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Abstract. We introduce BANSHEE, a toolkit for constructing constraint-
based analyses. BANSHEE’s novel features include a code generator for
creating customized constraint resolution engines, incremental analysis
based on backtracking, and fast persistence. These features make BAN-
SHEE useful as a foundation for production program analyses.

1 Introduction

Program analyses that are simultaneously scalable, accurate, and efficient re-
main expensive to develop. One approach to lowering implementation cost is to
express the analysis using constraints. Constraints separate analysis specification
(constraint generation) from analysis implementation (constraint resolution). By
exploiting this separation, designers can benefit from existing algorithms for
constraint resolution. This separation helps, but leaves several problems unad-
dressed. A generic constraint resolution implementation with no knowledge of
the client may pay a large performance penalty for generality. For example, the
fastest hand-written version of Andersen’s analysis [12] is much faster than the
fastest version built using a generic toolkit [2]. Furthermore, real build systems
require separate analysis to fit with separate compilation. Small edits to projects
are the norm; reanalyzing an entire project for each small change is unrealistic.

We have built BANSHEE, a constraint-based analysis toolkit that addresses
these problems [14]. BANSHEE succeeds BANE, our first generation toolkit for
constraint-based program analysis [2]. BANSHEE inherits several features from
BANE, particularly support for mized constraints, which allow several constraint
formalisms to be combined in one application (Section 2). BANSHEE also provides
a number of innovations over BANE that make it more useful and easier to use:

— We use a code generator to specialize the constraint back-end for each pro-
gram analysis (Section 3). The analysis designer describes a set of constructor
signatures in a specification file, which BANSHEE compiles into a specialized
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constraint resolution engine. Specialization allows checking a host of correct-
ness conditions statically. Software maintenance also improves: specialization
allows the designer to modify the specification without wholesale changes to
the handwritten part of the analysis. Finally, BANSHEE is truly modular;
new constraint formalisms (or sorts) can be added without changing exist-
ing sorts.

— We have added support for a limited form of incremental analysis via back-
tracking, which allows constraint systems® to be rolled back to any previous
state (Section 4). Backtracking can be used to analyze large projects incre-
mentally: when a source file is modified, we roll back the constraint system to
the state just before the analysis of that file. By choosing the order in which
files are analyzed to exploit locality among file edits, we show experimentally
that backtracking is very effective in avoiding reanalysis of files.

— We have added support for efficient serialization and deserialization of con-
straint systems (Section 5). The ability to save and load constraint systems is
important for integrating BANSHEE-derived analysis into real build processes
as well as for supporting incremental analysis. This feature is nontrivial, es-
pecially in conjunction with backtracking; our solution exploits BANSHEE’s
use of explicit regions for memory management.

— We have written BANSHEE from the ground up, implementing all important
optimizations in BANE, while the code generation framework has enabled us
to add a host of engineering and algorithmic improvements. In a case study,
we show how BANSHEE’s specification mechanism allows various points-to
analyses to be easily expressed (Section 6) while the performance is nearly
100 times faster than BANE on some standard benchmarks (Section 7).

BANSHEE has reached the point of being a productive tool for developing exper-
imental and production-quality program analyses. As evidence, we cite several
BANSHEE applications. A BANSHEE-based polyvariant binding-time analysis for
partial evaluation of graphics programs has been used in production at a major
effects studio [19, 20]. BANSHEE has been used as part of a software updateability
analysis tool [27]. A BANSHEE-based type inference system for Prolog has been
developed [23]. Also, for two years a BANSHEE pointer analysis was used as a
prototype global alias analysis in a development branch of the gcc compiler.

2 Mixed Constraints

BANSHEE is built on mized constraints, which allow multiple constraint sorts in
one application. A sort s is a tuple (V;, Cs, Os, Rs) where V; is a set of variables,
Cs is a set of constructors, Os is a set of operations, and Rs is a set of constraint
relations. Each n-ary constructor ¢s € Cs and operation ops € O has a signature
1 ...ty — S where ¢; is either s; or §5; for sorts s;. Overlined arguments in a sig-
nature are contravariant; all other arguments are covariant. A n-ary constructor

3 Note that BANSHEE’s solvers are all online, so existing constraints are maintained in
a partially solved form as new constraints are added.
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Fig. 1. Constraint resolution for the Set sort.
¢s is pure if the sort of each of its arguments is s. Otherwise, ¢ is mized. For

a sort s, a set of variables, constructors, and operations defines a language of
s-expressions eg:

es =
| v veVs
| cs(esyy...,es,) cs with signature ¢1...0, —'s
and ¢; is s; or 5;
| ops(es,,...,es,) ops with signature ¢y ...0, — s

and ¢; iss; or's;

Constraints between expressions are written ey, rs ea, where 75 is a constraint
relation (rs € Rs). Each sort s has two distinguished constraint relations: an
inclusion relation (denoted Cg ) and a unification relation (denoted = ). A
constraint system C is a finite conjunction of constraints.

To fix ideas, we introduce two BANSHEE sorts and informally explain their
semantics. A formal presentation of the semantics of mixed constraints is given
in [8]. We leave the set of constructors Cs unspecified in each example, as this
set parameterizes the constraint language and is application-specific.

Example 1 The Set sort is the tuple: (Vset, Cset, {U,N, 0,1}, {C,=1}).

Here Vse is a set of set-valued variables, U,N, C, and = are the standard set
operations, 0 is the empty set, and 1 is the universal set. Each pure Set expression
denotes a set of ground terms: a constant or a constructor CSet(t1, ... ,tn) where
each t; is a ground term. A subset of the resolution rules for the Set sort is shown
in Figure 1; BANSHEE implements these as left-to-right rewrite rules.

Example 2 The Term sort is the tuple: (Vierm, CTerm, {0,1},{<,=}).

Here Vierm is a set of term-valued variables, and = and < are unification and
conditional unification [25], respectively. The meaning of a pure Term expression
is, as expected, a constant or a constructor cTerm(tl, . ,tn) where t; are terms.
A subset of the resolution rules for the Term sort is shown in Figure 2.4

1 We use “term” to mean both a sort and ground terms (trees) built by constructor
application. The intended meaning should be clear from context.
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Fig. 2. Constraint resolution for the Term sort

A system of mixed constraints defines a directed graph where nodes are
expressions and edges are atomic constraints between expressions. A constraint
is atomic if the left- or right-hand side is a variable. To solve the constraints,
the constraint graph is closed under the resolution rules for each sort as well as
a transitive closure rule.

3 Specialization

This section describes the compilation strategy used in BANSHEE. We omit the
low-level details, which are straightforward, and focus on explaining the advan-
tages of our approach.

To use BANSHEE, the analysis designer writes a specification file defining the
constructor signatures for the analysis. Consider a constructor fun modeling a
function type in a unification-based type inference system with an additional set
component to track the function’s latent effect, in the style of a type and effect
system. The signature is:

fun : Term % Term % Set — Term

which is specified in BANSHEE as follows (see Section 6 for more explanation):

data 1_type : term = fun of 1_type * 1l_type * effect
and effect : set

In BANE, this signature can be declared at run-time, even during constraint
resolution. BANE is an interpreter for a language of constructors and resolution
rules, and as such it has the overhead of an interpreter. For example, to apply
the constructor fun, BANE checks at run-time that there are the right number
of arguments of the correct sorts. There is also interpretive overhead in con-
straint resolution. Consider implementing the rule for constraints between two
fun expressions:

C A { fun(eterm, , €Term,» €Set) =Term fun(efl'erml ) efI'ermg ) e/Set)} -
CA {eTerml —Term G/Terml} A {eTeer —Term elTermZ} A {6Set —Set elset}

To implement this rule, BANE uses the signature to choose the correct con-
straint relation and the directionality for each component. Because this work



is done dynamically, both require either run-time tests or dynamic dispatch to
implement.

From experience we have learned that analyses rely on a small, fixed number
of constructors that can be specified statically. BANSHEE uses static signatures to
implement customized versions of the constructors and the constraint resolution
rules, which allows us to eliminate many kinds of dynamic checks statically.
For example, consider again the signature of the fun constructor, now declared
statically in BANSHEE. From this signature, BANSHEE generates a C function
with the following prototype:

1_type fun(l_type €0, 1l_type el, effect e2)

Notice that the dynamic arity and sort checks are no longer necessary—the C
type system guarantees that calls to this function have the correct number of
arguments (the arity check) and that the types of any actuals match the formal
arguments (the sort checks). Similarly, BANSHEE can statically discharge the
dynamic checks in resolution rules discussed above.

One of the most important advantages of BANSHEE specifications is that they
make program analyses easier to debug and maintain. After writing a BANSHEE
specification, the analysis designer’s main task is to write C code to traverse ab-
stract syntax, calling functions from the generated interface to build expressions,
generate constraints, and extract solutions. This task is typically straightforward,
as there should be a tight correspondence between type judgments and the BAN-
SHEE code to implement them. Continuing with the type and effect example, we
might wish to implement the following rule for function application:

I'kFey:m;€6 I'Feg:me

1T=Ty =%« «, € fresh
: (App)

I'Fejer:ajegUegUe

Assuming a typical set of AST definitions, the corresponding BANSHEE code
to implement this rule is®:

struct type_and_effect analyze(env gamma, ast_node n) {
if (is_app_node(n)) {

1_type taul, tau2, alpha;
effect epsilonl, epsilon2, epsilon;
(taul, epsilonl) = analyze(gamma,n->el);
(tau2, epsilon2) = analyze(gamma,n->e2);
alpha = 1_type_fresh();
epsilon = effect_fresh();
1_type_unify(taul, fun(tau2,alpha,epsilon));
return (alpha, effect_union([epsilonl;epsilon2;epsilon]));

}

5 We use a little syntactic sugar for pairs and lists in C to avoid showing the extra
type declarations.



This code is representative of the “handwritten” part of a BANSHEE analysis.
BANSHEE’s code generator makes the handwritten part clean: there is a close
correspondence between clauses in the type rules and the BANSHEE code to
implement them.

4 Incremental Analysis

Incremental analysis is important in large projects where it is necessary to main-
tain a global analysis in the face of small edits. In this section we describe BAN-
SHEE’s support for a form of incremental analysis via backtracking, a mechanism
that is efficient, simple to implement, and applicable to a wide variety of program
analysis systems besides BANSHEE.

We assume constraint additions, constraint deletions, and queries (testing
whether the constraints satisfy some fact) are arbitrarily interleaved. Additions
and queries are handled by on-line solving; the trick is handling deletions.

Consider adding constraints (1)-(3) in Figure 3(a) to an initially empty con-
straint system. Constraints (2)-(3) cause constraint (4) to be added (by transitive
closure). We say (1)-(3) are top-level constraints (added by the user, solid lines
in the constraint graph in Figure 3(b)) and (4) is an induced constraint (added
by the closure rules, dashed lines in Figure 3(b)).

At this point, if we delete constraint (2), then constraint (4) must be deleted
as well, as it would no longer be included in the closed constraint graph. We
say constraint(4) depends on constraints (2) and (3). The key to incremental
analysis is tracking such dependency information.

A straightforward way to track precise dependency information is to explicitly
maintain a list of constraints on which each induced constraint depends. For
example, adding constraint (5) adds edge (4) again, so the entry (1,5) must be
included in (4)’s dependency list. This approach is costly in space, because an
induced constraint often is added multiple times [28]. Figures 3(b) and (c) show
the closed constraint graph and edge dependencies after constraint (6) and its
induced constraints are added to the graph.

Besides the space cost, another major concern is the engineering effort re-
quired to support fine-grained incrementality. To our knowledge, there is no
general, practical incremental algorithm for maintaining arbitrary data struc-
tures [7]. Adding ad-hoc support for incremental updates to each BANSHEE sort
is daunting, as the algorithms are highly optimized. For example, our set con-
straint solver uses a union-find algorithm to implement partial online cycle elim-
ination [9]. Adding incremental support to union-find alone is not easy—in fact,
some published solutions are incorrect [10].

Instead of computing precise dependencies, we use backtracking, which is
based on an approximation: each induced constraint depends on all constraints
introduced earlier. Thus, to delete constraint ¢, we delete ¢ and all induced
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Fig. 3. (a) Constraints. (b) Constraint graph. (c¢) Edge dependency list.

constraints added after c. Because this notion of dependency is approximate, we
must solve the resulting constraint system to rediscover induced constraints that
should not have been deleted.

Backtracking is implemented by time stamping constraints. Deleting con-
straint ¢ is done by scanning all constraints (edges), deleting any induced con-
straint with a timestamp greater than ¢, and solving. Consider again the example
in Figure 3, and take a constraint’s number to be its timestamp. We see that
deleting constraint (6) also deletes constraints (7) and (8), but because both (7)
and (8) only depend on (6), backtracking is as precise as tracking edge dependen-
cies in this case. Going further and also deleting constraint (3), however, deletes
induced constraint (4), which is rediscovered through the transitive path (1,5)
when the resulting system is solved. While backtracking can overestimate the set
of deleted constraints and incur extra work in rediscovering induced constraints,
it has practical advantages over computing edge dependencies. Backtracking uses
a linear scan of the constraint graph’s edges, while the precise incremental al-
gorithm is linear in the size of edge dependency lists, which may be quadratic
in the number of graph edges. The storage overhead of backtracking is just a
timestamp per edge, while edge dependency lists raise the worst case storage for
an n-node graph from O(n?) to O(n?).

We have also devised a new data type called a tracked reference that adds
efficient backtracking support to general data structures. This abstraction sim-
plified the task of incorporating backtracking into BANSHEE, especially in the
presence of optimizations like cycle elimination and projection merging [9, 28].
A tracked reference is a mutable reference that maintains a repository of its old
versions. Each tracked reference is tied to a clock; each tick of the clock check-
points the reference’s state. When the clock is rolled back, the previous state
is restored. Rolling back is a destructive operation. Implementing tracked refer-
ences is simple: it suffices to maintain a stack of the references’ old contents. A
backtracking operation pops entries off the stack until the last clock tick. Ap-
pendix A includes a compilable O’Caml implementation of tracked references.
We have implemented backtracking by incorporating tracked references system-
atically into each BANSHEE data structure. Interestingly, we do not pay any
cost for this factoring. For example, applying tracked references to a standard



union-find algorithm yields an algorithm equivalent to a well-known algorithm
for union-find with backtracking [29].

The basic approach to adding backtracking to a static analysis is as follows.
Given a fully analyzed program and a program edit, we backtrack to the first
constraint that changed as a result of the edit® and re-analyze the program from
that point forward. For projects using standard version control systems, it is
natural to use file granularity for changes. An interactive development environ-
ment may provide granularity, and BANSHEE itself can backtrack at constraint
level granularity. Thus, we maintain a stack of analyzed files. If a file is modified,
we pop the stack to that file, backtrack, and re-analyze all popped files.

Files are pushed back on to the stack in the order they are (re-)analyzed,
but we have the flexibility to choose this order. We believe there is locality in
program modifications: developers work on one or a few files at a time, and
new code is more likely to be modified than old, stable code. When reanalyzing
files, the order of files on the stack is preserved except that the modified file is
analyzed last, thus placing it at the top of the stack, reflecting the belief that it is
most likely to be the next file modified. As long as there is locality among edits,
edited files will on average be close to the top of the stack under this strategy.

5 Persistence

We briefly explain our approach to making BANSHEE’s constraint systems persis-
tent. Persistence is useful when incorporating incremental analyses into standard
build processes. We require persistence (rather than a feature to save and load
in some simpler format) as we must reconstruct the representation of our data
structures to support online constraint solving and backtracking.

Persistence is achieved by adding serialization and deserialization to the
region-based memory management library used by BANSHEE [11]. Constraint
systems are saved by serializing a collection of regions, and loaded by deserial-
izing regions and updating pointer values stored in those regions. Initially, we
implemented serialization using a standard pointer tracing approach, but found
this strategy to be very slow because pointer tracing has poor spatial locality.
Region-based serialization writes sequential pages of memory to disk, which is
orders of magnitude faster. To handle deserialization, we associate an update
function with each region, which is called on each object in the region to update
any pointer-valued fields. With region-based serialization, we are able to serialize
a 170 MB constraint graph in 2.4 seconds vs. 30 seconds to serialize the same
graph by tracing pointers.

6 Case Study: Points-to Analysis

We continue with realistic examples derived from points-to analyses formulated
in BANSHEE, showing how BANSHEE can be used to explore different design

5 Here we also remove top-level constraints that may have changed due to the edit.
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Fig. 4. Constraint generation for Andersen’s analysis

points and prototype variations of a given program analysis. In the first three
examples, we refine the degree of subtyping used in the points-to analysis; much
research on points-to analysis has focused on this issue [5,24, 25]. In the fourth
example, we extend points-to analysis to receiver class analysis in an object-
oriented language with explicit pointer operations (e.g. C++). This analysis
computes the function call graph on the fly instead of using a pre-computed call
graph obtained from a coarser analysis (e.g., class hierarchy analysis).

6.1 Andersen’s Analysis

Andersen’s points-to analysis constructs a points-to graph from a set of abstract
memory locations {¢1,...,¢,} and set variables X,, ..., X, . Intuitively, a ref-
erence is an object with an abstract location and methods get : void — Xy, and
set : Xy, — wvoid, where Xy represents the points-to set of the location. Up-
dating the location corresponds to applying the set function to the new value.
Dereferencing a location corresponds to applying the get function. References
are modeled by a constructor ref with three fields: a constant ¢, representing
the abstract location, a covariant field X, representing the get function, and a
contravariant field X'y, representing the set function.

Figure 4 shows a subset of the inference rules for Andersen’s analysis for
C programs. The type judgments assign a set expression to each program ex-
pression, possibly generating some side constraints. To avoid having separate
rules for l-values and r-values, each type judgment infers a set denoting an I-
value. Hence, the set expression in the conclusion of (Var) denotes the location
of program variable z, rather than its contents.

In BANSHEE, Andersen’s analysis is specified as follows:

specification andersen : ANDERSEN =
spec
data location : set
data T : set = ref of +location * +T * -T
end

We outline BANSHEE’s specification syntax, which is inspired by ML recursive
data type declarations. Each data declaration defines a disjoint alphabet of con-
structors. For example, the declaration data location : set defines location



to be a collection of constructors of sort Set. The location alphabet serves only
as a source of fresh constants, modeling the statically unknown set of abstract lo-
cations. While static constructor signatures are an important idea in BANSHEE,
dynamic sets of constants are useful in many analyses. But all constants have a
fixed, known signature, so generating them dynamically does not interfere with
any of our static optimizations.

Each data declaration may be followed by an optional list of |-separated
constructor declarations defining the (statically fixed) set of n-ary constructors.
In this example, we define a single ternary constructor ref, which uses variance
annotations. A signature element prefixed with + (resp. -) denotes a covariant
(resp. contravariant) field. By default, fields are nonvariant.

6.2 Steensgaard’s Analysis and One Level Flow

Andersen’s analysis has cubic time complexity. Steensgaard’s coarser, near-linear
time analysis is implemented using the Term sort. The Andersen’s specification is
modified by eliminating the duplicate T field in the re f constructor and removing
variance annotations:

specification steensgaard : STEENSGAARD =
spec
data location : set
data T : term = ref of location * T
end

Experience shows the lack of subtyping in Steensgaard’s analysis leads to
many spurious points-to relations. Another proposal is to use one level of sub-
typing. Restricting subtyping to one level is nearly as accurate as full subtyping
[5]. Altering the specification to support the new analysis is again simple:

specification olf : OLF
spec
data location : set
data T : set = ref of +location * T
end

Recall the location field models a set of abstract locations. Making this field
covariant allows subtyping at the top level. However, the T field is nonvariant,
which restricts subtyping to the top level: at lower levels, the engine performs
unification. An alternative explanation is that this signature implements the
following sound rule for subtyping with updateable references [1]:

{, C fy X, = ng

b-ref
ref (L X)) < ref (g ) T




6.3 Receiver Class Analysis

Now that we have explored subtyping in points-to analysis, we focus on adding
new capabilities to the analysis. We use the points-to information as the basis
of a receiver class analysis (RCA) for an object-oriented language with explicit
pointer operations. RCA approximates the set of classes to which each expression
in the program can evaluate. In a language like C++, the analysis must also use
points-to information to track the effects of pointer operations.

In addition to modeling object initialization and pointer operations, our anal-
ysis must accurately simulate the effects of method dispatch. To accomplish
these tasks, new constructors representing class definitions and dispatch tables
are added to our points-to analysis specification. To simplify the example, we
assume that methods have a single formal argument in addition to the implicit
this parameter. Here is the BANSHEE specification for this example, using An-
dersen’s analysis as our base points-to analysis:

specification rca : RCA =

spec
data location : set
data T : set = ref of +location * +T * -T

| class of +location * +dispatch

and dispatch : row(method)
and method : set = fun of -T * -T x +T

end

The class constructor contains a location field containing the name of the
class and a dispatch field representing the dispatch table for that class’ ob-
jects. Notice that dispatch uses a new sort, Row [8]. We first explain how this
abstraction is intended to work before describing the Row sort.

An object’s dispatch table is modeled as a collection of methods (each in
turn modeled by the method constructor) indexed by name. Given a dispatch
expression like e.foo(), our analysis should compute the set of classes that e
may evaluate to, search each class’s dispatch table for a method named foo, and
execute it (abstractly) if it exists. Methods are modeled by the fun constructor.
Methods model the implicit this parameter with the first T field, the single
formal parameter by the second T field, and a single return value by the third T
field. Recall that the function constructor must be contravariant in its domain
and covariant in its range, as reflected in the specification.

For this approach to work, our dispatch table abstraction must map between
method names and method terms, which we do using the Row sort. A Row of
base sort s (written Row(s)) denotes a partial function from an infinite set of
names to terms of sort s. Row expressions, which we do not further explain here,
are used to model record types with width and depth subtyping.

Figure 5 shows new rules for object initialization and method dispatch. These
rules in conjunction with the rules in Figure 4 comprise our receiver class anal-
ysis. For a class C, rule (New) returns a class expression with label ¢o. The
dispatch component of this expression is a row mapping labels ¢,,, to methods
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Fig. 5. Rules for receiver class analysis (add to the rules from Figure 4).

Benchmark||Description Preproc LOC Andersen(s)
BANE(+gc) | BANE|BANSHEE
gs Ghostscript 437211 35.5| 27.0 6.9
spice Circuit simulation program 849258 14.0| 11.3 3.0
pgsql PostgreSQL 1322420 44.8| 34.9 6.0
gimp GIMP v1.1.14 7472553 1688.8( 962.9 20.2
linux Linux v2.4 (default config) 3784959 — 54.5

Table 1. Benchmark data for Andersen’s analysis

for each method m; defined in C. To remain consistent with the type judgments
for Andersen’s analysis (where the result of each type judgment is an l-value)
we wrap the resulting class in a ref constructor. Note that since our analysis is
context-insensitive, each instance of new C occurring in the program yields the
same class expression, which is created when the definition of C is analyzed.
In (Dispatch), ey is analyzed and assumed to contain a set of classes. For each
class defining a method m (i.e. the associated dispatch row contains a mapping
for label /,,), the corresponding method body is selected and constrained so
actual parameters flow into the formal parameters and the return value of the
function (lifted to an l-value) is the result of the entire expression.

We conclude the case study by noting that BANSHEE can be used to ex-
plore many analysis issues that we have not illustrated here. For example, field-
sensitive analyses can be implemented using BANSHEE’s Row sort to model
structures. Polymorphic recursive analyses can be implemented using a BAN-
SHEE-based library for context-free language reachability [15]. BANSHEE also
has a modular design that allows new sorts to be added to the system in case
an analysis demands a customized set of resolution rules.

7 Experiments

To demonstrate the scalability and performance of BANSHEE, we implemented
field- and context-insensitive Andersen’s analysis for C and tested it on sev-



eral large benchmarks.” We also ran the same analysis implemented with the
BANE toolkit. While BANE is written in SML and BANSHEE in C, among other
low-level differences, the comparison does demonstrate BANSHEE’s engineering
improvements. Table 1 shows wall clock execution times in seconds for the bench-
marks. Benchmark size is measured in preprocessed lines of code (the two largest
benchmarks, gimp and Linux, are approximately 430,000 and 2.2 million source
lines of code, respectively). We compiled the Linux benchmark using a “default”
configuration that answers “yes” to all interactive configuration options. All re-
ported times for this experiment include the time to calculate the transitive lower
bounds of the constraint graph, which simulates points-to queries on all program
variables [9]. Parse times are not included. Interestingly, a significant fraction of
the analysis time for the BANE implementation is spent in garbage collection,
which may be because almost all of the objects allocated during constraint reso-
lution (nodes and edges in the constraint graph) are live for the entire analysis.
We also report (in the column labeled BANE) the wall clock execution time for
Andersen’s analysis exclusive of garbage collection. The C front-end used in the
BANE implementation cannot parse the Linux source, so no number is reported
for that benchmark. Although it is difficult to compare to other implementations
of Andersen’s analysis using wall-clock execution time, we note that our perfor-
mance appears to be competitive with the fastest hand-optimized Andersen’s
implementation for answering all points-to queries [12].

We also evaluated the strategy described for backtracking-based incremental
analysis (Section 4) by running Andersen’s analysis on CQual, a type quali-
fier inference tool. CQual contains approximately 45,000 source lines of C code
(250,000 lines preprocessed). We chose CQual because of our familiarity with its
build process: without manual guidance, it is difficult to compile and analyze
multiple versions of a code base spanning several years. We looked at each of
the 13 commits made to CQual’s CVS repository from November 2003 to May
2004 that modified at least one source file and compiled successfully. For each
commit we report three different numbers (Figure 6(a))3:

— Column 3: Andersen’s analysis run from scratch; this is the analysis time
assuming no backtracking is available.

— Column 4: Incremental Andersen’s analysis, assuming that analysis of the
previous commit is available. To compute this number, we take the previous
analysis, backtrack (pop the analysis stack) to the earliest modified file, and
re-analyze all files popped off of the stack, placing the modified files on top
(as described in Section 4). The initial stack (for the full analysis of the first
commit) contained the files in alphabetical order.

— Column 5: Incremental Andersen’s analysis, assuming that the files modified
during this commit are already on the top of the analysis stack. To compute
this number, we pop and reanalyze just the modified files.

" All experiments were run on a 2.80 GHz Intel Xeon machine with 4 GB of memory
running Red Hat Linux.
8 These times do not include the time to serialize or deserialize the constraints.



Commit Files Alll  Cross|Modified
Date|Modified|Files(s)|Commit| Only(s)
11-16|  0/58] 2.0 - -
11-17 1/58 2.0 0.9 0.05
12-03 1/58 2.0 0.9 0.15
12-10 1/58 2.0 1.0 0.04
12-11 1/58 2.3 2.0 0.09
12-12 5/58 2.3 1.8 0.51

2-29 1/58 2.0 0.5 0.08 .
3-05 1/58 2.0 0.9 0.06

3-05] 25/59] 2.0 2.0 1.0 ' °'°5¥

3-05|  5/60 2.0 24 027 ‘ | | |
311 4/60] 24 1.0 05 0 e e
3-22 3/61 2.0 0.14 0.14 Commits

5-03 2/61 2.0 1.2 0.13
(a) Data for CQual experiment.
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(b) OpenSSL files modified per commit.

Fig. 6. Backtracking experiments.

Column 4 gives the expected benefit of backtracking if the analysis is run only
once per commit. However, if the developer runs the analysis multiple times
before committing (each time the code is compiled, or each time the code is
edited in an interactive environment) then Column 5 gives a lower bound on the
eventual expected benefit. To see this, assume that a single source file is modified
during an editing task. The first time the analysis is run, that source file may be
placed on the bottom of the stack, so after a program edit, a complete reanalysis
might be required. Subsequently, however, that file is on top of the stack and we
only pay the cost of reanalyzing a single file. In general, if n files are modified in
an editing task, at worst we analyze the entire code base n times (to move each
file one by one from the bottom to the top of the stack) and subsequently only
pay (at most) the cost to reanalyze the n modified files.

Backtracking, then, can be an effective incremental analysis technique as long
as only a small fraction of the files in a code base is modified per editing task.
Figure 6(a) shows this property holds for CQual. To test this hypothesis on a
larger, more active code base with more than a few developers, we looked at the
CVS history for OpenSSL, which contains over 4000 commits that modify source
code. For each commit, we recorded the percentage of source files modified.
Figure 6(b) shows a plot of the sorted data. The percentage of files modified
obeys a power law: very infrequently, between 5 and 25 percent of the files are
modified, but in the common case, less than .1 percent of the files are modified.
We have confirmed similar distributions hold for other code bases as well.

8 Related Work

Many related frameworks have been used to specify static analyses. In [26], modal
logic is used as a specification language to compile specialized implementations



of dataflow analyses. Datalog [4] is a database query language based on logic
programming that has recently received attention as a specification language for
static analyses. The subset of pure set constraints implemented in BANSHEE is
equivalent to chain datalog [31] and also context-free language reachability [18].
There are also obvious connections to bottom-up logic [17]. Implementations of
these frameworks have been applied to solve static analysis problems. The bddb-
ddb system is a deductive database that uses a binary-decision diagram library
as its back-end [30]. Other toolkits that use BDD back-ends include CrocoPat [3]
and Jedd [16]. An efficient algorithm for Dyck context-free language reachability
has been shown to be useful for solving various flow analysis problems [21]. A
demand-driven version of the algorithm also exists [13], though we have not so
far seen a fully incremental algorithm described. Our description of a precise
incremental algorithm, as well as our backtracking algorithm, can be applied to
Dyck-CFLR problems via a reduction in [15].

We are not aware of previous work on incrementalizing set constraints, though
work on incrementalizing transitive closure is abundant and addresses related is-
sues [6,22]. The CLA (compile, link, analyze) [12] approach to analyzing large
code bases supports a form of file-granularity incrementality similar to tradi-
tional compilers: modified files can be recompiled and linked to any unchanged
object files. This approach has some advantages. For example, since CLA doesn’t
save any analysis results, object file formats are simpler, and there is no need for
persistence. However, CLA defers all analysis work until after the link phase, so
the only savings is the cost of parsing and producing object files.
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A Tracked Reference Implementation

We include a complete listing of the tracked reference datatype in OCaml.

module S = Stack {

exception Tick

time = 0;
repository = S.create ()

type clock = { }

mutable time
repository : (unit —> unit) S.t

}

type ’a tref = clock * ’a ref

let tref (clk: clock) (v :’a) :
(clk, ref v)

let read (clk,r: ’a tref) : ’a =
Ir

» int; let time (clk : clock) : int =
clk.time
let tick (clk : clock) :
let closure =
fun () —> raise Tick in
begin
S.push closure clk.repository;
clk.time <— clk.time + 1;

unit =

‘a tref =

let write (clk,r: ’a tref) (v : ’a) : unit = end '
let old v = 't in let rollback (clk : clock) : unit =
let closure = fun () — r := old_v in try
begin while (not (S.is_empty clk.repository)) do
S.push closure clk.repository; let closure = (S.pop clk.repository) in
ri=v closure()
end done

let clock () : clock =

with Tick —> (clk.time <— clk.time — 1)



