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AUTOPASS: An Automatic  Programming  System  for 
Computer  Controlled  Mechanical  Assembly 

Abstract: This paper  describes an experimental  very high level programming system  for  computer controlled  mechanical  assembly. 
AUTOPASS (AuTomated Parts Assembly System).  The AUTOPASS language is oriented towards  objects and  assembly operations,  rather 
than  motions of mechanical  assembly  machines. It is intended to  enable  the  user  to  concentrate  on  the overall  assembly sequence and to 
program with English-like statements using names and terminology that  are familiar to him. To relate  assembly operations  to manipulator 
motions, the AUTOPASS compiler  uses  an  internal representation of the  assembly  world. This  representation  consists of a  geometric 
data base generated  prior to  compilation and  updated during  compilation; it thus  represents  the  state of the world at  each assembly 
step.  The level of the language has been chosen to  provide  a high degree of assistance  to  the  user without  the  system’s having to per- 
form artificial intelligence  type  problem solving operations. 

Introduction 
Mechanical  assembly is of major  economic importance. 
Historically, all mechanical  assembly operations were 
performed  manually. As  the  requirements of assembly 
have  grown,  both in terms of complexity  and  volume, so 
has  the  desire  to  automate  the  process.  At  the  present 
time,  mechanical  assembly may be divided into three 
classes  on  the basis of volume,  measured in assemblies 
per  year.  At  the very high volume end of the range, as- 
sembly is generally  extensively automated, with special- 
ized  machines  used for  each  step in an assembly  op- 
eration  and with automatic  transfer of parts  between 
machines. This mode of operation is characterized by high 
capital cost of the  equipment, by long delays in design, 
delivery,  and  installation,  and  by difficulty in accommodat- 
icg changes in the assembly operation. At the very low 
volume  end of the  range,  assembly is carried  out by 
hand  and is characterized by  high manpower  costs and 
ease of change in the assembly operation,  perhaps  even 
to  the  extent  that  no two  assemblies are  the  same. Be- 
tween these  extremes of volume is a region where hu- 
man operators perform  assembly operations  either man- 
ually or by using hand tools, with jigs or fixtures  used to 
hold pieces being worked on. 

The automation of this  intermediate region of the as- 
sembly  volume spectrum is being addressed by the  use 
of computer controlled  manipulators.  Such  machines are 
capable of a number of motions that can  move  a gripping 
mechanism around  the work space and  use it to pick up 
parts and  perform  assembly operations  on  them. Ma- 
chines of this class  are already widely accepted in indus- 

try [ 11. However, a current topic for research  and de- 
velopment is to  increase  the generality of application, in 
terms of the complexity of operations  that can be per- 
formed  reliably, by the  use of sensory feedback  from the 
assembly  world. This  feedback relies on tactile  and force 
sensors in the gripping mechanism  and the work area, 
and may extend  to video  and other  remote sensing tech- 
niques. 

Thus application areas for  programmable  general pur- 
pose mechanical assemblers  are  expected  to lie  in the 
region between  very high volume dedicated assembly 
lines  and custom assembled products. In this region it  is 
believed that  the flexibility of the general purpose  as- 
sembler, in terms of its ability to switch  rapidly between 
alternative programs, will offset its  relative inefficiency 
in comparison  to  dedicated special purpose assembly 
machines. In  our work in automation research,  we  have 
found that  the major obstacle  to  the use of programma- 
ble general purpose mechanical assemblers is the diffi- 
culty  and  resultant high cost of programming a complex 
assembly. This kind of programming presents  several 
basic  problems: The three-dimensional world of assem- 
bly  is spatially  complex and difficult to visualize; the 
control of an intricate mechanical process is  new to most 
programmers  and  requires an attention  to detail  unlike 
that found in the usual scientific or  business computing. 
Another significant difference  between  traditional pro- 
gramming and mechanical assembly  programming, 
which dictates a new approach, is that,  whereas vari- 
ables  and  program components in a digital computer  are 
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9 I .  ASM SUPPORT BRACKET 
artificial intelligence (AI) problem  solving systems [ 4 - 

10 P/U  AND POSITION THE  NUT  IN  THE  NEST OF THE FIXTURE. 6 1 9  which attempt to break the problem down into 
1 1  1090037 NUT, CAR RET TAB OTY 01 a series of subgoals to be  achieved in seauence.  This is a 
12 PIU, ORIENT AND POSITION THE BRACKET INTO THE 

Y 

FIXTURE WITH ITS TAB OVER THE  NUT. 
very  complex  problem, which we feel is not  generally 

13 1115191 BRKT ASM, RAIL SUPPORT OTY 01 solvable by any existing AI techniques;  however,  other 
14 P/U SCREW AND  LOAD DRIVER. 
15 1107379 STUD, CR TAB INTLK QTY 01 
16 P/U, ORIENT AND POSITION THE INTERLOCK OVER 

THE BRACKET HOLE, WITH THE  NOTCHED  LUG UP. 
17 1117637 INTERLOCK, CR +TAB QTY 01 
18 PIU AIR DRIVER. 
19 DRIVE SCREW TIGHT. 
20 TOROUE 12.0 INILBS. 
21 ASIDE AIR GUN 

Figure 1 Support bracket assembly description taken from an 
assembly  sheet. 

discrete  and well-defined, the  parts of an assembly  and 
the  assembler  are imprecise.  Assemblies and  parts  are 
subject  to variations in size and position, assemblers 
have residual  positional errors, and parts may slip in a 
gripper, so that  sensory  feedback must  be  used to  carry 
out  the assembly operations  and  to  detect  and  correct 
errors. 

Two main approaches  to simplification of the pro- 
gramming of general purpose mechanical assemblers  are 
in evidence.  One is programming by showing, in which 
the machine is led through the assembly  motions by the 
programmer, perhaps using a pushbutton  control  box, 
and the motions are  stored  for  repetitive replay.  Al- 
though  this technique is very satisfactory  for establish- 
ing the main motions of the assembly operation and can 
be executed by a trained  assembly worker  rather than a 
programmer, there  are difficulties associated with the 
manner in which  programs are  to be edited and the man- 
ner in which sensory  feedback  and  error recovery tech- 
niques are  to  be specified. In its  basic  form, that is,  with- 
out  extensive  use of sensory  feedback, this approach is 
already in use in industrial  situations [2] and is being 
developed to handle  a  wider range of assembly specifica- 
tions [3].  

The  other  approach is through the use of textual  pro- 
gramming, which may span a range from  very high level 
automatic programming systems  to low level machine 
languages. Consider  the following example of an  assem- 
bly task: 

Screw the bracket  and the interlock together. ( 1 )  

At this  very high level of specification, the  system has to 
recognize the  items bracket and interlock and  must  inter- 
pret  the screw action  to  be performed on  them.  The  sys- 
tem  must then  generate a plan to  achieve  the desired 

322 goal. This problem  could  be approached by the  use of 

work is being performed that  uses  an  AI  approach  to 
very high level languages for  automatic assembly [ 71. 

Consider now the description of the  same  example, 
which  was taken from an existing  industrial assembly 
instruction sheet  and is shown in Fig. 1. In this case  the 
problem has already  been broken  down into  a sequence 
of subgoals, which are recognizable  assembly steps.  The 
assembly sequence  has been specified together with the 
parts,  tools,  and fixtures to be used.  However, explicit 
information is still missing, such  as how the  bracket is to 
be placed in the fixture, which hole in the  bracket is to 
be used, and  what is to be done with the  screw.  Since 
this  form of  high level  language exists and  assembly in- 
struction sheets  have  already been  written and opti- 
mized, it is clearly an  attractive  candidate  for a formalized 
assembly language. 

As  an  example of a lower level of assembly  program- 
ming, Fig. 2 shows  the  code  to implement statement 16 
in Fig. 1, written in a  hypothetical  manipulator-level 
programming language. This  code is manipulator direct- 
ed;  that  is, it is concerned with  specification of manipu- 
lator motions to  achieve  the  desired assembly  goal. The 
programmer now has  to visualize the three-dimensional 
nature of the  assembly  operation, specify motions in 
terms of geometric  variables, and  analyze symbolic sen- 
sors. At  an  even  lower level of manipulator control lan- 
guage, such  as ML, which was described by Will and 
Grossman [ 81, the  user programs  directly  in the manip- 
ulator’s “motor  space”  and  interprets  absolute  sensor 
data.  The  expansion of code  between a  manipulator-lev- 
el language  and ML is considerable,  both in number  of 
statements and  complexity of numerical  specification. 

From  the point of view of a user,  the higher the level 
of language used,  the  easier  the human programming 
process becomes. In  the  examples of four programming 
levels  introduced above,  the highest level (natural lan- 
guage input) is deemed infeasible to implement at pres- 
ent,  and  the lowest (ML) is clearly an extremely diffi- 
cult level at which to program. The essential  difference 
between  the assembly  instruction sheet of Fig. 1 and  the 
manipulator-level language of Fig. 2 is that  the  former 
describes  the assembly operations  to be performed, 
whereas  the  latter  describes manipulator  motions to 
achieve  an assembly operation.  The  user of a  manipula- 
tor-level language must  be prepared  to program the  nec- 
essary motions to  accommodate  the geometry of the 
assembly operations and the  interpretation of sensor 
data.  Even with the  assistance of subroutines  for  per- 
forming common operations,  the complexity of the cod- 
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ing task  requires that  he be an experienced  programmer 
as well as  one skilled in the art of manipulator control. 

The assembly  instruction sheet  approach  requires  that 
the  system  understand  the geometry of the assembly 
world. An  assembly programming system working at 
this level must  also  include  a means for specification of 
the geometry of parts, fixtures,  manipulators,  and other 
items of the assembly  world. In  both  the  case of specify- 
ing the geometry and of writing the assembly code, it is 
possible that  the  user be  a  designer or an assembly engi- 
neer  rather than  a  programmer. 

It is the  purpose of this paper  to  demonstrate  that a 
language close to  the level of the assembly  instruction 
sheet of Fig. I provides  a  natural  interface for assembly 
or design  engineers  and  that  this level of language can be 
implemented.  A  design  for such  an experimental  assem- 
bly-directed programming system,  the AUTOmated Parts 
Assembly system (AUTOPASS), is presented. 

Assembly-directed programming 
A  major goal of automatic programming systems is to 
permit the  user  to program in user domain terms 
[9, IO].  Assembly-directed programming enables him to 

/*This is an example of the kind of code which could be used to 
implement instruction 16 from  the assembly instruction 
sheet: 'P/u, ORIENT AND  POSITION THE INTERLOCK OVER 

The language used here is a hypothetical one, with features 
very much like those of PL/ 1 and augmented by geometric 
variables,  such  as  coordinate  frames,  geometric  operators 
and by manipulator-specific operations. 

are  declared. * / 
In  the first section of this program the  geometric variables 

THE BRACKET  HOLE, WITH THE  NOTCHED  LUG UP' 

DECLARE (pallet,fixture,partpositionl,pa~position,grasp,goal, 
Vdb) COORDINATE  FRAME, 
trajectory(6) 3-D  POINT, 
(dx,dy) SCALAR; 

/*In the following section of code  the  user defines the various 

Frames  are defined in terms of other  frames using the 
TRANSLATED and ROTATED operators. * /  

DEFINE goal AS fixture TRANSLATED (7.5,6.3,2.0); 

geometric variables. 

DEFINE partposition1 AS p a k t  TRANSLATED 

DEFINE partposition AS partpOSitiOn1 ROTATED (35,0,0): 
D E F I N E ~ ~ ~ ~ ~ A S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T R A N S L A T E D  (0.5,19.0,-0.2); 
dx = 2.1; 
d y =  0.1; 

(0.6,21.9,3.0); 

/*The array  trajectory  consists of a  set of point variables repre- 
senting points in space through which the origin of a  frame 

The user  has  computed  where  the points are and is using 
(e.g.,  the manipulator gripper  frame) will travel. 

the VECTOR constructor  to initialize trajectory. * /  
trajectory(1) = VECTOR(28.5,30.6,1~.1); 

specify assembly operations in a familiar manner, but to 
achieve  the goal it is also necessary  that  he be  able to trajectory(6) =VECTOR(.  . .) ;  

reference assembly objects,  such  as  parts, fixtures,  and /*In this section of code  the manipulator motions are defined. 

tools, in a familiar and  natural manner.  This  latter re- First  open  the  gripper and re-orient  the fingers * / 
quirement is pursued later. 

The  choice of the  form of the language, as opposed to 
its  level, may range from natural  language to a conven- 
tional  instruction set with operation  code mnemonics. 
Natural language, because of its  richness,  ambiguity,  and 
use of context  to complete descriptions, is not  a  suitable 
form for stating  assembly operations with adequate pre- 
cision.  A  workable  compromise is to use  a  formalized 
syntax with an English-like appearance. For example, 
verbs  such  as  PLACE, TURN, and INSERT may be  used 
for  operation  codes, with operand names such  as brack- 
et ,  interlock, and screw, and  with qualifying phrases 
such  as 

with the tab.hole  over the nut 

In  order  to program in the language, the  user must  be 
familiar with its  commands and  syntax, but it  is possible 
for  one unfamiliar with the language to read  and under- 
stand the  code. 

Choice of programming level 
The  choice of level  for an assembly-directed language is 
a matter of great concern. As we have  seen,  too high a 
level leads to complex  problem solving situations in 
which the system attempts  to break  a  problem down into 
subproblems that it can solve. This  approach  can  en- 
counter difficulties when the  achievement of one subgoal 

OPEN  FINGERS  TO (.25 j ;  
ROTATE G R I P P E R  TO (-90,0,0); 

/*Re-define  the  manipulator  coordinate  frame  to  be  3 inches be- 
yond the tips of the fingers, then move it to  the part grasping 
position and grip the  part. * /  

DEFINE  MANIPULATOR  AS  GRIPPER  TRANSLATED 

MOVE MANIPULATOR TO O R I G I N  (grasp): 
(3.0,0,0) : 

CALL  GRIPIT (3.5);  

/*Move  the hand (with  the  part) through the  trajectory. 
This is a  series of guarded moves using the logical sensor 

feel contact during motion. * /  
H I T  which attains  the  value of TRUE if the  force  sensors 

i = 0; 
UNLESS HIT  DO: 

i = i +  I :  
IF i>6 THEN  GOTO didihit; 
MOVE MANIPULATOR TO trajectory(i1; 

E N D :  

/*SUCCESS is a logical flag set  to TRUE when the last requested 
motion has been successfully completed.  Therefore, if 
SUCCESS is FALSE in this situation it means that  a hit was 
sensed during the  trajectory.  The  error  recovery  (not 
shown  here) is specified beginning at label hitit. * /  

didihit: IF  SUCCESS=FALSE  THEN  GOTO hitit; 

/*Re-define  the MANIPULATOR frame to be at the hole in the 
part. When the move is pelformed  the  frame of the hole will 
be aligned with the goal frame on the  object held in the 
fixture. * /  

LATED (dx,dy,O) : 
DEFINE  MANIPULATOR  AS  MANIPULATOR  TRANS- 

CALL SOFTMOVETO(ORICIN(~~~~)): 

Figure 2 A manipulator-level program for support bracket 
example. 323 
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makes  achievement of a later  one impossible. For  exam- 
ple, if a part is to  be fitted in one  operation  step, it may 
transpire  that  the fitting cannot  take place because  an- 
other  part, placed in a separate  step, is preventing the 
fitting operation  from taking  place. In  general it is not 
possible to  choose subgoals that  are  independent,  and 
the  system  must  iterate  over  the  sequence of subgoals to 
achieve a valid overall  solution. 

The segmentation of an assembly  problem such  as ( 1 ) 
into  subtasks  (Fig. 1) is an  operation with  which an 
industrial  assembly  engineer is familiar. His normal role 
of planning for manual assembly  involves  solution of 
similar problems, for  example, generation of insertion 
sequences  for  parts. If the language level is set  too  low, 
then  the  user may have  to specify more  steps, with cor- 
respondingly more  attention  to detail, than  is  conve- 
nient. For  example,  statement 16 in Fig. 1 : 

P/U, ORIENT AND POSITION THE INTERLOCK  OVER THE 
BRACKET WITH THE NOTCHED LUG  UP. 

could  be  programmed as a sequence 

GRASP interlock AT POINT x 
MOVE interlock TO POINT y OVERfixture 
LOWER interlock TO CONTACT bracket 
RELEASE interlock ( 2 )  

In this  example the  user specifies a  grasping  point x, an 
intermediate  point y over  the jixture, the method of 
lowering the interlock onto  the bracket, and when to 
open  the gripper. However,  the specification of these 
extra  steps  does not  generally simplify the  task of gener- 
ating  manipulator  motions. The  sequence of operations 
is well understood and can be incorporated in the  sys- 
tem;  the choice of a  grasping  point and  an  approach 
point can in principle be derived from a geometric model 
(though it is possible that  the compiler will fail to find a 
solution to a problem);  and  the lowering into position 
can be accomplished by selection of library routines. 

An examination of low-level manipulator code  that  we 
have  written  shows  that  the  code is generally a straight 
line sequence of manipulator  motions.  Conditional 
branching based  on  sensor analysis occurs within opera- 
tions  such  as lower to  contact ,  and wider ranging branch- 
ing for  error  recovery,  after,  for  example, dropping a 
part,  occurs  between  routines  at  the level of the  state- 
ments of Fig. 1. 

The AUTOPASS user plans the overall  assembly opera- 
tion as a sequence of  high level assembly statements, 
each involving operations  on  the level of positioning one 
part  or inserting one  screw.  The AUTOPASS statements 
have been  designed to  enable  the  user  to  communicate 
the assembly process  to  the  system in a natural and con- 
venient  manner. The  statements  are English-like in ap- 
pearance with verbs  such  as PLACE,  TURN, INSERT; 324 
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qualifiers such as UNTIL TORQUE IS 5 FT LB; and  objects 
and features of objects with user defined names  such  as 
10-32 screw and side-bracket-top-surface. However,  the 
statements  are not in a natural  language  but have a for- 
malized syntax with  precisely defined semantics  for all 
permissible verbs  and qualifiers. The problem  domain 
has  been sufficiently constrained  that  each  assembly 
statement  can invoke a prestored  template  that  describes 
a sequence of utility routines  to be  used in the genera- 
tion of the implementation plan. The calling of some of 
these  routines may be optional,  depending on  the  state 
of the assembly  world, and  the individual routines may 
require a process similar to problem solving in a restrict- 
ed domain, as  do  the grasping and collision avoidance 
routines. The major utility functions, many of which are 
commonly  used by the  semantic modules of several 
statements,  are discussed later. If the compiler is  unable 
to find solutions to  one  or more of the basic steps speci- 
fied by the  template  for  the  command,  the  user would be 
asked to re-specify the  operator,  or  perhaps  use  lower 
level operations of the  form given in (2) .  

Representation of the assembly world 
Assembly directed  statements  require  that  the  system 
understand  the  nature of the  assembly world,  in terms of 
both  its geometric and physical  properties. One possible 
approach would be  to  use  the  real world  itself; however, 
inference of the  state of the world from sensory input is 
beyond the  present  state of the art in terms of both  the 
processing of sensory  data  and  the  deduction of assem- 
bly relationships  among  objects.  Problems still remain 
when  the real world is to be  used to predict the effects of 
manipulator  motions, such  as in calculating  a  collision- 
free  trajectory.  Either  the  system  must  operate iterative- 
ly, sensing changes in the world after  every small mo- 
tion, or  an internal representation  derived  from  the  real 
world may be  used. 

AUTOPASS represents  the real world by a data  base 
called the world  model.  The  representation of both 
geometric information, such  as  the  shape of an  object 
and  its location in the assembly  world, and physical in- 
formation,  such as stability of objects and support rela- 
tionships  (e.g., will a part fall over if another  part is 
removed)  and  attachment relationships between  objects 
(e.g., if the interlock is removed from the fixture, will 
the bracket be  removed  also), is conceptually  straight- 
forward.  However, major difficulties arise in the  rec- 
ognition of changes in the geometric and physical 
states of the  system  as a  result of manipulator actions. 
Changes in the geometry are readily understood, but 
changes in physical  relationships are  much  harder  to 
recognize. For  example, in the program  given in Fig. 1 ,  
how does  the  system recognize that inserting  a screw 
into  a  hole attaches all four  objects  together?  The ap- 
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proach  taken in AUTOPASS is to place on  the  user  the 
responsibility for specifying physically  realizable opera- 
tions, for example, that  parts  are placed in stable posi- 
tions,  and for informing the  system of changes in attach- 
ment  relationships. 

At  the  start of compilation of an AUTOPASS state- 
ment, the world model represents  the  current  state of the 
assembly  world. During  the  course of compilation of the 
statement  the  data  base provides  information for  such 
operations  as  choice of the  grasp point on  an  object and 
generation of manipulator  trajectories. At  the  end of 
compilation of the  statement,  the world model is updated 
to reflect  the changes introduced by the successful  com- 
pilation of the  statement. 

The  use of an internal representation,  the world mod- 
el, enables  the compiler to simulate the  expected run 
time  world at compile time. Compilation may be  per- 
formed using a  suitably large processor  system, and the 
object  code  generated may be  run on a  relatively small 
manipulator  control  system. In a production  environ- 
ment,  the  object  code would be expected  to be  run repet- 
itively for  extended periods  without modification. 

The world model data  base may have been generated 
in a declarative  phase, before  compilation is begun, us- 
ing a geometric  design processor [ 1 11 ; in a fully in- 
tegrated computer aided  design  and computer aided 
manufacturing system (CADICAM), much of the world 
model information would already  be  available in digital 
form. Symbolic naming of assembly objects  and  features 
of objects, required by the English-like form of AUTO- 
PASS, may be obtained by permitting  suitable naming 
operations  to be  performed on  the world model, either in 
an initial declaration  phase or dynamically by declara- 
tion statements during execution. 

User interface 
We have already  discussed  some requirements for an 
interface  suited to  users with limited programming ex- 
perience.  A further  area of considerable importance 
arises  from  the  nature of assembly-directed  program- 
ming. The language statements  are goal-directed in that 
they  specify the required  result of an assembly step  rather 
than the method by which the manipulator is to  execute 
the  step.  In common  with all goal-directed  languages, the 
problem arises of assuring that  the system’s model of the 
problem matches  that intended by the  user.  In  the  case 
of a conventional  business or scientific programming 
problem, the  consequences of an  error in program be- 
havior may be  contained by execution  on suitable  trial 
data.  In  the  case of a manipulator, the  consequences 
could well be  physical  damage to  the machine and  the 
assembly work area, so that ensuring model correctness 
becomes of greater  concern. 

The AUTOPASS compiler interacts with the  user  at  two 
levels. At  the higher  level, statement  syntax is checked, 
operands  are  evaluated, and  general feasibility checks 
are  carried  out. Feasibility checks might include: Can 
the specified object be moved; is there a  hand  available 
for  the  task (if not, can one be freed) ; are specified fea- 
tures  on  the  expected  object?  At this  level, specification 
changes may be made by the  user  without any  sizable 
investment in compilation. At  the  lower level, the  com- 
piler attempts  to  generate  object  code.  The compiler out- 
lines the  steps it is going to  take and, as it proceeds, indi- 
cates  choices it has made and  results it has  obtained, 
both  at a relatively high level. At any  time the  user may 
terminate  the compilation and back  up to  the  start of the 
statement and  re-specify  it. Similarly, if the  system is 
unable  to  complete a step in the compilation, the  system 
asks  the  user  for help. The  user may then  assist  the  sys- 
tem by giving an  alternative  and/or more  detailed  speci- 
fication of the  operation.  Interaction with the  user  on a 
statement-by-statement basis  allows the  user  to  start 
out with the highest level of statement  for a  given opera- 
tion and, if requested, provide the  system with  additional 
information [ 91. In  extreme  cases, he may have  to re- 
specify the  operation  as a sequence of lower level, assem- 
bly-directed,  primitive operations,  such  as in ( 2 ) .  

Performing  compilation on a statement-by-statement 
basis using an internal representation of the  expected 
run time  assembly world state permits an effective and 
natural level of interaction  with the user. However, 
problems arise with the  use of conditional  branching in 
the program, as a statement in the  code  can, in principle, 
be  reached  with  different states of the world model. In 
order  to handle these problems, constraints  are placed 
on  the branching that a user may specify in his program. 
Although severe in a general programming sense, it 
seems  that  apart  from  error recovery there is little need 
for complicated  branching paths in an assembly pro- 
gram,  and in practice  the  user may not be  affected. In all 
cases  the  constraints  are intended to permit the compiler 
to know at compile  time the  state of the world model at 
the  start of execution of a statement.  Iteration  and sub- 
routine calls are permitted  provided that  the compiler 
can expand the  code and  simulate it as a single straight 
line stream. Conditional branches  are permitted  provid- 
ed  the  paths of the  branch rejoin with equivalent world 
model states; equivalence is interpreted  to mean states 
that differ nonsignificantly, such  as  the  use of parts of 
differing colors or the incorporation of minor  differences 
between versions of an assembly. It is hoped that any 
practical  assembly can readily  be  partitioned so that 
these  constraints  are not  a  serious  inconvenience. 

Another  area of concern arising from  the  one-state- 
ment-at-a-time  compilation is that of parallel code.  For 
any  manipulator-level  language to be useful as  the target 325 

AUTOPASS JULY 1977 



I User 1 7  and  model  verification 
Interactive  problem  specification 

,-, A U T O P A S S , I ,  Manipulator , ,  

I plan I source 4 I level 4 1 Assemblr 

Assembly program AUTOPASS program control 
program 
processor compiler - 

Initial 
geometric 
world  World 

model 

base 
design 

processor 

Figure 3 Block diagram of AUTOPASS system. 

of AUTOPASS, it must  permit the specification of instruc- 
tion streams  that  are  to  be  executed in parallel. In  cases 
where  there is more than  one manipulator,  this  parallel- 
ism may include parallel assembly operations. Although 
explicit synchronization points may be  included in the 
code,  the  compiler  cannot  guarantee  synchronization of 
the manipulators between  code synchronization  points, 
and  the possibility of collision  arises. The  approach 
adopted  for AUTOPASS is to  require  that  the manipula- 
tors be  kept sufficiently far  apart  that spatial synchroniza- 
tion may safely be independent of time  synchronization. 

AUTOPASS system 
The overall structure of the AUTOPASS system is shown 
in Fig. 3. The  user  generates  an assembly  plan, codes it 
as  an AUTOPASS source program,  and  also  provides an 
initial geometric model of the assembly world using a 
geometric  design processor.  The AUTOPASS compiler 
processes  the  source program one  statement  at a  time. 
The compiler interacts with the world model data  base 
for information on  the  geometric and  physical  relation- 
ships involved in the  assembly  operations and  with the 
user  to  ensure  correctness of specification of the  assem- 
bly plan. The target code  consists of procedures in a 
manipulator-level  language. AUTOPASS is embedded in a 
subset of PL/I and offers the  user many of the control 
and data  type facilities of that language. The  present  sta- 
tus of the work is that  the AUTOPASS language has  been 
defined and a complete implementation of the compiler 
outlined.  A  translator-writing system employing De- 
Remer’s method for SLR ( l )  grammars [ 121 has been 
used to  generate  the parsing phase of the compiler. The 
world model has been  designed and  the geometric design 
processor  has been  implemented. 

The world model is a geometric  data base in which are 
represented  the geometric structure of objects,  the spa- 
tial  positions and relationships  among objects, and the 326 
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assembly or  attachment relationships between  objects. 
The  structure of the model representation is a  graph in 
which each  vertex  represents  an  object  component,  an 
object,  or  an  assembly, and may have a  symbolic  name. 
The edges are  directed and  can  indicate four kinds of 
relationships:  part-of, attachment,  constraint, and assem- 
bly-component. 

Each  object is modeled internally as a polyhedron, 
giving the  system uniform geometric  structures  for 
which interference  and other algorithms can be conve- 
niently developed. The polyhedral  description is a set of 
vertex, edge,  and surface list structures  accessed by a 
pointer at  the  object  vertex.  The polyhedron is created 
by a geometric construction program in the geometric 
design processor.  Objects  are  constructed by combining 
primitive  volumes using a parametric description [ 1 I ] .  
Since the polyhedral representation is necessarily an 
approximation to primitives  with curved  surfaces, a  pa- 
rameter indicating the  degree of accuracy of the approxi- 
mation may be specified. Symbolic names  are assigned 
by the  user  to any vertex in the graph, thus allowing him 
to  refer  to  parts  and  their  component volume  pieces in 
the program. The  user may name  sets of lines, surfaces, 
and  points of an object’s  polyhedron so that they may be 
referenced in an AUTOPASS statement. 

As  an example of a world model, Fig. 4 shows the 
state of the world at  the end of the assembly of Fig. 1. 
Note  that  the  nodes contain other information not 
shown in the figure, such  as  coordinate transformations 
giving the location of the  object and  physical properties. 

The initial state of the world model is provided by the 
geometric design processor.  This  subsystem enables the 
user  to specify parts, fixtures,  and the manipulator by 
designing with parametric primitive  volumes, such  as a 
cuboid  with  given sides  or a cone with  given height and 
angle, using an interactive  graphics  terminal. It  also al- 
lows him to specify relative  positions, types of edge rela- 
tionships, and  names  for  objects and features of objects. 

AUTOPASS language 
The AUTOPASS language is embedded in PL/I and offers 
the  user many of the control  and data facilities of that 
language. However, it is generally  not necessary  that  he 
be familiar with more  than  the AUTOPASS commands 
and  a  very small subset of PL/I control  and data  type 
operations,  such  as conditional  branching and DO 
groups. 

AUTOPASS language statements may be divided  into 
two classes, assembly  related and miscellaneous. As- 
sembly  related statements  are  concerned with specifica- 
tion of assembly operations and have been  divided  into 
three  groups:  state  change, tool, and  fastener. Miscella- 
neous statements  are used for  such  operations  as specifi- 
cation of control flow, declaration of geometric variables 
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and assignment of numerical  values to  them,  and  descrip- 
tion of inspection operations.  The Appendix  contains  a 
condensed  syntax of the language, including a complete 
listing of assembly  related statements and  a partial list- 
ing of miscellaneous statements. 

Control of program flow is provided by the branching 
and looping facilities of PL/I. The program may branch 
conditionally on,  for example, the assembly model num- 
ber, allowing different features  on different models; loop- 
ing and indexing may be  used to specify repetitive  oper- 
ations such  as installation of screws holding a cover 
plate;  subroutines may  be  used for common operations. 
However,  one-statement-at-a-time compilation  with an 
internal representation of the assembly world places re- 
strictions  on  the  use of branching in the  control flow, as 
discussed  earlier. 

Within each group of assembly related statements 
there is at least one very  general statement with  many 
qualifier options.  These general statements permit  speci- 
fication at  the highest level of the most  complicated op- 
erations  covered by the group. The  other members of a 
group are generally more specific statements with fewer, 
more directed, qualifiers. For  example, in the  case of 
state change statements,  the PLACE statement  represents 
the  very general statement  for  an action  which  could 
be specified as a sequence of more specific statements, 
such  as 

GRASP 
LI Fr 
MOVE 
LOWER 
RELEASE 

It is expected  that  the  user will initially specify opera- 
tions at a high level and with as few qualifiers as possi- 
ble. In  the  course of interactive  compilation of the state- 
ment, the compiler may find that  the  statement is either 
ambiguous,  and ask  for  further qualifiers, or  not compila- 
ble,  and ask for an  alternative,  narrower, specification of 
the  operation. 

The AUTOPASS language permits the use of multiple 
manipulators. The manipulators  available  for  performing 
assembly operations,  together with  those of their mo- 
tions  that may be used, may be declared dynamically in 
the program. Further,  each of the assembly  related state- 
ments may be  preceded by a qualifying hand specifica- 
tion indicating which  manipulator is to be used for  the 
operation.  The use of these hand specifications is option- 
al. If not  given, the system decides which manipulator to 
use based on  the  current  operation  alone. Such  a local- 
ized  decision procedure may produce conflicts with later 
statements,  and  the hand  specification may be included 
to  enable  the  user  to include in his assembly plan the use 
of specific manipulators. A number of statement  types 

Attachment: may be rigid (objects  do not  move with re- 
spect  to  each  other), non-rigid (objects  are  attached, but 
have limited relative  movement, e g ,  a joint), or condi- 
tional (objects  are  attached only under  certain con- 
ditions). 
Constraint: may be translational or rotating; described by 
direction or axis vector  and  force  threshold. 

AS Assembly: indicates that  an object (and  each object  at- 
tached to  it) is a component of an  assembly. 
Part-of: indicates  a component of a rigid part. (Not all 
components  and part-of  relationships are shown above.) 

Figure 4 World model for support bracket assembly. 

include a then-hold option, which commands  the manip- 
ulator to remain in position at  the end of the  statement, 
thereby permitting one hand to hold a part in position 
while another performs  a  related task. 

One  consequence of having multiple manipulators is 
the possibility of parallel and  cooperative  operations. 
AUTOPASS permits  specification of parallel  motions by 
means of an IN PARALLEL DO construction.  However, 
since the compiler works  one  statement  at a  time,  and 
the individual statements refer to only one manipulator, it 
is the user’s  responsibility to  ensure  that  the  arms  are 
sufficiently far  apart  that spatial synchronization may 
safely be independent of time synchronization. Eventual- 
ly the problem will be solved by the introduction of 
constructs  to allow specification of spatial and time syn- 
chronization for  continuous  paths. 

State change statements 
State  change  statements allow description of assembly 
operations  such  as placement  and adjustment of parts 
and  motions of the manipulators. 

The general purpose  state  change  statement is PLACE 
with first level of syntax  as follows: 327 

AUTOPASS JULY 1977 



PLACE (object)  (prepositional-phrase)  (object)  (grasping- 
phrase) (final-condition-phrase) (constraint- 
phrase) (then-hold) 

(object) is a fully qualified symbolic name  for  an  object, 
generally  a part. 

(prepositional-phrase)  may be IN or ON;  the  semantic 
difference between them  gives the compiler 
advice  on  the  type of operation being per- 
formed. ON implies a relatively open goal pOSi- 
tion, whereas IN implies that  the goal position 
is enclosed. 

(grasping-phrase) provides an optional specification of 
how the fingers are  to  be positioned for  grasp- 
ing the  object.  The  phrase may be  used to ad- 
vise the compiler where and how hard to  grasp 
a part  that is difficult to hold or  to avoid gripper 
caused collisions in later  commands. When  not 
specified, the compiler uses  its knowledge of 
the geometry and material of the  part  to  calcu- 
late a suitable gripping force  and  searches  for 
a  suitable gripping point in conjunction  with its 
trajectory  search  computations. 

(constraint-phrase) provides an optional  specification of 
constraints  to be  met  during the  execution of 
the  command.  These include  position,  orienta- 
tion, force,  duration of execution of the  com- 
mand, linear and angular  velocities, accelera- 
tions,  and jerks. 

(then-hold) provides an  option  to specify that  the hand 
remain in position on  the completion of the 
command. 

Tool statements 
Tools  are widely used in assembly operations; in partic- 
ular,  they are used to  make  adjustments  and install fas- 
teners. Individual  tool types  have individual semantics, 
which are programmed into  the compiler  and will have 
to be extended when new tool  types  are  added  to  the 
system.  The compiler’s  semantic routines know where 
the tool is kept, what  accessories it uses,  what  are  its 
modes of operation, and  what  sensory feedback is neces- 
sary for it to  execute its operations. 

OPERATE (tool)  (load-list-option)  (at-position-option) 
(attachment-option) (final-condition-phrase) 
(tool-parameter-list-option)  (then-hold) 

(tool) specifies the tool to be used  and  causes its  seman- 

(load-list-option)  allows  specification of accessories  to  be 
used; for example,  screwdriver blade or nut 
socket.  It is optional to  cover  cases in which 
the tool  has no  accessories  or  the tool  has  al- 

tic routines  to be  called. 
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(at-position-option)  allows  specification of where  the tool 
is to be operated.  The  option allows for  the tool 
already being in position. 

(attachment-option) allows specification of new attach- 
ments caused by the  command. 

(tool-parameter-list-option)  allows specification of tool 
operation  parameters  such  as direction of rota- 
tion  and speed. 

Fastener statements 
Fasteners  represent a highly developed  technology in 
mechanical  assembly and  can be expected  to  be  the sub- 
ject of a significant fraction of assembly  operations.  Fas- 
teners  come in  many types,  shapes,  and sizes, are gener- 
ally small relative to  the  parts  they  are fastening,  and 
are generally  installed  with  tools, either hand-held or  at 
fixed work  stations.  It is expected  that manipulators will 
work in a similar manner,  either holding and  operating 
tools or moving the assembly to a work  station; for the 
present  the  fastener  statements of the language cover 
explicitly the  case of fasteners being applied  with ma- 
chine-held  tools. Fasteners may be single sided,  that  is, 
applied and  fastened  from one  side of the workpiece, or 
double  sided, when the  fastener  has  two  parts applied to 
opposing  sides of the  workpiece;  both  cases  are  covered 
by the language. 

In view of the  important role of fasteners in assembly, 
and the frequency with which they  are  used,  the lan- 
guage provides the  user with fastener  statements  that 
enable him to  describe a fastening operation in terms of 
the  fasteners  to be  used rather than the tools  used to 
apply the  fasteners. As with tool  statements,  the imple- 
mentations of fastener  statements  are highly tool depen- 
dent  and  require special semantic  routines for each tool 
type; in general, these  routines  make considerable use of 
sensory feedback. 

The general fastener  statement is ATTACH with first 
level of syntax 

ATTACH (fastener)  (second-fastener-option) TO (at-posi- 
tion)  (side-option)  (attachment-option) 
(final-condition-phrase)  (using-option) 

where  the qualifying phrases allow the following specifi- 
cations: 

(fastener)  the  fastener  to  be  used, e.g., a clip. 
(second-fastener-option) the second fastener in a double 

sided fastener.  The second fastener is assumed 
to  be already in position, for  example, a  nut 
being held in position by another hand. This 
phrase informs the compiler of fastener  attach- 
ments, for example,  that a screw is being at- 
tached to a  nut. 

(at-position) where  the  fastener is to be  applied. 
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(side-option) from which side of the  workpiece the fas- 

(attachment-option)  as  for OPERATE statement. 
(final-condition-phrase) as for PLACE statement, though 

only  a subset of the conditions is applicable for 
any given fastener. 

(using-option) the tool to be  used. Generally  (fastener) 
indicates to  the system  which tool is to  be  used; 
this phrase  covers ambiguous cases. 

tener is to be  applied. 

Miscellaneous  statements 
An  important goal in automated mechanical  assembly is 
high reliability of execution of assembly operations. Er- 
ror testing  and  optional  execution of recovery  routines 
are provided by the VERIFY statement.  Note  that al- 
though the final-condition phrase of a PLACE statement 
implies inspection to  ensure  that  the command  has in- 
deed been executed  correctly,  the system  only generates 
its  own corrective  actions by minor modifications to  the 
command being executed.  In general, the compiler is 
designed to  produce manipulator sequences  that  are in- 
herently  reliable and allow recovery from foreseen  er- 
rors. For example, the manipulator operations  to  fetch a 
screw from  a feeder make a test  to  ensure  that a screw 
has indeed  been  collected and, if necessary,  retry  the 
operation. 

AUTOPASS includes  a  number of statement  types  for 
declaration of names and assertion of relationships. The 
principal types  are 

~ 

declarations  of  manipulator  names  and  characteristics. 
These may be used to name  manipulators  and to  de- 
fine sets of motions that  are permitted. 

declarations of spatial  features. These  commands may 
be used to define new coordinate frames  and features 
such  as lines and  surfaces  on  an object. 

assignments  to  symbolic  geometric  variables, for  ex- 
ample, giving numeric  values to points and  vectors. 

assertions  of  assembly  relationships, giving symbolic 
names  to assemblies so that  they  can subsequently be 
referenced as single objects. 

assertions  of  attachment  relationships, informing the 
compiler of attachment relationships that  cannot be 
derived by semantic routines. 

The  semantics of attachment relationships  include 
rules for updating relationships after a change of state of 
the world model, for example, when a part is removed 
from  an assembly. Further  assertion  statements allow 
explicit  cancellation of previously defined attachment 
relationships. 

1. OPERATE nutfeeder WITH car-ret-tab-nut ATjixture.nes1 
2. PLACE bracket IN jixture SUCH  THAT bracket.hottom 

CONTACTS car-ret-tab-nut.top 
AND bracket.hole IS ALIGNED WITH jixture.nes1 

3.  PLACE interlock ON bracket SUCH  THAT 
interlock.hole IS ALIGNED WITH bracket.ho1e 
A N D  interlock.base CONTACTS bracket.top 

AT interlock.hole 
SUCH  THAT TORQUE IS EQ 12.0 IN-LBS  USING air-driver 
ATTACHING bracket AND interlock 

ASSEMBLY support-bracket 

4. DRIVE I N  car-ret-intlk-stud INTO car-ret-tab-nut 

5 .  NAME bracket interlock car-ret-intlk-stud car-ret-tab-nut 

Figure 5 AUTOPASS program for support bracket assembly. 

AUTOPASS example 
To illustrate the  use of the AUTOPASS language,  Fig. 5 
shows  the AUTOPASS program to perform the  bracket 
and  interlock  assembly operation  of Fig. 1. The intent of 
the example is to  show  the  closeness of the level of the 
AUTOPASS representation  to  that of the assembly in- 
struction  sheet and that, within the  restricted domain 
and rigid semantics of the language, the problem specifi- 
cation is sufficiently complete  for  the compiler to  gener- 
ate  correct manipulator code. 

1 .  OPERATE is a tool command that involves  a routine 
associated  with the  type of tool named in the  oper- 
and.  In this case  the nutfeeder is a device  that  can 
pick up a nut from its  holder (feeder)  and then  place 
it somewhere else. The final position of the nut 
(called car-ret-tab-nut in the  example) is specified as 

Jixture.nest, which is a subpart  of  the Jixture base. 
The  sequence of steps  generated by this operation 
consists of moving the hand to a  position near  the 
nutfeeder, grasping the tool, moving to a  position of 
approach  to  the nut (in  its feeder), operating the tool 
to pick up the  nut, moving to  the target  position, op- 
erating the tool to  release  the nut. The tool is re- 
placed in its holder when  the compiler is satisfied that 
it is no longer needed; in this case it occurs  at  the 
start of the  next  command. 

Note  that several of the  operations required of the 
compiler in generating  this sequence  are common to 
many of the  other high level assembly commands.  In 
particular, trajectory planning and object  avoidance  are 
frequently  needed  functions in the compiler. A function 
that is not common to  other high level commands is the 
module that  has  the  semantics for  the nutfeeder tool; 
there is a different  semantic  routine  for  each tool. 

The  changes  that  occur in the world model at  the end 
of compilation of this statement  are:  The  coordinate 
transform at  the  nut  object  vertex is changed to indicate 
it is now in the jixture.nest; a new nut  takes its  place in 
the  feeder  and  appears  as a new vertex in the world 329 
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Figure 6 Flowchart of assembly related statement portion of 
AUTOPASS compiler. 

model; the list of constraints  for  the  nut, at the  nut  vertex, 
is modified by removing the previous constraints  of  the 
nut holder and replacing it with the list of surface-to- 
surface  constraints  between  the nut and  the  nest sur- 
faces. The computation of new constraints  must  be  done 
each time a state  change  operation is compiled. 

2 .  PLACE is the general movement  statement of the  state 
change  class of assembly statements.  The general 
sequence of operations  that it generates is:  move the 
hand to a position that  permits pickup of the  object, 
grasp the object, move along a  clear trajectory  to  an 
approach position for putting the  object in the target 
place,  put  it in place. 

The spatial  position and orientation of the  object in 
the target  place is determined  by the combination of  final 
conditions  listed in the S U C H  THAT phrases.  The quali- 
fiers  indicate which way  up the bracket should  be 
(bracket.bottom contacts car-ret-intlk-nutlop) , and the 
alignment of two  axes (interlock.hole WITH$fixtUre.neSt). 
In this case  the alignment is not to be measured  directly 
but is inferred  from the dimensions of t4e  objects.  De- 
pending on  the  geometry of jixture and bracket, the 
compiler might find the final condition specification in- 
complete  (orientation  about  the  axis is not  specified) 
and would then ask  for  more qualifiers. Note  that inter- 
1ock.hole and jixture.nest are  both  assumed  to  have natu- 

330 ral axes; if this proves  to  be false, the compiler asks  for 
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further specification. In general a library of force feed- 
back routines is used  to  ensure  that spatial final condi- 
tions have  been  met. 

In addition to  the general operations of trajectory cal- 
culation and collision avoidance,  the PLACE command 
also requires a functional  module to find possible  pickup 
points  on  the  object.  This module  must interact with the 
trajectory  calculator  since  the hand  orientation at  pickup 
may render a  predicted trajectory infeasible at its final 
position. After this state change, the transform for 
bracket is updated  and  the bracket vertex now has con- 
straint edges  showing  its  relations  relative to  its new 
location in the jixture. 

3 .  In PLACE interlock ON bracket, ON indicates to  the 
compiler that this is a placement operation in open 
surroundings, whereas in statement 2 I N  indicated 
some  measure of enclosure. This information is used 
by the compiler in analyzing the required final posi- 
tion of an  object  and  the  approach trajectory.  Again, 
orientation is not specified, the compiler queries  the 
user  to  see if it is important  and, if not, is free  to 
choose  any  orientation  that  enables it to meet other 
conditions. Removal of a requirement  such  as ori- 
entation makes the task of selecting a pickup  point 
and trajectory  easier,  as  the  extents of the required 
manipulator  motions are less likely to  reach  the al- 
lowable limits in motor  space,  as defined in a  table of 
motor  constraints. 

4. The  parts  are now joined by  driving a screw, car-ret- 
intlk-stud, through the aligned holes into  the nut. The 
DRIVE command  indicates that a  driving tool (air- 
driver) is to be used  to apply a fastener.  The IN 
phrase indicates that  the  fastener is going into  the 
object  (as  opposed  to being taken  out).  The first and 
second  operands form a fastener pair. The  semantics 
are  that  the second fastener is in place and  that  the 
first one is to participate  actively in the  operation. 
The  next  operand is the position where  the  fastener is 
to be  applied, followed by a final condition phrase 
giving the termination  condition,  and finally a phrase 
with a list of objects  that will be  attached by  this op- 
eration. Driving the  screw in causes several modifica- 
tions  to  the model. Attachment relationships  among 
the  vertices of bracket,  interlock,  car-ret-intlk-stud, 
and car-ret-intlk-nut are  created  because of the  ex- 
plicit attachment  phrase and because of the implicit 
attachment  due  to any fastener  type  statement. To  
maintain consistency all the  constraint relationships 
among the  objects involved are added to their con- 
straint lists. 

5 .  N A M E  defines the listed objects  as  an  object of type 
assembly called support-bracket and  creates a new 
node in the world model with pointers  to  the  compo- 
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nent  objects.  The  purpose of this statement is to allow 
the programmer to  name  the assembly as  an entity 
which can be  used as  an  operand in assembly state- 
ments  later in the program. 

The  above discussion  indicates the manner in which 
the AUTOPASS system is able  to  reduce  the assembly- 
directed  statements of the language to a sequence of 
independent, unambiguous steps  to be entered into the 
manipulator  motion  generation phase of the compiler. 
The  operation of the  compiler is described  further in the 
next section. 

AUTOPASS compiler 
The compiler flow chart for  assembly  related statement 
processing only is shown in Fig. 6. (Note  that this does 
not  include  the  portion of the compiler that  deals with 
declarations, program  control statements, arithmetic 
statements,  etc.)  The basic mode of operation of the 
compiler is to invoke  a prestored template for  each 
command  type. This template  defines  preconditions 
that  have  to be satisfied before  execution of the  state- 
ment can begin, a network of calls to utility routines 
(many of which are  used by other  commands),  and a set 
of postconditions that will exist  at  the end of successful 
compilation of the  statement and will be added  to  the 
world  model. 

As an example,  consider the compilation process  for 
statement 3 in Fig. 5 :  

PLACE interlock ON bracket. . 

First the  overall  syntax of the  command is checked and 
the  operands evaluated. The world model is used to  de- 
termine the semantic “correctness” of the statement:  are 
the  operands  proper  types of objects  and can the first 
operand, interlock, be moved (perhaps it is rigidly at- 
tached  to the world coordinate  frame)? If these  tests 
fail, the  user is informed  and  asked to modify the  com- 
mand. 

The preconditions  for the  statement  type  are investi- 
gated.  In  the  case of a PLACE statement, a gripper  must 
be  free  or already holding the second operand. I f  it is not 
free,  the system  tries to free it. For example,  a tool it is 
holding can be  replaced or a part being grasped may be 
released.  The  former of these possibilities can be satis- 
fied by an  operation similar to  that of executing the mo- 
tion  portion of a PLACE command. 

The system  now  outlines to  the  user  the general se- 
quence of operations it will follow to implement the 
statement.  In this case  the principal elements of the se- 
quence  are the  evaluation of the goal position defined by 
the final condition phrases of the  statement  and  the  gen- 
eration of a plan for  a trajectory  to move the interlock 
from its known current position to  the goal position. The 
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goal position is evaluated by using the world model to 
simulate the position of the interlock on  the bracket, iter- 
ating if necessary  to satisfy all the  conditions. In this 
case  the  statement  is incomplete  in that rotational  orienta- 
tion is not  specified; the compiler requests clarification 
and is informed that rotational  orientation is not im- 
portant. 

The hierarchy of functional  modules  used in planning 
the movement of an  object is shown in Fig. 7. 

The  grasp point list generator  produces  an  ordered list 
of grasping points  on a  part that  are within the  reach of 
the manipulator.  Elements of the list are grasping  point 
regions  and are derived by inspection of the world mod- 
el. The  accessible  surface  generator eliminates  from 
consideration as potential  grasping surfaces  those  parts 
of  surfaces  that  are concealed by other  items,  such  as 
surface areas in contact with the worktable. The regions 
are specified in terms of the  extent of the region on  the 
part and  ranges of gripping angles. Motor positions are 
checked against  a  table of motor position constraints  to 
ensure  that only  feasible motor positions are  returned. 

The list is ordered by figure of merit, the value of a 
function that  takes into account  such  factors  as  the dis- 
tance  from  the  center of gravity,  the size and  shape of 
the  surfaces, and perhaps  even the  mechanical proper- 
ties of the  material  and  the  surface texture.  List ele- 
ments with high figures of merit are likely to be charac- 
terized by opposing  plane parallel surfaces  large  enough 
to be held by the gripping surfaces of the fingers, where- 
as lower  ranking elements might be for grasping  a  round 
pin. In  cases in which the GRASPING option is used or 
the THEN HOLD POSITION is already in effect, the  grasp 
point  list generator  returns  the single element list of the 
specified  grasping  position. 

The trajectory generator module is given  a  grasping 
point  and  has  responsibility for generating  a  collision- 
free  trajectory from the  current position of hand  and part 
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to  the goal position. The  trajectory is divided into  three 
stages-pickup, in-flight, and  put-down-each handled 
by a separate module. All three modules  must ensure 
that  constraints specified by SUBJECT TO constraint 
phrases  are  met, or at  least  can still be  met  by other 
functional modules;  the put-down  module  must also 
ensure  that final conditions  from a SUCH  THAT phrase 
are  met. 

The pickup  module is given an initial hand clear 
position near  the grasping  point, the grasping  point  itself, 
and an in-flight trajectory  start point, and it has  to find a 
collision-free path  for  the hand between  these  points  and 
the nearby  grasping point. I t  uses  the  constraint  analyzer 
module to provide  information on  constraints  on  the  part 
at  the  current position  and the collision detector  to  en- 
sure  that  the motions,  although small, do not cause  any 
collisions. A  library of sensory feedback routines  is used 
to handle world model and  part  tolerances  at  execution 
time. 

The in-flight trajectory planner is given start  and  end 
points  for  the  trajectory and has  to find a collision-free 
path  between them. For  the  present it is assumed  that 
the world is relatively uncluttered  and  that collision-free 
trajectory planning is dealing with rather large clear- 
ances  around  objects in the world. Apart from simplify- 
ing the planning strategies,  this also  makes  the  trajectory 
relatively  insensitive to  geometric  tolerances  on  parts of 
the world. The  output  trajectory  is a list of intermediate 
manipulator  positions defining a space  path in straight 
line sections and tolerances defining a band about  the 
space  path. Run-time  modules convert  the list  into ma- 
chine  control  commands  to give  a smooth  trajectory 
through the positions. The  points and tolerances  are 
chosen so that  the  trajectory  is  independent of worst 
case run-time tolerances  on  the world state. 

The collision detector module is used iteratively. Giv- 
en a trajectory  points list, it  returns a  list of collision 
points with the  extent and  direction of the collision;  this 
information is used in refining proposed  trajectories. It 
can be  requested  to  work  at several  modes of accuracy 
using different  degrees of complexity  and accuracy in 
modeling the  volume  swept by the motion. 

The put-down  module takes  the  part from the  end of 
the in-flight trajectory.  This is done by  use of a  library of 
sensory  feedback  routines  to  ensure  that  the basic oper- 
ation is completed  and that any final conditions specified 
have  been  met. 

After a  successful  implementation of the command 
has been generated, post-conditions in the state of the 
world model are  updated. 

effort required  to program  a new application. The level 
of the language has been chosen  to enable the  user  to 
plan the overall assembly,  thereby avoiding the need for 
the  system  to  use artificial intelligence planning tech- 
niques,  and to  enable  the  system  to  generate  the  details 
of the manipulator  motions in the real world. The lan- 
guage is directed towards description of assembly opera- 
tions  rather  than manipulator  motions. I t  allows the  user 
to specify an assembly procedure in much the  same way 
he would compose  an assembly instruction list for man- 
ual use. The  user  decides in which order  parts  are  as- 
sembled, which tools are  used,  and  the general  position- 
ing of these  objects in the work space.  The AUTOPASS 
compiler  transforms  this  assembly procedure specifica- 
tion into a program that  directs a mechanical assembler 
through the  necessary motions to  execute  the  assembly 
process. 

The compiler generates motion commands by using a 
geometric data  base called the world model to simulate 
at compilation  time the  expected run-time  world.  During 
the compilation process  the  user  interacts with the  com- 
piler to resolve any ambiguities detected by the compiler 
in the problem specification. It is expected  that this 
work will lead to economical  ways of programming 
mechanical assemblers in batch assembly environments. 

Appendix: Syntax of AUTOPASS high level state- 
ments 
In  the following statement  lists,  reserved  words  are 
shown in UPPERCASE letters  and optional phrases in 
italics. 

State change statements 
PLACE object 1 ON object2 grasping final-conditions 
constraints  then-hold 
INSERT object IN receptor position sensor  then-hold 
EXTRACT object distance sensor 
LIFT object  distance 
LOWER object ONTO surface sensor  then-hold 
LOWER object  distance sensor  then-hold 
SLIDE object ON surface slide-termination then-hold 
PUSH object direction UNTIL final-condition then-hold 
ORIENT object SUCH THAT positional-condition sensor 
then-hold 
TURN rotor turning-condition rotation-axis  then-hold 
GRASP object grasp-position hand-position  grasping- 
force MOVE spatial-feature final-condition 
MOVE spatial-feature TO position final-condition 
MOVE spatial-feature motion-specification final-condition 
RELEASE 

Summary Tool statements 
A very high level  programming  language for mechanical OPERATE tool load-list target-position attachment 
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CLAMP locking-device SUCH THAT final-condition 
UNCLAMP locking-device SUCH THAT final-condition 
LOAD tool load-list 
UNLOAD tool load-list 
FETCH tool from-holder 
REPLACE tool to-holder 
SWITCH tool ON~OFF 
LOCK locking-device attachment 
UNLOCK locking-device release 

Fastener  statements 
ATTACH fastener second-fastener TO target-position side 
attachment final-condition 
DRIVE IN drive-fastener  target-position final-condition 
using-driver  attachment  driver-parameter-list 
RIVET object-list target-position side attachment 
FASTEN object 1 TO object2 more-objects WITH fastener 
target-position  final-condition 
UNFASTEN fastener-list source-position release  target- 
position 

Note Any  statements in the above  three  classes may be 
preceded by  a qualifying hand  specification: 

WITH hand-name . . . 

Miscellaneous statements  (partial  listing) 
VERIFY inspection-condition  inspection-action-list 
OPEN STATE OF locking-device IS final-condition-list 
CLOSED STATE OF locking-device IS final-condition-list 
NAME object-list ASSEMBLY assembly-name 
END 
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