
WebSphere Programming Model and Architecture

18 Datenbank-Spektrum 8/2004

The WebSphere Application Server is the
leading J2EE application server product
in the marketplace today [Snyder 2003].
WebSphere offers a scalable, secure,
highly available, transactional hosting
environment for shared, re-usable missi-
on critical business services, components
and web applications across a broad va-
riety of server platforms. This paper sur-
veys the programming model and ar-
chitecture of the WebSphere Application
Server. We will explore how the program-
ming model enables a services-oriented
architecture and relate the value that can
offer to businesses. It will detail some of
the fundamental design principles that
have guided the structure of the ap-
plication server, and will describe how
some of those principles are manifest in
key aspects of the application server run-
time [IBM WebSphere].

Principles of Middleware Design

The WebSphere Application Server
(WAS) is designed with three major engi-
neering principles in mind: strength, pre-
cision, and tolerance.

The application server is a tool; a ma-
chine. Its utility comes from being strong
enough to run the most demanding work-
loads. A modern enterprise computing
environment may be subject to hundreds
or even thousands of transactions a se-
cond, from thousands of concurrent cli-
ents, over millions of accounts and tera-
bytes of data. The application server must
be able to handle these loads without fal-
tering.

The application server must also be
precise; delivering provably correct re-
sults for the applications that are hosted
on it. It is the responsibility of the midd-
leware to ensure the integrity of the appli-
cations it hosts – coordinating the trans-
actional commitment of data, protecting
access to resources, identifying potential
problems and bringing them to the atten-
tion of administrators or even automating
the correction of those problems, mana-
ging the distribution of workloads with
affinity to in-flight state, maintaining
high availability even in the presence of

failures, and ensuring efficient utilization
of underlying computing resources. In
many ways, this defines the application
server as a transaction monitor.

On the other hand, customers will ex-
ploit the application server in ways that
are limited only by the imagination and
needs of those customers. The application
server must be tolerant of the different
circumstances in which it may be used. It
has to be flexible, and adaptable – both in
terms of enabling customers to customize
or extend the application server for their
particular needs, and in terms of being tu-
nable for optimal performance in those
different environments.

And WAS is designed with another
major principle in mind: as middleware it
is responsible for maintaining a clean se-
paration of concerns between the busi-
ness application and the underlying infor-
mation technology on which it is hosted.
This principle is motivated by the re-
alization that most application developers
are commissioned first and foremost to
create value for their businesses. By con-
trast, modern information systems tech-
nologies are growing rapidly more and
more complex [Schneberger 1995].

Many customers have had to install
and deploy a large variety of different
vendor systems – from Windows to Unix
to mainframe based systems for one
reason or another. The economics of com-
puting have driven higher degrees of dis-
tribution. Acquired applications come
with their individual and unique assump-
tions about the systems they depend on.
Programming languages have evolved,
and have introduced more sophisticated
and complex technologies for gaining ad-
vantage – from procedural to scripted to
message-oriented to object-oriented to
aspect-oriented to service-oriented; from
shared-logic to networked to distributed
to internet-enabled systems. While each
of these technology advances have their
own advantages, it has also put more
stress on computer professionals to
maintain their skills, and has continued to
force application developers to spend far
more of their time resolving deep infor-

mation technology issues, leaving less
time to add value to their business.

The middleware has the responsibili-
ty of shielding the application developer
from the complexity of the underlying in-
formation system. This is accomplished
through a combination of component mo-
del design and a container environment
for hosting those components. We’ll re-
turn to the topic of component models la-
ter in this paper. For now, understand that
the contractual boundary between the
component model and its container forms
the boundary that separates the applicati-
on logic from the underlying information
technology system. Fundamental to this
is a deployment model that deliberately
partitions the lifecycle of creating and
maintaining components, assembling
them into useful applications for a given
business situation, deploying that against
a particular instance of information tech-
nology, and then administering their exe-
cution so that different specialists can
contribute their unique knowledge in a
collaborative fashion to achieve an opti-
mal balance of skills and overall systems
objectives. It is within this framework
that computer professionals can build
synergy and value to the business. It lays
the foundation for allowing the infor-
mation system to be treated as a business
asset rather than simply the cost of doing
business.

Collectively, this attention to separa-
ting concerns, enabling collaboration bet-
ween business and computer professio-
nals, encapsulating the complexity of the
information technology system, and
ensuring a high degree of strength, preci-
sion and tolerance defines WebSphere as
middleware – in essence a distributed sys-
tems platform for portable application de-
signs over heterogeneous computing sys-
tems.

Structure of e-Business Computing

To achieve maximum utility, WebSphere
makes basic assumptions about how ap-
plications are structured and deployed in
the information system [IBM Patterns].
In this paper, we classify application de-
ployment structures in to four basic
categories:

• Web Computing
• Multi-tier Distributed Computing
• Enterprise Application Integration
• Services Oriented Architecture

Robert H. High Jr., Matthias Kloppmann

WebSphere Programming Model and
Architecture

WebSphere Programming Model and Architecture

Datenbank-Spektrum 8/2004 19

Web computing focuses on the use of Java
Server Pages (JSPs) and Servlets for cap-
turing presentation logic that drives an in-
teraction with end-users through web
browsers across an internet or intranet.
JSPs and Servlets form two parts of the
classic three part Model-View-Controller
(MVC) application design pattern – JSPs
render views to the end-user, and Servlets
take input from the end-user to control the
interaction with the application and to
drive additional views [Röwekamp &
Roßbach 2000].

Some of the earliest and simplest ex-
ploitations of the JSP and Servlet capabi-
lities of the application server tended to
involve placing the business logic right in
the Servlet control functions. While this
works fine for simple web applications it
tends to mix concerns, and that reduces
the re-use and maintainability of the lo-
gic.

WebSphere also supports Enterprise
Java Beans (EJBs) for capturing the busi-
ness logic of the application. EJBs come
in two different types: Session Beans and
Entity Beans. Session Beans are intended
to capture procedural logic that performs
specific business functions in the applica-
tion – the verbs or activities of the busi-
ness design. Entity Beans are intended to
capture the objects of the business; things
that the business works with – the nouns
or entities of the business design.

All of the J2EE component models,
but especially EJBs, are designed with the
idea that they contain shared, re-usable
componentized function [J2EE]. The idea
is that they can be created within an appli-
cation design in a way that allows them to
be re-used in other applications, or at least
shared amongst many different clients
and end-users. A common variation on
this theme occurs when the same under-
lying EJBs are shared amongst different
client applications. For example, a set of
business operations that you can perform
on a banking account, such as deposit,
withdrawal, transfer, etc., may be imple-
mented on a composition of a Session
Bean (for the banking operations) and an
Entity Bean (representing the account).
These same components can be shared
between Teller, Call Center, Home Ban-
king, and ATM clients. This is a good way
of ensuring that all of the business chan-
nels of the enterprise are exposed to a
consistent set of business policies and
data of record.

WebSphere supports both bean-mana-
ged as well as container-managed forms of
Entity Beans. Each has their trade-offs –
bean-managed Entities give the applicati-
on more control over how the bean’s state
is handled with the data system. However,
with the introduction of the abstract bean
class, the EJB-Query Language for porta-
ble finders, and container-managed relati-
onships introduced by the EJB 2.1 speci-
fication, and support for access intent po-
licies in WebSphere R5.0, we most often
recommend the use of container-managed
persistence. There are several reasons for
this, but the most notable is that it fulfills
the principle of pushing down the concerns
of the information systems technology to
the underlying middleware.

More specifically, the bean container
can combine its knowledge of the other
things that are going on in the computing
system – including, what other requests
are being performed on other beans and
applications, the priority of workload, the
likelihood of traversing relationships or
iterating over a set of similar records, etc.
– to optimize the total throughput of the
system. The container has built-in caches
and recognizes common patterns of inter-
action to make decisions about how to
combine I/O to the data system, retrieve
data directly from in-memory caches, or
how to prioritize certain work over other
work. All of these advantages are often
impossible to perform in the application
without knowing a great deal about the
other applications that may be installed
on the same system, or at least it would
take a great deal of very specific systems
programming that has essentially nothing
to do with the business logic of the appli-
cation.

The characteristic of re-use and sha-
ring that is intrinsic to the EJB component
design can be leveraged in the application
to form a natural distribution boundary –
allowing the EJB components to be sepa-
rated from the presentation logic in ano-
ther application server. And to the extent
that business logic may be composed of
other business logic, the principle of
componentization, re-use, sharing and
distribution can be recursively applied
throughout the application design. When
taken to its extreme, applications formed
from an aggregation of components can
be deployed across multiple tiers in the
information system. We refer to this a
multi-tiered distributed computing.

However, these partitions can also be
treated as logical tiers – without separa-
ting them on different application servers.
The trade-offs between localized vs. dis-
tributed topologies is a topic in itself, but
one that should be considered carefully
when setting up a distributed systems in-
frastructure. The latency and higher po-
tential for failure when components are
separated across a distributed system (in-
cluding on different application server in-
stances in the same computer) does have
an impact on the application design and
implementation. The EJB specification
does allow the exploitation of distributed
components to be constrained through the
use of Local Interfaces. But, in the end,
the choice of whether to distribute the
components of an applications are a
choice that can be made, first by the de-
veloper by their use of different compo-
nent types and then, if not constrained, by
the application assembler and/or deploy-
er.

Few applications today can be deplo-
yed as an island in the business system.
Most enterprises today already have a lar-
ge variety of applications already in-
stalled and in use within their business.
These applications implement key func-
tion that, like the very J2EE principles
we’ve already described, should be
shared and re-used even with new J2EE
applications. WebSphere offers a number
of techniques for enterprise application
integration.

The Java 2 Connector Architecture
(J2CA) allows you to adapt procedural
business function that is implemented on
other legacy systems such as CICS, IMS,
SAP, PeopleSoft, Siebel, etc. for use
within a J2EE application. The J2CA spe-
cification defines the Common Client In-
terface (CCI) – a standard interface for
connectors that can be plugged into the
framework. Each connector can be desig-
ned to the specific format and protocol
mechanisms supported by the legacy sys-
tem. However, the CCI is a very low-level
interface. WebSphere Studio tooling has
support for creating adapters that are spe-
cific to the application. An adapter is a
Stateless Session Bean that implements
the interface of the legacy business func-
tion being adapted, and encapsulates calls
to the CCI to invoke and collect the re-
sults of the legacy business function. For
the WebSphere application it appears that
the business function is implemented

WebSphere Programming Model and Architecture

20 Datenbank-Spektrum 8/2004

within the Session Bean – like any other
business function the application might
use.

Another approach to integrating le-
gacy systems is through asynchronous
messaging. WebSphere supports the Java
Messaging Service (JMS) specification,
and includes an integral provider that is
based on the MQ-Series queue manager
and event broker. In addition, WAS sup-
ports the full MQ-Series as a plugable
provider, as well as other 3rd-party provi-
ders such as SonicMQ and Tibco – any
messaging provider that supports the
JMS specification. Asynchronous mes-
saging provides an ideal way of integra-
ting legacy applications that are already
designed and implemented to support
asynchronous messaging.

However, asynchronous messaging
also offers an opportunity to design appli-
cations that are loosely coupled – where
the parts are connected only by the messa-
ges that flow between them. EJBs can send
messages using the JMS client interfaces,
and can be invoked to receive a messages
by registering an Message Driven Bean
(MDB) with a message listener. Messages
can be exchanged between application
parts on a point-to-point queue basis or on
a topic basis – the latter being the founda-
tion for subscribing to notifications.

Loose-coupling between components
is a key element in successful distributed
computing design. The looser you couple
the parts of your applications, the more
tolerant your application will be to being
distributed. We can measure the degree of
coupling in three ways:

• Temporal and granularity constraints
• Technology constraints
• Organizational constraints

If the interaction between two compon-
ents is time-sensitive – for example, the
calling component depends on the target
component to return a value within
microseconds (or even a few millise-
conds), or if there will be locks held on
the data system while multiple interac-
tions between the components take place
– then these components probably need to
be co-located. Distributed components
should not have temporal constraints.
One thing in particular that will tend to in-
troduce temporal constraints is the granu-
larity of the component and the inter-
actions with it. If a component is too fine-
grained and results in either being created

and destroyed frequently or requires lots
of fine-grained interactions with it, then it
will likely impose temporal constraints
and therefore will not be a good candidate
for distribution. Well behaved distributed
components tend to be coarse-grained,
and introduce coarse-grained interactions
– introducing larger data structures in the
request arguments to keep the number of
interactions down.

The degree to which both the calling
component and the target component
must be implemented in the same under-
lying middleware technology or language
becomes a constraint to distributed com-
puting. Said differently, to be successful,
distributed computing infrastructures
must be able to support interworking bet-
ween components that are implemented
in different technologies and languages.
The extent to which technology cons-
traints are made transparent to the appli-
cation will enable more opportunities for
distributed interconnections between ap-
plication components.

Often owners of different compon-
ents in the distributed system will operate
to different development and mainte-
nance lifecycles. One organization may
be forced to upgrade their server compo-
nents more frequently than the client or-
ganizations that make use of those
components. Whenever a target compo-
nent changes it has the potential for brea-
king backwards compatibility with any
client applications that use them. When
compatibility breaks both organizations
are forced to synchronize their updates.
This forces collaboration and depending
on the number of parties involved, and the
flexibility each has to adjust to the other’s
needs, can affect the success of maintai-
ning a relationship between the interwor-
king applications. This is just one form of
organizational constraint – a dependency
that is affected by the interrelationships
between organizations involved in the
end-to-end distributed system. Distribut-
ed systems rely on there being few, if any,
organizational constraints.

Services oriented architecture (SOA)
is an application design principle that
attempts to maximize the potential for
distributed systems by deliberately and
explicitly attempting to minimize tempo-
ral, technological, and organizational
constraints [SOA]. SOA focuses on busi-
ness services – that is, those services that
a business might offer to its customers or

business partners, or those services that
one business unit might offer to another
business unit – as the primary element of
distribution [Burbeck 2000]. While this
may be a bit extreme for some applicati-
ons, it is a good starting point to ensure a
minimum of temporal, technology and
organizational constraints. At a gross le-
vel, businesses offer services to their cus-
tomers through relatively coarse-grained
channels such as through store clerks,
agents, call-center operators, through
web-pages on the internet, over dial-up or
wide-area network protocols, or by mail.
These channels tend to assume interac-
tions that are measured in seconds, minu-
tes, or even days – certainly not in micro-
seconds.

They also tend to create very few as-
sumptions about technology, and have a
high toleration for changes at either end
of the interaction – or, at least, changes
can be accommodated within some de-
grees of a basic understanding of the se-
mantics of the transaction, and with some
degree of intermediation by humans, go-
verning and standards bodies, or intelli-
gent agents.

WebSphere provides integral support
for services-oriented architecture with
middleware facilities that conform to the
Web Services standards – a set of specifi-
cations that have been written by IBM and
Microsoft in collaboration with other ven-
dors, and have been submitted for standar-
dization by OASIS and W3C. The web
services standards cover many important
aspects of distributed coupling, including
interoperable encoding formats, security,
data integrity, workflow management, no-
tifications, context, policy, and metadata
exchange. Perhaps the most significant of
these is the Web Services Definition Lan-
guage (WSDL). WSDL provides a tech-
nology- and language-neutral abstract re-
presentation of a distributed service.
WSDL is designed to enable a high degree
of technology and organizational inde-
pendence – allowing the service provider
to express the variety of protocols and en-
codings supported by the service, and to
express the message elements that are
supported by the service, but without pre-
venting the service provider from evol-
ving or expanding the messages suppor-
ted by the service in the future.

We will explore WebSphere’s support
for web services in more detail later in
this paper.

WebSphere Programming Model and Architecture

Datenbank-Spektrum 8/2004 21

For now, note that each of the four ca-
tegories of application design supported
by WebSphere – web computing, multi-
tiered distributed computing, enterprise
application integration, and services ori-
ented architecture – are not fully distinct
application design categories, but rather
are touch-points on a continuous progres-
sion of application design patterns that
range from simple through to sophistica-
ted. WebSphere supports this entire range
of application design patterns specifically
because one size does not fit all – diffe-
rent business and deployment scenarios
will require different design approaches
to solve their specific needs. On the other
hand, there is often tremendous overlap
between those needs and it is important
that application developers should not
have to learn entirely different approa-
ches to building application components
when moving between points on the con-
tinuum of scenarios.

Heterogeneous Platform Portability

An essential part of the WebSphere midd-
leware proposition stems from maintai-
ning a strong separation of concerns bet-
ween the application logic and the under-
lying information system. To realize this
goal, the application server must encap-
sulate the information system and opera-
ting system platform within its program-
ming model. Moreso, the programming
model must be completely consistent on
all platforms. It must support the entire
breadth of the programming model – in-
cluding all standard and proprietary ele-
ments of the programming model – on all
platforms. The customer should never be
faced with the situation that having built
an application they can not expect that ap-
plication to perform the function is was
designed for on different computing plat-
forms. The functional behavior should be
exactly the same; same services, same
bugs, same work arounds, same fixes.

That’s not to say that different opera-
ting platforms are completely equal. In
fact, different operating platforms do
have a number of non-functional diffe-
rences. We refer to these as quality-of-
service (QoS) differences. Some opera-
ting systems are inherently more stable
than others; some have a lighter footprint,
some are more scalable, some are simp-
ler, some are more secure, some are less
expensive to operate, etc. And, outside of

the Java, J2EE and WebSphere execution
space, different platforms offer differing
support for certain programming langua-
ges and technologies. Customers will le-
verage these differences when deciding
which platform to install in the operation
centers. And they want to leverage and
benefit from these differences with their
WebSphere applications.

WebSphere is architected to blend a
high degree of functional consistency
with platform-specific customizations
that are designed to leverage the unique
differences of the platform. More specifi-
cally, the vast majority of the application
server implementation is exactly the
same on all of the platforms that Web-
Sphere supports. However, it is designed
with specific plug-points to exploit the
unique QoS advantages of each platform.
For example, the security user registry
and authentication services are plugable
to use the native operating system regist-
ry and authentication services on each
platform. This enables integration with
the security subsystem for other applica-
tions on the same computer. The built-in
transaction manager is replaced with the
Resource Recovery Service (RRS) on
z/OS to enable integration with other
middleware systems such as IMS, MQ-
Series and DB2 on z/OS [WASZOS].

The WebSphere application server
provides this same blend of consistency
and unique advantage on data center, de-
partmental and work group platforms
such as z/ OS, Linux/390, iSeries, AIX,
Solaris, HP/UX, Linux and Windows/
Server, and on desktop systems such as
Linux and Windows.

A subset of the WAS programming
model is also being made available for
pervasive devices such as PDAs and
other hand-held and embedded devices.
The underlying implementation of this
support is different than the standard
WAS product, although some compon-
ents share the same common code base.
Nonetheless, this version of WebSphere
enables programmers to use many of the
same programming techniques for crea-
ting presentation and business logic for
execution on these devices – presentation
logic can be created using JSPs and Serv-
lets and business logic can be created
using EJBs. This allows for a high degree
of consistency in the skills, techniques
and tools used to create applications, and
even allows that some application com-

ponents can be common to both environ-
ments (although the environments them-
selves tend to drive slightly different
business application requirements – per-
vasive device applications tend to be
much centered around the end-user to
which the device belongs, whereas ser-
ver-based applications tend to be more
centered around how the enterprise wants
to conduct its business consistently
across all of its end-users and business
channels) [Everyplace].

Topology Considerations

Like the range of application design re-
quirements driven by different business
and deployment scenarios, customers
also have a wide variety of topology
requirements. Some small businesses
may have all of their end-users and busi-
ness operations co-located in one office,
and may be able to serve their entire busi-
ness applications and data systems off of
one or a pair of computers. Other larger
businesses may have multiple regional
data centers, several call centers, thou-
sands of stores, branches or agent offices,
and need the capacity of many hundreds
or thousands of computers. Likewise, the
range of topology structures is a continu-
um of varying degrees of simplicity or so-
phistication.

WebSphere is designed and packaged
to address this range in an incremental
and progressive fashion.

The simplest scenario is that of a sin-
gle application server instance running on
a single computer. This might be emp-
loyed in a small business that does not
need any more capacity than a single
computer, or it might be a sandbox on a
desktop computer for a developer to
create and test their application. Multiple
instances of the application server may be
created on the same computer, or even on
several computers. This might be useful if
there are many developers sharing the
same computer and each needs their own
sandbox to work in. In either of these
cases, each application server instance
can be treated independently, with its own
administrative domain.

The admin services for each applica-
tion server instance can be operated inde-
pendently – a distinct administrator can
be assigned to each application server in-
stance and operate in complete isolation
of any other application server administ-

WebSphere Programming Model and Architecture

22 Datenbank-Spektrum 8/2004

rator. In the sandbox case, each developer
can be their own administrator – starting
and stopping their own sandbox instance,
and installing and configuring their own
applications and resource dependencies.

Larger environments may need the
power of multiple application server in-
stances, or to cluster multiple instances
into a single logical server to enable a
high- and continuously-available produc-
tion environment for their applications.
Multiple instances of the application ser-
ver can be configured to run on one or
more computers, and aggregated under a
single administrative domain (an ad-
ministrative cell in WebSphere termino-
logy). One or more administrators can be
presented a centralized view of the cell,
and can be granted different authorities to
monitor, operate or configure applicati-
ons or resources in the cell.

These environments may be com-
posed of the same operating system plat-
forms, or a heterogeneous mix of opera-
ting system platforms. The WebSphere
management system presents a uniform
and consistent view of administration in
either of these situations. The admin con-
sole is a browser-based web application
that runs on the WebSphere application
server like any other web application, and
presents the same administration model
in either a single-server standalone envi-
ronment, or in a multi-server or clustered
environment. This enables administrators
to easily transition between either
environment extremes, and regardless of
which operating platform is being used in
the environment.

The same application server is in-
stalled in each of these scenarios. Instal-
ling the Network Deployment Manager
on a computer in the cell then forms the
basis of the cell. Individual nodes within
then cell can then be federated into the
cell, and any application servers that may
have already been installed can be inclu-
ded in the cell and administered centrally.
The deployment manager serves as a hub
for the cell, providing a centralized view
of all of the applications and application
servers deployed in the cell. New applica-
tion sever instances can be created from
the deployment manager, and aggregated
into clusters. Applications can be in-
stalled centrally at the deployment mana-
ger, and then configured and distributed
to the application server instances where
the will run.

However, every application server in-
stance operates from its own local copy of
the cell configuration. The deployment
manager will synchronize the portion of
the cell configuration that each applicati-
on needs to operate successfully between
its central location and the node through a
node agent that is created automatically
on each node in the cell. In this way, the
deployment manager never represents a
single point of failure in the system – each
application server operates independent
of the deployment manager.

WebSphere Standard and Extended
Components

WebSphere supports a variety of standard
and proprietary application component
types for different application design and
integration situations. We will survey
those component types in this section of
the paper. However, before we do we
should explore what a component is.

A component is a basic element of the
business application. It exists within the
application design to perform a specific
role or function. It creates a framework
for encapsulating the business design. An
application may be composed of many
components. Ideally, a component repre-
sents a unit of shareability or re-use
within the application design. A given
component may be used within the appli-
cation for which it is designed, or may be
re-used with many other applications. If
the component is object-oriented, then
many instances of the same component
type may be created when using the appli-
cation – each instance of the component
will have a distinct identity that can refe-
renced in the application. Most often, the
instance identity will have a relationship
to a relevant key value in the business ap-
plication – such as an Account number or
Purchase Order number. However, not all
components need be object-oriented –
some may be procedural in nature and in-
stantiable only in the sense of enabling
reentrancy and survive only for the dura-
tion of a given session (a bracketed inter-
action) with the user or client application.

Modern component designs have a
component model that maintains a strong
separation of concerns. They encapsulate
the logic of the application, and form a
contract with the underlying infrastructu-
re (usually represented through a contai-
ner) that then is responsible for managing

that component – that is, handling the
component’s execution lifecycle, giving
it identity and mapping that identity to the
underlying resources that may be alloca-
ted to that component, managing the
component’s state. Depending on the
quality of service assurances of the com-
ponent model, the container is responsib-
le for ensuring the integrity of the compo-
nent instance – both transactional data in-
tegrity and correctness, as well as security
integrity – and any other service proces-
sing that is assured as part of the contai-
ners quality of service contract. If the
component model supports distributed
components, then the component contai-
ner is responsible for enabling remote-lo-
cal transparency.1

Component models are designed to
allow different container implementati-
ons provide different qualities-of-service.
The value of a container is in its ability to
balance the QoS it offers against a set of
costs – including performance, through-
put, resource efficiency, and ad-
ministrative and maintenance impact.
The component model and contractual re-
lationship to the underlying container vir-
tualizes the computing infrastructure for
the application. The value of a given com-
ponent model can be measured by the de-
gree to which it maintains this separation
of concerns; enabling the application de-
veloper to focus on their domain require-
ments; and enabling a higher degree of
portability of that domain function to dif-
ferent computing environments.

Component models have two pro-
gramming models – the programming
model used by the component im-
plementation, and the programming mo-
del used by clients of the component. The
component implementation program-
ming model defines what lifecycle opera-
tions that must or can be implemented by
the component to assist the collaboration
between the component and its container.
It also identifies what the application lo-
gic within the component implementation
is allowed to do and, just as importantly,
what it can’t do. For example, J2EE com-

1. The term »remote-local transparency« (as con-
trasted to »local-remote transparency«) im-
plies that for transparency of local to be
successful, the application must be designed to
expect a component will be remote, and then
may benefit from the additional optimization
and efficiency that may come from the compo-
nent being deployed locally.

WebSphere Programming Model and Architecture

Datenbank-Spektrum 8/2004 23

ponent implementations should not use
the Java Threads library to spawn its own
threads. The client programming model
describes how the client can gain access
to the component, such as using JNDI ja-
va:comp references to find a component
factory, or how to create new instances of
the component. It also describes any
assumptions or constraints the client can
make about the statefulness of the com-
ponent, whether it is re-entrant, can be
shared concurrently amongst multiple cli-
ents, and, amongst other things, how to
form an operational work context (sessi-
on) for sustaining an interaction with the
component.

WebSphere supports all of the J2EE
standard component models, including:

• Web Components
Servlets
Portlets
JSPs

• Business Components
Stateful and Stateless Session Beans
Entity Beans
EAI Adapters

• SOA Components
Web Services (pseudo component)

• Infrastructure Components
Message Driven Beans
J2CA EIS Connectors
JMX MBeans

WAS, in combination with the WebSphe-
re Business Integration product, also sup-
ports a number of proprietary component
models:

• Choreography
Business Processes (Workflows)
Microflows

• Programming Assists
Async Beans
Startup Beans

• Business Policy
Business Rule Beans

Other component models are emerging
and will be supported in future releases of
WebSphere, including SOA Resources
and Service Data Objects.

We’ve already mentioned Servlets
and JSPs. These are defined by the J2EE
specification to support the MVC presen-
tation design paradigm. More and more
often these components are being combi-
ned with other frameworks such as the
Apache Struts and Tiles. Struts is desig-
ned to automate the interaction between
Servlets, JSPs and EJBs with the use of an

Action Bean – a component that encapsu-
lates the invocation of the EJB, and then
establishes what to do next based on state
transitions within an action table defini-
tion.

JSR 168 introduces the Portlet com-
ponent model [JSR168]. In many ways,
Portlets extend the Servlet model to in-
clude support for modes and window sta-
tes. Portlets differ from Servlets primarily
in that they represent individual frames
(or windows) in the overall browser
screen where each frame represents a dis-
tinct application. The idea being that a
browser screen can concurrently aggrega-
te multiple windows into different appli-
cations. The end-user can see all of their
different applications at the same time,
and interact within them independently,
or even create visual interactions between
them on the same screen.

Within the Portlet model, modes basi-
cally define the basic interaction states
the end-user may have put the window in.
Standard mode states include View, Edit,
and Help. When a Portlet is in View mo-
de, it is in a typical operational mode –
presenting the application content to the
end-user following its basic application
design. A Portlet that has been put in Edit
mode is basically in a mode that allows
the end-user to customize the view they
want from the application. This might in-
clude defining what content they want the
application to present, or changing the co-
lor, font or layout of the information they
want the application to present. A Portlet
in Help mode should be presenting help
information about the application or how
it can be customized.

Portlet windows can be sized – nor-
mal (as determined by the layout of the
overall screen), minimized (hidden from
the main content of the screen – usually
reduced down to some icon that repre-
sents its presence without exposing its
full content), or maximized (consuming
the entire screen).

The Portlet component model is not
currently included in the J2EE platform
specification, but is expected to become a
standard part of J2EE application servers
in the future. The WebSphere Portal Ser-
ver already supports the Portlet compo-
nent model.

The EJB specification defines State-
less and Stateful Session Beans. Session
Beans, in general, should be used to cap-
ture the verbs of the business application

– the activities that the application does.
Entity Beans should be used to capture
the nouns of the business application –
the things the application does it on.

WebSphere supports all of these com-
ponents. Nonetheless, the most scalable
application designs are ones that remain
stateless within the execution model –
that is, they gain access to the things
they’re going to operate on (effectively,
retrieving their entities from persistent
storage), perform their function, comple-
te and clean up the resources they used
during the function (storing their entity
state back to persistent storage). Applica-
tions that follow this basic design premise
are generally able to handle far more con-
current transactions from different end-
users than those that attempt to cache lots
of state in their application between trans-
actions (caching may improve the perfor-
mance of an individual application, but
will not generally improve total systems
throughput or scale).

Stateless Session Beans help fulfill
this design preference because semanti-
cally they are state-less – they emphati-
cally presume that each interaction with
the Session Bean is independent. Any sta-
te they might depend on is either received
from the client as part of the request, or is
got from the underlying persistent entity
model. Applications that are stateless can
be cleaned up faster and they can be reco-
vered much more efficiently. They are ti-
dier; they don’t accumulate a lot of re-
source that then requires a lot of complex
management, and if they fail they can be
restarted on another server without losing
state (they don’t have any) or without ha-
ving to recreate a lot of cached state.

Stateful Session Beans, on the other
hand, are inherently flawed and an unfor-
tunate part of the J2EE specification.
First, they violate the principle of state-
less application design – they specifically
presume to retain state between opera-
tions. Secondly, and perhaps more signi-
ficantly, they’re not recoverable – the
container can not assure the integrity of
state retained by the Stateful Session
Bean. The EJB standard specifically pre-
vents the container from passivating (wri-
ting out to persistent store) Stateful Sessi-
on Beans within the transaction context
of the business application. Thus, the sta-
te of the Session Bean can be lost between
the time the application has committed its
entity state, and before the Stateful Sessi-

WebSphere Programming Model and Architecture

24 Datenbank-Spektrum 8/2004

on Bean has persisted its state. The client
application must be written to presume
that at any given point the Stateful Sessi-
on Bean may be invalidated and if it is the
client must be prepared to recreate the
operational state of the Session Bean – in
other words, the client must retain a par-
allel copy of the Session Beans state, and
reload that in the Session Bean if it should
ever receive a NoSuchObjectException.

We recommend that if you must use
Stateful Session Beans in your applicati-
on design, you do so by implementing it
to retain its state in an underlying Entity
Bean, and arrange for the client applicati-
on to initialize the Stateful Session Bean
with the primary key of the Entity Bean
that holds its state. In that way, the client
does not have to retain a parallel copy of
the Stateful Session Beans state, it only
has to retain the primary key of the Sessi-
on Bean’s stateful Entity Bean, and can
recreate a new instance of the Session
Bean by merely re-initializing it with the
primary key of its stateful Entity.

WebSphere has invested a great deal
of effort in to supporting container ma-
nagement of Entity Beans. In many sce-
narios WebSphere can provide better total
systems throughput with container mana-
ged persistence (CMP) than an applicati-
on can achieve on its own with direct
JDBC calls. WebSphere has introduced
support for declaring access intent poli-
cies on CMP Entity Beans. These policies
can be used to declare whether a given
method of the CMP is going to update the
state of the bean. If the state of the bean is
never updated then the database does not
have to be updated. Another policy can be
used to indicate whether the deployed ap-
plication must be protected with a pessi-
mistic concurrency model. If concurren-
cy can be managed optimistically, then
locks are not held on the database, the be-
fore image of the database state is retai-
ned, and then used to perform an over-
qualified commit on the database at the
end of the transaction. If any changes oc-
curred in the database then these will be
detected in the over-qualified commit and
the transaction will be rolled back.
Further changes are expected in the future
to make over-qualified commits even
more efficient.

Access Intent policies can also be
used to identify which entity relation-
ships are likely to be navigated. The con-
tainer will combine activation of the enti-

ty and those related entities that are most-
ly likely to be navigated into a single I/O
to the database.

Further the EJB container has been
implemented with a transactional data ca-
che for CMPs. This can help reduce the
number of I/Os that need to be performed
between operations in the same transac-
tion. Moreso, if you don’t need absolutely
current entity state, the state of the entity
held in cache from a prior transaction may
be used in subsequent transactions (yes,
the EJB container does cache state bet-
ween transactions, but does so in a way
that limits resource consumption, and
maintains strong failover and recovery).

However, if Entity Beans are shared
amongst different client applications the-
re is a good chance that how each client
will use the entity will be different – each
following its own usage patterns; selec-
ting invocation options that may or may
not traverse different object relationships,
or causing state to be updated where other
clients do not, etc. The efficiency of the
CMP can be further refined through the
use of Application Profiles. An applicati-
on profile is a particular access intent
template representing a particular usage
pattern. Multiple application profiles can
be created for the same Entity Bean –
each representing a different usage pat-
tern. Clients of the bean are tagged with
specific Task Identities. This Task Id
flows with any requests from that client to
the Entity Bean. Task identities can then
be mapped to an application profile that
best represents its desired access pattern.
The container will then manage the bean
in accordance to the selected application
profile for that specific client. In this way,
you can tailor access patterns that best
match the needs of different client –
rather than assume the worst case for all
of them. The result is optimized total sys-
tems throughput for that mix of applicati-
ons and client usage scenarios.

There are only a few cases where we
would not recommend the use of CMP
Entity Beans in your application – prima-
rily only those cases where you are sub-
ject to a very complex data schema,
perhaps driven by another existing appli-
cation. Otherwise, CMPs are ready for
prime-time and should be presumed
within any contemporary J2EE applicati-
on design.

Turning now to Adapters, the Java 2
Connector Architecture suggests that ap-

plications should not code directly to the
Common Client Interface, but rather
should exploit container-specific extensi-
ons that provide a higher-level standard
interface to the resource-adapter. We refer
to this extension as an adapter (short for
the EIS resource-adapter interface). Web-
Sphere Studio provides tooling support
for creating adapters. The adapter is just a
Stateless Session Bean that supports an
application specific interface represen-
ting the business operations that are being
adapted, and then is implemented to
encapsulate the lower-level calls to the
Common Client Interface defined by the
J2CA specification.

Web services are really not a compo-
nent model, but rather provide an abstract
representation of a canonical component
model – one that can be generally mapped
to a variety of underlying concrete com-
ponent models and related client pro-
gramming models. We’ll discuss web ser-
vices in more detail a little later.

Message Driven Beans (MDBs) are
defined as EJBs in the J2EE specification.
However, the functional role of an MDB
is to map a received message to an opera-
tion on a business function component
(usually a Stateless Session Bean). The
pattern followed by most application-
written MDBs is to receive the message
through the onMessage operation, and
then perform a select statement on the
message to determine which Session
Bean operation to invoke. In this way, the
MDB generally does not contribute to the
business logic of the application, but
rather is really just a mapping layer bet-
ween the messaging infrastructure and
the application. It is in many ways the in-
bound corollary of adapters in the J2CA
framework. We refer to them as infra-
structure components.

Other infrastructure components in-
clude J2CA resource adapters – that is,
the J2CA component responsible for the
actual mapping to the specific protocol,
security, transaction, and connection ma-
nagement constraints and capabilities of
the underlying enterprise information
system (EIS) supported by that resource
adapter. Java Management Extension
(JMX) Management Beans (MBeans) is
also an infrastructure component. The
MBean component model is introduced
by JMX to represent individual compu-
ting resources in the middleware system.
WebSphere provides a number of

WebSphere Programming Model and Architecture

Datenbank-Spektrum 8/2004 25

MBeans to represent the Containers,
Transaction Manager, Connection Mana-
ger, Applications, etc. in the WebSphere
execution environment. These MBeans
enable applications (and other system
utilities) access to the system resources to
control their operational state and con-
figure their behavior. WebSphere allows
applications to introduce their own
MBeans and register those with the Web-
Sphere management system. In this way,
an Application can be programmed with
conditional behavior that is controlled
through a corresponding MBean by an
administrator of that application.

Like Portlets, MBeans are not explici-
tly required by the J2EE platform specifi-
cation. However, they are a pre-requisite
of the J2EE Management Model defined
by JSR-088 which will be required by
J2EE 1.5.

WebSphere also introduces a number
of proprietary component models. These
include a Business Process (workflow)
and Microflow component model. Busi-
ness Process Choreography is based on
the emerging Business Process Execution
Language for Web Services (BPEL4WS)
specification written by IBM and Micro-
soft with support from BEA. Both Busi-
ness Processes and Microflows encapsu-
late activity flows – scripted definitions
of how to process one activity after ano-
ther, or in parallel with other activities,
and how data flows between those activi-
ties. This will be discussed in more detail
below. The primary difference between a
workflow and a microflow is whether the
state of the flow is persisted between ac-
tivities, and thus whether the flow can be
interrupted. Microflows are intended for
scripting interactions over short-lived
sessions with a single, or small number
of, target components. It is used primarily
within the implementation of J2CA adap-
ters to describe the interaction with the
EIS for a given business function suppor-
ted on the interface of the adapter. Busi-
ness Process workflows, on the other
hand, are intended to script a series of
high-level business activities, and may
take a long time – on the order of minutes,
hours, or even months – to complete. As
such, their execution state is persisted
between activities in the flow, and thus
their flow can be interrupted, suspended,
and resumed later.

BPEL is the execution language of a
Business Process or Microflow compo-

nent. However, from a Java programming
perspective, these components are imple-
mented as a Stateless Session Bean and
Entity Bean – the Session Bean to repre-
sent the process and the Entity Bean to
capture the process’ execution state.

Async Beans are designed to provide
the application a safe way of spawning
multiple threads of execution. The Async
Bean captures the execution context of
the application, and copies that to each
thread that is spawned by the application.
In this way, the threads can be accounted
for by the container, and the thread can
execute within the fullness of an applica-
tion context; allowing it to exploit the
standard J2EE programming model and
operate as though it is part of the main
thread of the application that spawned it.
The Async Beans service also offers a
Scheduler facility that allows asynchro-
nous work to be created and scheduled to
be executed at a later time – even hours,
days, or weeks later.

Startup Beans provide the application
notifications of different server states –
specifically, when the server is started
and stopped. If starting the server is tan-
tamount to starting the business represen-
ted by the application hosted by that ser-
ver, then subscribing to these notifica-
tions allows the application to perform
start-of-business and close-of-business
operations that may be relevant to it. For
example, retail store applications like to
be able to take a snapshot of their cash po-
sition at the opening and close of busi-
ness. They can do this in a Startup Bean.

Business Rule Beans (BRBeans) can
be used to isolate business logic that may
change more often than the rest of the ap-
plication design. For example, business
policies and government regulations may
be much more dynamic than the core
business logic of an application. These
policies can be isolated in a BRBean and
managed on a lifecycle that is indepen-
dent of the rest of the application. More-
so, the policy selection can be conditio-
ned by application-specific entity classi-
fications. For example, if customers can
be classified as being Gold, Silver and
Bronze level customers – perhaps based
on the level of business they conduct with
the enterprise – then they may be subject
to different policies. The BRBeans fra-
mework is a policy selection router that
will consider application defined entity
classifications to pick the policy that is

most relevant to the entity in question.
Further, certain policies may not go in af-
fect immediately, but rather may be post-
dated. The BRBeans framework will con-
sider this before selecting a particular po-
licy implementation.

WebSphere is working on a couple of
emerging component models. Service
Resources represent a stateful grid ser-
vice as defined by the Open Grid Services
infrastructure (OGSi) specification as pu-
blished by the Global Grid Forum (GGF).
This is a merger of web services and a sta-
teful component model such as EJB Enti-
ty Beans. A Service Resource can be in-
stantiated through an explicit or implicit
factory, and is assigned an identity that al-
lows the application to differentiate dis-
tinct instances of the service.

Another emerging component model
is designed to assist in encapsulating and
communicating state – Service Data Ob-
jects (SDOs) [SDO]. A Service Data Ob-
ject captures business state acquired from
an underlying persistence source in a way
that can be easily serialized and transpor-
ted between components of a distributed
application. The SDO is acquired through
a data mediator that is responsible for
mapping the SDO state to its underlying
persistence form. WebSphere will intro-
duce mediators for JDBC-based relatio-
nal data systems and for EJB Entity
Beans (representing the most common
BMP and CMP application designs for
J2EE applications).

Web Services

A great deal of the original discussion in
the industry about web services has been
centered around the use of SOAP over
HTTP. In fact, web services has much
broader value than that. Web services is
first and foremost about services oriented
architecture. Web services is an XML-
oriented specification of SOA. It’s prima-
ry value is in enabling a loosely-coupled
distributed systems specification for ser-
vice-based interactions between par-
ticipating applications using internet
technologies [WSA].

As we’ve already state, the core of
web services is WSDL. WSDL leverages
XML as a highly expressive specification
of what the service does and how to com-
municate with it. WSDL is partitioned
into different segments to distinguish the
abstract specification of the services’ in-

WebSphere Programming Model and Architecture

26 Datenbank-Spektrum 8/2004

terface (the PortType) from the particu-
lars of the protocols, encodings and end-
point addresses of the service (the Bin-
ding). This separation allows program-
mers to focus on what they have to code
in their programs, and allows deployers to
know what they need to arrange a physi-
cal connection to the service.

Web services has been promoted as
leveraging internet technologies – speci-
fically HTTP and XML (in the form of a
SOAP message structure). Certainly, one
significant usage scenario for web ser-
vices is to enable connection of business
partners and home users to the enterprise.
This, in turn can make valuable use of the
internet as an underlying backbone.
HTTP and XML is ubiquitous, and net-
work infrastructures are already well for-
med for enabling the communication bet-
ween institutions. However, there are a
couple of problems with this focus.

First, HTTP is an unreliable commu-
nication protocol. Messages may need to
be resent in case they are lost, and there is
no assurance that having done so that
duplicates of the message won’t show up
at the service. Also, much of the firewall
support that web services over HTTP ex-
ploit to gain access to inter-enterprise ser-
vices is designed with the assumption that
HTTP traffic is just carrying harmless
web pages to a browser, and some field-
level user input that is used to determine
the next page to send. On the other hand,
web services offer the opportunity to re-
motely drive powerful business functions
and to exchange large quantities of poten-
tially valuable business information. This
suggests that the firewall support for
HTTP traffic may be entirely inadequate
for protecting the enterprise from attacks
that can be mounted using the power of
web services flowing with SOAP over
HTTP.

Further, where web services are being
exploited within an enterprise for intra-
enterprise application integration, the I/T
infrastructure may already be layered on
other robust, efficient, and fully deployed
network backbones. For example, many
enterprises already have a MQ-based or
similar messaging backbone in place,
along with instrumentation, tuning proce-
dures, intermediation, content-based rou-
ting, and other mechanisms for managing
the enterprise I/T infrastructure that web
services could benefit from. This repre-
sents one of several cases where an enter-

prise will want to be able to flow web ser-
vices requests over network protocols
other than just HTTP. WSDL allows that
through alternate bindings, and Web-
Sphere provides support for communicat-
ing web services requests over HTTP,
JMS, and locally optimized in-memory
Java Object calls (the latter is useful when
the service happens to be deployed in the
same JVM as the client that will use it).

In addition, WebSphere supports a
web services gateway – a communication
proxy that can receive web services re-
quests flowing over one protocol and
convert them to flow over another proto-
col. This might be useful, for example, if
you want to deploy a web service for use
both within an enterprise and also be ac-
cessible over the internet to other busi-
ness partners or home users. The service
may be deployed for intra-enterprise
communication with support for JMS
bindings. The web services gateway can
then proxy that same web service to the
internet with an HTTP binding. This also
helps protect other services from being
exposed over the internet that perhaps
you want to remain private for internal
intra-enterprise use.

WebSphere R5.02 introduces support
for the Java standards for web services.
Specifically, it supports the JAX-RPC
(JSR-101) client programming model for
invoking a web service within a J2EE ap-
plication, and supports the Web Services
specification for J2EE (WSEE – JSR-
109) for deploying web services imple-
mentations. In WebSphere, web services
are implemented as Stateless Session
Beans. With few exceptions2, any State-
less Session Bean can be made into a web
service. This fits well with the idea that
Session Beans represent the activities of
the application. The highest level activi-
ties are, in essence, the business services
of the application. A Session Bean can be
made into a web service in the Web-
Sphere Studio tooling. This will create
WSDL for the Bean, and then generate
the deployment descriptors for the Bean
that the container needs to manage the
Bean as a web service.

It is worth noting here, that any of the
component types identified earlier that

2. WebSphere does not currently support custom
serializers and so the arguments of the Session
Bean must be serializable and support stan-
dard mappings to XML types.

are rendered in WebSphere as Stateless
Session Beans, including application de-
fined Session Beans, J2CA Adapters, and
Business Process components can be de-
ployed as web services. This enables, for
example, legacy application functions
such as CICS transactions, etc. to be ad-
apted through a J2CA connector, and then
expressed as a web service. Even if you
don’t use WebSphere to build J2EE appli-
cations, you can use it to expose your le-
gacy functions as web services.

Business Process Choreography

WebSphere supports the execution of
business processes that can be defined
using a rich set of constructs. A business
process consists of a number of steps,
called activities, which represent invoca-
tions of tasks on behalf of the process.
Those tasks can be web services in the
broad sense of the previous section, i.e.,
any piece of code invoked by a suitable
binding, from a synchronous local Java
call to an asynchronous SOAP over JMS
invocation [Leymann et al. 2002]. Tasks
can also be human tasks, allowing for the
incorporation of people into business pro-
cesses – from the perspective of the busi-
ness process, a human task is an asyn-
chronous service with a special binding.
Actual execution of the activities of a
business process is prescribed by partial
ordering constraints on the set of activi-
ties. In other words, a business process is
a directed graph where the nodes are acti-
vities, and the edges ostensively show
which activities need to be executed in
which order, or can be executed concur-
rently. WebSphere’s business process
container uses those constraints to mini-
mize the elapsed time for the execution of
a business process by executing activities
in parallel wherever possible.

As has already been mentioned, the
Business Process Execution Language
for Web Services (BPEL for short)
[BPEL4WS] is the language used for the
specification of business processes.
BPEL provides the syntactical means to
describe a business process where the
tasks are web services, and where the
business process itself is a web service –
typically, but not necessarily, a stateful
one. For that, it provides constructs for
the composition of elementary inbound
web service calls (receive, receive-reply)
or outbound web service calls (invoke)

WebSphere Programming Model and Architecture

Datenbank-Spektrum 8/2004 27

into more complex activities, such as se-
quence (a number of activities needs to be
executed one after the other), switch-case
(based on the evaluation of a predicate,
one of several activities is executed),
while (an activity is looped as long as a
predicate is evaluated to true), or flow (a
construct allowing to directly specify a
flow graph using activities and control
links). To allow dealing with long-run-
ning and thus stateful business processes,
BPEL introduces the ability to identify a
concrete instance of a business process
using correlation information from key
fields of the invocation message itself – it
is then the responsibility of WebSphere,
rather than the client application, to route
the message to the right instance [Klopp-
mann & Pfau 2003].

Human tasks are special kinds of ac-
tivities whose implementation consists of
two parts. First, the people who should
perform the activity are resolved. Rather
than statically assigning user IDs to acti-
vities, WebSphere allows to define peo-
ple responsible for an activity using staff
queries, which are abstract query verbs
against the WebSphere user directory.
This enables assignment of people based
on dynamically determined properties,
such as the membership in a certain role
or organization. The verb set is extensible
to allow supporting directory schema ex-
tensions. It is also possible to incorporate
context from the business process in-
stance into staff queries, e.g., to have an
activity performed by the same person
who performed an earlier activity of the
same instance. Once the responsible peo-
ple have been resolved, in the second part
WebSphere needs to interact with them so
that they can actually perform their tasks.
This is done using a browser-based client
that presents tasks to users, allows them
to claim tasks to exclusively work on
them and to complete tasks passing a re-
sult, thus letting the business process to
continue. WebSphere comes with such a
client out-of-the-box that can generically
work with any process, but it also provi-
des all the APIs needed to produce a cus-
tom client easily.

BPEL is a web services specification
that only uses other web services stan-
dards, such as WSDL, XML schema or
XPath, and is completely agnostic of pos-
sible hosting environments [Leymann &
Roller 2002]. Hence, WebSphere provi-
des a mapping of business processes into

a J2EE environment, and also provides
extensions to enable direct access to the
hosting J2EE environment from within
business processes. A process is made
available to a J2EE programmer as a sta-
teless session EJB implementing the ope-
rations that the process provides, accor-
ding to its BPEL interface (as we have
seen in the previous section, it is through
this stateless session EJB that the busi-
ness process will be provided as a web
service to its clients). For stateful proces-
ses, there also is an associated CMP entity
EJB, responsible for storing the state of
the instances of that process, and for re-
trieving a particular instance based on
correlation information. WebSphere ex-
tends BPEL to support activities that are
implemented by inline Java code (»Java
snippets«) – these activities run in the
J2EE environment of the EJB represen-
ting the process. WebSphere similarly
supports to specify expressions (mainly
condition predicates, but also timeout ex-
pression) directly in Java, in addition to
XPath.

While business processes in general
are long-running and stateful, WebSphere
also supports the execution of stateless,
short-running flows, called microflows.
Microflows are used to script together a
number of service calls such as J2CA in-
vocations or message transformations. A
microflow is also specified using BPEL,
but given that it is stateless, it can only
synchronously invoke other services, and
does not allow for the incorporation of
people. Also, its J2EE representation is
via a stateless session EJB only – no enti-
ty EJB to keep state is required. A micro-
flow always implements exactly one ope-
ration.

Business processes are not typically
created using a text editor; BPEL is not
intended to be a language written by a de-
veloper. Rather, the WebSphere Studio
tool set features a graphical editor that
supports the creation and modification of
business processes, visually representing
the flow graph with its activities and con-
trol links. A new activity can be added by
dragging and dropping a service onto the
process, and then wiring it with the alrea-
dy existing activities. The graphical edi-
tor duplicates as a debugger, allowing to
set breakpoints, debug concurrent paths
of a process, single step through a process
activity by activity, look at and manipula-
te process data, and in general perform all

standard debugging tasks known from
Java debuggers, but at the graphical busi-
ness process level. Seamless debugging
at the business process level and at the
Java code level is possible within a single
tool.

WebSphere EJB Container

As we’ve indicated at several points
throughout this paper, the EJB container
is responsible for managing EJB compo-
nents – for supporting the systems infra-
structure encapsulation boundary desig-
ned into the EJB component model. We
will spend a few moments in this section
of the paper detailing some of the basic
architecture for the EJB container.

When the container is first initialized,
it interacts with the WebSphere manage-
ment system to determine what applicati-
ons are ‘installed’ on the container, and
what resources those applications depend
on. It loads the metadata associated with
the application and other relevant contai-
ner configuration data, such as the default
datasource, bean cache size, cleanup in-
terval and passivation directory into in-
ternal control structures. Part of the con-
tainer and runtime initialization includes
allocating the work-threads that the con-
tainer will use to execute in-bound EJB
requests, and putting those threads aside
in the thread pool, and allocating a num-
ber of bean instances – Object shells –
and putting those aside in the bean pool.

Requests that are targeted to an EJB
are received by one of the end-point liste-
ners for the various communication
stacks supported by WebSphere. These
end-point listeners are not literally a part
of the container, but are a part of the Web-
Sphere runtime environment in which the
container exists. The end-point listeners
are responsible for receiving in-bound
messages that encode a request to an EJB.
A part of the communication stack will
include the processes for de-marshalling
the execution service context that may
have flown in the request message. This
can include, for example, the security ses-
sion information for the requesting prin-
ciple, the client’s internationalization lo-
cale, any transaction context that brackets
the request, etc. A minimum amount of
context de-marshalling occurs before
scheduling the execution of the request.
This minimum context is used to classify
the request to determine it’s execution

WebSphere Programming Model and Architecture

28 Datenbank-Spektrum 8/2004

priority and to determine which worker
thread it should be put on.

When dispatching the request, the
runtime will migrate the request to a wor-
ker thread. To keep the cost of this move-
ment as small as possible, only the mini-
mum amount of context is demarshalled
as needed to determine a requests dispat-
ching priority. The remaining context and
request arguments are demarshalled after
the request has been aligned to its worker
thread. That also frees the end-point liste-
ner to then move on to asynchronously
process the next in-bound request mes-
sage.

To maintain a high degree of flexibi-
lity and modularity, the runtime does not
demarshal the execution service contexts
directly. It delegates this to the various
service managers that are installed in the
runtime through a set of interceptors.
That way, each service manager can take
responsibility for interpreting their own
service context formats and semantics.
And additional service headers can be
handled by simply adding new service
manager interceptors. After processing,
each service manager will form a service
context control structure for the request
and associate that with the thread of
execution.

The container is invoked by an object
adapter in the message listener to resolve
the identity of the EJB targeted in the in-
bound request. The container then demar-
shals the encoded object identity in the re-
quest, including its object type, and
attempts to resolve that against the pre-
viously activated objects in the bean ca-
che. If the referenced object has not alrea-
dy been activated, and if there is room
still available in the cache, then a bean in-
stance is allocated from the cache. That
bean instance is mapped to the target
identity of the request. If the class for the
targeted object has not already been loa-
ded, then the appropriate class loader is
instructed to load the bean’s class, which
in turn may, if this is the first time the ap-
plication has been started, activate initia-
lization of the class loader and the bean’s
manifest environment in it’s component
archive.

The container maintains a mapping of
the external component identity as indica-
ted by the request to the specific bean in-
stance in the bean pool. Subsequent re-
quests to the same component then are
routed directly to the cached bean instance.

Once the bean instance has been acti-
vated, its skeleton can then be used to de-
marshal the remaining arguments – map-
ping them then to the argument types ex-
pected by the bean implementation. Invo-
king the operation on the target bean
results in a container-breach. This is a si-
gnal to the container and its supporting
service managers to process the quality-
of-service policies for the target bean.
Again, each of the service managers are
engaged through a collaboration frame-
work to test the service context against
the state of target bean. Authorization po-
licies are verified; local JNDI java:comp
context is created, transaction policy is
executed; internationalization policy is
applied; etc.

The target bean is then subjected to
any remaining component lifecycle re-
quirements. For example, CMP bean sta-
te may be loaded and mapped from the
schema of the persistent store for that En-
tity.

A significant portion of the EJB con-
tainer includes the persistence and con-
nection managers. The persistence mana-
ger is responsible for processing the sche-
ma mappings between the beans abstract
schema definition and the concrete sche-
ma of the bean’s persistent data store. The
persistence manage also manages an in-
memory transactional cache that can be
used to reduce I/O to the data system, as
well as fulfill some of the access intent
optimizations that are possible. The con-
nection manager is responsible for crea-
ting, pooling, validating and handling
shared connections to the underlying data
system.

Finally, once all of the execution
context has been established and valida-
ted, and the bean state has been loaded
and initialized, the request may be dis-
patched on the bean’s method implemen-
tation.

If the bean implementation should in-
voke a request on another component,
even if it is in the same application server
JVM address space, it undergoes another
container breach and is subject to the
same processing again to validate the po-
licies of the new bean target.

As you can tell, the overhead of dis-
patching a component can be quite high –
although most of what’s been described
here is a worse-case scenario; much of the
processing can and is optimized out for
cases that do not need it all. This contri-

butes to the concerns discussed earlier
about how important it is to choose remo-
te-local component boundaries carefully
– the granularity of the component model
will determine how much of this com-
ponent management overhead shows up
in the overall execution path of the appli-
cation. However, assuming the right level
has been chosen for the application de-
sign, container management of the com-
ponent will go a long ways towards ensu-
ring the integrity of the application exe-
cution, and greatly simplifies the I/T in-
frastructure concerns for the application
developer – basically the application de-
veloper can ignore integrity issues and
put that burden on the middleware; fre-
eing them to concentrate their attention
on their domain requirements for the ap-
plication.

Scaling and Clustering

Container management represents one di-
mension of scaling – classifying work-
load, prioritizing dispatching, maintai-
ning a stateless execution environment all
go towards increasing the throughput of
applications hosted on the application
server. However, at some point, the ap-
plication server can only process work as
fast as the computer processor, memory
bus, file system channels and network ad-
apters will allow. At some point, scale
will be constrained in a single application
server instance by the underlying compu-
ter hardware, operating system, and avai-
lable resources on that computer.

However, WebSphere supports verti-
cal and horizontal clustering [Modjeski et
al. 2001]. Vertical clustering (multiple
application server instances running on
the same computer) can be leveraged to
overcome bottlenecks or constraints in a
single operating system process. Often
we see constraints on the amount of buf-
fer space or the heap size that can be allo-
cated to a single operating system pro-
cess. We also see cases where allocating
more threads of work to a single JVM just
increases the size of hash tables and other
execution control structures and results in
them working less efficiently. In any of
these sorts of cases, it may be beneficial
to increase the number of application ser-
ver processes on a single computer rather
than to continue to increase the amount of
work being directed to a single process
instance.

WebSphere Programming Model and Architecture

Datenbank-Spektrum 8/2004 29

Horizontal clusters (multiple applica-
tion server instances running on different
computers) can be leveraged to increase
the number of computers and related
resources that can be allocated to serving
an application.This might be useful to
overcome hardware constraints, in-
cluding the number of CPUs or amount of
physical memory, on a single computer.

A cluster can be composed vertically,
horizontally, or a mix of the two. A clus-
ter is defined to be a collection of appli-
cation server instances that act as a single
logical application server – all of the clus-
ter members are configured to run the
same applications and use the same ap-
plication resources (that is, J2CA resour-
ce adapters, data sources, JMS queue and
topic factories, etc.). A cluster should
have equal access to the underlying data
systems that it depends on – although
how this achieved is a subject for another
paper on data system scaling technolo-
gies, including through the use of data
system clustering, mirroring and replica-
tion. Nonetheless, the application server
cluster appears to the administrator to be
one logical application server hosting a
set of applications. WebSphere clients –
the Edge Server, Web Server plug-in,
Web Application Container, EJB Contai-
ner, and the J2EE Client Container – are
all implemented to understand WebSphe-
re clustering. These clients will distribute
workload across the cluster in either a
round-robin or random fashion.

Each member of the cluster can be as-
signed a different weighted value in
which case workload will be distributed
to the different members proportional to
those weightings. This is useful if you de-
termine that some of the computers in the
cluster have more capacity than others –
perhaps due to differences in the hard-
ware, or due to some of the computers
being shared to host other workloads.
R5.02 of WAS-Enterprise edition intro-
duced support for dynamic workload ma-
nagement. The workload system moni-
tors the performance of each application
server. If it sees that one server is slowing
down, it will automatically reduce its
weighting value, reducing the amount of
work that is routed to that server instance.
When the server picks back up, the
weighted value is restored and more work
will be routed to it.

On Demand and Grid Computing

One of the most significant problems fa-
cing I/T shops today is with containing
their costs – getting more utility from
their computing infrastructure [Acker-
mann et al. 2002]. As we look at the com-
puter industry today, we see that comput-
ers tend to be heavily under-utilized. One
major reason for this stems from the fact
that applications tend to be set up as is-
lands – with their own set of dedicated
computing resources. A set of computers
will be installed to host an application and
will be provisioned with enough capacity
to handle the greatest demand that appli-
cation will ever see. Over a number of ap-
plications, and at any given point in time,
this results in an tremendous amount of
»spare« capacity.

On demand computing seeks to
change that situation. On demand compu-
ting focuses on key areas of computing
with the intent of making computing
infrastructures behave more like a utility
grid, and for enabling businesses to re-
spond more efficiently to their own busi-
ness demands. The focus for on demand
computing includes [IBM ODOE]:

• Operating environments
• Infrastructure management and pro-

visioning
• Virtualization
• Autonomics
• Utility computing
• Business responsiveness

If you watch the utilization of an applica-
tion over a period of time you will begin
to notice it oscillates throughout the day
and over the week or month. This is often
the result of the nature of the application
and its user behavior. Discount trading
applications, for example, tend to cater to
day-traders and home consumers – who
tend to use these applications during the
lunch hour or in the evenings, after work.
Accounting applications tend to hit their
peak utilization at the end of reporting pe-
riods when financial results need to be
calculated and summarized. Bank Teller
applications tend to be at peak utilization
at mid-morning and late-afternoon. And
so forth. Over a large enough business
area, the peak utilization curves of the ag-
gregation of applications in use by that
business tend to cancel each other out –
the total utilization tends to be less than
the peak sum of the parts.

With this in mind, the on demand ope-
rating environment is being designed to
enable I/T data centers to pool all of their
computing resources for a set of applica-
tions, and then manage workloads over a
dynamically configured system [ODOE].
This will leverage clustering, workload
distribution and automated configuration
management to automatically increase or
decrease the number of application ser-
vers that are assigned to support a given
application in a cluster. As utilization de-
mands increase for a given application,
the number of application servers, and
thus the amount of computing resource,
assigned to the application will be expan-
ded. Other applications that are experien-
cing less demand at the time will be sca-
led back to consume less resource – gi-
ving that resource over to those applicati-
ons that need it.

This sort of dynamicity can not be en-
tirely reactive. In some cases, the reaction
time of the system may be too slow for
certain critical business functions. For
those functions, it may be important to al-
ways reserve a certain amount of un-used
capacity just so that it is there for when
demand spikes. In other cases, careful
analysis of the utilization history may re-
veal that demand always increases at a
certain time of day, and so you can antici-
pate this need in advance. Moreso, over-
all utilization trends may suggest that de-
mand for the entire portfolio is increasing
(business is good!) and that the capacity
of the entire system needs to be increased.

Tivoli is working on provisioning and
policy systems that maintain service-le-
vel policies for each application, and will
govern the allocation of on demand re-
sources to meet the service-levels re-
quired for each of those applications
[IBM Tivoli]. These infrastructure ma-
nagement and provisioning systems will
plug-in to the open management APIs
provided by WebSphere in the form of
JMX and the resource configuration ser-
vice. They will drive WebSphere to re-
configure its clusters and adjust its work-
load routing decisions to ensure service
level objectives are being met. This ma-
nagement system will plug-in to the Web-
Sphere Performance Monitor Infrastruc-
ture (PMI) and Application Response
Monitoring (ARM) instrumentation, to
collect response time and resource uti-
lization metrics that inform the manage-
ment system on where bottlenecks may

WebSphere Programming Model and Architecture

30 Datenbank-Spektrum 8/2004

be forming in the system or what sort of
system utilization is actually being expe-
rienced, and feed that back into the provi-
sioning decisions.

To benefit from such a dynamically
configured system, applications must be
shielded from the underlying information
system. This returns us to an earlier theme
– there needs to be a strong separation of
concerns between the business applicati-
on logic and the I/T infrastructure. In this
case, the middleware needs the flexibility
to migrate the application to use different
parts of the system in accordance to capa-
city, utilization, and demand require-
ments that are formed outside of the ap-
plication. The middleware needs to virtu-
alize the underlying information system
so that, like a virtual-memory system, it
can manage the logical dependencies of
the application against the physical re-
sources at its disposal.

As large scale systems grow increa-
singly complex – as more computers and
resources are added to the environment;
as more heterogeneous variety is inclu-
ded; as workload disparity increases; as
the mix of underlying infrastructure tech-
nologies and application dependencies
becomes more intertwined; as more and
more resources become virtualized – the
task of managing the system is slowly
drowning the administrators that have to
keep these systems going. The only way
that enterprises will be able to benefit
from large scale, heterogeneous distrib-
uted computing systems acting like a uti-
lity grid is if the grid environment is au-
tonomic – that is, self-managing; self-he-
aling, self-configuring, self-tuning, and
self-protecting [IBM Autonomic]. Auto-
nomic systems are needed to reduce the
burden on administrators.

Elements of the MAPE-loop – that is,
Monitoring, Analysis, Planning and Exe-
cution of autonomic responses to systems
management, all centered around a com-
mon Knowledge base of system seman-
tics and administrative policies – have
already been instrumented into Web-
Sphere. Again, PMI and ARM instru-
mentation has been built in to WebSphere
to monitor some hundred or more opera-
tional metrics – from the size and utiliza-
tion of the thread pool, to the number of
in-flight transactions, to the number of
connections open to a given database.
These can be used to inform the monito-
ring system precisely what’s going on in

the WebSphere runtime for a given appli-
cation.

A knowledge base of common perfor-
mance and problem symptoms is being
accumulated from real customer experi-
ences. These symptoms can be applied
through the WebSphere Log Analyzer
and Performance Advisor included with
the Tivoli Performance Viewer – both in-
cluded in WAS R5 – to diagnose a situa-
tion and collect advise on how to correct
it. In the future, these utilities will be tran-
sitioned from simply providing advice, to
automatically acting on the advice to ad-
just the system for peak performance. As
with the provisioning system for service
level agreements, tuning and problem re-
sponse management can be controlled
through a set of policies. For examples, a
policy might be set to condition the per-
formance tuning system to make certain
basic configuration changes within a nor-
mal operating range, but to get confirma-
tion from an administrator if certain
thresholds are exceeded. For example, an
error in a new application may be inad-
vertently generating more demand for a
certain service than should be expected.
Rather than reconfigure the system to sa-
tisfy that demand, the administrator may
want to intervene to prevent that appli-
cation from taking over their entire sys-
tem.

Similar mechanisms are being put in
place for problem management and secu-
rity.

Employing large scale distributed
computing grid technologies for effi-
ciently hosting enterprise applications
within an I/T data center is one form of
utility computing. A broader form of uti-
lity computing can be formed as an
outsourcing offering by 3rd-party service
providers. We expect a number of service
providers will take advantage of the even
larger economies of scale that can be rea-
lized by hosting not just the business
applications of a single enterprise, but
rather, hosting the applications of many
enterprises, including small and medium
businesses. These environments will in-
troduce new problems for data, process,
administration and failure isolation – no
one business being hosted in the utility
wants to be affected by a failure or rogue
applications introduced for another busi-
ness. Again, WebSphere is incorporating
infrastructure to enable this type of isola-
tion within a utility computing environ-

ment.
Which brings us, finally, to business

responsiveness [IBM Global]. If there is
any ideal goal for information computing,
it is to transition from being a cost-of-do-
ing-business to being a business asset –
that is, something that not only enables a
business to conduct business, but also
something that provides a return on in-
vestment by enabling a business to con-
duct business better; in ways that are
more profitable; in ways that could not be
performed without it. On demand compu-
ting is about integrating enterprises
across their lines of business – to make
the enterprise as a whole more efficient
and synergistic, and more responsive to
the marketplace.

Integrating the lines of business can
reduce costs by streamlining operations
and enabling parts of the business to rea-
lize downstream affects of their business
decisions. For example, integrating the
order entry system with the supply sys-
tem allows the marketing organization to
focus their advertising campaigns on real
supply and demand information. It helps
the pricing organization to make adjust-
ments in the supply chain before making
a pricing change. It helps the human re-
sources organization make better work-
force decisions.

But more importantly, when this inte-
gration is then coupled with business pro-
cess management it allows business ana-
lysts and business managers to adjust
their business processes rapidly and in re-
sponse to real-time shifts in the market
place. If world oil-prices change, busi-
ness managers can adjust their order ful-
fillment and logistics processes to com-
pensate, or shift their sales processes to
emphasize certain regional markets.
Using business process choreography and
scripting tools, the information system
can be used by business managers to
change the way their business operates,
enabling them to respond much more ra-
pidly to market conditions and opportuni-
ties to given them competitive leverage.

These are the real goals of on demand
computing – to leverage on demand re-
source management within the I/T infra-
structure to enable business that respond
on demand to their market and business
conditions and opportunities.

WebSphere Programming Model and Architecture

Datenbank-Spektrum 8/2004 31

Conclusions

The primary goal for WebSphere is to
merge the world of web-based computing
with the world of enterprise-computing,
to enable customers to exploit emerging
and rapidly expanding business opportu-
nities, across a range of platforms and
scale, at the lowest cost of ownership,
with a consistent and synergistic end-to-
end experience for information compu-
ting. We can return application program-
mers back to the task of building sustai-
nable value and return on investment to
the business by enabling them to spend
more time creating flexible, durable and
re-usable business assets and less time
creating I/T infrastructure. WebSphere
accomplishes this by incorporating fun-
damental design principles for mid-
dleware with a programming model that
separates concerns, and then layers that
on an infrastructure that enables scaling
from the smallest of pervasive devices
through to high-end corporate I/T data
centers and utility service providers.
WebSphere is the foundation of on de-
mand computing to reduce the cost of
computing, and to enable information
systems as a competitive advantage to
businesses.

References

[Ackermann et al. 2002] Ackermann, J.; Agra-
wal, A.; Tinaikar, R.: Viewpoints: A Plan of
Attack for Cutting Information Technology
Costs. McKinsey and Company, 2002. Avai-
lable online at www.mckinsey.com/know-
ledge/articles/viewpoints.asp.

[BPEL4WS] Business Process Execution Langu-
age for Web Services (BPEL4WS). Version
1.0. IBM, Microsoft, BEA, July 2002. Avai-
lable online at http://www.ibm.com/develo-
perworks/library/ws-bpel/.

[Burbeck 2000] Burbeck, S.: The Tao of e-Busi-
ness Services, IBM Corporation, 2000. Avai-
lable online at http://www-4.ibm.com/softwa-
re/developer/library/ws-tao/index.html.

[Everyplace] Everyplace Toolkit for WebSphere
Studio – Product Overview – IBM Software.
Available online at http://www-3.ibm.com/
software/pervasive/everyplace_toolkit/.

[IBM Autonomic] IBM Autonomic computing.
Available online at http://www-3.ibm.com/
autonomic/index.shtml.

[IBM Global] IBM Global Services: Tighter bud-
gets, better business: Extracting value from
the enterprise in a downturned economy.
Available online at http://www-1.ibm.com/
services/files/GSEE510301500F-budgetpres-
sure.pdf.

[IBM ODOE] The IBM on demand operating en-
vironment. Available online at http://www-
3.ibm.com/software/info/openenvironment/.

[IBM Patterns] IBM Patterns for e-business Re-
sources. Available online at: http://www-
106.ibm.com/developerworks/patterns/libra-
ry/.

[IBM Tivoli] IBM Infrastructure Management.
Available online at http://www-3.ibm.com/
software/info/openenvironment/infra-mgmt/
solutions.html.

[IBM WebSphere] IBM WebSphere – middlewa-
re, application server, e-business, infrastruc-
ture software. Available at http://www-3.ibm.
com/software/info1/websphere/index.jsp?tab
=highlights.

[J2EE] Java 2 Platform, Enterprise Edition. Avai-
lable online at http://java.sun.com/j2ee/.

[JSR168] The Java Community Process (SM)
Program – JSRs: Java Specification Requests
– detail JSR# 168. Available online at http://
jcp.org/en/jsr/detail?id=168.

[Kloppmann & Pfau 2003] Kloppmann, M.;
Pfau, G.: WebSphere Application Server En-
terprise Process Choreographer – Concepts
and Architecture, IBM, 2003. Available from
Process Choreographer section on WebSphe-
re Developer Domain: http://www7b.softwa-
re.ibm.com/wsdd/zones/was/wpc.html.

[Leymann et al. 2002] Leymann, F.; Roller, D.;
Schmidt, M.-T.: Web services and business
process management, IBM Systems Journal
Vol 41, No 2, 2002. Available online at http://
researchweb.watson.ibm.com/journal/sj/412/
leymann.html.

[Leymann & Roller 2002] Leymann, F.; Roller,
D.: Business processes in a Web services
world. 2002. Available online at http://www-
106.ibm.com/developerworks/webservices/li-
brary/ws-bpelwp/.

[Modjeski et al. 2001] Modjeski, M. et al.: Failo-
ver and Recovery in WebSphere Application
Server. 2001. Available online at ftp://
vadd1:sunwsfj4@207.25.253.53/1/wsdd/pdf/
modjeski.pdf.

[ODOE] The on demand operating environment.
Available online at http://www-3.ibm.com/
e-business/doc/content/evolvetech/operating_
environment.html.

[Röwekamp & Roßbach 2000] Röwekamp, L.;
Roßbach, P.: JSP Tutorial, part 2: Model View
Controller and Data Base Integration. 2000.
Available online at http://www.heise.de/ix/ar-
tikel/2000/08/148/.

[Schneberger 1995] Schneberger, S. L.: Software
maintenance in distributed computer environ-
ments: system complexity versus component
simplicity. Proceedings International Confe-
rence on Software Maintenance. October 17 -
20, 1995, Opio (Nice), France. Available on-
line at http://csdl.computer.org/comp/procee-
dings/icsm/1995/7141/00/71410304abs.htm.

[SDO] Services Data Objects. Available online at
http://www.ibm.com/developerworks/library/
j-commonj-sdowmt/.

[Snyder 2003] Snyder, B.: Report: IBM Takes
Lead in App Servers, 05/07/2003. Available

online at http://www.thestreet.com/tech/bill-
snyder/10085744.html.

[SOA] Service Oriented Architecture. Available
online at http://www.serviceoriented.org/ser-
vice_oriented_architecture.html.

[WASZOS] Enterprise JavaBeans for z/OS and
OS/390 WebSphere Application Server.
Available online at http://publib-b.boulder.
ibm.com/Redbooks.nsf/RedbookAbstracts/sg
246283.html?Open.

[WSA] Web Services Architecture W3C Wor-
king Draft. Available online at http://www.
w3.org/TR/ws-arch/.

Rob High is Chief Architect
for WebSphere Application
Server foundation. He is Dis-
tinguished Engineer and a
member of the IBM Academy
of Technology. He started his
career with IBM in 1981, and

has extensive experience in object-oriented and
component-based programming, distributed
computing, and application integration middle-
ware. He currently works in Austin, Texas, Uni-
ted States.

Robert H. High Jr.
IBM Software Group
11501 Burnet Road
Austin, TX 78758
USA
highr@us.ibm.com
http://www.ibm.com

Matthias Kloppmann is an
IBM Senior Technical Staff
Member and the lead architect
for WebSphere Application
Server´s Process Choreogra-
pher component. He joined
IBM in 1986 and has worked
on a variety of projects, with a

focus on data bases, workflow and business pro-
cess management. He studied computer science
and electrical engineer in Hagen and Stuttgart.

Matthias Kloppmann
IBM Software Group
Schönaicher Str. 220
71032 Böblingen
Matthias-Kloppmann@de.ibm.com
http://www.ibm.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check true
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to report on PDF/X-3 compliance and produce PDF documents only if compliant. PDF/X is an ISO standard for graphic content exchange. For more information on creating PDF/X-3 compliant PDF documents, please refer to the Acrobat User Guide. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d003300200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d0033002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d00336e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af30b3002030f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d003300206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d0033002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d0033002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d00330020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d0033002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d003300200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d0033002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d003300200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d0033002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d0033002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d0033002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d003300200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002d0033002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d0033002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d0033002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d0033002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d0033002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d003300200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d0033002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d0033002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

