more compact string-based notation. The reader may note that UML associa-
tions can only be used between classes, an EnumeratedClass can therefore not
be consistently represented with associations, if the UML notation for objects is
used for individuals.

In general, a restriction is depicted by a class with a corresponding stereo-
type. If the property which participates in the restriction is an object property,

Visual Modeling of OWL DL Ontologies Using UML 209

(a) normal notation (b) compact notation

Fig. 13. owl:oneOf

Fig. 14. owl:cardinality

(a) Our notation (b) [10,12] notation

Fig. 15. owl:someValuesFrom

we depict it as an association to the participating class. Otherwise, in case of
a datatype property, it is depicted as an attribute. Figure 14 shows that car-
dinalities involved in restrictions are depicted in the standard UML notation,
viz. next to the attribute’s association. We mentioned that OWL has only un-
qualified cardinality restrictions. Thus, the class participating in a cardinality
restriction is always owl:Thing and attribute types are rdfs::Literal, which means
that they can have every data value.

ExistentialQuantification can and ValueRestriction has to be indi-
cated by a DEDICATED stereotype. Figure 15 demostrates the notation for an
existentially quantified restriction. The reader can compare our notation with
the notation proposed by [12,10] (cf. Figure 15). Clearly, our presentation is
more compact and elegantly uses the available features of UML.

When modeling HasValue, no separate notation is introduced. If properties
are represented as associations, the endpoints have to be classes. Under these
circumstances, combining existence restriction and enumeration is the most com-
pact notation conforming to the UML-metamodel. One could think to model it
more directly from the class which has the restriction, but an association can-
not be built between a class and an individual. Although our solution looks

210 S. Brockmans et al.

Fig. 16. owl:hasValue

Fig. 17. An ObjectProperty with domain and range

quite complex, it keeps the consistency with restrictions. Figure 16 shows our
notation.

4.3 Properties

Object properties are represented as UML n-ary associations19, while datatype
properties are represented as UML attributes. Since properties can have mul-
tiple domains and ranges, several associations with the same name are needed,
therefore our proposal uses an association class which is connected to the associ-
ation itself. If the domain is itself a restriction, we end up with two associations
and it would be unclear which one counts for the restriction and which one
for the domain of the property. In this case, we provide a extended graphical
representation (cf. Figure 17).

Analogous to classes, specific properties are assigned a respective stereotype.
Figure 18 demonstrates the functionality and inverse functionality stereotype.
Naturally, Deprecation, transitivity and symmetry are represented in the same
way. Figure 18 also shows how a property is connected to its inverse using a
bi-directional UML dependency.

Similar to classes, Property inclusion is depicted with a generalization arrow,
and property equality with a bi-directional generalization arrow.

4.4 Data Types

Data types are represented in the form of a stereotyped UML class. An
EnumeratedDatatype is depicted similar to the enumeration of individuals, viz.
a stereotyped UML class is connected to the enumerated data values through
dependencies and we provide a text-based shorthand notation (cf. Figure 19).
19 This notation of associations is in fact provided by UML although rarely seen in

practice.

Visual Modeling of OWL DL Ontologies Using UML 211

Fig. 18. Property characteristics

(a) Our nota-
tion

(b) [12] notation

Fig. 19. Enumerated Datatypes

Figure 19 also shows the proposed notation by [12], which uses associations
and additional stereotyped classes. Sticking to the RDF-notation makes the rep-
resentation unnecessarily complex since there is no order in data enumerations.

4.5 Individuals

Individuals are depicted in the object notation of UML, viz. in the form
’Object : Class’. [12] proposes to use a Class Thing for individuals, but this does
not clearly show the difference between the object and model level, which is pur-
sued in UML. We represent axioms specifying the equivalence or difference of
individuals through stereotyped associations between individuals. We conclude
with Figure 20, which shows our notation for AllDifferent. Here, associations
lead from an anonymous instance of owl::AllDifferent to those individuals which
are defined to be different.

5 Conclusion

We have presented an Ontology Definition Metamodel for the DL variant of
OWL. Unlike previous proposals, our metamodel directly corresponds to the

212 S. Brockmans et al.

Fig. 20. owl:AllDifferent

language primitives available in OWL DL. The validity of instances of this meta-
model is ensured through various OCL constraints, some of which were given
here (cf. [15] for a full account). We additionally provided a UML profile, of
which we believe that it is cognitively more adequate for folks familiar with
UML and OWL. Our profile utilizes the maximal intersection of UML features
and OWL features. Hence, classes are depicted as classes, properties as n-ary
associations and individuals as UML objects.

We believe that leveraging UML for the development and maintenance of on-
tologies is a very promising approach. It is a first step to bring the W3C vision
of a Semantic Web technology and the OMG vision of a Model Driven Architec-
ture together. We can now use a large array of industrial strength tools that is
available for UML and other related OMG standards for the purpose of ontol-
ogy development. Besides graphical editors, other kinds of utilities offer further
benefit. For example, we can utilize the Eclipse Modeling Framework (EMF)
to derive a Java API for OWL directly from the ODM. Ontologies can benefit
from UML based system development, but in turn ontologies can also contribute
to system development. One of the prime application areas is the management
of policies and the enforcement of regulatory compliance in logistics, the finan-
cial sector, or other industries. These very advantages and application areas
prompted OMG’s call for proposals for an ontology definition model.

Acknowledgments. Research for this paper has been partially funded by the
EU in the IST projects KnowledgeWeb (IST-2004- 507482) and Sekt (IST-2003-
506826), as well as by the Graduate School IME - University Karlsruhe. We
would like to thank our colleagues for discussion as well as the reviewers for the
ISWC conference for valuable comments on our paper.

References

1. Topic Maps: Information Technology – Document Description and Markup Lan-
guages. ISO/IEC standard 13250:2000, December 1999.

2. K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, and
M. Aronson. Extending UML to Support Ontology Engineering for the Semantic
Web. In 4th Int. Conf. on UML (UML 2001), Toronto, Canada, October 2001.

3. R.J. Brachman. On the Epistemological Status of Semantic Nets. In N.V. Findler,
editor, Associative Networks: Representation and Use of Knowledge by Computers,
pages 3–50, 1979.

Visual Modeling of OWL DL Ontologies Using UML 213

4. S. Cranefield and M. Purvis. UML as an Ontology Modelling Language. In Proceed-
ings of the Workshop on Intelligent Information Integration, volume 23 of CEUR
Workshop Proceedings, Stockholm, Sweden, July 1999.

5. M. Dean and G. Schreiber. Web Ontology Language (OWL) Reference Version
1.0. Technical report, World Wide Web Consortium (W3C), 2003.

6. DSTC. Ontology Definition MetaModel Initial Submission.
http://www.omg.org/docs/ad/03-08-01.pdf, August 2003.

7. B. R. Gaines. An Interactive Visual Language for Term Subsumption Languages.
In J. Mylopoulos and R. Reiter, editors, Proc. of 12th Int. Joint Conf. on Art.
Int., pages 817–823, Sydney, Australia, August 1991. Morgan Kaufmann.

8. Gentleware. Ontology Definition Meta-Model.
http://www.omg.org/docs/ad/03-08-09.pdf, August 2003.

9. Object Management Group. Ontology Definition Metamodel - Request For Pro-
posal, March 2003.

10. L. Hart, P. Emery, B. Colomb, K. Raymond, D. Chang, Y. Ye, E. Kendall,
and M. Dutra. Usage Scenarios and Goals For Ontology Definition Metamodel.
http://www.omg.org/docs/ontology/04-01-01.pdf, January 2004.

11. L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,
and M. Dutra E. Kendall. OWL Full and UML 2.0 Compared, March 2004.

12. IBM. Ontology Definition Metamodel (ODM) Proposal.
http://www.omg.org/docs/ad/03-07-02.pdf, August 2003.

13. Sandpiper Software Inc. and Stanford University Knowledge Systems Labora-
tory. UML for Knowledge Representation. A Layered, Component-Based Approach
to Ontology Development. http://www.omg.org/docs/ad/03-08-06.pdf, March
2003.

14. R. Kremer. Visual Languages for Knowledge Representation. In Proc. of 11th
Workshop on Knowledge Acquisition, Modeling and Management (KAW’98), Voy-
ager Inn, Banff, Alberta, Canada, April 1998. Morgan Kaufmann.

15. P. Loeffler. UML zur Visuellen Modellierung von OWL DL. Master’s thesis,
University of Karlsruhe (TH), June 2004.

16. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Technical report, World Wide Web Consortium (W3C), August 2003. Internet:
http://www.w3.org/TR/owl-features/.

17. Object Management Group. MOF 2.0 Query / Views / Transformations - Request
for Proposal. http://www.omg.org/docs/ad/02-04-10.pdf, 2002.

18. Object Management Group. Ontology Definition Metamodel - Request for Pro-
posal. http://www.omg.org/docs/ontology/03-03-01.rtf, 2003.

19. J. F. Sowa. Conceptual Graphs Summary. In P. Eklund, T. Nagle, J. Nagle, and
L. Gerholz, editors, Conceptual Structures: Current Research and Practice, pages
3–52, 1992.

20. R. Volz. Web Ontology Reasoning with Logic Databases. Phd thesis, University of
Karlsruhe (TH), Karlsruhe, Germany,
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2004/wiwi/2,
February 2004.

21. W.A. Woods. What’s in a Link: Foundations for Semantic Networks. In D.G.
Bobrow and A.M. Collins, editors, Representation and Understanding: Studies in
Cognitive Science, pages 35–82, 1975.

http://www.omg.org/docs/ad/03-08-01.pdf
http://www.omg.org/docs/ad/03-08-09.pdf
http://www.omg.org/docs/ontology/04-01-01.pdf
http://www.omg.org/docs/ad/03-07-02.pdf
http://www.omg.org/docs/ad/03-08-06.pdf
http://www.w3.org/TR/owl-features/
http://www.omg.org/docs/ad/02-04-10.pdf
http://www.omg.org/docs/ontology/03-03-01.rtf
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2004/wiwi/2

	Introduction
	UML-MOF
	Meta Object Facility

	Ontology Definition Metamodel
	Design Considerations
	An ODM for OWL DL
	Ontologies.
	Properties.
	Ontology properties.
	Annotation properties.
	Class Constructors.
	Datatypes.
	Knowledge Base.

	A UML-Profile for Ontologies
	Ontologies
	Classes
	Properties
	Data Types
	Individuals

	Conclusion

