
L. 1. Lieberman
M. A. Wesley

AUTOPASS: An Automatic Programming System for
Computer Controlled Mechanical Assembly

Abstract: This paper describes an experimental very high level programming system for computer controlled mechanical assembly.
AUTOPASS (AuTomated Parts Assembly System). The AUTOPASS language is oriented towards objects and assembly operations, rather
than motions of mechanical assembly machines. It is intended to enable the user to concentrate on the overall assembly sequence and to
program with English-like statements using names and terminology that are familiar to him. To relate assembly operations to manipulator
motions, the AUTOPASS compiler uses an internal representation of the assembly world. This representation consists of a geometric
data base generated prior to compilation and updated during compilation; it thus represents the state of the world at each assembly
step. The level of the language has been chosen to provide a high degree of assistance to the user without the system’s having to per-
form artificial intelligence type problem solving operations.

Introduction
Mechanical assembly is of major economic importance.
Historically, all mechanical assembly operations were
performed manually. As the requirements of assembly
have grown, both in terms of complexity and volume, so
has the desire to automate the process. At the present
time, mechanical assembly may be divided into three
classes on the basis of volume, measured in assemblies
per year. At the very high volume end of the range, as-
sembly is generally extensively automated, with special-
ized machines used for each step in an assembly op-
eration and with automatic transfer of parts between
machines. This mode of operation is characterized by high
capital cost of the equipment, by long delays in design,
delivery, and installation, and by difficulty in accommodat-
icg changes in the assembly operation. At the very low
volume end of the range, assembly is carried out by
hand and is characterized by high manpower costs and
ease of change in the assembly operation, perhaps even
to the extent that no two assemblies are the same. Be-
tween these extremes of volume is a region where hu-
man operators perform assembly operations either man-
ually or by using hand tools, with jigs or fixtures used to
hold pieces being worked on.

The automation of this intermediate region of the as-
sembly volume spectrum is being addressed by the use
of computer controlled manipulators. Such machines are
capable of a number of motions that can move a gripping
mechanism around the work space and use it to pick up
parts and perform assembly operations on them. Ma-
chines of this class are already widely accepted in indus-

try [11. However, a current topic for research and de-
velopment is to increase the generality of application, in
terms of the complexity of operations that can be per-
formed reliably, by the use of sensory feedback from the
assembly world. This feedback relies on tactile and force
sensors in the gripping mechanism and the work area,
and may extend to video and other remote sensing tech-
niques.

Thus application areas for programmable general pur-
pose mechanical assemblers are expected to lie in the
region between very high volume dedicated assembly
lines and custom assembled products. In this region it is
believed that the flexibility of the general purpose as-
sembler, in terms of its ability to switch rapidly between
alternative programs, will offset its relative inefficiency
in comparison to dedicated special purpose assembly
machines. In our work in automation research, we have
found that the major obstacle to the use of programma-
ble general purpose mechanical assemblers is the diffi-
culty and resultant high cost of programming a complex
assembly. This kind of programming presents several
basic problems: The three-dimensional world of assem-
bly is spatially complex and difficult to visualize; the
control of an intricate mechanical process is new to most
programmers and requires an attention to detail unlike
that found in the usual scientific or business computing.
Another significant difference between traditional pro-
gramming and mechanical assembly programming,
which dictates a new approach, is that, whereas vari-
ables and program components in a digital computer are

JULY 1975

9 I . ASM SUPPORT BRACKET
artificial intelligence (AI) problem solving systems [4 -

10 P/U AND POSITION THE NUT IN THE NEST OF THE FIXTURE. 6 1 9 which attempt to break the problem down into
1 1 1090037 NUT, CAR RET TAB OTY 01 a series of subgoals to be achieved in seauence. This is a
12 PIU, ORIENT AND POSITION THE BRACKET INTO THE

Y

FIXTURE WITH ITS TAB OVER THE NUT.
very complex problem, which we feel is not generally

13 1115191 BRKT ASM, RAIL SUPPORT OTY 01 solvable by any existing AI techniques; however, other
14 P/U SCREW AND LOAD DRIVER.
15 1107379 STUD, CR TAB INTLK QTY 01
16 P/U, ORIENT AND POSITION THE INTERLOCK OVER

THE BRACKET HOLE, WITH THE NOTCHED LUG UP.
17 1117637 INTERLOCK, CR +TAB QTY 01
18 PIU AIR DRIVER.
19 DRIVE SCREW TIGHT.
20 TOROUE 12.0 INILBS.
21 ASIDE AIR GUN

Figure 1 Support bracket assembly description taken from an
assembly sheet.

discrete and well-defined, the parts of an assembly and
the assembler are imprecise. Assemblies and parts are
subject to variations in size and position, assemblers
have residual positional errors, and parts may slip in a
gripper, so that sensory feedback must be used to carry
out the assembly operations and to detect and correct
errors.

Two main approaches to simplification of the pro-
gramming of general purpose mechanical assemblers are
in evidence. One is programming by showing, in which
the machine is led through the assembly motions by the
programmer, perhaps using a pushbutton control box,
and the motions are stored for repetitive replay. Al-
though this technique is very satisfactory for establish-
ing the main motions of the assembly operation and can
be executed by a trained assembly worker rather than a
programmer, there are difficulties associated with the
manner in which programs are to be edited and the man-
ner in which sensory feedback and error recovery tech-
niques are to be specified. In its basic form, that is, with-
out extensive use of sensory feedback, this approach is
already in use in industrial situations [2] and is being
developed to handle a wider range of assembly specifica-
tions [3].

The other approach is through the use of textual pro-
gramming, which may span a range from very high level
automatic programming systems to low level machine
languages. Consider the following example of an assem-
bly task:

Screw the bracket and the interlock together. (1)

At this very high level of specification, the system has to
recognize the items bracket and interlock and must inter-
pret the screw action to be performed on them. The sys-
tem must then generate a plan to achieve the desired

322 goal. This problem could be approached by the use of

work is being performed that uses an AI approach to
very high level languages for automatic assembly [71.

Consider now the description of the same example,
which was taken from an existing industrial assembly
instruction sheet and is shown in Fig. 1. In this case the
problem has already been broken down into a sequence
of subgoals, which are recognizable assembly steps. The
assembly sequence has been specified together with the
parts, tools, and fixtures to be used. However, explicit
information is still missing, such as how the bracket is to
be placed in the fixture, which hole in the bracket is to
be used, and what is to be done with the screw. Since
this form of high level language exists and assembly in-
struction sheets have already been written and opti-
mized, it is clearly an attractive candidate for a formalized
assembly language.

As an example of a lower level of assembly program-
ming, Fig. 2 shows the code to implement statement 16
in Fig. 1, written in a hypothetical manipulator-level
programming language. This code is manipulator direct-
ed; that is, it is concerned with specification of manipu-
lator motions to achieve the desired assembly goal. The
programmer now has to visualize the three-dimensional
nature of the assembly operation, specify motions in
terms of geometric variables, and analyze symbolic sen-
sors. At an even lower level of manipulator control lan-
guage, such as ML, which was described by Will and
Grossman [81, the user programs directly in the manip-
ulator’s “motor space” and interprets absolute sensor
data. The expansion of code between a manipulator-lev-
el language and ML is considerable, both in number of
statements and complexity of numerical specification.

From the point of view of a user, the higher the level
of language used, the easier the human programming
process becomes. In the examples of four programming
levels introduced above, the highest level (natural lan-
guage input) is deemed infeasible to implement at pres-
ent, and the lowest (ML) is clearly an extremely diffi-
cult level at which to program. The essential difference
between the assembly instruction sheet of Fig. 1 and the
manipulator-level language of Fig. 2 is that the former
describes the assembly operations to be performed,
whereas the latter describes manipulator motions to
achieve an assembly operation. The user of a manipula-
tor-level language must be prepared to program the nec-
essary motions to accommodate the geometry of the
assembly operations and the interpretation of sensor
data. Even with the assistance of subroutines for per-
forming common operations, the complexity of the cod-

L. I . LIEBERMAN AND M . A . WESLEY IBM J. RES. DEVELOP.

ing task requires that he be an experienced programmer
as well as one skilled in the art of manipulator control.

The assembly instruction sheet approach requires that
the system understand the geometry of the assembly
world. An assembly programming system working at
this level must also include a means for specification of
the geometry of parts, fixtures, manipulators, and other
items of the assembly world. In both the case of specify-
ing the geometry and of writing the assembly code, it is
possible that the user be a designer or an assembly engi-
neer rather than a programmer.

It is the purpose of this paper to demonstrate that a
language close to the level of the assembly instruction
sheet of Fig. I provides a natural interface for assembly
or design engineers and that this level of language can be
implemented. A design for such an experimental assem-
bly-directed programming system, the AUTOmated Parts
Assembly system (AUTOPASS), is presented.

Assembly-directed programming
A major goal of automatic programming systems is to
permit the user to program in user domain terms
[9, IO]. Assembly-directed programming enables him to

/*This is an example of the kind of code which could be used to
implement instruction 16 from the assembly instruction
sheet: 'P/u, ORIENT AND POSITION THE INTERLOCK OVER

The language used here is a hypothetical one, with features
very much like those of PL/ 1 and augmented by geometric
variables, such as coordinate frames, geometric operators
and by manipulator-specific operations.

are declared. * /
In the first section of this program the geometric variables

THE BRACKET HOLE, WITH THE NOTCHED LUG UP'

DECLARE (pallet,fixture,partpositionl,pa~position,grasp,goal,
Vdb) COORDINATE FRAME,
trajectory(6) 3-D POINT,
(dx,dy) SCALAR;

/*In the following section of code the user defines the various

Frames are defined in terms of other frames using the
TRANSLATED and ROTATED operators. * /

DEFINE goal AS fixture TRANSLATED (7.5,6.3,2.0);

geometric variables.

DEFINE partposition1 AS p a k t TRANSLATED

DEFINE partposition AS partpOSitiOn1 ROTATED (35,0,0):
D E F I N E ~ ~ ~ ~ ~ A S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T R A N S L A T E D (0.5,19.0,-0.2);
dx = 2.1;
d y = 0.1;

(0.6,21.9,3.0);

/*The array trajectory consists of a set of point variables repre-
senting points in space through which the origin of a frame

The user has computed where the points are and is using
(e.g., the manipulator gripper frame) will travel.

the VECTOR constructor to initialize trajectory. * /
trajectory(1) = VECTOR(28.5,30.6,1~.1);

specify assembly operations in a familiar manner, but to
achieve the goal it is also necessary that he be able to trajectory(6) =VECTOR(. . .) ;

reference assembly objects, such as parts, fixtures, and /*In this section of code the manipulator motions are defined.

tools, in a familiar and natural manner. This latter re- First open the gripper and re-orient the fingers * /
quirement is pursued later.

The choice of the form of the language, as opposed to
its level, may range from natural language to a conven-
tional instruction set with operation code mnemonics.
Natural language, because of its richness, ambiguity, and
use of context to complete descriptions, is not a suitable
form for stating assembly operations with adequate pre-
cision. A workable compromise is to use a formalized
syntax with an English-like appearance. For example,
verbs such as PLACE, TURN, and INSERT may be used
for operation codes, with operand names such as brack-
et , interlock, and screw, and with qualifying phrases
such as

with the tab.hole over the nut

In order to program in the language, the user must be
familiar with its commands and syntax, but it is possible
for one unfamiliar with the language to read and under-
stand the code.

Choice of programming level
The choice of level for an assembly-directed language is
a matter of great concern. As we have seen, too high a
level leads to complex problem solving situations in
which the system attempts to break a problem down into
subproblems that it can solve. This approach can en-
counter difficulties when the achievement of one subgoal

OPEN FINGERS TO (.25 j ;
ROTATE G R I P P E R TO (-90,0,0);

/*Re-define the manipulator coordinate frame to be 3 inches be-
yond the tips of the fingers, then move it to the part grasping
position and grip the part. * /

DEFINE MANIPULATOR AS GRIPPER TRANSLATED

MOVE MANIPULATOR TO O R I G I N (grasp):
(3.0,0,0) :

CALL GRIPIT (3.5);

/*Move the hand (with the part) through the trajectory.
This is a series of guarded moves using the logical sensor

feel contact during motion. * /
H I T which attains the value of TRUE if the force sensors

i = 0;
UNLESS HIT DO:

i = i + I :
IF i>6 THEN GOTO didihit;
MOVE MANIPULATOR TO trajectory(i1;

E N D :

/*SUCCESS is a logical flag set to TRUE when the last requested
motion has been successfully completed. Therefore, if
SUCCESS is FALSE in this situation it means that a hit was
sensed during the trajectory. The error recovery (not
shown here) is specified beginning at label hitit. * /

didihit: IF SUCCESS=FALSE THEN GOTO hitit;

/*Re-define the MANIPULATOR frame to be at the hole in the
part. When the move is pelformed the frame of the hole will
be aligned with the goal frame on the object held in the
fixture. * /

LATED (dx,dy,O) :
DEFINE MANIPULATOR AS MANIPULATOR TRANS-

CALL SOFTMOVETO(ORICIN(~~~~)):

Figure 2 A manipulator-level program for support bracket
example. 323

J U L Y 1977 AUTOPASS

makes achievement of a later one impossible. For exam-
ple, if a part is to be fitted in one operation step, it may
transpire that the fitting cannot take place because an-
other part, placed in a separate step, is preventing the
fitting operation from taking place. In general it is not
possible to choose subgoals that are independent, and
the system must iterate over the sequence of subgoals to
achieve a valid overall solution.

The segmentation of an assembly problem such as (1)
into subtasks (Fig. 1) is an operation with which an
industrial assembly engineer is familiar. His normal role
of planning for manual assembly involves solution of
similar problems, for example, generation of insertion
sequences for parts. If the language level is set too low,
then the user may have to specify more steps, with cor-
respondingly more attention to detail, than is conve-
nient. For example, statement 16 in Fig. 1 :

P/U, ORIENT AND POSITION THE INTERLOCK OVER THE
BRACKET WITH THE NOTCHED LUG UP.

could be programmed as a sequence

GRASP interlock AT POINT x
MOVE interlock TO POINT y OVERfixture
LOWER interlock TO CONTACT bracket
RELEASE interlock (2)

In this example the user specifies a grasping point x, an
intermediate point y over the jixture, the method of
lowering the interlock onto the bracket, and when to
open the gripper. However, the specification of these
extra steps does not generally simplify the task of gener-
ating manipulator motions. The sequence of operations
is well understood and can be incorporated in the sys-
tem; the choice of a grasping point and an approach
point can in principle be derived from a geometric model
(though it is possible that the compiler will fail to find a
solution to a problem); and the lowering into position
can be accomplished by selection of library routines.

An examination of low-level manipulator code that we
have written shows that the code is generally a straight
line sequence of manipulator motions. Conditional
branching based on sensor analysis occurs within opera-
tions such as lower to contact , and wider ranging branch-
ing for error recovery, after, for example, dropping a
part, occurs between routines at the level of the state-
ments of Fig. 1.

The AUTOPASS user plans the overall assembly opera-
tion as a sequence of high level assembly statements,
each involving operations on the level of positioning one
part or inserting one screw. The AUTOPASS statements
have been designed to enable the user to communicate
the assembly process to the system in a natural and con-
venient manner. The statements are English-like in ap-
pearance with verbs such as PLACE, TURN, INSERT; 324

L. I . LIEBEKMAN AND M. A . WESLEY

qualifiers such as UNTIL TORQUE IS 5 FT LB; and objects
and features of objects with user defined names such as
10-32 screw and side-bracket-top-surface. However, the
statements are not in a natural language but have a for-
malized syntax with precisely defined semantics for all
permissible verbs and qualifiers. The problem domain
has been sufficiently constrained that each assembly
statement can invoke a prestored template that describes
a sequence of utility routines to be used in the genera-
tion of the implementation plan. The calling of some of
these routines may be optional, depending on the state
of the assembly world, and the individual routines may
require a process similar to problem solving in a restrict-
ed domain, as do the grasping and collision avoidance
routines. The major utility functions, many of which are
commonly used by the semantic modules of several
statements, are discussed later. If the compiler is unable
to find solutions to one or more of the basic steps speci-
fied by the template for the command, the user would be
asked to re-specify the operator, or perhaps use lower
level operations of the form given in (2) .

Representation of the assembly world
Assembly directed statements require that the system
understand the nature of the assembly world, in terms of
both its geometric and physical properties. One possible
approach would be to use the real world itself; however,
inference of the state of the world from sensory input is
beyond the present state of the art in terms of both the
processing of sensory data and the deduction of assem-
bly relationships among objects. Problems still remain
when the real world is to be used to predict the effects of
manipulator motions, such as in calculating a collision-
free trajectory. Either the system must operate iterative-
ly, sensing changes in the world after every small mo-
tion, or an internal representation derived from the real
world may be used.

AUTOPASS represents the real world by a data base
called the world model. The representation of both
geometric information, such as the shape of an object
and its location in the assembly world, and physical in-
formation, such as stability of objects and support rela-
tionships (e.g., will a part fall over if another part is
removed) and attachment relationships between objects
(e.g., if the interlock is removed from the fixture, will
the bracket be removed also), is conceptually straight-
forward. However, major difficulties arise in the rec-
ognition of changes in the geometric and physical
states of the system as a result of manipulator actions.
Changes in the geometry are readily understood, but
changes in physical relationships are much harder to
recognize. For example, in the program given in Fig. 1 ,
how does the system recognize that inserting a screw
into a hole attaches all four objects together? The ap-

IBM J. RES. DEVELOP. I

proach taken in AUTOPASS is to place on the user the
responsibility for specifying physically realizable opera-
tions, for example, that parts are placed in stable posi-
tions, and for informing the system of changes in attach-
ment relationships.

At the start of compilation of an AUTOPASS state-
ment, the world model represents the current state of the
assembly world. During the course of compilation of the
statement the data base provides information for such
operations as choice of the grasp point on an object and
generation of manipulator trajectories. At the end of
compilation of the statement, the world model is updated
to reflect the changes introduced by the successful com-
pilation of the statement.

The use of an internal representation, the world mod-
el, enables the compiler to simulate the expected run
time world at compile time. Compilation may be per-
formed using a suitably large processor system, and the
object code generated may be run on a relatively small
manipulator control system. In a production environ-
ment, the object code would be expected to be run repet-
itively for extended periods without modification.

The world model data base may have been generated
in a declarative phase, before compilation is begun, us-
ing a geometric design processor [1 11 ; in a fully in-
tegrated computer aided design and computer aided
manufacturing system (CADICAM), much of the world
model information would already be available in digital
form. Symbolic naming of assembly objects and features
of objects, required by the English-like form of AUTO-
PASS, may be obtained by permitting suitable naming
operations to be performed on the world model, either in
an initial declaration phase or dynamically by declara-
tion statements during execution.

User interface
We have already discussed some requirements for an
interface suited to users with limited programming ex-
perience. A further area of considerable importance
arises from the nature of assembly-directed program-
ming. The language statements are goal-directed in that
they specify the required result of an assembly step rather
than the method by which the manipulator is to execute
the step. In common with all goal-directed languages, the
problem arises of assuring that the system’s model of the
problem matches that intended by the user. In the case
of a conventional business or scientific programming
problem, the consequences of an error in program be-
havior may be contained by execution on suitable trial
data. In the case of a manipulator, the consequences
could well be physical damage to the machine and the
assembly work area, so that ensuring model correctness
becomes of greater concern.

The AUTOPASS compiler interacts with the user at two
levels. At the higher level, statement syntax is checked,
operands are evaluated, and general feasibility checks
are carried out. Feasibility checks might include: Can
the specified object be moved; is there a hand available
for the task (if not, can one be freed) ; are specified fea-
tures on the expected object? At this level, specification
changes may be made by the user without any sizable
investment in compilation. At the lower level, the com-
piler attempts to generate object code. The compiler out-
lines the steps it is going to take and, as it proceeds, indi-
cates choices it has made and results it has obtained,
both at a relatively high level. At any time the user may
terminate the compilation and back up to the start of the
statement and re-specify it. Similarly, if the system is
unable to complete a step in the compilation, the system
asks the user for help. The user may then assist the sys-
tem by giving an alternative and/or more detailed speci-
fication of the operation. Interaction with the user on a
statement-by-statement basis allows the user to start
out with the highest level of statement for a given opera-
tion and, if requested, provide the system with additional
information [91. In extreme cases, he may have to re-
specify the operation as a sequence of lower level, assem-
bly-directed, primitive operations, such as in (2) .

Performing compilation on a statement-by-statement
basis using an internal representation of the expected
run time assembly world state permits an effective and
natural level of interaction with the user. However,
problems arise with the use of conditional branching in
the program, as a statement in the code can, in principle,
be reached with different states of the world model. In
order to handle these problems, constraints are placed
on the branching that a user may specify in his program.
Although severe in a general programming sense, it
seems that apart from error recovery there is little need
for complicated branching paths in an assembly pro-
gram, and in practice the user may not be affected. In all
cases the constraints are intended to permit the compiler
to know at compile time the state of the world model at
the start of execution of a statement. Iteration and sub-
routine calls are permitted provided that the compiler
can expand the code and simulate it as a single straight
line stream. Conditional branches are permitted provid-
ed the paths of the branch rejoin with equivalent world
model states; equivalence is interpreted to mean states
that differ nonsignificantly, such as the use of parts of
differing colors or the incorporation of minor differences
between versions of an assembly. It is hoped that any
practical assembly can readily be partitioned so that
these constraints are not a serious inconvenience.

Another area of concern arising from the one-state-
ment-at-a-time compilation is that of parallel code. For
any manipulator-level language to be useful as the target 325

AUTOPASS JULY 1977

I User 1 7 and model verification
Interactive problem specification

,-, A U T O P A S S , I , Manipulator , ,

I plan I source 4 I level 4 1 Assemblr

Assembly program AUTOPASS program control
program
processor compiler -

Initial
geometric
world World

model

base
design

processor

Figure 3 Block diagram of AUTOPASS system.

of AUTOPASS, it must permit the specification of instruc-
tion streams that are to be executed in parallel. In cases
where there is more than one manipulator, this parallel-
ism may include parallel assembly operations. Although
explicit synchronization points may be included in the
code, the compiler cannot guarantee synchronization of
the manipulators between code synchronization points,
and the possibility of collision arises. The approach
adopted for AUTOPASS is to require that the manipula-
tors be kept sufficiently far apart that spatial synchroniza-
tion may safely be independent of time synchronization.

AUTOPASS system
The overall structure of the AUTOPASS system is shown
in Fig. 3. The user generates an assembly plan, codes it
as an AUTOPASS source program, and also provides an
initial geometric model of the assembly world using a
geometric design processor. The AUTOPASS compiler
processes the source program one statement at a time.
The compiler interacts with the world model data base
for information on the geometric and physical relation-
ships involved in the assembly operations and with the
user to ensure correctness of specification of the assem-
bly plan. The target code consists of procedures in a
manipulator-level language. AUTOPASS is embedded in a
subset of PL/I and offers the user many of the control
and data type facilities of that language. The present sta-
tus of the work is that the AUTOPASS language has been
defined and a complete implementation of the compiler
outlined. A translator-writing system employing De-
Remer’s method for SLR (l) grammars [121 has been
used to generate the parsing phase of the compiler. The
world model has been designed and the geometric design
processor has been implemented.

The world model is a geometric data base in which are
represented the geometric structure of objects, the spa-
tial positions and relationships among objects, and the 326

L. 1. LIEBERMAN AND M. A. WESLEY

assembly or attachment relationships between objects.
The structure of the model representation is a graph in
which each vertex represents an object component, an
object, or an assembly, and may have a symbolic name.
The edges are directed and can indicate four kinds of
relationships: part-of, attachment, constraint, and assem-
bly-component.

Each object is modeled internally as a polyhedron,
giving the system uniform geometric structures for
which interference and other algorithms can be conve-
niently developed. The polyhedral description is a set of
vertex, edge, and surface list structures accessed by a
pointer at the object vertex. The polyhedron is created
by a geometric construction program in the geometric
design processor. Objects are constructed by combining
primitive volumes using a parametric description [1 I] .
Since the polyhedral representation is necessarily an
approximation to primitives with curved surfaces, a pa-
rameter indicating the degree of accuracy of the approxi-
mation may be specified. Symbolic names are assigned
by the user to any vertex in the graph, thus allowing him
to refer to parts and their component volume pieces in
the program. The user may name sets of lines, surfaces,
and points of an object’s polyhedron so that they may be
referenced in an AUTOPASS statement.

As an example of a world model, Fig. 4 shows the
state of the world at the end of the assembly of Fig. 1.
Note that the nodes contain other information not
shown in the figure, such as coordinate transformations
giving the location of the object and physical properties.

The initial state of the world model is provided by the
geometric design processor. This subsystem enables the
user to specify parts, fixtures, and the manipulator by
designing with parametric primitive volumes, such as a
cuboid with given sides or a cone with given height and
angle, using an interactive graphics terminal. It also al-
lows him to specify relative positions, types of edge rela-
tionships, and names for objects and features of objects.

AUTOPASS language
The AUTOPASS language is embedded in PL/I and offers
the user many of the control and data facilities of that
language. However, it is generally not necessary that he
be familiar with more than the AUTOPASS commands
and a very small subset of PL/I control and data type
operations, such as conditional branching and DO
groups.

AUTOPASS language statements may be divided into
two classes, assembly related and miscellaneous. As-
sembly related statements are concerned with specifica-
tion of assembly operations and have been divided into
three groups: state change, tool, and fastener. Miscella-
neous statements are used for such operations as specifi-
cation of control flow, declaration of geometric variables

IBM .I. RES. DEVEL(

and assignment of numerical values to them, and descrip-
tion of inspection operations. The Appendix contains a
condensed syntax of the language, including a complete
listing of assembly related statements and a partial list-
ing of miscellaneous statements.

Control of program flow is provided by the branching
and looping facilities of PL/I. The program may branch
conditionally on, for example, the assembly model num-
ber, allowing different features on different models; loop-
ing and indexing may be used to specify repetitive oper-
ations such as installation of screws holding a cover
plate; subroutines may be used for common operations.
However, one-statement-at-a-time compilation with an
internal representation of the assembly world places re-
strictions on the use of branching in the control flow, as
discussed earlier.

Within each group of assembly related statements
there is at least one very general statement with many
qualifier options. These general statements permit speci-
fication at the highest level of the most complicated op-
erations covered by the group. The other members of a
group are generally more specific statements with fewer,
more directed, qualifiers. For example, in the case of
state change statements, the PLACE statement represents
the very general statement for an action which could
be specified as a sequence of more specific statements,
such as

GRASP
LI Fr
MOVE
LOWER
RELEASE

It is expected that the user will initially specify opera-
tions at a high level and with as few qualifiers as possi-
ble. In the course of interactive compilation of the state-
ment, the compiler may find that the statement is either
ambiguous, and ask for further qualifiers, or not compila-
ble, and ask for an alternative, narrower, specification of
the operation.

The AUTOPASS language permits the use of multiple
manipulators. The manipulators available for performing
assembly operations, together with those of their mo-
tions that may be used, may be declared dynamically in
the program. Further, each of the assembly related state-
ments may be preceded by a qualifying hand specifica-
tion indicating which manipulator is to be used for the
operation. The use of these hand specifications is option-
al. If not given, the system decides which manipulator to
use based on the current operation alone. Such a local-
ized decision procedure may produce conflicts with later
statements, and the hand specification may be included
to enable the user to include in his assembly plan the use
of specific manipulators. A number of statement types

Attachment: may be rigid (objects do not move with re-
spect to each other), non-rigid (objects are attached, but
have limited relative movement, e g , a joint), or condi-
tional (objects are attached only under certain con-
ditions).
Constraint: may be translational or rotating; described by
direction or axis vector and force threshold.

AS Assembly: indicates that an object (and each object at-
tached to it) is a component of an assembly.
Part-of: indicates a component of a rigid part. (Not all
components and part-of relationships are shown above.)

Figure 4 World model for support bracket assembly.

include a then-hold option, which commands the manip-
ulator to remain in position at the end of the statement,
thereby permitting one hand to hold a part in position
while another performs a related task.

One consequence of having multiple manipulators is
the possibility of parallel and cooperative operations.
AUTOPASS permits specification of parallel motions by
means of an IN PARALLEL DO construction. However,
since the compiler works one statement at a time, and
the individual statements refer to only one manipulator, it
is the user’s responsibility to ensure that the arms are
sufficiently far apart that spatial synchronization may
safely be independent of time synchronization. Eventual-
ly the problem will be solved by the introduction of
constructs to allow specification of spatial and time syn-
chronization for continuous paths.

State change statements
State change statements allow description of assembly
operations such as placement and adjustment of parts
and motions of the manipulators.

The general purpose state change statement is PLACE
with first level of syntax as follows: 327

AUTOPASS JULY 1977

PLACE (object) (prepositional-phrase) (object) (grasping-
phrase) (final-condition-phrase) (constraint-
phrase) (then-hold)

(object) is a fully qualified symbolic name for an object,
generally a part.

(prepositional-phrase) may be IN or ON; the semantic
difference between them gives the compiler
advice on the type of operation being per-
formed. ON implies a relatively open goal pOSi-
tion, whereas IN implies that the goal position
is enclosed.

(grasping-phrase) provides an optional specification of
how the fingers are to be positioned for grasp-
ing the object. The phrase may be used to ad-
vise the compiler where and how hard to grasp
a part that is difficult to hold or to avoid gripper
caused collisions in later commands. When not
specified, the compiler uses its knowledge of
the geometry and material of the part to calcu-
late a suitable gripping force and searches for
a suitable gripping point in conjunction with its
trajectory search computations.

(constraint-phrase) provides an optional specification of
constraints to be met during the execution of
the command. These include position, orienta-
tion, force, duration of execution of the com-
mand, linear and angular velocities, accelera-
tions, and jerks.

(then-hold) provides an option to specify that the hand
remain in position on the completion of the
command.

Tool statements
Tools are widely used in assembly operations; in partic-
ular, they are used to make adjustments and install fas-
teners. Individual tool types have individual semantics,
which are programmed into the compiler and will have
to be extended when new tool types are added to the
system. The compiler’s semantic routines know where
the tool is kept, what accessories it uses, what are its
modes of operation, and what sensory feedback is neces-
sary for it to execute its operations.

OPERATE (tool) (load-list-option) (at-position-option)
(attachment-option) (final-condition-phrase)
(tool-parameter-list-option) (then-hold)

(tool) specifies the tool to be used and causes its seman-

(load-list-option) allows specification of accessories to be
used; for example, screwdriver blade or nut
socket. It is optional to cover cases in which
the tool has no accessories or the tool has al-

tic routines to be called.

328 ready been loaded by previous commands.

L. 1. LIEBERMAN AND M. A. WESLEY

(at-position-option) allows specification of where the tool
is to be operated. The option allows for the tool
already being in position.

(attachment-option) allows specification of new attach-
ments caused by the command.

(tool-parameter-list-option) allows specification of tool
operation parameters such as direction of rota-
tion and speed.

Fastener statements
Fasteners represent a highly developed technology in
mechanical assembly and can be expected to be the sub-
ject of a significant fraction of assembly operations. Fas-
teners come in many types, shapes, and sizes, are gener-
ally small relative to the parts they are fastening, and
are generally installed with tools, either hand-held or at
fixed work stations. It is expected that manipulators will
work in a similar manner, either holding and operating
tools or moving the assembly to a work station; for the
present the fastener statements of the language cover
explicitly the case of fasteners being applied with ma-
chine-held tools. Fasteners may be single sided, that is,
applied and fastened from one side of the workpiece, or
double sided, when the fastener has two parts applied to
opposing sides of the workpiece; both cases are covered
by the language.

In view of the important role of fasteners in assembly,
and the frequency with which they are used, the lan-
guage provides the user with fastener statements that
enable him to describe a fastening operation in terms of
the fasteners to be used rather than the tools used to
apply the fasteners. As with tool statements, the imple-
mentations of fastener statements are highly tool depen-
dent and require special semantic routines for each tool
type; in general, these routines make considerable use of
sensory feedback.

The general fastener statement is ATTACH with first
level of syntax

ATTACH (fastener) (second-fastener-option) TO (at-posi-
tion) (side-option) (attachment-option)
(final-condition-phrase) (using-option)

where the qualifying phrases allow the following specifi-
cations:

(fastener) the fastener to be used, e.g., a clip.
(second-fastener-option) the second fastener in a double

sided fastener. The second fastener is assumed
to be already in position, for example, a nut
being held in position by another hand. This
phrase informs the compiler of fastener attach-
ments, for example, that a screw is being at-
tached to a nut.

(at-position) where the fastener is to be applied.

IBM J . RES. DEVELOP.

(side-option) from which side of the workpiece the fas-

(attachment-option) as for OPERATE statement.
(final-condition-phrase) as for PLACE statement, though

only a subset of the conditions is applicable for
any given fastener.

(using-option) the tool to be used. Generally (fastener)
indicates to the system which tool is to be used;
this phrase covers ambiguous cases.

tener is to be applied.

Miscellaneous statements
An important goal in automated mechanical assembly is
high reliability of execution of assembly operations. Er-
ror testing and optional execution of recovery routines
are provided by the VERIFY statement. Note that al-
though the final-condition phrase of a PLACE statement
implies inspection to ensure that the command has in-
deed been executed correctly, the system only generates
its own corrective actions by minor modifications to the
command being executed. In general, the compiler is
designed to produce manipulator sequences that are in-
herently reliable and allow recovery from foreseen er-
rors. For example, the manipulator operations to fetch a
screw from a feeder make a test to ensure that a screw
has indeed been collected and, if necessary, retry the
operation.

AUTOPASS includes a number of statement types for
declaration of names and assertion of relationships. The
principal types are

~

declarations of manipulator names and characteristics.
These may be used to name manipulators and to de-
fine sets of motions that are permitted.

declarations of spatial features. These commands may
be used to define new coordinate frames and features
such as lines and surfaces on an object.

assignments to symbolic geometric variables, for ex-
ample, giving numeric values to points and vectors.

assertions of assembly relationships, giving symbolic
names to assemblies so that they can subsequently be
referenced as single objects.

assertions of attachment relationships, informing the
compiler of attachment relationships that cannot be
derived by semantic routines.

The semantics of attachment relationships include
rules for updating relationships after a change of state of
the world model, for example, when a part is removed
from an assembly. Further assertion statements allow
explicit cancellation of previously defined attachment
relationships.

1. OPERATE nutfeeder WITH car-ret-tab-nut ATjixture.nes1
2. PLACE bracket IN jixture SUCH THAT bracket.hottom

CONTACTS car-ret-tab-nut.top
AND bracket.hole IS ALIGNED WITH jixture.nes1

3. PLACE interlock ON bracket SUCH THAT
interlock.hole IS ALIGNED WITH bracket.ho1e
A N D interlock.base CONTACTS bracket.top

AT interlock.hole
SUCH THAT TORQUE IS EQ 12.0 IN-LBS USING air-driver
ATTACHING bracket AND interlock

ASSEMBLY support-bracket

4. DRIVE I N car-ret-intlk-stud INTO car-ret-tab-nut

5 . NAME bracket interlock car-ret-intlk-stud car-ret-tab-nut

Figure 5 AUTOPASS program for support bracket assembly.

AUTOPASS example
To illustrate the use of the AUTOPASS language, Fig. 5
shows the AUTOPASS program to perform the bracket
and interlock assembly operation of Fig. 1. The intent of
the example is to show the closeness of the level of the
AUTOPASS representation to that of the assembly in-
struction sheet and that, within the restricted domain
and rigid semantics of the language, the problem specifi-
cation is sufficiently complete for the compiler to gener-
ate correct manipulator code.

1 . OPERATE is a tool command that involves a routine
associated with the type of tool named in the oper-
and. In this case the nutfeeder is a device that can
pick up a nut from its holder (feeder) and then place
it somewhere else. The final position of the nut
(called car-ret-tab-nut in the example) is specified as

Jixture.nest, which is a subpart of the Jixture base.
The sequence of steps generated by this operation
consists of moving the hand to a position near the
nutfeeder, grasping the tool, moving to a position of
approach to the nut (in its feeder), operating the tool
to pick up the nut, moving to the target position, op-
erating the tool to release the nut. The tool is re-
placed in its holder when the compiler is satisfied that
it is no longer needed; in this case it occurs at the
start of the next command.

Note that several of the operations required of the
compiler in generating this sequence are common to
many of the other high level assembly commands. In
particular, trajectory planning and object avoidance are
frequently needed functions in the compiler. A function
that is not common to other high level commands is the
module that has the semantics for the nutfeeder tool;
there is a different semantic routine for each tool.

The changes that occur in the world model at the end
of compilation of this statement are: The coordinate
transform at the nut object vertex is changed to indicate
it is now in the jixture.nest; a new nut takes its place in
the feeder and appears as a new vertex in the world 329

1 JULY 1977 AUTOPASS

6- l

and semantics of

1

met?

meet orcconditions

implement statement

Compile

Successful

Update world

i
Figure 6 Flowchart of assembly related statement portion of
AUTOPASS compiler.

model; the list of constraints for the nut, at the nut vertex,
is modified by removing the previous constraints of the
nut holder and replacing it with the list of surface-to-
surface constraints between the nut and the nest sur-
faces. The computation of new constraints must be done
each time a state change operation is compiled.

2 . PLACE is the general movement statement of the state
change class of assembly statements. The general
sequence of operations that it generates is: move the
hand to a position that permits pickup of the object,
grasp the object, move along a clear trajectory to an
approach position for putting the object in the target
place, put it in place.

The spatial position and orientation of the object in
the target place is determined by the combination of final
conditions listed in the S U C H THAT phrases. The quali-
fiers indicate which way up the bracket should be
(bracket.bottom contacts car-ret-intlk-nutlop) , and the
alignment of two axes (interlock.hole WITH$fixtUre.neSt).
In this case the alignment is not to be measured directly
but is inferred from the dimensions of t4e objects. De-
pending on the geometry of jixture and bracket, the
compiler might find the final condition specification in-
complete (orientation about the axis is not specified)
and would then ask for more qualifiers. Note that inter-
1ock.hole and jixture.nest are both assumed to have natu-

330 ral axes; if this proves to be false, the compiler asks for

L. 1. LIEBERMAN A N D M. A. WESLEY

further specification. In general a library of force feed-
back routines is used to ensure that spatial final condi-
tions have been met.

In addition to the general operations of trajectory cal-
culation and collision avoidance, the PLACE command
also requires a functional module to find possible pickup
points on the object. This module must interact with the
trajectory calculator since the hand orientation at pickup
may render a predicted trajectory infeasible at its final
position. After this state change, the transform for
bracket is updated and the bracket vertex now has con-
straint edges showing its relations relative to its new
location in the jixture.

3 . In PLACE interlock ON bracket, ON indicates to the
compiler that this is a placement operation in open
surroundings, whereas in statement 2 I N indicated
some measure of enclosure. This information is used
by the compiler in analyzing the required final posi-
tion of an object and the approach trajectory. Again,
orientation is not specified, the compiler queries the
user to see if it is important and, if not, is free to
choose any orientation that enables it to meet other
conditions. Removal of a requirement such as ori-
entation makes the task of selecting a pickup point
and trajectory easier, as the extents of the required
manipulator motions are less likely to reach the al-
lowable limits in motor space, as defined in a table of
motor constraints.

4. The parts are now joined by driving a screw, car-ret-
intlk-stud, through the aligned holes into the nut. The
DRIVE command indicates that a driving tool (air-
driver) is to be used to apply a fastener. The IN
phrase indicates that the fastener is going into the
object (as opposed to being taken out). The first and
second operands form a fastener pair. The semantics
are that the second fastener is in place and that the
first one is to participate actively in the operation.
The next operand is the position where the fastener is
to be applied, followed by a final condition phrase
giving the termination condition, and finally a phrase
with a list of objects that will be attached by this op-
eration. Driving the screw in causes several modifica-
tions to the model. Attachment relationships among
the vertices of bracket, interlock, car-ret-intlk-stud,
and car-ret-intlk-nut are created because of the ex-
plicit attachment phrase and because of the implicit
attachment due to any fastener type statement. To
maintain consistency all the constraint relationships
among the objects involved are added to their con-
straint lists.

5 . N A M E defines the listed objects as an object of type
assembly called support-bracket and creates a new
node in the world model with pointers to the compo-

IBM J. RES. DEVELOP.

nent objects. The purpose of this statement is to allow
the programmer to name the assembly as an entity
which can be used as an operand in assembly state-
ments later in the program.

The above discussion indicates the manner in which
the AUTOPASS system is able to reduce the assembly-
directed statements of the language to a sequence of
independent, unambiguous steps to be entered into the
manipulator motion generation phase of the compiler.
The operation of the compiler is described further in the
next section.

AUTOPASS compiler
The compiler flow chart for assembly related statement
processing only is shown in Fig. 6. (Note that this does
not include the portion of the compiler that deals with
declarations, program control statements, arithmetic
statements, etc.) The basic mode of operation of the
compiler is to invoke a prestored template for each
command type. This template defines preconditions
that have to be satisfied before execution of the state-
ment can begin, a network of calls to utility routines
(many of which are used by other commands), and a set
of postconditions that will exist at the end of successful
compilation of the statement and will be added to the
world model.

As an example, consider the compilation process for
statement 3 in Fig. 5 :

PLACE interlock ON bracket. .

First the overall syntax of the command is checked and
the operands evaluated. The world model is used to de-
termine the semantic “correctness” of the statement: are
the operands proper types of objects and can the first
operand, interlock, be moved (perhaps it is rigidly at-
tached to the world coordinate frame)? If these tests
fail, the user is informed and asked to modify the com-
mand.

The preconditions for the statement type are investi-
gated. In the case of a PLACE statement, a gripper must
be free or already holding the second operand. I f it is not
free, the system tries to free it. For example, a tool it is
holding can be replaced or a part being grasped may be
released. The former of these possibilities can be satis-
fied by an operation similar to that of executing the mo-
tion portion of a PLACE command.

The system now outlines to the user the general se-
quence of operations it will follow to implement the
statement. In this case the principal elements of the se-
quence are the evaluation of the goal position defined by
the final condition phrases of the statement and the gen-
eration of a plan for a trajectory to move the interlock
from its known current position to the goal position. The

Object move planner

Grasp point list
I

generetor
I

Trajectory
generator

detector
Collision

Figure Motor Accessible
of merit constraint surface volume model hedra
function table generator approximator tolerancc inter-

tester
processor generator section

I I I
Pickup trajectory In-flight trajectory Put-down trajectory

gcncrator , generato; generator ,
Constraint Constraint
analyzer

Sensory feedback
generator library

Figure 7 Functional module hierarchy.of object move planner.

goal position is evaluated by using the world model to
simulate the position of the interlock on the bracket, iter-
ating if necessary to satisfy all the conditions. In this
case the statement is incomplete in that rotational orienta-
tion is not specified; the compiler requests clarification
and is informed that rotational orientation is not im-
portant.

The hierarchy of functional modules used in planning
the movement of an object is shown in Fig. 7.

The grasp point list generator produces an ordered list
of grasping points on a part that are within the reach of
the manipulator. Elements of the list are grasping point
regions and are derived by inspection of the world mod-
el. The accessible surface generator eliminates from
consideration as potential grasping surfaces those parts
of surfaces that are concealed by other items, such as
surface areas in contact with the worktable. The regions
are specified in terms of the extent of the region on the
part and ranges of gripping angles. Motor positions are
checked against a table of motor position constraints to
ensure that only feasible motor positions are returned.

The list is ordered by figure of merit, the value of a
function that takes into account such factors as the dis-
tance from the center of gravity, the size and shape of
the surfaces, and perhaps even the mechanical proper-
ties of the material and the surface texture. List ele-
ments with high figures of merit are likely to be charac-
terized by opposing plane parallel surfaces large enough
to be held by the gripping surfaces of the fingers, where-
as lower ranking elements might be for grasping a round
pin. In cases in which the GRASPING option is used or
the THEN HOLD POSITION is already in effect, the grasp
point list generator returns the single element list of the
specified grasping position.

The trajectory generator module is given a grasping
point and has responsibility for generating a collision-
free trajectory from the current position of hand and part

JULY 1977

to the goal position. The trajectory is divided into three
stages-pickup, in-flight, and put-down-each handled
by a separate module. All three modules must ensure
that constraints specified by SUBJECT TO constraint
phrases are met, or at least can still be met by other
functional modules; the put-down module must also
ensure that final conditions from a SUCH THAT phrase
are met.

The pickup module is given an initial hand clear
position near the grasping point, the grasping point itself,
and an in-flight trajectory start point, and it has to find a
collision-free path for the hand between these points and
the nearby grasping point. I t uses the constraint analyzer
module to provide information on constraints on the part
at the current position and the collision detector to en-
sure that the motions, although small, do not cause any
collisions. A library of sensory feedback routines is used
to handle world model and part tolerances at execution
time.

The in-flight trajectory planner is given start and end
points for the trajectory and has to find a collision-free
path between them. For the present it is assumed that
the world is relatively uncluttered and that collision-free
trajectory planning is dealing with rather large clear-
ances around objects in the world. Apart from simplify-
ing the planning strategies, this also makes the trajectory
relatively insensitive to geometric tolerances on parts of
the world. The output trajectory is a list of intermediate
manipulator positions defining a space path in straight
line sections and tolerances defining a band about the
space path. Run-time modules convert the list into ma-
chine control commands to give a smooth trajectory
through the positions. The points and tolerances are
chosen so that the trajectory is independent of worst
case run-time tolerances on the world state.

The collision detector module is used iteratively. Giv-
en a trajectory points list, it returns a list of collision
points with the extent and direction of the collision; this
information is used in refining proposed trajectories. It
can be requested to work at several modes of accuracy
using different degrees of complexity and accuracy in
modeling the volume swept by the motion.

The put-down module takes the part from the end of
the in-flight trajectory. This is done by use of a library of
sensory feedback routines to ensure that the basic oper-
ation is completed and that any final conditions specified
have been met.

After a successful implementation of the command
has been generated, post-conditions in the state of the
world model are updated.

effort required to program a new application. The level
of the language has been chosen to enable the user to
plan the overall assembly, thereby avoiding the need for
the system to use artificial intelligence planning tech-
niques, and to enable the system to generate the details
of the manipulator motions in the real world. The lan-
guage is directed towards description of assembly opera-
tions rather than manipulator motions. I t allows the user
to specify an assembly procedure in much the same way
he would compose an assembly instruction list for man-
ual use. The user decides in which order parts are as-
sembled, which tools are used, and the general position-
ing of these objects in the work space. The AUTOPASS
compiler transforms this assembly procedure specifica-
tion into a program that directs a mechanical assembler
through the necessary motions to execute the assembly
process.

The compiler generates motion commands by using a
geometric data base called the world model to simulate
at compilation time the expected run-time world. During
the compilation process the user interacts with the com-
piler to resolve any ambiguities detected by the compiler
in the problem specification. It is expected that this
work will lead to economical ways of programming
mechanical assemblers in batch assembly environments.

Appendix: Syntax of AUTOPASS high level state-
ments
In the following statement lists, reserved words are
shown in UPPERCASE letters and optional phrases in
italics.

State change statements
PLACE object 1 ON object2 grasping final-conditions
constraints then-hold
INSERT object IN receptor position sensor then-hold
EXTRACT object distance sensor
LIFT object distance
LOWER object ONTO surface sensor then-hold
LOWER object distance sensor then-hold
SLIDE object ON surface slide-termination then-hold
PUSH object direction UNTIL final-condition then-hold
ORIENT object SUCH THAT positional-condition sensor
then-hold
TURN rotor turning-condition rotation-axis then-hold
GRASP object grasp-position hand-position grasping-
force MOVE spatial-feature final-condition
MOVE spatial-feature TO position final-condition
MOVE spatial-feature motion-specification final-condition
RELEASE

Summary Tool statements
A very high level programming language for mechanical OPERATE tool load-list target-position attachment

332 assembly has been defined that reduces the amount of final-condition tool-parameter-list then-hold

L. 1. LIEBERMAN A N D M. A. WESLEY IBM J. RES. DEVELOP.

CLAMP locking-device SUCH THAT final-condition
UNCLAMP locking-device SUCH THAT final-condition
LOAD tool load-list
UNLOAD tool load-list
FETCH tool from-holder
REPLACE tool to-holder
SWITCH tool ON~OFF
LOCK locking-device attachment
UNLOCK locking-device release

Fastener statements
ATTACH fastener second-fastener TO target-position side
attachment final-condition
DRIVE IN drive-fastener target-position final-condition
using-driver attachment driver-parameter-list
RIVET object-list target-position side attachment
FASTEN object 1 TO object2 more-objects WITH fastener
target-position final-condition
UNFASTEN fastener-list source-position release target-
position

Note Any statements in the above three classes may be
preceded by a qualifying hand specification:

WITH hand-name . . .

Miscellaneous statements (partial listing)
VERIFY inspection-condition inspection-action-list
OPEN STATE OF locking-device IS final-condition-list
CLOSED STATE OF locking-device IS final-condition-list
NAME object-list ASSEMBLY assembly-name
END

Acknowledgments
The authors thank P. M. Will, D. D. Grossman, H. A.
Panissidi, and M. A. Lavin for helpful discussions in the
course of this work, J. A. Darringer for assistance in the
preparation of a grammar and a parser for the language,
and P. Goldberg for reviewing an early draft of this paper
and for making constructive suggestions.

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Proceedings of the 5th International Symposium on Indus-
trial Robots, I IT Research Institute, Chicago, Illinois, Sep-
tember 1975.
J. F. Engleberger, “Economic and Sociological Impact of
Industrial Robots,” Proceedings First National Symposium
on Industrial Robots, Chicago, Illinois, April 1970, p. 7.
C. A. Rosen and D. Nitzan, “Some Developments in Pro-
grammable Automation,” Proceedings IEEE lntercon 75,
New York, April 1975.
D. G. Bobrow and B. Raphael, “New Programming Lan-
guages for Artificial Intelligence Research,” Computing
Surv. 6, 153 (1974).
C. Hewitt, “Description and Theoretical Analysis (Using
Schemata) of Planner: A Language for Proving Theorems
and Manipulating Models in a Robot,” A1 Memo No. 251,
MIT Artificial Intelligence Laboratory, 545 Technology
Square, Cambridge, MA, April 1972.
S. E. Fahlman, “A Planning System for Robot Construc-
tion Tasks,” Artijkial Intelligence 5, 1 (1974).
R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman,
“AL, A Programming System for Automation,” Stanford
Art$cial Intelligence Laboratory Memo. AIM-243, STAN-
CS-74-456, Stanford University, November 1974.
P. M. Will and D. D. Grossman, “An Experimental System
for Computer Controlled Mechanical Assembly,” IEEE
Trans. Comput. C-24, 879 (1975).
R. M. Baker, “Automatic Programming,” Technical Re-
port RR-73-1, U. s. C . Information Sciences Institute,
Marina del Rey, CA, 1972.
G. E. Heidom, “Automatic Programming Through Natural
Language Dialogue: A Survey,” IBM J . Res. Develop. 20,
302 (1976).
D. D. Grossman, “Procedural Representation of Three-
dimensional Objects,” IBM J . Res. Develop. 20, 582
(1976).
F. L. DeRemer, “Simple LR(k) Grammars,” Commun.
ACM 14, 453 (1971).

Received May 3 , 1976

The authors are located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

JULY 1977

333

AUTOPASS

