SUCCINCTDATA STRUCTURES
by
Ankur Gupta

Departmert of Computer Science
Duke University

Date:

Approved:

Je rey Scott Vitter, Supervisor

Pankaj Agarwal

Roberto Grossi

Xiaobai Sun

Dissertation submitted in partial ful llment of the
requiremens for the degreeof Doctor of Philosopty
in the Department of Computer Science
in the Graduate Sdool of
Duke University

2007

ABSTRACT

SUCCINCTDATA STRUCTURES
by

Ankur Gupta

Departmert of Computer Science
Duke University

Date:

Approved:

Je rey Scott Vitter, Supervisor

Pankaj Agarwal

Roberto Grossi

Xiaobai Sun

An abstract of a dissertation submitted in partial ful llment of the
requiremens for the degreeof Doctor of Philosopty
in the Department of Computer Science
in the Graduate Sdool of
Duke University

2007

Copyright ¢ 2007by Ankur Gupta
All rights resened

Abstract

The world is drowning in data. The recen explosionof web publishing, XML data,
bioinformation, scieri ¢ data, image data, geographicalmap data, and even email
communications hasput a strain on our ability to managethe information contained
there. The in ux of massie data setswith all kinds of featurespreserts a number
of di culties with e cient managemen of storage space,organization of informa-
tion, and data accessibiliy. A primary computing challengein thesecasess how to
compressthe data but still allow them to be queried quickly. This thesis addresses
theoretical and algorithmic issuesarising from thesepractical concernsfor the prob-
lem of compressd text indexing where we want to maintain e cient data storage

and rapid responseto querieson data.

The premiseof data compressiorcomesfrom many real-life situations, wheredata
are often highly compressible.This compressibiliiy constitutes a major opportunity
for saving spaceand data query latency, and is a critical bottlenedk for many applica-
tions. In mobile applications, for instance,spaceand the power to accessnformation
are at a premium. In a streaming environmert, wherenew data are being generated
constartly, compressiorcan alsoaid in prediction of upcomingtrends. In the caseof
bioinformatics, analyzing succinctrepresetations of DNA sequencesould leadto a
deeper understandingof nature, perhapseven giving hints on secondaryand tertiary
structure, geneewlution, and other important topics.

We usetext data asthe subject of this particular study. We introduce a num-
ber of compressedlata structures for compressedext indexing that enablearbitrary
searting for patterns in the provably bestpossibletime. The methodologyis distinct
in that the processof searding also encompasseslecaling; therefore, the original

documern is no longer needed. Together, thesedata structures can be usedat mul-

tiple levels of a compression-retrieal hierarchy to arrive at an overall text indexing
solution. Somestructures can be used individually as well, within or beyond the
scope of text indexing. For ead data structure, we provide a theoretical estimate
of its spaceusageand query performanceon a suite of operations crucial to access
the stored data. In eat case,we relate its spaceusageto the compressé size of
the original data and shav that the supported operations function in near-optimal

or optimal time.
We alsopresen a number of experimertal results using our methodology. These

experimerts validate our theoretical ndings, and we establishthat our methodology

is competitiv e with the state-of-the-art.

Ac knowledgemen ts

First and foremost, | would like to thank my advisor Je rey Scott Vitter. I'm not
surewherel would be without his cortinued support and guidance. Je 's insistence
on clarity and precisionis a necessaryfoundation for any seriousgraduate studert,

and | am grateful to have bene ted from sud a rm vision.

| would alsolike to thank my committee menbers Roberto Grossi, Xiaobai Sun,
and Pankaj Agarwal for providing careful commerns on my doctoral work. Special
thanks goto Roberto Grossi,who sened asa collaborator and co-advisorthroughout
my graduate careerand helped shape who | have become.l would alsolike to thank

Rahul Shahand Wing-Kai Hon, both of with whom | enjoyed working and sacializing.

| would like to thank my family for providing love and encouragemen My par-
erts, Umesh and Manju Gupta, and my brother Parag Gupta, were always there
when | most neededsomeone.l could not have completedthis work without them.
| cannot beginto expressin words the impact my wife Diksha had on me during the
nal stagesof my studies;her concernfor and patiencewith long hoursand demand-
ing sdhedulesare truly amazing. Finally, my grandfather Ramswaroop Gupta has
always beena quiet strength in my life, with a deepcalm and a focus on the simple
things. | hope oneday to read that pedestal.

I have a long list of friends whosecompanionshiphas broadenedmy life: Matt
Taylor, Rex Robinson,Sharlotte Greer, Tylan Watts, Andrew Stradk, Priya Mahade-
van, Justin Moore, Kristina Killgrove, Patrick Reynolds, David Cherryholmes,and
Aaron Miller to namejust a few. | am glad to have met them.

| would like to o er thanks to Michael E. Durbin, who advised me while | was
at the University of Texasat Dallas. His mertorship played a big part in fueling my

erthusiasmtowards Computer Science.l would alsolike to thank Diane Riggs,in the

Vi

Departmert of Computer Scienceat Duke University. Shewas always there to o er

help to studerts, whether it be paperwork, sheduling, or just a sympathetic ear.

Vii

Contents

Abstract

Ac knowledgemen ts
List of Figures

List of Tables

1 Intro duction
1.1 Text Compressionand Text Indexing
1.2 Dictionaries and Data-Aware MeasuresfFor SetData

1.3 Dynamizing SuccinctData Structures.

2 An Algorithmic Framew ork for Compression and Text Indexing
2.1 Introduction
211 TextCompression. v v v i i i
2.1.2 CompressedlextiIndexing
2.1.3 Outline ofChapter
2.2 High-Order Empirical Entropy
2.2.1 Empirical Probabilistic High-Order Entropy
2.2.2 Finite SetHigh-Order Entropy
2.3 The Unied Algorithmic Framework: Tighter Analysis for the BWT .
2.3.1 The BWT and (Compressed)Sux Arrays.
2.3.2 Context-Based Partitioning of the BWT
2.4 Encading Sublistsin High-Order Entropy

2.4.1 Individually EncodedSublists

viii

Vi

Xiii

Xiv

11

16

16

16

19

22

2.4.2 The SpaceRedundancyof Encoding Multiple Sublists. 32

243 TheWaveletTree. 36
2.4.4 SubsetEncading With SmallIntegers. 41
2.5 Encading the Empirical Statistical Model 46
2.5.1 Denitions andaSimpleBound 47
2.5.2 Nearly Tight Upper BoundonM(T; ;h) 49
2.6 Nearly Tight Lower Boundsforthe BWT 53
2.6.1 Constructing -resiliert Texts 55
2.6.2 Encadinga -resiliert Text. 59
2.7 RandomAccessto the CompressedRepresetation of LF and ... 61
2.7.1 Wavelet Treesas SuccinctDictionaries 62
2.7.2 Random Accessto the CompressedRepresetation of ... 66
2.7.3 RandomAccessto the CompressedRepresetation of LF . . 71
2.8 Usingthe Framework for CompressedSsu x Arrays 72
2.8.1 CompressedSux Arrays(CSAS) 72
2.8.2 High-Order Entropy-CompressedSu x Arrays. 75
2.9 Applicationsto TextIndexing 83
2.9.1 High-Order Entropy-Compressedlext Indexing 83
2.9.2 A Pattern Matching Tool 86
210 Conclusions 89

3 When Indexing Equals Compression:

Exp erimen ts with Compressing Sux Arra ys and Applications 93
3.1 Introduction 93
3.1.1 OurResults 94

3.1.2 Outline ofChapter 96

3.2 A SimpleYet Powerful Dictionary 96
3.2.1 Practical Dictionaries. 97
3.2.2 Empirical Distribution of RLE Valuesand Codes 101
3.2.3 Statistical EvidenceJustifying Codes. 104
3.2.4 Fast Accessof Experimertal-Analysis-Driven Dictionaries . . . 107

3.3 Reviewof WaveletTrees 109
3.3.1 Ecien t Construction of the Wavelet Tree 113
3.3.2 Compressionwith bwt2wzip 114
3.3.3 Decompressiorwith wzip2bwt 117
3.3.4 Performanceand Experimerts forwzip 118

3.4 Practical Sux Arrays: Indexing Equals Compression. 120
3.4.1 CompressedSux Arrays(CSA) 120
3.4.2 Practical Considerationsfor Compressedsu x Arrays 122
3.4.3 Sux Array Compression 125
3.4.4 Sux Array Functionalites 127

3.5 Space-Ecient SuXx Trees. 128

3.6 Conclusions 131

Compressed Dictionaries and Data-Aw are Measures 133

4.1 Introduction 133
4.1.1 Comparisonsto PreviousWork 135
4.1.2 Outline ofthe Chapter 138

4.2 Dictionaries and Data AwareMeasures. 139
4.2.1 The Dictionary Problem 139

4.2.2 Thegapandtrie Measures. 141

4.2.3 Relationship Betweengap, trie andstrie 144
4.3 Binary Seardable Dictionary Represetation 146
4.4 The Fully IndexableDictionary Structure 152
4.5 The IndexableDictionary Structure 154
45.1 The Top Level Distributor Structure 155
45.2 Distributor Details 157
4.5.3 Solving Partial Rank and SelectQueries 158
454 SpaceAnalysis 159
4.6 Experimertal Results., 161
4.6.1 Experimertal Setup. 163
4.6.2 Code Comparisonsfor Encodingsand Pointers 163
4.6.3 BSGAPThe SuccinctBinary-Searhable Black Box 166
4.7 Applications of SuccinctDictionaries 168
4.7.1 Experimertal Setup. 0. 169
4.7.2 Binary Seartable Run-Length Encading 170
4.7.3 Experimertal Results. 174
4.8 CoONCIUSIONS e 176
Dynamizing Succinct Data Structures 179
5.1 Introduction e 179
5.1.1 Outline 181
5.2 Preliminaries 182
5.3 Data Structures 186
5.3.1 Bitvector Dictionary with Indels: Bitindel 187

Xi

5.3.2 Constant-Time Bitindel 189

5.3.3 Insert-X-Delete-ary: inX 191
5.3.4 onlyX-structure 193
5.4 Constart-time onlyX-structure 197
5.4.1 The Final Data Structure 199

5.5 Dynamizing Ordinal Trees,Labeled Trees,and the XBW Transform . 200

6 Conclusions and Future Directions 207
Bibliograph y 210
Biograph y 219

Xii

List of Figures

2.1

2.2

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

An examplewavelettree.. L. 36
A wavelet tree for cortext i in our example. 38
Distinct RLE valuesfor bible.txt in increasingorder. 105
An RLE-encadedwavelettree. 110
Time and spaceboundsof dictionaries for rank and selet queries. . . 138

Comparisonof lg ., trie (S), gap(S), and a gap stream encaled ac-
cording to the nibble4 code for the data les in Section4.6.1.. 146

Comparisonof codesand measuredor the data les in Section4.6.1. 164

Comparisonof gap+codes,lg . , and gap(S) for real-data les, de-
scribedin Section4.6.1. oo 165

Comparison of pre x codes for BSGARointers for the data les in
Sectiond.6.1. 165

Comparisonof BB and BSGABnN 32-bit data les in Section4.6.1. . . 168

Comparisonof BB and BSGABN 48-bit and 64-bit data les in Sec-
tion 4.6.1. 169
Comparisonof csa and FM-index on court and locate. 178

Xiii

List of Tables

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Trade-o s betweentime and spacefor the implementation of csa and
its supported operations.o o 13

Trade-o s betweentime and spacefor the compressedext indexing

basedonthecsa. 14
An exampleof the bwt for the text T = mississippi# 91
An exampleof our conceptualtwo-dimensionaltable T. 92
Normalized form of the conceptualtable T. 92

ComparisonbetweenRLE encaling (RLE+), gapencading (Gap+),
and related measureqlg ; , E(L), andE(G)). 101

Comparison of various coding methods when used with run-length
(RLE) andgapencdling.., 102

Comparison of various coding methods when used with run-length
(RLE) encdling. 103

E ect on performanceof wavelet tree usingfractional cascadingand/or
aHuman prex treeshape. 112

Wavelet tree with RLE+ encaling as a plain 0-order compressor,
appliedto the bwt stream. 113

Running times for bwt2wzip and wzip2bwt normalized with that of
asimplecopy routine. e 119

Measureof the e ect of MTF on various coding methods when used
with RLE. e 127

Comparisonof spacerequired by and the compressedsu x array
(CSA), givenin bits persymbol (bps). 128

Xiv

Chapter 1

In tro duction

The problem of data proliferation is challenging our ability to manageinformation. Classic
algorithms are greedyin terms of their spaceusageand cannot accessonly a tiny portion
of the data. This trend hasnot goneunnoticed by researters, as evidencedby the recert
issuesin data streaming [Mut03] and sublinear algorithms [Cha04]. Unlike these cases,
many problemsrequire the entire datasetto be stored in compressedormat but still need
it to be queried quickly. In fact, compressionmay have a more far-reaching impact than
simply storing data succinctly: \That which we can compresswe can understand, and
that which we can understand we can predict," as obsened in [Aar05]. Much of what we
call \insight" or\in telligence" can be thought of assimply nding succinct represertations
of sensorydata [BauO4]. For instance, we are far from fully understanding the intrinsic

structure of biological sequencesand as of today, we cannot compressthem well either.

Researters have consideredthese issuesin seweral algorithmic corntexts, such as the
design of e cient algorithms for managing highly-compressible data structures. They
have carefully studied the exact resourcesneededto represen trees [BDM * 05, GRRO04,
MRS0l1a MRS01b, MR02], graphs [Jac89a BBKO03], setsand dictionaries [BB04, BM99,
Pag0l RR03, RRRO02], permutations and functions [MRRR03, MR04], and text indexing
structures [FM05, GV05, GGV04, FGGV04, Sad02b,Sad03]. The goal is to design algo-
rithms with tight spacecomplexity s(n). The Kolmogorov complexity for represering data
provides a lower bound on the value of s(n) for eah represettation studied. Kolmogorov
complexity essetially de nes compressionin terms of the sizeof the smallestprogram that
can generatethe input provided [LV97]. Howewer, Kolmogorov complexity is undecidable

for arbitrary data, so any compressionmethod is known to be suboptimal in this sense!

LExtrap olating from [Aar05, Bau04], the undecidability of Kolmogorov complexity implies that

there is a computational limit on nding succinct represenations for sensorydata.

The hope is to achieve s(n) + o(s(n)) bits, with nearly-optimal asymptotic time bounds,
i.e. O(t(n)) time, while remaining competitive with state-of-the-art (uncompressed)data
structures [Jac894.

Providing an accurate analysis of spaceoccupancy (up to lower-order terms) is moti-
vated by the above theoretical issuesas well as the following technological issues. Space
savings can translate into faster processing(by reducing disk accesses)which results in
shorter seektimes or allows data storage on faster cade levels. A recert line of researt
usesthe 1/0 computation model [Vit01] to take into accourt someof theseissues,sud as
cade-oblivious algorithms and data structures [AV88, BDFCO05]. Somealgorithms exploit
data compressionto achieve provably better time bounds [RC93, KV98, VK96]. From an
economicalstandpoint, compresseddata would require lessmedia to store (such as RAM
chips in seart enginesor portable computing devices)or lesstime to transmit over regu-

lated bandwidth models (such as transmissionsby cell phones).

Similar goals for analyzing time bounds are di cult to achieve due to the complexity
of modern macines, unless some simple computation model (such as one reminiscert of
the comparisonmodel) is used. Sourcesof imprecision include cace hits/misses, dynamic
re-ordering of instructions to maximize instruction parallelism, disk scheduling issues,and
latency of disk head movemernts. Spacebounds, on the other hand, are relatively easierto
predict and can often bevalidated experimentally. This concreteveri cation isanimportant
componert of researt due to technological advancesthat may a ect an otherwise good
bound: 64-bit CPUs are on the market (increasing the pointer size or addressspace),
Unicode text is becoming more commonplace (requiring more than 8 bits per symbol as
in ASCII text), and XML databasesare encaling more data as well (adding a non-trivial
amount of formatting data to the \real" information). We needto squeezaall this data and
provide fast accesdo its compressedormat. For a variety of data structures, therefore, the
guestionremains: Can we adhieve a near-optimum compressionand simultaneously support
asymptotically fast queries?

In this thesis, we addressthis question for a number of applications focusedaround the

problem of compresse text indexing. The goalisto developanindex for aninput text T that
can e cien tly seart for any arbitrary substring of the text, and the index itself requires
spaceproportional to the size of the optimally-compressel input text T. Our work focuses
on deweloping both the text indexes,and shedslight on the critical componerts necessary
to achieve the best possibleindex. We also develop a number of these componerts, which
are meaningful results in their own right. We now brie y overview these componerts, and

explain how they work together.

1.1 Text Compression and Text Indexing

Our main interest is on text data. Properly addressingthe text data issuealso requires
e cien t solutions to a number of derivative succinct indexing problems. In this context,
the tight spacecomplexity s(n) is better expressedn terms of the entropy of the particular
text at hand. See[Sha48]for the de nition of entropy and [CT91] for the relation between

entropy and Kolmogorov complexity.

We want to dewelop tight spacebounds for text compression i.e. storing a text in
a compressedbinary format. We additionally want to design compressé text indexes to
decade any small portion of the text or seart for any pattern as a substring of the text,
without decompressinghe binary format entirely. In particular, we study how to obtain a
compressedrepresertation of the text that is a self-index namely, we desirea compressed

binary format that is also an index for the text itself.

We considerthe text T asa sequencef n symbols, whereead symbol is drawn from the
alphabet of size . Sincethe raw text T occupiesnlg bits of storage, T is compressible
if it can be represerted in fewer than nlg bits.? It is a simple fact that no encading of T
can take fewer bits than the entropy of T, which measureshow much randomnessisin T.

Here, ertropy is related to the size of the smallest program which generatesT, according

2In this thesis, we use the notation Igga = (Ig,a)¢ = (Iga=Igh)° to denote the cth power of the

baseb logarithm of a. If no baseis speci ed, the implied baseis 2.

to the Kolmogorov complexity. So, we expect that the entropy of T is a lower bound to

the spacecomplexity s(n) for compresseddata structures that store T.

The entropy bound is ideal, but we can only quartitativ ely analyze an approximation
of it, namely,

nHp+ M(T; ;h) (1.1)

in terms of bits of space. In formula (1.1), Hy, Ig is the hth-order empirical entropy
of T, which capturesthe dependenceof symbols on their context, made up of the h adjacent
symbols in the text T. As n increases,M (T; ;h) denotesthe number of bits used to
store the empirical probabilities for the corresponding statistical model in T: informally,
M (T; ;h) represens the number of bits required to store the number of occurrencesof yx
as a substring of the text T, for ead context x of length h and ead symbol y 2
(These guartities are discussedformally in Sections2.2 and 2.3.) As h increases,nH
is non-increasingand M (T; ;h) is non-decreasing. Thus, carefully tuning the cortext
length h gives the best choice for minimizing space. An interesting problem is how to
obtain nearly optimal spacebounds where s(n) is approximated by formula (1.1) for the
best choice of h. In practice, English text is often compressibleby a factor of 3 or 4, and
the best choice for h is usually about 4 or 5. Lempel and Ziv have provided an encading
sud that h lgn + O(1) (where0< < 1) is sucien tly good for approximating the
ertropy; Luczak and Szpanlowski prove a su cien t approximation for ergodic sourceswhen
h = O(lgn) in [LS97.

In Chapter 2, we present a unied algorithmic framework to obtain nearly optimal
spacebounds for text compressionand compressedtext indexing, apart from lower-order
terms. In particular, we provide a tight analysis of the Burrows-Wheelertransform (bwt)
establishinga bound of nH, + M (T; ;h) bits Using the sameframework, we also obtain
an implementation of the compressedsu x array (csa) that achievesnH, + M (T; ;h) +
O(nlglgn=Ig; jn) bits of spacewhile still retaining competitiv e full-text indexing func-
tionalit y.

The novelty of the proposedframework lies in its useof the nite set model instead of

4

the empirical probability model (asin previous work), giving us new insight into the design
and analysis of our algorithms. For example, we shov that our analysis gives improved
boundssinceM (T; ;h) minfgllg(n=¢ + 1);H,n+ Ign + g°4, whereg?® = O(j"*1)
and g®°= O(j j"**Igj j™') do not depend on the text length n, while H, Hy, is the
modi ed hth-order empirical entropy of T. We go on to describe someclassesof texts for
which the above bound is nearly tight, shawing that they are amongthe hardestto compress
with the bwt . We alsoexaminethe imp ortance of lower-order terms, asthesecan dwarf any
savings achieved by high-order entropy. Moreover, we show a strong relationship between
a compressedull-text index and the succinct dictionary problem. This last consequencés
a key obsenation, sinceit neatly separatesthe text indexing problem into that of encaling
a seriesof dictionary data structures.

In Chapter 3, we also report on a new experimental analysis of high-order ertropy-
compressedsu x arrays, which retains the theoretical performance of previous work and
represers an improvemert in practice. Our experiments indicate that the resulting text
index o ers state-of-the-art compression. In particular, we require roughly 20% of the
original text size|without requiring a separateinstance of the text. We can additionally
usea simple notion to encale and decade block-sorting transforms (such as the Burrows-
Wheeler transform), achieving a compressionratio comparableto that of bzip2. We also
provide a compressedrepresertation of sux trees (and their assaiated text) in a total

spacethat is comparableto that of the text alone compressedwith gzip .

1.2 Dictionaries and Data-Aw are Measures For Set

Data

In Chapter 4, we considerthe fundamertal dictionary problem on set data, where the task

is to construct a data structure for represeting a setS of n items out of a universeU =

indexing and other applications with atext input (such asthe databaseapplications of XML

5

selectivity estimation) asa building block in designingentropy-compresseddata structures.
For text-based applications, dictionaries sene as a powerful black box that operate within
someerntropy-aware partitioning of the data. Any improvemerts to a dictionary structure

would have tremendousimpact on all such dependert applications.

We use a well-known data-aware measurefor set data called gap to bound the space
of our data structures. We describe a novel dictionary structure that requires gap +
O(nlg(u=n)=Ign) + O(nlglg(u=n)) bits. Under the RAM model, our dictionary supports
membership, rank, and predecessogueriesin nearly optimal time, matching the time bound
of Anderssonand Thorup's predecessostructure [AT00], while simultaneously improving
upon their spaceusage.We support selectquerieseven faster in O(lg Ign) time.

Our dictionary structure usesexactly gap bits in the leading term (i.e., the constart
factor is 1) and answers queries in near-optimal time. When seenfrom the worst case
perspective, we present the rst O(nlg(u=n))-bit dictionary structure that supports these
queries in near-optimal time under the RAM model. We also build a dictionary that
requires the same spaceand supports membership, select, and partial rank queries even
more quickly in O(lg lgn) time.

We shaw that for many (real-world) datasets,data-aware methods lead to a worthwhile
compressionover combinatorial methods. To our knowledge,theseare the rst results that

achieve data-aware spaceusageand retain near-optimal time.

1.3 Dynamizing Succinct Data Structures

We present a framework in Chapter 5 to dynamize succinct data structures, to encourage
their useover non-succinctversionsin a wide variety of important application areas. Our
framework can dynamize most state-of-the-art succinct data structures for dictionaries,
ordinal trees, labeledtrees, and text collections. Of particular note is its direct application
to XML indexing structures that answer subgth queries[FLMMO05]. Our framework focuses

on adieving information-theoretically optimal spacealongwith near-optimal update/query

bounds.

As the main part of our work, we considerthe following problem certral to text indexing:
Given a text T over an alphabet , construct a compresseddata structure answering the
querieschar(i), ranks(i), and seletg(i) for a symbol s2 . Many data structures consider
these queriesfor static text T [GGV03, FM05, SG06, GMR06]. We build on these results
and give the bestknown query boundsfor the dynamic version of this problem, supporting
arbitrary insertions and deletions of symbolsin T.

Speci cally, with an amortized update time of O(n), any static succinct data struc-
ture D for T, taking t(n) time for queries, can be corverted by our framework into a
dynamic succinct data structure that supports ranks(i), seletg(i), and char(i) queriesin
O(t(n) + Iglgn) time, for any constart > 0. When j j = polylg(n), we achieve O(1)
query times. Our update/query bounds are near-optimal with respect to the lower bounds
from [PDO6].

The best previously-known query times for this problem were O(lgnlgj j), given
by [NMO6b], although their update bounds are also O(Ignlgj j). Our framework can

be easily modi ed to adcieve similar bounds.

Nevertheless,we focus on faster query/slower update for both theoretical and practical
considerations. Theoretically speaking, our query bounds match (or nearly match) the
bounds given by fastest known static data structures. With this query bounds as the
target, our update bounds are nearly tight with respect to the applicable lower bounds
known for the partial sumsproblem [PD06]. Practically, our choice of faster query/slower
update is well-suited for many data structuring ervironments in string matching, databases

and XML indexing.

Chapter 2

An Algorithmic Framew ork for
Compression and Text Indexing

2.1 Intro duction

In this chapter, we describe a uni e d algorithmic framework that achievesthe rst nearly
optimal spaceboundsfor both text compressionand compressedext indexing. We provide
a new tight analysis of text compressionbasedon the Burrows-Wheler transform [BW94]
(hereaftercalledthe bwt). Wealsoprovide a newimplementation of compressedext index-
ing basedon the compressé su x array [FM05, GV05, Sad03 (hereafter called the csa).
A key point of our uni ed approad is the useof the nite set model instead of the empir-
ical probability model adopted in previous work, giving us new insight into the analysis.
We capture the empirical probabilities encaded in M (T; ;h) bits (seeFormula (1.1)) by
employing a two-dimensional conceptual organization which groups contexts x from the
text by their predicted symbolsy. This schemecan be seenas an alternative way to model
an arbitrary partition of the bwt . We then restructure ead context accordingly, encaling
ead group with an algorithm that storest items out of a universeof sizen in the informa-
tion theoretic minimum spacedig rt‘ e bits (sincethere are rt‘ subsetsof t items out of n).
In Sections2.1.1and 2.1.2, we detail our results for text compressionand text indexing,

which read nearly optimal spacebounds for both areas. The work in this chapter was a

collaborative e ort with Roberto Grossiand Je rey Scott Vitter.

2.1.1 Text Compression

In this section, we discussour results for text compressionwhich are basedon the Burrows-
Wheeler transform (bwt). Simply put, the bwt rearrangesthe text T sothat it is easily

compressedoy other methods. In practice, the compressedversion of this transformed text

8

is quite competitiv e with other methods [Fen96 Fen02 FTL03]. The bwt is at the heart
of compressorsbasedon block-sorting (such as bzip2) that outperform Lempel-Ziv-based
compressorgsuch asgzip). We provide a method for represering the bwt in compressed
format using well-known results from combinatorial enumeration [Knu05, Rus05]in an
unusualway, exploiting the functionality of ranking and unranking t-subsetsfor compressing
and decompressingthe t items thus stored.! We collect and store this information in our
new wavelettree, a novel data structure that we useto represen the LF mapping (from
the bwt and usedin the fm-index [FMO5]) and the neighbor function (at the heart of
the csa [GV05]). Our framework-based analysis givesa bound of nH, + M (T; ;h) bits
for any given h asinput, thus matching Formula (1.1). The best value of h can be found
using the optimal partitioning of the bwt asgiven in [FGMSO05], so that our bound holds
for any h (simply becauseFormula (1.1) cannot be smaller for the other valuesof h). For
comparisonpurposes,we give an upper bound on the number of bits neededto encale the

statistical model,
M(T; ;h) min glg(n=g° + 1); H,n+ Ign+ g% ; (2.1)

wheregd = O(1) and g°= O("1 1g "*1) do not depend on the text length n.

In Formula (2.1), H, Hjy isthe madi e d hth-order empirical entropy (seeSection2.2)
introduced in [Man01] to show that the bwt can be represerted in at most (5+)nH +
lg n+ gy bits, where 10 2andg, = O("1 1g). The latter bound isimportant for low-
entropy texts, sincethe compressionratio scaleswith high-order entropy; this bound cannot
beattained whenreplacingH,, by H,. Wereferthe readerto [Man01] for previousliterature
on the subject. In cortrast, the compressionratio of Lempel-Ziv algorithm [ZL77] doesnot
scalefor low-entropy texts: although its output is boundedby nHy, + O(nlglg n=Ign) bits,
it cannot be smaller than 2:5nH g bits for some strings [KM99]. Note that the bwt is a

booster for Oth-order compressorsas shavn in [FGMSO05], where a closeconnection of the

lWe use the term t-subsetinstead of the more usual k-subset terminology, becausewe usek to
denotethe levels of our compressedsu x array (described later). A similar obsenation holds for

entropy Hy, which is often referredto asHy in the literature.

9

optimal partition of the bwt with the sux tree [McC76] attains the best known space
boundsfor the analysisof the bwt , namely, 2:5nH , + lgn+ g, bits and nHp + n+ Ign+ gy
bits. The related compressionmethods do not require the knowledge of the order h and

take O(nlg) time for generalalphabets.

Using (2.1), we can compare our analysis with the best bounds from previous work.
When comparedto the additive term of O(nlglgn=Ign) in the analysis of the Lempel-
Ziv method in [KM99], we obtain an O(lgn) additive term for = O(1) and h = O(1),
giving strong evidencewhy the bwt is better than the Lempel-Ziv method. Indeed, since
M(T; ;h) g°lg(n=g® + 1), our bound in (1.1) becomesnH + O(Ig n) when h = O(1)
and = O(1), thus exponertially reducing the additive term of n of the H,-basedanalysis
in [FGMSO05]. In this case, our bound closesthe gap in the analysis of bwt , since it
matches the lower bound of nH, + (Ig Ign), up to lower-order terms. The latter comes
from the lower bound of nH, + (Ig Ign) bits, holding for a large family of compressors
(not necessarilyrelated to bwt), asshown in [FGMSO05]; the only (reasonable)requiremert
is that any such compressormust produce a codeword for the text length n whenit is fed
with an input text consisting of the samesymbol repeated n times. SinceH,, Hg,, we
easily derive the lower bound of nH, + (Ig Ign) bits, but a lower bound of nH, + (Ig n)

probably exists sincenH, Ign while nH}, can be zero.

As for the modi ed hth-order empirical entropy, we show that our analysisin (1.1)
can be upper bounded by n(Hp + H,) + Ign + g%°bits using (2.1). SinceH, H,, our
boundin (1.1) is strictly smallerthan 2:5nH , + Ign + g, bits in [FGMSO0Y], apart from the
lower-order terms. Actually, our bound is de nitiv ely smaller in somecases.For example,
while a bound of the form nH + Ign + g, bits is not always possible[Man01], there are
an in nite number of texts for which nH, = 0 while nH, & 0. In these cases,our bound
from (1.1) is nH,, + Ign + gbits.

We also describe a classof non-trivial texts where our bound is nearly tight. In partic-
ular, we shaw that our analysisis nearly tight for any chosenpositive constart 0 < 1,

namely, there exists an in nite family of strings such that for any n-long string in the

10

family, its bound in Formula (1.1) satises n(((k 1)=k) Hy, + H,) o(nH,) nHj+
M(T; ;h) n(Hp+ H,)+lgn+ g% wherek > dl= eis a constart. (The de nition of
these families is intimately related to our analysis.) Finally, encaling and decading take
O n(nHp=Ign+ 1)+ gﬁo time; howewer, as showvn in [GGV04], we can userun-length en-

coding in place of subsetencading in a practical setting, reducing the time complexity to

O(nlg).

2.1.2 Compressed Text Indexing

In this section,we discussour analysiswith respectto text indexing basedonthe compressed
sux array (csa). Text indexing data structures preprocessa text T of n symbols drawn
from an alphabet sud that any query pattern P of m symbols can be answered quickly
without requiring an entire scanof the text itself. Wedenotea substring T[i]T[i+ 1] TIJj]
of contiguous text symbolsby T[i; j]. Dependingon the type of query, we may want to know
if P occursin T (occurrenceor seart query), how many times P occursin T (counting
query), or the locations where P occurs in T (enumerative query). An occurrence of
pattern P at position i identies a substring T[i;i + m 1] equalto P. Becausea text
index is a preprocessedstructure, a reasonablequery time should have no more than a
polylg(n) cost plus an output sensitive cost O(occ), where occ is the number of occurrences
retrieved (which is crucial for large-scaleprocessing).

Until recertly, these data structures were greedy of spaceand also required a separate
(original) copy of the text to be stored. Su x trees[McC76, Ukk95, Wei73 and su x ar-

rays [GBS92 MM93] are prominent examples. The su x tree is a compacttrie whoseleaves

where sux TI[i; n] is uniquely identied by its starting position i. Sux trees [McC76,
MM93] allow fast queries of substrings (or patterns) in T in O(mlg + occ) time, but
require at least 4nlgn bits of space,in addition to keepingthe text. The sux array SA
is another popular index structure. It maintains the permuted order of 1;2;:::;n that

corresponds to the locations of the su xes of the text in lexicographically sorted order,

11

T SA[1;n , T SA2;n, ..., T SA[n];n . Sux arrays [GBS92 MM93] (that store the
length of the longest common pre X) are nearly as good at searding as are su x trees.
Their time for nding occurrencesis O(m + Ign + occ) time, but the spacecostis at least
nlgn bits, plus the cost of keepingthe text.

A new trend in the design of modern indexes for full-text searting is addressedby
the csa [GV05, Rao02 Sad03,Sad02b]and the opportunistic fm-index [FMO5], the latter
making the very strong intuitiv e connection between the power of the bwt and su x
arrays. They support the functionalities of su x arrays and overcomethe aforemerioned
spacelimitations. In our framework, we implement the csa by replacing the basict-subset
encaling with succinct dictionaries supporting constart-time rank and selet queries. The
rank query returns the number of ertries in the dictionary that are lessthan or equal to
the input ertry; the selet query returns the ith entry in the dictionary for the input i.

Succinctdictionaries store t keysover a boundeduniversen in the information theoretically

n

minimum spacedg

e bits, plus lower-order terms O(nlglgn=Ign) = o(n) [RRRO2]. We
shaw a closerelationship betweencompressinga full-text index with high-order entropy to
the succinct dictionary problem. Prior to the work of this chapter, the best spacebound

was 5nHp + O n—28% + n 2 19 pits for the fm-index, supporting a new bacward

searh algorithm in O(m + occ Ig'* n) time for any > 0 [FM05]. We refer the reader
to the survey in [NMO064a] for a discussionof more recert work in this area.

We obtain se\eral tradeo s betweentime and spaceasshown in Tables2.1and 2.2.
For example, Theorem 13 gives a self-indexrequiring nHy + O(nlglgn=Ig n) bits
of space(whereh + 1 Ilg n for an arbitrary positive constart < 1) that allows
searding for patterns of lengthm in O(mlIg +occ polylg(n)) time. Thus, usingour
new analysisof the bwt , our implemertation providesthe rst self-indexreading
the high-order empirical entropy nHy, of the text with a multiplicativ e constan of 1;
moreaver, we conjecture that g°Ig(n=¢® + 1) additional bits are not achievable for
text indexing. If true, this claim would imply that adding self-indexingcapabilitiesto

a compressedext requiresmore spacethan M (T; ;h), the number of bits encaling

12

€T

bits of space lookup & lookup * substring conditions notes

nHplglg n+o(nlg)+ 0O "(n +) O(lglg n) O(ﬁ +1glg n) any0< <1 Thm.9
InH, + O %+ fin +) O (g n)=t Ig O g5+ (g n)=* g any0< < 1,0< 1=2 | Thm.10
InHL, + O(N)+ O "(n +) O (g n)=* O g%+ (g n)=1 n=o(nlg)for =1(1) Cor.3

nHp + O D0 4 N+ jg(1 + n= *1) O(lg? n=Iglg n) O(clg + lg?n=Iglgn) any 0< <1 Thm.11

Table 2.1: Trade-o s betweentime and spacefor the implemertation of csa and its supported operations. (SeeDe ni-

tion 2.) The lower-orderterms in the spacecomplexity are all o(nlg) bits except "(n +) (becauseof M (T;
which iso(nlg) whenh+ 1

casescompressrequiresO(nlg +

lg n for any arbitrary positive constart

"(n +)) time.

< 1 (we x

sud that +

' h)),

< 1). In all

Vi

bits of space seard/count time enumerative time (per item) conditions notes

InH, + O(nlg I%n) 0] @Ln + (Ig n)(1+)=(1)(Ig)(1 3)=1) O (lg n)(1+)=(1)(Ig)(1 3)=(1) any 0< 1=2 Thm.12

nHp, + O(Lialany O(mlg + Ig*n=(Ig%ignlg)) O(g* n=(lg®Ignlg)) 1>! 2=1)| Thm.i3
Ig n

InHp + O 4n) O(gs +1g' nig") o(g' nig*) 0< 13 Thm.14

Table 2.2: Trade-o s betweentime and spacefor the compressedext indexing basedon the csa, under the assumption

that h+ 1

lg n for any arbitrary positive constart

< 1. The lower-order terms in the spacecomplexity are all

o(nlg) bits. In all casesthe constructiontakesO(nlg) time and usesa temporary areaof O(nlgn) bits of space.

the empirical statistical model for the bwt . Actually, we also conjecture that the
O(nlglgn=Ig n) term is the minimum additional cost for obtaining the O(mlg)-
time seard bound. Bro Miltersen [Mil05] proved a lower bound of (nlglgn=Ign)
bits for constart-time rank and selet querieson an explicit bitvector (i.e. = 2).
(Other tradeo s for the lower boundson sizearereported in [Mil05, DLO03, GM03].)
While this result doesnot directly imply alower bound for text indexing, it remainsas
strong evidenceof the di cult y of improving the lower-orderterms in our framework

sinceit is heavily basedon rank and selet queries.

As another example, consider Theorem 14, where we dewelop an hybrid imple-
mertation of the csa, occupying nH, + O(nlglgn=Ig n) bits (0 < 1=3), so
that searding is very fast and takesO(m=Ig n+ occ Ig' nlg*) time (1>1! >
2=(1) > 0). Forlow-ertropy text over an alphabet of size = O(1), we obtain the
rst self-indexthat simultaneously exhibits sublinear sizeo(n) in bits and sublinear
seard and courting query time o(m); reporting the occurrencestakes o(lgn) time

per occurrence.

Also, due to the ambivalert nature of our wavelet tree, we can obtain an im-
plemenation of the LF mapping for the fm-index as a byproduct of our method.
(SeeSection 2.7.3 for more details.) We obtain an O(mlg) searti/count time by
using the badkward seard algorithm in [FMO5] in nHy + O(nlglgn=Ig n) bits. We
alsoget O(m) time in nH, + O(n) = nH, + o(nlg) bits when is not a constan.
This averue has been explored in [FMMNO4], shoving how to get O(m) time in
nHy + O(nlglgn=Ig n) bits when = O(polylg(n)), using a wavelet tree with a
fanout of O(lg n) for someconstart 0< < 1. All theseresultstogetherimply that
the fm -index can be implemerted with O(m) seard time usingnearly optimal space,
nH, + O(nlglgn=Ig n) bits, wheneither = O(polylg(n)) or = (2 ©lgn=lglgn))
The spaceis still nHy + O(n) = nHy + o(nlg) for the other valuesof , but we do

not know if the lower-orderterm O(n) can be reduced.

15

2.1.3 Outline of Chapter

The rest of the chapter is organizedas follows. In Section 2.2, we descrile the dif-
ferencesbetween various notions of empirical ertropy and proposea new de nition

basedon the nite setmodel. In Sections2.3{2.7, we descrile our algorithmic frame-
work, showving a tighter analysis of the bwt and detailing our new wavelet tree.
In Section 2.8, we usethis framework to achieve high-order entropy compressionin
the csa. In Section2.9, we apply our csa to build self-indexingdata structures that
support fast searting. In Section2.10, we give some nal considerationsand open

problems.

2.2 High-Order Empirical Entropy

In this section,we formulate our analysisof the spacecomplexity in terms of the high-
orderempirical entropy of atext T of n symbolsdrawn from alphabet =f1;2;:::; @.
For easeof exposition, we \number" the symbols in alphabet from1to = |,
sud that the renumbered synbol y is alsothe yth lexicographically orderedsymbol
in = 112:::; g Without lossof generality, we can assumethat n, since
we only needto considerthose synbols that actually occurin T. In particular, we
discussvarious notions of entropy from both an empirical probability model and a
nite setmodel. In Section2.2.1,we considerclassicnotions of entropy accordingto
the empirical probability model. We descrile a newde nition basedon the nite set

model in Section2.2.2.

2.2.1 Empirical Probabilistic High-Order Entropy

We provide the necessaryterminology for the analysisand explore empirical prob-

ability models. For eat synboly 2 , let n¥ be the number of its occurrencesin

16

text T. With symbol y, we asseiate its empirical probability, Prob[y] = nY=n, of

occurring in T. (Note that by de nition, n = nY, sothe empirical probabil-

y2
ity is well de ned.) Following Shannon'sde nition of ertropy [Sha4§, the Oth-order

empirical entropy is

X
Ho = Ho(T) = Probly] IgProbly]: (2.2)
y2

SincenHy nlg , expression(2.2) simply statesthat an e cient variable-length
coding of text T would encale ead symbol y basedupon its frequencyin T rather
than simply usinglg bits. The number of bits assignedor encaling an occurrence
of y would be IgProbly] = Ig(n=nY).

We cangeneralizethe de nition to higher-orderempirical entropy, soasto capture
the dependenceof symbols upon their cortext, made up of the h previous symbols
in the text. For a givenh, we considerall possibleh-symbol sequences that appear
in the text. (They area subsetof ", the setof all possibleh-symbol sequencesver
the alphabet .) We denote the number of occurrencesin the text of a particular
cortext x by n*, with n = i «» nN* asbefore,and we let n*¥ denotethe number of
occurrencesn the text of the concatenatedsequence/x (meaningthat y precede).?
Then, the hth-order empirical entropy is de ned as

X X
Hn = Hy(T) = Probly; x] IgProblyjx]; (2.3)

x2 hy2
whereProbly; x] = n*Y=nrepresets the empirical joint probability that the symboly
occursin the text immediately beforethe cortext x of h symbols and Problyjx] =
n*Y=n* represets the empirical conditional probability that the symbol y occurs

immediately beforecontext x, giventhat x occursin the text. (Wereferthe interested

2The standard de nition of conditional probability for text documerts considersthe symbol y
immediately after the sequencex. It makesno meaningful di erence, sincewe could simply use

this de nition on the reversedtext as discussedin [FGMSO05].

17

readerto [CT91] for moredetails on conditional entropy.) Settingh = 0, we obtain Hg
as de ned previously In words, expression(2.3) is similar to (2.2), exceptthat we
partition the probability spacefurther accordingto cortexts of length h in order to
capture statistically signi cant patterns from the text.

An important obsenation to noteisthat H,.;, Hy, Ig foranyintegerh 0.
Hence,expression(2.3) statesthat a better variable-length coding of text T would
encale ead symbol y basedupon the joint and conditional empirical frequencyfor
any cortext x of y.

Manzini [Man01] givesan equivalert de nition of (2.3) in terms of Hy. For any
given cortext x, let wy, be the concatenationof the synbols y that appear in the
text immediately before cortext x. We denoteits length by jwyj and its Oth-order

empirical ertropy by Ho(wy), thus de ning Hy, as

1 X
Hp = ﬁ JWXJHO(WX): (2-4)

x2 h

One potertial dicult y with the de nition of Hy, is that the inner terms of the
summation in (2.4) could equal O (or an arbitrarily small constart), which can be
misleadingwhen consideringthe encaling length of a text T. (One relatively trivial
caseis whenthe text contains n equalsymbols, asno synbol needso be\predicted".)
Manzini introduced madi e d high-order empirical ertropy H,, to addressthis point
and capture the constrairt that the encaling of the text must cortain at leastlgn

bits for coding its length n. Using a modi ed
Hy, = Ho(T) = maxfHog; (1 + blgnc)=ng (2.5)
to make the change,he writes

X
ﬁh:

S|k

Wy jH o (W) (2.6)

x2 h
Unfortunately, Hn.1 Hy doesnot necessarilyhold in (2.6) asit did for H,. To

solwe this problem, let P,, be a pre x cover, namely, a set of substringshaving length

18

at most h sud that ewery string from " hasa unique pre x in P,. Manzini then

de nes the madi e d hth-order empirical entropy as

1 X
Hp = Hy(T) = H”F]'n jwyjHo (Wy): (2.7)
" x2p,
so that H,,, H, does hold in (2.7). Other immediate consequence®f this

encaling-motivated ertropy measureare that H, H, and nH,, Ign, but nHj
canbe a small constart. Let the optimal pre x cover P, bethe pre x cover that min-
imizesH,, in (2.7). Thus, Equation (2.7) canbe equivalertly stated by the expression
Hy, = %P x2P, J.ijHo(Wx)-3

The empirical probabilities usedin the de nition of the high-order empirical en-
tropy canbe obtainedfrom the number of occurrences, WhereP x2p, y2 WY =1

P : P : . : . ,
Indeed,n¥ = ,,p, W andn*= ", n*. This discussiomotivatesthe following

de nition, which will guide us through our high-order ertropy analysis.

De nition 1. The empirical statistical model for atext T drawn from an alphabet
for contexts of length up to h is composedof two parts storedusingM (T; ;h) bits:

i. The partition of " inducedby the cortexts of the pre x cover P,,.

call that n*Y is the number of occurrencesof yx asa substring of T.)

We denote the number of bits usedto store the information in parts (i){(ii) by

M (T; ;h), asn increases.

2.2.2 Finite Set High-Order Entropy

We provide a new de nition of high-order empirical ertropy H?, basedon the nite

set model rather than on conditional probabilities. We usethis de nition to avoid

3A minor technical note: h now refersto the length of the longest substring in P, sinceno larger

value of h can yield a more succinct entropy measure.

19

dealing with empirical probabilities explicitly. We showv that our new de nition is
Hn O(jP,jlgn) H? H, H,, sothat we can provide boundsin terms of H?

in our analysis.

For easeof exposition, we \number" the lexicographically ordered contexts x as

1 x " Letthe multinomial coe cient ml;m;::;mp = W’,mp, represen the
number of partitions of n items into p subsetsof sizemy; my;:::;m,. In this chapter,

we de ne O!'= 1. (Note that n = m;+ my+ + mp) Whenm; = tandm,=n t,

" Wede ne

we get preciselythe binomial coe cient |

HO= HYT) = T1g : (2.8)

which courts the number of possiblepartitions of n itemsinto unique buckets, i.e.
the alphabet size. We usethe optimal pre x cover P,, in (2.7) to de ne our alternative

high-order empirical entropy*

(2.9)

For example, considerthe text T = mississippi# . Fixing h = 1 and taking
P, = ", we have that all cortexts are of length 1. For cortext x = i occurring
n' = 4timesin T, we have the symbolsy = mp, and s appearingn''™= n'? = 1
and n'’s = 2 timesin T. Thus, the cortribution of cortext x = i to nHYT) is
lg 1;‘1‘;2 = Ig 12 bits. In the next theorem, we shaw that our formulation of nite set

ertropy is smallerthan the usual de nition of empirical probabilistic ertropy.
Theorem 1. For any giventext T and contextlengthh 0, we haveH? Hy,.

Proof. It suces to shav that nHJ nH, for all alphabets , sincewe know that

lg nx;l;nx;zx X jwxjHo(Wy). Setting P, = " in (2.9) and applying Manzini's

de nition of entropy in (2.4) naturally leadsto the claim.

4Actually, it can be de ned for any pre x cover Py, including P, = .

20

The bound nH? nHy trivially holdswhen = 1. We rst prove this bound for
analphabet of = 2symbols. Lettandn t denotethe number of occurrencesof
the two symbolsin T. We wart to shov that nHJ = Ig ! nHo = tlg(n=t) + (n
t) Ig(n=(n t)) by (2.8). The claimis true by inspectionwhenn 4ort=0;1;n 1.
Letn>4and2 t n 2. Weapply Stirling's double inequality [Fel6§ to obtain

P2 L
o @ <nl< m: (2.10)
Taking logarithms and focusingon the right-hand side of (2.10), we seethat
n 1 1 P_—
| _ _ _ .
lgn! < nlge+2Ign+1mlge+lg 2 (2.11)
Similarly to (2.11), we take the left-hand side of (2.10), and obtain
n 1 P_—
| _ _ .
Ilgn!> nlge+2Ign+1m+lIge+lg 2 . (2.12)
Applying (2.11)and (2.12)to Ig T = Ig(n!) Ig(t!) lg((n t)!), we have
0_ n 1 tn 1) 1 1 1 P_—
Ho=lg | <nHo Jlo——=— 8¢ o 1" 20 n+1 1 9 2°
(2.13)

Sincet(n t) nandl1=12t+ 1)+ 1=12(n t)+ 1) 1=(12n) by our assumptions
onn andt, it followsthat nHJ nHy, proving the result when = 2.

Next, we shav the claimed bound for the generalalphabet (2andh = 0)
and by using induction on the alphabet size (with the basecase = 2 asdetailed

before). We write

n n n n
g nl;nz;...;n - lg nl;nz;...;n 1 n (214)
We useinduction for the right-hand side of (2.14) to get
X 1
n n n n
y .
9 pnin 1 MO (2.15)
y:

21

n n n
lg N n Ign—+(n n)Ign — (2.16)

P
Summing (2.15) and (2.16), we obtain = _; n¥lg ;i = nH,, thus proving the claim
for any alphabet size .

O

The above discussionnow justi es the use of H? in our later analysis, but we
cortinue to state boundsin terms of H,, asit represets more standard notation.
The key point to understandis that we can derive equationsin terms of multinomial
coe cien ts without worrying about the empirical probability of symbols appearing

in the text T.

2.3 The Unied Algorithmic Framew ork:
Tigh ter Analysis for the BWT

The characterization of the high-order empirical ertropy in terms of the multinomial
coe cien ts givenin Section2.2.2drivesour analysisin a uni ed framework for text
compressionand compressedext indexing. In this section,we begin with a simple,
yet nearly optimal analysisof the Burrows-Wheelertransform (bwt). Section2.3.1
formally de nesthe bwt and highlights its connectionto (compressedsu x arrays.
Our key partitioning sdheme s descrited in Section 2.3.2; it senes as the critical
foundation in achieving a high-order ertropy analysisfor the bwt . Sections2.4.2{
2.4.3 motivate and dewelop our multi-use wavelettree data structure, which senes
asa exible tool in both compressionand text indexing. We nish the upper bound

analysisof the bwt in Section2.5, and the lower bound in Section2.6.

22

2.3.1 The BWT and (Compressed) Sux Arrays

We now give a short description of the bwt in order to explain its saliert features.
Considerthe text T = mississippi# in the example shovn in Table 2.3, where
I < m< p< s< #and# is an end-of-text symbol. The bwt forms a conceptual
matrix Q whoserows are the cyclic (forward) shifts of the text in sorted order and
storesthe last column L = ssmp#pissiii written asa cortiguous string. Moreover,
the last column L is an invertible permutation of the symbolsin T. In particular,

LF (i) = j in Table 2.3 indicates for any symbol L[i], the correspnding position |

in F wherelL[i] appears. For instance,LF (3) = 5 sincelL[3] = moccursin position 5
of F; LF (8) = 10sinceL[8] = s occursin position 10 of F (asthe third s amongthe

four appearing consecutiely in F).

UsingL and LF , we canrecreatethe text T in reverseorder by starting at the last
position n (correspnding to #mississippi), writing its value from F, and following
the LF function to the next value of F. Continuing the example from before, we
follow the pointers from LF (n): LF(12) = 4, F[4] = i; LF(4) = 6, F[6] = p;
LF (6) = 7, F[7] = p; and soon. In other words, the LF function givesthe position
in F of the precedingsymbol from the original text T. Thus one could store L and
recreateT, sincewe can obtain F by sorting L and the LF function can be derived
by inspection. Note that L is compressibleusing Oth-order compressorsboosting
them to attain high-order ertropy [FGMSO05]. In the following, we connectthe bwt
with L.

Clearly, the bwt is related to sux sorting, since the comparisonof any two
circular shifts must stop when the end marker # is encourtered. The correspnding
su x array is a simple way to store the sorted su xes. The sux array SA for a
text T maintains the permuted orderof 1; 2;:::; n that correspndsto the locationsof

the su xes of the text in lexicographicallysortedorder, T SA[1];n , T SA2ln,...,

23

T SA[n];n . By droppingthe symbolsafter #in the sortedmatrix Q (column Sorted
in Table 2.3), we obtain the sequenceof sorted su xes represerted by SA (column
‘'Sux Array' in Table 2.3). In the exampleabove, SA[6] = 10 becausethe sixth

largestlexicographicallyorderedsu x, pi#, beginsat position 10in the original text.

We make the connectionbetweenthe bwt and SA more concreteby describing
the neighbor function , introducedto represen the csa in [GVO05]. In particular,
the function indicates, for any positioni in SA, the correspnding positionj in SA
sud that SA[j] = SA[i]+ 1 (asortofsu x link similar to that of sux trees[McC7§]).
For examplein Table 2.3, (6) = 4 since SA[6] = 10 and SA[4] = 11. As can be
seenfrom Table 2.3, LF((i)) = (LF(i))) =iforl 1 n; thus,thesefunctions
are inversesof ead other. Hence,the function is alsoan invertible represetation
of the bwt . (The function can also be thought of asthe FL mapping while the
LF mapping can be thought of as the encaling of inversesu x links.) Encoding
the function is no harder than encaling LF . In the following, we make useof this
connectionto adieve a high-order empirical ertropy analysisof the bwt .

The function canbe implemerted by using lists asshavn in [GV05]. Given
asymboly 2 , the list y is the set of positions from the sux array sud that
for any position p in list y, T[SA[p]] is preceded by y.> In words, it collects the
positions wherey occursin the text basedupon information from the su x array.
The fundamenal property of these lists is that ead list is an increasing seriesof
positions. For instance, list i from our exampleis h7;10;11; 12 sincefor ead ertry,
T[SA[p]] is precededby an i. The concatenationof the listsy fory = 1;2;:::;
gives . Goingon in the example,list mis h3i; list p is h4;6i; list s is hl; 2; 8;9i, and
list #is hbi. Their concatenationyields the function showvn in Table 2.3. Thus,
the value of (i) isjust the ith nonempty ertry in the concatenationof the lists, and

belongsto somelist vy.

SSpecically, y = T[SA[p] 1] for SA[p] > 1, and y = T[n] when SA[p] = 1.

24

We can reconstruct SA and the bwt by using and the position f of the last
sux SA[f]= n, where (f) is the position in SA corntaining the rst sux. Con-
tinuing the examplefrom before (wheref = 12) we can recreate SA by iterating
as (f)=5,SA5]=1;, (6) = 3,SA[3]= 2; (3) = 11,SA[11]= 3,andsoon. In
general,we compute (f), ((f)), ..., sothat the rank j in SA for the ith su x
inT (1 i;j n)isobtainedasj = (f) by i iterations of onf. Howewer, this
processnot only recoversthe valuesof SA, but alsothe correspnding lists y (which
provide the symbols for the bwt by the de nition of lists). In particular, symbol y
occursin the jth position of the bwt , wherej = @(f). In the example, symbol
y = #isin position (f) = 5 of the bwt becausethe fth entry in isin list #;
symbol y = mis in position (5) = 3 becausdahe fth enry isin list m symboly = i

is in position (3) = 11,and soon.

2.3.2 Context-Based Partitioning of the BWT

We now show our major result for this section;we descrike a nearly optimal analysis
of the compressibiliy of the Burrows-Wheelertransform with respect to high-order
empirical ertropy, exploiting the relationship betweenthe bwt and sux arrays
illustrated in Section2.3.1.

Let P,, be the optimal pre x cover as de ned in Section 2.2, and let n*Y be
the correspnding valuesin Equation (2.9), wherex 2 P, andy 2 (seealso
De nition 1). We denoteby jP,,j h the number of cortexts in P,,. The following
theorem formalizesthe boundsthat we anticipated in Formulas (1.1) and (2.1) for

our analysis.

Theorem 2 (Space-Optimal Burro ws-Wheeler Transform). The Burrows-

Wheeler transform for a text T of n symtwls drawn from an alphaket can be com-

25

presse using

nHp + M(T; :h) (1.1)

bits for the best choice of context length h and pre x cover P,,, whete the numter of
bits required for enading the empirical statistical model behind P,, (see De nition 1)
is

M(T; :h) minfgllg(l+ n=cf); H,n+ Ign+ ¢°Yy; (2.1)

whee gf = O(") and g®°= O("Ig M) do not depend on the text lengthn.

We dewote the rest of Section2.3and 2.5to the proof of Theorem?2. We descrite
our analysisfor an arbitrary pre x cover Py, soit alsoholdsalsofor the optimal pre x
cover P, asin Equation (2.9). Sinceewery string in " hasa unique pre x in Py, it
followsthat Py, inducesa partition of the su xes storedin the su x array SA (or the
corresnding circular shifts of T). In particular, the su xes starting with a given

context x 2 Py, occupy cortiguous positionsin SA. In the exampleof Table 2.3, the

Our basicideais to apply cortext partitioning to the lists discussedin Sec-
tion 2.3.1. We implemert our idea by partitioning ead list y further into sub-
lists hx;yi by contexts x 2 P;. Intuitiv ely, sublist hx;yi storesthe su xes in SA
that start with x and are precededby y. Thus, ead item p in sublist hx; yi indicates
that T SAlp] 1;SAlp]+ h = yx. For cortext length h = 1, if we cortinue the
examplein Table 2.3, we breakthe lists by cortext (in lexicographicalorderi, m
p, S, and #, and numbered from 1 up to jPyj). The list fory = i is h7;10;11; 12,
and is broken into sublist h7i for context x = p, sublist h10; 11i for context x = s,
and sublist 121 for x = # We recall that the fundamertal property of lists is that
ead list is an increasingseriesof positions. Thus, ead sublist hx; yi we have created
is alsoincreasing and cortains n*Y ertries, wheren*Y is de ned asin Equation (2.9)

and De nition 1.

26

We build a conceptual 2-dimensionaltable T that follows De nition 1; seeTa-
ble 2.4 for an instance of T on our running example (for h = 1). (Each row X
implicitly represets the su xes in SA that start with cortext x and the columnsy
arethe synbols\predicted" in ead cortext.) The conexts x 2 Py correspndto the
rowsandthe listsy are storedin the columnsx. The columnsof T are partitioned
by row accordingto the contexts. Our table T hassomenice propertiesif we consider
its rows and columnsas follows:

We can implemert the function by accessingthe sublistsin T in column
major order, asdiscussedn Section2.3.1.
We have a strong relationship with the high-order empirical entropy in Equa-
tion (2.9) and the statistical empirical model of De nition 1, if we encale these
sublistsin row major order.
For any cortext x 2 Py, if weencalethe sublistsin row x usingnearly lg nx;l;nxf‘;::;nx;
bits, we automatically achieve the hth-order empirical ertropy when summing over
all the cortexts asrequiredin Equation (2.9). For example,cortext x = i shouldbe
represeted with nearly Ig 1;‘11;2 bits, sincetwo sublists cortain one enry eat and
one sublist contains two ertries. The empirical statistical model should record the

partition inducedby Py and which sublistsare empty, and should encale the lengths
of the nine nonempty sublistsin Table 2.4, using M (T; ;h) bits.

The crucial obsenation to make is that all ertries in the row correspnding to a
given cortext x create a contiguous sequenceof positions. For instance, along the
rst row of Table 2.4 for x = i, there are four ertries that arein the rangel:::4.
Similarly, row x = s cortains the four erries in the range 8:::11; row s should
be encaled with Ig 2‘;‘2 bits. We represen this range as an interval [1; 4] with the
o set # x = 7. We call this represetation a normalization, which subtracts the value

of # x from eat entry p of the sublistshx;yi fory 2 . In words, we normalize the

27

sublistsin Table 2.4 by renumlering each elementbaseal on its order within its context
and obtain the cortext information shovn in Table 2.5. Here, n* is the number of
elemelts in ead context x, and # x represets the partial sum of all prior erries;

F)
that is, #x = n*’. (Note that the valuesof n* and # x are easily computed

x0<x
from the set of sublist lengthsn*Y.) For example,the rst ertry in sublistIs;ii, 10,
is written as3in Table 2.5, sinceit is the third elemen in context s. We canrecreate
ertry 10 from # x by adding# s = 7 to 3. As aresult, eat sublist hx; yi is a subset
of the rangeimplicitly represetted by interval [1; n*] with the o set # x. We exploit

this organizationto encale the bwt .

Encoding: We run the boosting algorithm from [FGMS05]on the bwt to nd
the optimal value of cortext order h and the optimal pre x cover P, usingthe costof
nHC2+ M (T; ;h) accordingto Equation (2.9). (Recallthat H? Hjy by Theorem1.)
Oncewe know h and set P, = P, , we can cleanly separatethe cortexts and encale
the function as descriked in our table T. Thus, we follow the two stepsbelow,
storing the following componerts of T :

1. We encale the empirical statistical model givenin De nition 1.

2. For eat corntext x 2 Py, we separatelyencale the sublistshx;yi fory 2 to
capture high-order ertropy. Eadh of thesesublistsis a subsetof the integersin
the range[1; n*] with o set # x. Thesesublistsform a partition of the integers

in the interval [1; n*].

The storage for step 1 is M(T; ;h), the number of bits required for encaling
the model (see De nition 1). The storage required for step 2 should use nearly
lg nx;l;nx;: _____ .x bits per cortext x, and should not exceeda total of nHy, bits plus

lower-order terms, oncewe determine P, , as stated in Theorem 2.

Decoding: We retrieve the empirical statistical model encaled in step 1 above,

which allows us to infer the number of rows and columnsof our table T, and which

28

sublists are nonempty and their lengths. (Note that the valuesof n, n* and # x can
be obtained from theselengths.) Next, we retrieve the sublistsencaledin step 2 since
we know their lengths. At this point, we have recoreredthe content of T, allowing
usto implemert the function with the columnsof T asdiscussedefore. Given ,

we can decale bwt asdescribed at the end of Section2.3.1.

We will completethe proof of Theorem2 in Sections2.4 and 2.5.

2.4 Encoding Sublists in High-Order Entropy

At the end of Section2.3.2,we built a partitioning sthemethat considersead con-
text x 2 Py, independerly. In this section,we focus on the problem of encaling the
sublistshx;yi fory 2 (i.e., step 2 of encaling). As a reminder, thesesublists form
a partition of the integersin the range [1; n*] with o set # x. Moreover, since# x
can be easily inferred using the information from the empirical statistical model in

De nition 1, we canrecreatethe original positions storedin the sublists as usual.
We will encale sublists one cortext at a time. In other words, we encale the
sublists hx; 1i;hx; 2i;:::;hx; 1 at once. One way to do this encalesead cortext x
by encaling the string wy (from Section2.2.1), which consistsof the synbolsy that
precedex, concatenatedtogetherin bwt order. To encale w,, we canuseis a quasi-
arithmetic coder from [HV94] (Theorem 1), requiring Ig nx;l;nx;”; ,,,,, .+ 2 bits of

space.

Lemma 1 (Quasi-Arithmetic Coder [HV94]). Suppmsewe knowthe valuesof n*
andn*1;n%2; :::;n*% for eachocontextx. We can enadeall contextsusing one quasi-
arithmetic coder for each context x taking just nHy, + O(") bits of space. Decoding

any context requires O(n*) operations on integersof size O().

In the rest of this section, we detail an alternative method of encaling eath

29

context x, motivated by applications to text indexing. We begin by encaling eah
sublist independerily, and then evaluate the redundancyof suc methods. In partic-
ular, Section2.4.3descrikesan important data structure to text indexing, the wavelet

tree.

2.4.1 Individually Encoded Sublists

In this section, we considerindividually encaling ead sublist hx; yi in cortext x.
Since the positions in eat sublist are always increasing, we can represemn a sub-
list hx;yi as a subsetS of t items drawn from a universeof sizen® In terms of
our notation for sublist h;yi, t = n*¥ and n® = n*. It will also be useful to
view the subsetS as an implicit bitvector B of length n% If S cortains the ele-
mens1l s;<5S,< <'s; n°the sith entry in the bitvectoris 1, for 1 i t

and the remainingn® t bits are 0.

In this section, we will descrite two methods: the rst usest-subsetenading
from [Knu05, Rus05];the secondusesa quasi-arithmetic coder on the bitvector B.
We will uset-subsetsand this quasi-arithmetic coding schemeheavily over the next

few sections;thesemethods will later be improved in Section2.4.4.

Encoding Sublists Using t-subset Encoding

One method to encale S is to uset-subsetenading from [Knu05, Rus05], which
requiresthe information-theoretic minimum of dg ”to e bits. Eacd t-subsetcan be
encaled or decaded with O(n% operations on large integers. By \large", we mean
integersof size! (Ign) bits. All the t-subsetsare erumeratedin somecanonicalorder
(say, lexicographicorder) and the rth subsetin this order is encaled by the valuer
written in binary, which requiresdg rlo e bits. We will usethe following canonical

ordering for our subsets:the largestindex value r refersto the subsetS wherethe

30

rst t positionsin the implicit bitvector B are all 1.

We now descrite an algorithm to take a value r and generatethe subsetS of t
items out of a universeof sizen®that r represets. We call this procedureunranking
the valuer. Our algorithm will generatethe implicit bitvector B of length n% ead
bit position BJi] is initialized to O.

function unrank(B;r;n;t) f
if (t=0)return B;
for (i= 1to n)
if (r> ")

Bl] 1;

The unr ank function operatesin O(n9 time, but usesoperationson largeintegers
of size! (Ig n) bits. To perform expandedoperations, we simply compute B and use
brute-force methods to answer queries. The \ranking” algorithm that reversesthis
processis straightforward.

We highlight the functions rank and select as two advanced operations of par-
ticular interest, sincethey are often usedin our remaining data structures. For a
bitvector B of sizen® the function rank,(B;i) returns the number of 1sin B up to
(and including) positioni. The function selet; (B ;i) returns the position of the ith 1
in B. We can alsode ne ranky and selet, in terms of the Osin B.

When we have t-subsets,we can support rank and selet by unranking the index
valuer into its implicit bitvector B, and then performing a brute-force linear walk

to return the correctansver.® We summarizetheseresultsinto the following lemma.

5Time boundsare not the issueat this stage;we addresstheseconcernsin Sections2.4.4and 2.7.1.

31

Lemma 2 (t-subset Encoding). Let the subsetS consist of t items drawn from a
universeof sizen, where we already knowt and n (and do not need to enade them).
Then, we can uset-subsetenading to representS usinglg ? + O(1) bits of space
and can be enaoded or decodad using O(n) operations on large integers, i.e., integers

of size! (Ign) bits.

Encoding Sublists Using Quasi-Arithmetic Encoding

As we sawv in Section 2.4.1, using t-subsetencaling to represemn a subsetS with t
items drawn from a universeof sizen®requiresO(n) operationson large integers. To
avoid the large integer computations, we can usea quasi-arithmetic coder [HV94] to
encale or decale the implicit bitvector B. The coder will sequetially encale the
positions of B, encaling whether ead bit isa 0 or a 1. At any step of the encaler,
the probability of the next bit beinga 1 is t=n° (for the current valuesof t and n9;
the probability of the next bit beinga 0 is 1 t=n°% We summarizethis shemein

the following lemma.

Lemma 3 (Quasi-Arithmetic Subset Encoding). Let the subsetS consist of t
items drawn from a universe of size n, whele we already knowt and n (and do not
need to enade them). Let B be the implicit bitvector related to S. Then, we can use
a quasi-arithmetic coder to representS (by enading B) usinglg § + O(1) bits of
space and can be enaded or decoded using O(n) operations on small integers.

To support rank and select, we will use a brute-force method once we have
recovered B. We reducethe encaling and decaling time for storing a subsetS from
O(nY time to O(t) time in Section2.4.4,wheret represets the number of items in

subsetS (or equivalertly, the number of 1sin B).

32

2.4.2 The Space Redundancy of Encoding Multiple Sublists

In this section, we revisit encaling ead sublist hx; yi independertly of the others.
One (simple) method would be to encale ead sublist hx; yi asa subsetof t = n*Y
items out of a universeof n®= n* items using t-subsetencaling or quasi-arithmetic
coding, descriked in Section2.4.1. To encale and decale sublist hx; yi, we can use
subsetrank and unrank primitiv es (respectively) on a sequence of dg n”X;Xy e bits,
or encale or decale the implicit bitvector B related to sublist hx; yi.

Unfortunately, despitethe fact that t-subsetencaling (and quasi-arithmetic cod-
ing) is locally optimal for sublist hx;yi does not imply that it is glokally optimal
for encaling all the sublists together. In fact, summing the size of subsetencalings
for all the sublists shows that the total spaceadds an O(n) term to the ertropy
bound nH! This nding is given in the following lemma. First, we briey de ne
someusefulnotation. Let t, be the number of nonempty sublists cortained in a given
cortext x and, without lossof generaliy, let the number of ertries in the nonempty
n*y = nX,

sublistsbe n*t, n¥2, ..., n*" where | .

Lemma 4. Given context x, the following relation holds,

X nx nx y
Ig nx’y = g nx lnx’z nxtX + O(n) (217)
1y tx !
Proof. Whent* = 2, g 7, =1 n dthe | is triviall
roof. ent"=2, ;w9 s TI10 xipezigex @N e lemmais trivially
proved. Thus, let t* > 2, sothat the following holds.
T T =g . (b
Xy - X1 nX21 - - nxtX] X X; 1)l (nX X2y -+ (X XX)|
1y n nxiinxel . nxt*l (n nxHl(n nx2)l:(n nxt*)!
1 x
(n*)
9 iz ot (M)
—_ 1 X X
= g nx1nxz2l ;o nxt*l +ntlgn
SiNCelg xipxrenxx = 10 mommsieer and lgn*t - nXign* nXige +

1=2Ign* + 1=12nlge + Igp2_ by Stirling's inequality [Fel68], the claim is proved.
33

The additional term of O(n*) in Equation (2.17)is tight in se\eral casesfor example,

whent* = n* > 2 and eahh n*¥Y = 1. O

The apparen paradox implied by Equation (2.17) can be resohed by realizing
that ead subsetencaling only represets the ertries of oneparticular sublist; that is,
thereis a separatesubsetencaling for eat synbol y in context x. In the multinomial
coe cient of Equations (2.9) and (2.17), all the sublists are encaled together as
a multiset. Thus, it is more expensive to have a subsetencaling of each sublist
individually rather than having a singleencaling for the ertire context. In Lemmad4,
the O(n*) additional bits accourt for the extra costincurred by encaling, for eat
sublist hx; yi, not only the positions of w, wherey appears, but also the positions
where it doesnot appear. When summedover all n ertries in all sublists and all

conexts, this term givesan O(n) cortribution to the total spacebound.

To avoid this excesencaling cost, we perform a saling of the universe. For con-
text x, we apply the scalingof the universeasfollows. When we encale sublist hx; yi,
we only encale its positions in terms of positions not used by sublists hx; y4 for
1 y%< y. (These positions are those corresmnding to the remaining Os in the

resulting bitvector.) In this way, we iterate the scalingto the sublists:

1. We represen sublist hx; 1i using n¥!-subsetencaling in a universeof sizen*,
usingdg %, e bits.
2. Fory = 2;3;:::;t*, we represen sublist hx; yi using n*Y-subsetencaling in a

scaleduniverseof sizen®= n* P zozll n*Y°, with dg n’lf; e bits.

We give an exampleusing Table 2.5for cortext x = i . Here,sublist hx; m cortains
the third positionin the interval [1; 4] = f 1, 2; 3; 4g; the correspnding bitv ector 0010
isencaledin dg ‘1‘ ebits. Whenwe encale sublist hx; pi, we only encaleits positions
in terms of positions not usedby sublist hx; m. In other words, we are encaling

which of the remaining positions f 1; 2; 49 (corresponding to the Os in the bitvector

34

for sublist hx; m) cortain the symbol p. In this case,ertry 4 in sublist hx; pi sublist
correspnds to the third remaining position in f1;2;4g (out of three items in the
scaleduniverse). The resulting bitvector 001, is encaled in dlg i’ e bits. The only
remaining positions now are f 1; 2g, correspnding to the two remaining 0s in the
scaleduniverse. To encale sublist hx; si, we only encale those positions not used
by sublists hx; m and hx; pi. Sublist hx; si cortains the remaining available positions
and we implicitly encade the bitvector 11 encadedin dig g e = 0 bits of space.The
total number of bits for cortext x isdg j e+ dg e+ dg 5e<|Ig i, +3as
required.

To recover the 2nd position in the h ;si sublist, we have to nd the position j of
the 2nd non-position in the the h ;pi sublist (i.e. the position j of the 2nd O in its
correspnding bitvector). For this example,we can seethat j = 2. Then we have to
nd the position of the 2nd non-position in the h ;m sublist, and so on, cascading
the query until an answer is readed. Finding the right position in the bitvectorsuses
arank or select query (which we usemore when we discusstext indexing).

Note that the last sublist, hx; t*i, is encaded using dg EI e = 0 bits. We
introduce the notion of depth of a context x, which measureghe maximum number
of sublistsin context x that must be examinedto recover the ertries of any sublist
of x. As we shall seelater, the depth is related to decompressioriime; in the above
stheme,the depth is t*. The lemmabelov capturesthe time and spacerequired for

our incremenal represemation stheme.

Lemma 5 (Incremen tal Representation of Sublists). Using the incremental
representation of sublists by saling the universe, we can enade the t* nonempty
sublistsfor each context x in fewerthan Ig nx;l_nx;”zx .+ t* bits, sothat the depth

is tX.

Proof. We show that the information theoretically minimum spacerequiredto encale

35

all sublistsin corntext x is

| nx . | nx nxl . | nx nxl nx2 N . | nxtx
g nX;l g nX;2 g nX;3 g nX;tx
nx nx nxl nx nxl nxz nxnx
nx;l nx;2 nx;3 r]x;tX
n*! nx
=9 4 = t* =g _ N
nxl!nle nxt*1 nxi nxz nxit

We canreplacet* by in the multinomial coe cien t of the above formula because
the empty sublistsdo not cortribute. The depth of the above approad is sequetial
in terms of ty, the number of nonempty sublists within x. Thus, the depth is t*,

sincewe potertially have to badtrack through ead nonempty sublist to recover the

entries of the last sublist in the cortext. O
ipssm#pissii
‘ 100010010011
pss#pss imiii
0001000 01000

pSSpPSsS
011011

Figure 2.1: An examplewavelet tree.

2.4.3 The Wavelet Tree

As we sav in Section 2.4.2, the linear represemation of sublists in Lemma 5 for
context X may requiresup to t* querieson nonempty subliststo decale an answer.
We instead provide the wavelettree data structure, which is of independen interest,

that reducesthe number of querieson nonempty coriexts to just Igt* Ig . A

36

wavelet tree is a binary tree structure that reducesthe compressiorof a string from
alphabet to the compressiorof binary strings. We now descrike the wavelet tree
data structure for any string T of length n drawn from an alphabet .

Our wavelet tree data structure is a complete binary tree with leaves, one for
eat synmbol appearingin T. For ead internal node u of this binary tree, we assaiate
two vectorsof the samelength: a text vector T, composedof synmbols drawn from ,
and bitvector B,. At the root noder, T, and B, are both of length n. At the root,
wesetT, = T. Let | bethe lexicographicallysmallestd =2e symbols preset in T,
and R be the lexicographically largestb =2c symbols presen in T. Then, we set
B/[i]=0,if T;[i]2 L, andB;[i]= 1 otherwise.

We recursethis processon the ny positions cortaining a symbol in | for the left
subtreeof r, and on the n; positions cortaining a symbol in g for the right subtree
of r. The text vector for left child r, is the concatenationof the symbols|j sud that
B.[J] = 0. The right child is processedsimilarly. The wavelet tree data structure
only storesB, for ead node; it storesit in somecompressedorm, sud ast-subset
encaling (described in Section2.4.1).

To explain our wavelet tree data structure more clearly, we will referto the exam-
ple in Figure 2.1, built on the bwt of the string mississippi# . Here, ead internal
node u consistsof the two vectors T, and B,. (We have drawn the leaves here for
clarity, though they are not neededin the wavelet tree.) Supposewe wanted to know
which symbol appearsin text position 9 (which is an s in this example)."We obsene
that B,[9] = 0, which tells usthat the correct symbol is contained in | = fp;s;#g.
Furthermore, sincethe 9th position of B, is the sixth 0, we know that our answer
correspndsto the 6th position on the left child ¢;. (Computing this information re-
quiresa rank query, which we will descrike in detail in Section2.7.2, when we want
fast access.For now, we explicitly compute it using t-subsetsor a quasi-arithmetic
coder in a brute-forceway, asdescritedin Section2.4.1.) We proceedto seart in the

37

6th position. B, [6] = 0 which meansthe correctsymbol is cortainedin | = fp;sg,
sowe again go to the left subchild c,, searding for the 5th position there. Here, we
nd that B,[5] = 1, which leadsus to the leaf represeting s, which we return as

the answer.

The key obsenation is to note that ead of the t* 1 internal nodesrepresets
elemers relative to its subtrees. Rather than the linear relative encaling of sub-
lists we had in Section2.4.2, we use a tree structure to reducethe dependencyon
previously encaled information. In particular, to decade any particular sublistin a
wavelet tree, a query would only needto acces(lg t*) internal nodesin a balanced
wavelet tree. In somesensethe earlier approad correspndsto a completely skewed
wavelet tree, as opposedto the balancedstructure now. Recovering the erries of
any sublist hx; yi proceedsexactly asin Section2.4.2,exceptthat we start from the

leaf correspnding to sublist hx; yi and examineonly the subsetsin its ancestors.

Figure 2.2: A wavelet tree for cortext i in our example.

Interestingly, any shape of the wavelet tree givesthe sameupper boundson space;
the only aspect that changesfrom an altered shape is the number of queriesrequired.
We give a short examplefor cortext i on our cortinuing examplein Figure 2.2. We
group sublistsh ;m and h ; pi together, thus obtaining positionsh3; 4i for them. For

this grouping, the correspnding bitvector would be 1100, represeted with dg ‘2‘ e

38

bits. Then, the h ;si list would be represeted asbefore,with dg g e bits. We need
a further subsetencaling to distinguish betweenh ;m and h ; pi, but on a scaled
universewith bitvectors01 and 1, respectively, using dg i e and dg i e bits. The
total spaceis still boundedasbefore,namely dg 5 e+dg 2 e+dg 2 e+dg ; e<
lg 1;‘1‘;2 + 3, sincethe terms of the form dg :2 e = 0 do not cortribute. With this

intuition rmly in mind, we now detail the generallemmaand its proof.

Lemma 6 (W avelet Tree Compression). Supmsewe know the valuesof n* and
n®l;nx2;::n% . Using a wavelettree for each context x, we can enade the t*
nonempty sublistsfor context x in fewer than Ig nx;l,nx;”; ,,,,, .+ t* bits, so that the

depthis O(Ig t¥).

Proof. We analyzethe spacerequired in terms of the cortribution of ead internal
node'st-subsetencaling. We prove that this costis the logarithm of the multinomial
coe cient in Equation (2.9) for the high-order empirical ertropy.” Note that the

leaves of the wavelet tree do not cortribute to the cost since they generateterms

nxy
nxy

of the form dg e = 0in the calculations for the number of required bits. By

induction, it is simpleto verify that the spacerequired amongall the t* 1 internal

’In somesense,we are calculating the spacerequiremerts for eac sublist hx; yi, propagated over
the ertire tree. For instance, in the example above, hx;yi is implicitly stored in ead node of
its root-to-leaf path. We could analyzeit this way and show that the two notions are the same,

though we defer the argumert in the interest of brevity.

39

nodesis

| nx;l+ rlx;2 .l r]x;3_+_ r]x;4 N .| nx;tX 14 r]x;tx
g nx2 g nx4 9 nxt*
nst+ + nx4 nxs + + nx8 nxst* 3 4 + pxt*
+ g , , +Ig . . +1g ox x
nX,3 + nX,4 nX,7 + nX,8 nX,t 14 nX,t
nx;l + + nx;tx nx
+lg e =g o
nX,l + + nX,t =2 nX,l; nX,2; T nX,t
g nx;l. nx;z nx

Hence, eath wavelet tree encales a particular cortext in precisely the high-order
empirical ertropy, which is what we wanted in Equation (2.9). As in the proof of

Lemmab, the rounding dueto the ceilingsaddsfurther t* bits to the abovebound. O

Lemmasé is a key result for many applications, sud astext indexing and range
searting. One of its more subtle cortributions is in achieving a near-optimal Oth-
order compressorusing a seriesof optimally-stored succinct dictionaries. The con-
nection betweenthesetwo conceptsis a recurring themein state-of-the-artbwt com-
pression. The wavelet tree sernesas a natural way to expressthe Oth-order ertropy
of a string with alphabet using se\eral strings with a binary alphabet.

The advantage of using the wavelet tree for text indexing will be clearin the rest
of the chapter, wherewe usethe function describedin Section2.3.1. In Section2.7,
we will replacethe t-subsetencalingswith fully indexabledictionaries|RRR0Z] inside
the nodes of the wavelet tree. We will exploit its organization for compressedext
indexing, aswe detail in Sections2.8 and 2.9.

One problem with our current implementation of the wavelet tree is its use of
subsetencaling usingt-subsetsor quasi-arithmetic coders,requiring O(n) operations.
To solwe this problem, we introduce our subsetencaler in Section 2.4.4, which is
a data structure of independert interest. It will replacethe subsetencalings the

wavelet tree, without adding any additional space.

40

2.4.4 Subset Encoding With Small Integers

In this section,we descrike a technique for subsetencaling, storing a setS of t items
out of auniverseof sizen sud that it canbe encaledor decaledusingO(t) operations
on small integers. This goalis an improvemen over Lemma 3, which requiresO(n)
sudh operations. We assumethat ead of the n elemens of the universe appears
equally likely as an elemen of the setS. This assumptionis not a debilitating one;
in fact, the subliststhat we store in the previous sectionsusethe sameassumption.
As we descrited in Section2.4, we canthink of a t-subsetas a succinctway to store
an implicit bitvector. We could encale this bitvector using arithmetic (or quasi-
arithmetic) coding using Lemma 1, but encaling/decoding would still require O(n)

operations.

pearin the setS. (The ith gapisformally s; s; 1, wheresy = 1.) To encae the
items, we ass@iate a probability distribution for the di erent gapvalues,and encale
eath gap accordingto its probability using any of a number of techniques (say, for
instance,the quasi-arithmetic coder from [HV94]). Using this method, the items are
decaled sequentially using O(t) operations on small integersof size O(Ig n) bits.
The gapsareencaledsequetially. For this section,werede net to bethe number
of itemsleft to encale out of a remaininguniverseof sizen. In other words, the values
of n and t will scaleas we sequetially encale gaps. (As descriked in [Vit84], this
scalingde nition of n and t will not be a problem.) Let X be the random variable
that determinesthe length of the next gap value to be encaled. Note that the range
of X is the setof integersin the interval 1 x n t. We will restrict gapsto a
length at most n=t and aggregatethe probabilities of larger gapsinto a singleescag
gap. If we needto encale an esca gap of length g > n=t, wereseth=n g 1

and cortinue processing.Hence,the rangefor X is1 x n=t.

41

One approad is to encale the gap X usingthe exact discrete probabilities f (x).

The probability distribution function (pdf) for f (x) is

8

f(x)= < T fLox<ns
- . (n n=t 2)t
nt

if X = n=t,

where we usethe notation a° to denotethe falling power a(a 1):::(a b+ 1) =
al=(a Db)!l. The constarts ;; , arenormalization factorssothat f (x) sumsup to 1.
The probability for x = n=t includesthe sum of all probabilities for x > n=t. Both
the expected value and the standard deviation of X are roughly n=t, which is, as
expected, the averagegap length. We could usethis distribution to encale gapsin

the quasi-arithmetic coder [HV94]; however, computing f (x) will require largeinteger

computations.

To avoid thesecomputations, we are willing to usea (continuous) appraximation
of f (x) to enade the gaps,though they still are occur with probability f (x). Using
an appraximate distribution will incur someadditional encaling overhead,which we
will analyzelater in this section. In particular, we will approximate f (x) with two
probability estimatesg;(x) and g,(x) from [Vit84] that are easyto compute using
built-in logarithm functions. In the rest of this section, we will assumethe use of
b-bit arithmetic, wherebis an appropriately large constart multiple of Ign, sud that
exponertial and logarithm functions are correct to b bits. Then, the absolute and
relative error of computing a constart number of sud functions can be boundedby
O(1=n°) for someconstart c. Furthermore, the quasi-arithmetic coder we will use
requiresat most O(1=n) extra bits of storageper gap stored [HV94]. Thus, we focus

on the nal sourceof error, the appraximation itself.

Our technique will use a quasi-arithmetic coder that will encale eat gap us-
ing g:(x) or gx(x) instead of f (x). To use these correctly, we need two further

properties from ead approximation function:

42

Given a gap x, we needto determinein O(1) time the endpoints of an interval
whoselength approximatesf (x). To accoun for this goal, ead of our approx-
imation functions will be cortinuous. Then, for a probability function g(x), we
can compute the endpoints G(x) and G(x 1), where G(x) = Rg(x) is the

cumulative distribution function.

Ead interval G(x) G(x 1) must be of length at least O(1=n°) for some

constart ¢, sothat we canrepresen it using clgn bits.

The rst property will be obvious for our choicesfor g(x); we will prove the second

property for ead case.

Our two appraximation functions are g;(x) and gx(x). Wewill useg;(x) to encale
gapswhent P n, and g>(x) to encale gapswhent > P n. If t > n=2, we reverse
the role of Os and 1s (i.e., encale gapsof 1s), sett = n t, and proceedas above.
(Obviously, if t = 0, we do not generateany more gaps.) We will usetheseprobability
estimatesin the quasi-arithmetic coder to encale the gaps, alternating between g,
and g, and maintaining t as necessaryto operate within the above constrains. We
do not have to remenber which estimate was usedto encale eat item or when we
complemeted the set S (which could take a lot of spaceto encale), sinceit canbe

easily determinedduring the encaling or decaling process.

Finally, we must analyzehow many extra bits we will take to encale the gap X

using g:(x) or gx(x) rather than f (x). We de ne g:(x) as

8
< t

q(x) = : n n

t 1

- if 1 X< n=t;

el if x = n=t,

where ; and , are normalization factors sothat g;(x) sumsup to 1. The random
variable X ; with probability density g;(x) hasthe beta distribution, scaledto the

universe[l::n] with parametersa = 1 and b= t. Notice that X; can be generated

43

quickly with only one uniform or exponertial random variable [Vit84]. We similarly

de ne g,(x) as
8
< 51 i %ip1 L oif1 x<n=t
%R(x) = . _
- if X = n=t,
where 3 and 4 are normalization factors sothat g,(x) sumsup to 1. The random
variable X, with probability density g,(x) hasthe exponerial distribution. Here,
X, can be generatedquickly with only one uniform or exponertial random vari-
able [Vit84].
We now shawv that the probability of any ewert is at least (1 =n®), for some
constart c¢. This will allow us to usea quasi-arithmetic coder that makes use of a

word sizeof roughly clgn bits.

Lemma 7. The approximation functions g;(x) and gy(x) are at least (1 =n°) for

any givengapx.

Proof. We show the result for g;(x) rst; it suces to show the result for the case

when g;(x) is minimized, namely when x = n=t. We write

t

gu(n=t) = n n= 1

t 1

t

Ast! 1, this becomes(l=(n n=t))(1=€ = O(1=n°), which can be represeted
using clg n bits of space.For smallert, g;(n=t) is strictly larger than the limit, since

(1 1=t) < 1. (In the degeneratecasewheret = 1, we handle the caseseparately)
A similar analysisappliesfor g,(x) aswell. It again suces to shawv the result

when g x) is minimized; this happenswhenx = n=t. We write

1 (t =(n 1)
NI (¢t 1=n 1)~

G(n=t) =

Since(n 1)=(t 1) n=t, we caneasilyseethat this caseis similar to the previous
case,thus proving the lemma. O

44

Using a g:(x) and gx(x) that can be represeted using only clgn bits, we can
encale and decale the set S using O(t) operations on smal integers. To quickly
arrive at the endpoints within the unit interval correspnding to a particular gap x,
we can usethe cumulative distribution function for thesepdfs.

Howevwer, we still have the problem that we may spend additional bits to encale
eat gap, sinceour probabilities are only estimatesfor the pdf f (x). We addressthis
point in the following lemma, and shawv that the worst-casedi erence betweenthe

encalings is quite small.

Lemma 8. Supmseeach of the t items of subsetS is drawn from [1::n]. The extra
bits needed to enade all gapsusing the prokability estimatesg,; whent P nand g

whent > P n instead of f, is at most O(1) bits using an arithmetic coder.

Proof. We look at the worst casewherewe encale a gap X = x usingthe probability
estimateg; (x) or g>(x) rather than f (x). First, welook at the scenariofor g;(x). The
extra bits neededto encade any gapusingg;(x) isjlg(f (x)) 19(Gi(x) Gi(x 1))j.
Since g;(x) is a decreasingfunction, we can upper-bound the secondlg-term with
gi(x 1) and lower bound it by g;(x). We will now shonv both bounds, thus giving
us the result we want. For the upper bound, we write

n x 1 vl
(n D@ (x 21)=n

t 1

lg(f (x)=au(x 1)) o

n X

= Ilg 1+
9 nZ xn+x 1

Lety=(1 n x)=(n? xn+x 1). Since0 vy < 1, we canseethat the extra
bits we require arelg(f (X)=a.(x)) < (t 1)(lge)ly y?=2],sinceln(l+y)<y y?=2
for all jyj < 1. The worst-caseratio of f (x)=g(X) occurswhenx = n=t. Substituting
and using simple algebra, we seethat we needan additional O(t=n) bits per item,
or O(t?=n) bits for all t items. (For the special casewheret = 1, we encade it using

45

p

O(1) extra bits, but this happensonly once.) We useg;(x) when't n, so this

cortributes at most O(1) bits for all t gaps.
Now we lower bound the extra bits neededto encale any gap using gi(x). We

write

n x t+1
(n t+1)(1 x=n)
x(t 1) L
N2+ n nx nt+x tx '

lg(f (x)=a(x)) g

= lg 1+

The worst-caseratio of f (x)=g(x) occurs when x = n=t. Substituting and using
simple algebra, we require at most O(t=n) extra bits per item. We only useg; when
t P n, sothis cortributes at most O(1) bits for all t gaps.

A similar separation and analysis also applies to the overheadfor g»(x), thus

proving the lemma. O

Putting theseresultstogether, we arrive at the following theorem, which describes

our subset-encding stheme.

Theorem 3 (Subset Encoding With Small Integers). Supmse each of the t
items of subsetS is drawn from the universe [1::n], where we already know t and
n (and do not need to enade them). Then, there exists an enading of subsetS
that requireslg { + O(1) bits of space and can be encded or decoded using O(t)

operations on small integers.

2.5 Encoding the Empirical Statistical Mo del

In this section, we will provide an analysisof the encaling length of the empirical
statistical model, thus nishing the proof of Theorem2. Our schemewasdivided into
two componerts: the encaling of a seriesof small disjoint subtexts (or sublists), one

for eat context x, and the encaling of the length of eat subtext, together with the

46

statistics of ead subtext. We did not analyzethe costrequiredto storethis empirical

statistical information. We brie y recapnow:

For eat context X, the storagefor step 2 usesfewer than Ig nx;l;nx;"; .+t
bits by Lemma 1 and 6. We use Equation (2.9) and Theorem 1 to bound the
above term by nH? + jP,j for all cortexts x 2 P, in the worst case. Since

jP,i M, we bound the spacerequiredto storethe bwt by nH,+ " bits.

To decale the succinct dictionaries in step 2, we needto know the number
of symbols of ead type stored in ead subtext (sublist) for cortext x. Col-
lectively, this information maintains the empirical statistical model that al-
low us to achieve hth order ertropy with our scheme. We call its encaling
length M (T; ;h) (in bits), and we are interestedin discovering just how suc-
cinctly this information canbe stored. Thus, the storagefor steplisM (T; ;h)

bits.8

Our storageof the bwt requiresnH,+ "1 + M(T; ;h) bits, and boundingthe
quartity M (T; ;h) may help in understandingthe compressiblenature of the bwt .
We will dewote the rest of this sectionto deweloping two bounds for the storage of
empirical statistical model. Onebene t of pursuing boundsin this framework is that
it simpli es the burden of analysis: namely; it translates the overhead costs of the

bwt into the costfor encaling the integer lengths n*Y.

2.5.1 Denitions and a Simple Bound

In this section, we descrike a simple encaling for the empirical statistical model,
which takesM (T; ;h) bits to encale. Recallfrom De nition 1in Section2.2.1that
the empirical statistical model encales two items: the partition of " induced by

the optimal pre x cover P,,, and the sequenceof lengths n*¥ of the sublists. The

8In this section, we will show that M (T; ;h) "1,

47

partition is easily stored using a bitvector of length " (or a subsetencaling of the
h

partition using Ig P h bits). To storethe sequencef lengthsn*Y, we simply

store the concatenationthe gammacodesfor ead length n*Y and bound its length.

We brie y reviewElias’ gammaand delta codes[EIli75] beforedetailing the proof.
The gamma code for a positive integer ~ represets ~ in two parts: the rst en-
codes 1+ big c in unary, followed by the value of ©° 2%9°¢ encaded in binary, for
a total of 1+ 2blg c bits. For example,the gammacodesfor ~ = 1;2;3;4;5;:::
are1;010;011;00100;00101;:::, respectively. The delta code requiresfewer bits
asymptotically by encaling 1+ blg "¢ via the gammacode rather than in unary. For
example,the deltacodesfor ™ = 1;2;3;4;5;:::are1;0100;0101;01100;01101;:::,
and require 1+ blg ‘c+ 2blglg 2 c bits. Now, we descrike a simple upper bound on

encaling the empirical statistical model.

Lemma 9. The empirical statistical model for atext T drawnfrom an alphalet can
be enaded using at mostM (T; ;h) = O "1Ig(1+ n= M) bits of space, whee

h is the context length.

Proof. In this encaling, we represen the lengths using the gammacode. We ob-
tain a bitvector Z by concatenating the gamma codes for n*1;n*2;:::;n* for
x = 1,2;:::;]P,j. The bitvector Z cortains O(P x2p,y2 1gN™Y) bits; this space
is maximized when all lengths n*¥ are equalto (n=(jP,]) + 1) by Jensen'sin-
equality [CT91]. SincejP,] h we bound the total spaceby O (jP,])lg 1+
n=(P,j) =0 "lig(1+ n= M) bits. Wedo not needto encale n asit can

be recaorered from the sum of the sublists lengths. O

The result of Lemma@9 is interesting, but it carriesa dependenceon n, unlike the
boundsin related work, which are related only to and h [FGMSO05]. In the next
section, we shav an alternate analysisthat remediesthis problem and relates the

encaling coststo the modi ed ertropy nH,,, asde ned in Section2.2.1.

48

2.5.2 Nearly Tight Upper Bound on M (T; ;h)

In this section, we descrike a nearly tight upper bound for encaling the empirical
statistical model. As we descriked in Section2.5.1, we can easily store the partition
of " induced by the optimal pre x cover P, usingat most " bits. We provide a

new analysisfor storing the sequenceof lengthsn*¥Y in Theorem4.

Theorem 4. The empirical statistical model for a text T drawn from an alphalet

requiresat mostM (T; ;h) nH,+Ign+ O Mlig "1 pits of space.

The resultsof Theorem4 highlight a remarkable property of the Burrows-Wheeler
Transform, namely that maintaining the statistics of the text requires more space
than the actual encading of the information.

To prove Theorem 4, we have to encale the sublist lengths n¥%;n*2;:::;n*% |
wherex = 1;2;:::;jP,j and i x2p,y2 WY = n. We usethe following encaling
shemefor ead cortext x:

If context x cortains a single nonempty sublist y, we use bits to mark the

yth sublist asnonempty. Then, we store the length n*Y = n*,

If context x cortains two or more nonempty sublists, we again use bits to
mark the nonempty sublists. To descrike the rest of the method, let n = n*
and n) = n* i I_!n%i be a scaleduniversewherej 2. We use bits for
cortext x, onebit persublist. The bit for sublisty is 1 if and only if n*¥ > n9=2;
in this case,we sett, = n) n*Y. Otherwise, we set the bit for sublisty to 0
and sett, = n¥. Notice that t, nJ=2in both cases.Now, we encalet using

its delta code. Given ny and t,, we can recover the value of n*¥ as expected.

Lemma 10. We can enade the sublist lengthsn*; n*2;::::n% for any context x
with two or more nonempty sublists using at most n*Hg(wy) + O() bits, where

0< < 1=2is a constant.

49

Proof. Our sthemerequires2 bits to storeauxiliary information. Now we bound the

sublist. Our approad is to amortize the costof writing the delta code of t, with the
encaling of its assaiated sublist y. We introduce someterminology to clarify the
proof. For any arbitrarily xed constart with 0< < 1=2 lett > 0 be constarts
sud that for any integert >t ,Igt+ 2Iglg(2t) + 1< (2t Igt 1).

Then, for nonempl sublists y with t, t , the delta code for t, will take
O(lgt) = O(1) bits of space. Summing these costsfor all sud sublists, we would

require at most O(Igt) = O() bits for context x.

For nonempty sublistsy with t, > t , we useat most (2t, Igt, 1) bits to

write the delta code of t, usingthe obsenation above.

Now, we will usethe factthat t, n9=2 for ead sublisty in our shemeto bound
the encaling length of sublist y, and then amortize accordingly In general,for any
1<t<n=21g ! lg lg(2=2t) = 2t Igt 1. Sinceead sublist y with
ty > t satis es this condition by the construction of our scheme, we can bound the
delta code of ty, by Ig ’t‘y? bits. Summing over all sud sublists for cortext x, we
would requireat most Ig nx;l;nx;”; ,,,,, .+ = n*Hy(wy)+ bits usingthe analysis

from Section2.4.2,thus proving the lemma. O

The above stheme requires us to store the length n* of ead context X, since
the sum of the t, valueswe store may be lessthan n*. (For the casewith a single
nonemply cortext, n* is the sizeof the only sublist.) For example,supposefor some
context x, n* = 20,n*! = 11,n%2 = 3,n%3= 5, n%4 = 1. According to our sheme,
we would store the t, values9, 3, 1, and 1, which sumup to 14< 20. To determine
the value of n*!, we must therefore compute n* t; thus, we must know the value
of n*.

The storageof n* is a subtle but important point, and it is a key componert in

50

understanding the lower bound on encaling length for the bwt , which we discuss
morein Section2.6. In Lemma 11, we descrilte a technique to store the sequenceof
lengthsn* for x = 1;2;:::;]jP,] succinctly.

Lemma 11. The sgquene of lengthsn* for x = 1;2;:::;jP,,j can be stored using

X
|gnx+ |gn+ O(h+1 |g h+1)

X2P,

bits of space.

Proof. For eat cortext x with n* ertries, we encale its length n* in binary using
b(x) = blgn*c+ 1 bits. Theselb(x) bits do not permit a decaling of n* by themseles,
sincethey are not pre x codes. We descrike how to x this problem. We permute
the contexts x sothat they are sorted by their b(x) values. Now, cortexts requiring
the samenumber of bits b(x) to store their lengths are cortiguous. In other words,
we know that for any two consecutie cortexts x and x° in the sorted order, either
b(x) = b(x%Y or b(x) < b(x9). What remainsis the storage of the positions where
b(x) < b(x9. We store this information usingjP,j bits.

To remenber which lengths b(x) actually occur, we obsene that the number of
distinct lengthsis at mostign+ 1, sincel hb(x) Ign+ 1. We store a bitvector of
length Ig n+ 1 bits to keeptrack of this information. Finally, we storethe permutation
to restorethe original order of the cortexts using O(IgjP,j!) = O("1 Ig 1) bits,

thus proving the lemma. O

The above lemma allows us to store the length of ead context x in Ign* bits,
plus somesmall additional costs. We can bound the spaceof our encaling schheme

with the following lemma.

Lemma 12. The empirical statistical model for a text T drawn from alphalet
requires at most (L+)nH, + Ign + O("Ig M) for all contextsx, whee 0 <
< 1=2is a constant.

51

Proof. Usingthe de nition of modi ed hth-order empirical ertropy in Equation (2.7),
we bound the rst term in Lemma 11 by i «2p, l9N* nH,. According to our
stheme, storing the length n* alongwith bits is su cient to encale any cortext x
with a singlenonempty sublist. For the remaining cortexts, we apply Lemma 10 to

adiewve the desiredresult. I

We canfurther improve our bound by amortizing the costof storing the length n*
for cortext x with the encaling of its sublists. The technique is reminiscen of the
onewe usedin Lemma 10. We changeour encaling schemeas follows.

If context x cortains a single nonempty sublist y, we use bits to mark the
yth sublist asnonempty. Then, we store the length n*Y = n*,

If context x cortains two or more nonempty sublists, we usethe schemebelow.
Let t be dened asin Lemma 10. For any arbitrarily xed constart with

0< < 1=2,let n > 0 bea constart sud that for any integern > n and

: — n nn 1)::(nd 1= ¢) di=
t>t witht n=2, | (G er)] > n%s e

Instead of encading n*! asthe rst sublist length for cortext x, we use bits
to indicate that we encade n*Ye rst, wheret, = minf n*Ye; n* n*Yog satis es

the condition ’:b > (n¥) " If no such yp, exists, encade n**! as before.

Lemma 13. We can enadethe sublistlengthsn*!; n*?;:::;n% alongwith the con-
text length n* for any context x with two or more nonempty sublistsusing at most

N*Hgy(wy) + O() bits.

Proof. The cost for encaling the sublist lengths is analyzedusing Lemma 10. We
focus on bounding the cost for Ign*. If any sublist y, satis es the constrairt in our
sdheme,weknow that Ign* < Ig ’:b , Which is the sameupper bound on the number
of bits requiredto encale t,. Thus, encaling both n*Y» and n* will take 2 Ig rt‘b +

O() bits of space. The encaling sizefor the rest of the new sequencaemainsthe

52

sameas we obsered in Section2.4.2, thus we require at most 2 n*H,(wy) + O()

bits. Since < 1=2, this shows the bound for cortexts x that satisfy the constrairt.

If no sublist satis ed the constraint, then we know that eadh t; t (1 |)
so the delta code for ead t; takesO(lgt) = O(1) bits, which take at most O()
bits overall. Then, the Ign* bits for encaling n* can be boundedby n*H,(wy) asin
Lemma 12, sincen*H,(wy) Ign*. This casewill cortribute at most n*H,(wy) +

O() bits to the bound, thus proving the bound. O

Combining Lemma 13 with our scheme for encaling the singleton cortext, we

prove Theorem4.

2.6 Nearly Tight Lower Bounds for the BWT

Manzini conjecturesthat the bwt cannotbe compressedo just nH, + Ign+ g, bits
of space,whereg, = O("' lg). Howewer, in Section2.5.2,we provide an analysis
that givesan upper bound of n(H + H,) + Ig n+ g°%its, whereg®= O("1 Ig N*1),
Sincethere are an in nite number of texts wherenHy, = 0 but nH, 6 0, our bound
isnHp+ M (T; ;h) nH,+Ilgn+ g%in thesecasesmatching Manzini's conjectured
lower bound (but not for all texts).

The bwt has beenanalyzedextensiwely sinceits original introduction in 1994,
especially in the information-theory commnunity [Ris84, WMF94, EVKV02]. These
results apply to a wide range of statistical modelsfor generatinga text T, including
high-order Markov sourcestree sources,and nite-state macine (FSM) sources.In
a text indexing setting, recen theoretical results [Man01, FGMSO05, KLV06] have
shedlight on the succes®f the bwt and presem somelimits on its compressibiliy.
Within the text indexing framework, we will explore other classesf texts that help

establisha non-trivial lower bound on the compressibiliy of the bwt . Surprisingly,

53

the encaling of the bwt requiresanamourt of spacevery closeto our encaling length
for the upper bound. In particular, we will prove the following theorem,which shows

that our upper bound analysisis nearly tight.

Theorem 5. For any chosenpositive constant 1 and xed positive integer k =
O(polylg(n)) > di= e, there existsan in nite family of textssuchthat for any texts of

lengthn in the family, its boundin Formula (1.1) satis es the following two relations:

nH, + le nHy, O(poly(kd)) nH,+ M(T; ;h) (2.18)

and

nH,+ M(T; ;h) nH,+ nH,+ Ign+ g% (2.19)

When > 1, we use Formula (2.1) as the upper bound for (2.19). To prove
Inequality (2.19), we give atighter analysisof the space-itensive part of the encaling
sthemefrom Section2.5. To capturethe primary challengefrom Section2.5,we de ne
a -resilient text. Let bwt (T) denotethe result of applying the bwt to the text T.
For any givenconstart sud that 0< 1,the text T is -resilient if the optimal
partition induced by P, for bwt (T) satis es max,, fn*¥g n* dl= e for every
cortext x 2 P,,. In other words, no partition x of bwt (T) induced by P, cortains
more than n* dl= e identical symbols. We dene d = dl=e Now, we apply

Theorem4 to -resiliert texts and aciewve the following lemma.

Lemma 14. For any constant with 0 < 1 and any -resilient text T of n

symiols over , wehavenH, + M(T; ;h) n(Hy+ H,)+ Ign+ g%°

Proof. Let = 2 , where ischosenasin Section2.5.2. In the proof of Theorem4,
all casescortribute at most nH, bits to the bound, except for the last casein
Lemma 13. In this case,for context x, t, t = O(1) for all sublistsy. SinceT

is -resiliert, the largest sublist y°in cortext x cortains n*¥° n* dl= e ertries,

54

while the other O(1) sublists consistof d1= e P yeyo ™t = O(1) ertries. The
sublist encaling for context x requireslg nx;l;nx;”: : dl= elgn* + O(1) bits. To
encale the empirical statistical model, we write the value of n* in Ign* bits using
Lemma 11 and the valuesof n*¥ for y 6 y%in O(1) bits overall (just like we did in
Theorem4). Hence,the cortribution of encaling this information for M (T; ;h) is
lgn*+ O(1) 19 cigebme + O(1) bits. SinceH, Hy (Section2.2) and the

rest of the proof is identical to the proof of Theorem4, our lemmais proved. O

To prove our lower bound Inequality (2.18) from Theorem5, we take the following
steps.

We descrile a construction shhemethat takesuser-de ned parametersand cre-
atesa -resiliert text T of length n.
We court the total number of -resiliert texts that our construction scheme
generates,and use a combinatorial argumert to bound the spacerequired to
distinguish betweenthesetexts.
To achieve an entropy bound, we take an arbitrary -resiliert text T and show

that Inequality (2.18) holds.

2.6.1 Constructing -resilient Texts

In this section, we descrite how to construct -resiliert texts using a generalized
construction scheme;then, we will usethe resulting classof texts to prove Inequal-
ity (2.18) of Theorem5. First, we de ne someterminology that will help clarify the
discussion. Let d = dl= e, where0 < 1 is a constart. Let Tg be a support
text composedof an alphabet = faj;ay;:::;a;b;cq;Co; i1 Ck; #g of length ng,

wherek = O(polylg(n)) > dis a xed positive integer. Without lossof generality,

55

we assumethat & < a4, < b< ¢; < ¢j4; < #foralli andj. Wedene Ts as

T REY () ey

where ead ; d. We dene a run r; as the sequenceof *; substrings of the

form ab ¢i. In Ts, b newer appears. The length of the support text Ts is ng =
P .

2 :‘:1 i. Consider the support text Ts = aj;cia;CciaxCraxCraxCra3C3azC3azCzazCs.

Here,k = 3, 1 = 2, , = 3,and 3 = 4. We now prove the following lemma.

Lemma 15. The Burrows-Wheler transform of the supprt text Ts is bwt (Ts) is

{

{ 2
oWt (T) = it W) Fﬁ{?_})y 3 (% fa{?} Ry

Qk
whee B, = P,P,::: Py is the rst black of the bwt transform,andB, = Q1Q>::: Qx
is the second black. Here, P; refersto the positions of the bwt correspnding to
strings that start with symiol a;, and Q; refersto positions of the bwt correspnding

to strings that start with symiwl c;.

Proof. Considerthe strings in the bwt matrix M, sorted in lexicographical order.
According to the rank of symbols in alphabet , all strings beginning with a will
precedestrings beforea;;; . Similarly, strings beginning with c; will precedestrings
beginningwith c;.; . Finally, all strings beginningwith & will precedestrings begin-
ning with c;. Also, there are exactly *; strings that begin with a and c¢;. We now
focuson the strings that beginwith c;.

Ead string beginningwith ¢; hasthe symbol & precedingit (or equivalertly, at
the end of the string) in all cases.Thus, the part of the bwt correspnding to strings
beginningwith c; is (&) . Collectively, we call this block B-.

Eadh string beginningwith a hasthe symbol ¢; precedingit (or at the end of the

string, sinceit's cyclic), exceptthe string correspndingto the rst a; in run r;. This

56

string is lexicographicallythe rst string amongall of the strings beginning with &
and is precededby c; ; or ¢ if i = 1. Thus, the part of the bwt correspnding to
strings beginningwith a; isc; 1(c;) *. Ifi = 1,¢; ;isreplacedwith c,. Collectively,
we call this block B;.

Thus, the lemmaiis proved. O

For our example support String Ts = ajcjajciazCrasCrasCrazCzazCzasCzasCs, the

esling bt s (7= 5 oY TS T Ty T
P1 P2 P3 Q1 Q2 Qs
Now, we introduce d = dl= e partition vectorsv; = hv[1];vi[2];:::v[K]i that

will generatea -resiliert property for B,; B; remainsunchanged,but will implicitly
encale the length of the correspnding portions of B,. In particular, we augmer T;
as follows: for eadh ertry of v; for all i, we replacethe v;[j Jth occurrenceof the
string g ¢; with a bc;. We will make d sud replacemets in ead of the k partitions.

We call this augmerted text T, of length n? = ng + dk.

Lemma 16. The Burrows-Wheler transform of the augmente text T? is bwt (T

is

e e o

bwt (T = PP P (a1)%(a2)?::: (a) 9Q%::: Qp;
wheee PLis composel of symiwls preceding strings that start with a;, A is composel of
symimls preceding strings that start with b, and QP is composel of symimls preceding

strings that start with c;.

Proof. This proof is similar to Lemma 15, where ead string in P; precedesstrings
in P;.1. Here, all strings in P precedestringsin P2, , strings in QP precedestrings
in Q%,, and strings in PP precedestrings beginning with b (called A) and strings
in A precedestringsin QY.

Then, PPis a string of length *; similar to P;, but the singleoccurrenceof ¢; ; (or
ck if i = 1) could bein any of the *; positions. Also, QY is a string of length *; where

57

d positions cortain the symbol b, and all others are a;. Block A consistsof exactly
d occurrencesof ead g sortedin lexicographicalorder, sinceall d strings beginning

with bc; precedeall strings beginningwith bci.,, thus nishing the proof. O
Considerthe augmerted string T = albclalbc1a2c2a2bc2a2bc2a3bc3a3c3a3bc3a3c3,
whered = 2. Then, bwt (T9 = F{%} szfi F3C%§3C? alalaﬁazagag @I@ ?% k) Fg?zb?

1 Q2
A simple veri cation will shcw that bIocksA and B, are -resiliert portions of TSO.

Furthermore, block A is deterministic oncethe parametersd and k have beenchosen;
block B; encalesthe length of eath Q. To haveafully -resiliert text, wewant B; to
have the sameproperty, sowe generatethe string T = T{Ts)? #. This will include

d 1occurrencefadierent synbol insideeah P Notethat jTj = n = dng+dk+ 1.

Lemma 17. LetT = T{Ts)? #, whee T is the supprt text and T2is the augmente
text. Then, the bwt (T) is

bwt (T)—PO?D‘E PO A ch’bjl 30 Ck;

whee P%is composel of symiwls preceding strings that start with a;, A is composel of
symiwls preceding strings that start with b, and Q%is composel of symiwls preceding

strings that start with c;.

Proof. The strings P%°and Q®areof lengthd’;. Similar to the argumerts in Lemmalsé,
PXconsistsof the synbol c; in all but d*'; d positions; one positions cortains # and
the other d 1 positions cortain cy. Pconsistsof the symbol ¢; in all but d; d
positions; the other d positions cortain c; ;. Each Qs similar to the previouscase,
exceptits length is now d*;. Qstill cortains only d occurrencesof b.

Finally, the last ci is the synmbol preceding# in the text, which is lexicographically
the largestsynbol, and thereforethe last string represeted in the bwt , thus nishing
the proof. O

58

For our example, let

T= TSOTS# = aibciaibciazcrasberasberagbezazczaszbesascs

ai1C1a;C1axCrasCorasCorazCaazCaasCzasCst:

Then, the bwt (T is

_ z 1 {z__fl__(
bwt (TSO) = 1#21{%32} cmzc{flczc? F3C2C3C%§2C3C3C'}3 a g arazazas

00 00 00
P PS Pg

F)E%PE} Fﬁf?ﬁ? f"3a3bb{5§;asa3a§; C3:
QY° QY QQ

3

Now we analyzethe costof encaling a -resiliert text.

2.6.2 Encoding a -resilient Text

In this section, we analyzethe spacerequired to store a -resiliert text. SinceB;
and A are deterministic onced and k are chosen,we focusonly on the encaling cost

of B,. First, we prove the following lemma.

Lemma 18. For any set of p objects, at least half of them will take at leastigp 1

bits to enade so that the objects can ke distinguisheal from one another.

Proof. Sinceone can distinguish at most 2 objects from one another usingj bits,
the most succinctencaling would greedily store two objects using onebit ead, four

P.
objects using two bits ead), and soon. Thus, we needto make surethat ! 2" p.

Thus,j + 1 Igp, and the lemmafollows. O
Let bethe setof all possiblechoices of length parameters’; ,;:::; « usedto
generate -resiliert texts in Section2.6.1. By construction,j j= "7 % 1 For

59

a given choice of parameters,we choosed positionsin eat partition Q°that will
cortain a b. Howewer, we are only choosingfrom the rst °; positionsfor ead run r;
(i.e., the positions that correspnd to the ertries in TY). Once these positions are

chosen,we perform the stepsdescriked in our construction sthheme. Sincethe bwt

is a reversible transform, we have d possiblepartitions Q% and our construction
shemegeneratesone of
X = X 12 Lk
d d " d

di erent texts. We let an adversaryencale the X texts in any way he wishes. Then,
we useLemma 18 to consideronly half of thesetexts, namely the onesthat take at
leastlg X 1 bits to encade. Now we analyzethe quartity IgX 1.

To help analyzelgX 1, wedivide into two setsY and Z of equalcardinality,
sud that for any textsy 2 Y and z 2 Z, the product p(y) p(z), wherep(T) =
Q'; ‘(; . In words, Y contains the texts T where p(T) is smaller, and Z cortains
the oneswhere p(T) is larger. We take a single arbitrary text S from setY and
determine which choice of length parameters’; were used. We separatethe k
terms correspnding to from IgX 1 and analyze their cost separately The
terms areP 'Ilg 0= nH 9(S), by our de nition of nite setempirical ertropy. Since

nHY(S) nHXS), the cortribution of this part of IgX 1 is at leastnH2(S) bits.

We translate this into a bound in terms of nH,, using the following lemma.

Lemma 19. For a -resilienttext, nH, (klgd) nH{.

Proof. It suces to shov that nH, (I d) nHJ for eah partition Q%in a -
resiliert text, sincethere are at most 2k + 1 partitions. We apply Stirling's double

inequality to the expressiong ‘(; and nd that

li . 1 i
lg q > IH0+§Igm Oo(1)
. 1, 1
> iH0+§|ga O(1);

60

thus proving the lemma. O

Thus, the total cortribution of the part of IgX 1 correspndingto the text S is
at leastnH,(S) (klgd) bits. Now we bound the term X to gure out the ertire

cost of encaling the string S. We will lower bound X by the sumfor just the setZ

and obtain
X ¥
. SEZ 1
p(S)
227
% Ns=2 kkoik 1 o(S):

ns=2 dk+k 1

C 1 1 bits of space.

Taking logs, we require nH,(S) + Ig

ns=2 dk+k 1

K 1 . For

To nish the proof, we analyzethe cortribution of the term Ig
easeof notation, let g= ng=2 dk+k 1. Wewant to shavthat (k 1)Ig(g=(k 1))
lg %, . Theclaimis true by inspectionwheng 4ork 1is0;1;org 1. Forthe
remainder of the caseswe apply Stirling's inequality asin Theorem 1 to verify the
claim. Now, (k 1)Ig(g=(k 1)) (k 21lg(ns=2) (k 1)Ig(dk) (k 1)Igk.
Thus, the cortribution of this part of IgX lisatleast(k 1)Ilgn (klg(dk))

bits, proving Inequality (2.18) and Theorem5 for any arbitrary -resiliert text S.

2.7 Random Access to the

Compressed Representation of LF and

In Section 2.3, we have descriked the importance of the LF mapping and the
function for compressinghe bwt . As we shallseethesefunctionsarealsoessetial to
performing compressedext indexing. However, we needmore functionality sincewe

needrandom accesgo their compressedralueswith a small cost for decading. With

61

the techniquesdiscussedso far, computing the ith valueof LF or , forl i n,
hastwo major drawbads:
We needto decompressll the information, even if we needa single value of
LF or .
The decompressions sequetially performed even though the required access

is random.

We circumvert the two drawbadks above by using succinctdictionaries and com-
presseddirectories for speedingup the accessand avoiding to decompressall the
data while keepingthe spaceoccupancyenropy-bound. The main cortribution of
this sectionis to shav how to storeLF and in compressedormat sothat ead call
decompressepist a small portion of their format:

Eadh call takesO(lg) time using further O(nlglgn=Ig n) = o(nlg) bits of
spacefor storing the compressedauxiliary data structures.
Eadh call takesO(1) time using further O(n) bits for the compressedauxiliary

data structures (i.e. o(nlg) bits when is not a constart).

We proceedin the rest of the sectionasfollows. In Section2.7.1,we descrile how
to extend the functionalities of the wavelet treesto succinct dictionaries. We then
shov how to usewavelet treesand someauxiliary data structuresto get the random
accesdo the compressedepresemation of in Section2.7.2and to that of LF in

Section2.7.3.

2.7.1 Wavelet Trees as Succinct Dictionaries

Our compressedlirectories hinge on constari-time rank and selet data structures
[Jac89b,Mun96, Pag01,RRR0Z. For a bitvector B of sizen, the function rank,(B ;1)
returns the number of 1s in B up to (and including) position i. The function

selet, (B ;1) returns the position of the ith 1 in B. We can also de ne rank, and

62

selety in terms of the Os in B. As previously mertioned in Section 2.4.2, subset
encaling can implicitly represeih B as a subsetof the elemens from 1:::n, asso-
ciating ead 1, say in position j in B, with elemen j in the subset® Letting t be
the number of elemeits thus implicitly represeted (the number of 1s in the bitvec-
tor), we can replace bitvector B supporting rank; and selet; with the constan-
time indexabledictionaries dewloped by Raman, Raman, and Rao [RRRO0Z], re-
quiring g § + O(tlglgt=Igt) + O(lglgn) bits. As can be seen,the bound of
subset encaling, Ig ’t‘ , has an additional term for the fast-accessdirectories,
O(tlglgt=Igt) + O(lglgn). Moreover, rank,(B;i) = 1if B[i] 6 1 in indexable
dictionaries. If we wish to support the full functionalities of rank,, selet,, ranko,

and selety, we needto usethe fully-indexableversion of their structure, called an

fid .

Theorem 6 (Raman, Raman, and Rao [RRRO02]). An fid storingt items out

of a universeof n items, requires

n o niglgn

9 t ¥ lgn

bits of sppace. Each call to rank,, selety, ranky, and selet, takesO(1) time.

Note that the additional term of O(nlglgn=Ign) in Theorem 6 is related to
the universesize n, instead of the subsetsizet. Analogously to what done with
subsetencdling, sincelg { n, we will usefid s asspace-e cient replacemets of
bitv ectors of length n with t 1s (alternatively, with n t 0s) supporting rank and
selet on both 0s and 1s2° In this way, we can successfullyreusepart of the analysis

givenin Section2.3.

9Note that ranking/unranking a subsetrefersto the lexicographic generation of subsetsmertioned
in Section2.4.2, not to be confusedwith the rank function de ned here.
101n this chapter, we write rank(i) or selet(i) to denotethe appropriate function on 1swhen there

is no confusion.

63

Let us now considerthe wavelet treesasde ned in Section2.4.3. What we obtain
by replacingthe subsetencalingsin the nodeswith fid s, is a generalizationof rank
and selet operationsfrom binary to -ary vectors. We adopt the notation introduced
in Section2.4.3, where s, denotesthe hx;yi sublist of Y ertriesand1 y t*.
(Recall that t* is the number of nonempty sublists for cortext x, and, without
loss of generality, the synbols from for these sublists are renumbered from 1 to
t*.) Ead cortiguous portion of symbols of the bwt correspnding to context x is
stored by a separatewavelet tree; we denote this portion by wy, = wy[1:::n*]. To
make the discussiona bit more general,we de ne two primitives,wherel y t*
andl i n*:

For ead symbol y, function rank(y’(wx; i) returns the number of occurrencefy
in wy up to (and including) position i.
For eat synbol y, function sele:tg(wx; i) returns the position of the ith occur-

renceof y in wy.

When w, = B andy 2 f0;1g, we obtain the classicrank and selet operations
on bitvectors B. Next, we shav how wavelet trees can support rank® and selet®

e ciently usingfid s.

Lemma 20. Using a wavelettree for context x, we can enade the t* nonempty

sublistsfor that contextin fewerthan

X X
g | .n 40 tX+nXIgIgn
Nt nx2; o ns lgx n*

bits, so that rank® and selet® take O(lg t¥) time.

To begin with, we augmen our wavelet tree by replacing the t-subsetencal-
ing of [Knu05, Rus05] with the fid structure from [RRROZ. To resolhe query

seIe:tS(Wx; i) on our new wavelet tree for wy, we follow thesesteps.

. selet) (wy; i):

64

1. Sets=s,.

2. If s is the left child, seard for the ith O in s's parert dictionary: seti

selety(i).

3. If s is the right child, seart for the ith 1 in s's parert dictionary: seti
selet (i).

4. Sets = parent(s).

5. Recurseto step 2, unlesss = root.

6. Return i asthe answer to the query selet®in sublist Sy.

This query trivially requiresO(Igt*) time sinceselet takes constart time and the
depth of the wavelet tree is O(lg t*) asshavn in Lemma 6. The other query can be

performedanalogously
. rankd (wy; i):
1. Sets = root.
2. If s, is a descendan of the left child, seti = ranky(i) in s's dictionary.
. If sy is a descendan of the right child, seti = ranky(i) in s's dictionary.

3
4. Sets = the child of s that is an ancestorof leaf s, .
5. Recurseto step 2, unlesss = s,.

6

. Return i asthe ansver to the query rank®in sublist Sy.

This query alsorequiresO(Ig t*) time. The spaceanalysisof the new wavelet tree is
similar to that of the unaugmened wavelettree in Lemmasé, exceptthat we must sum

the costsof the lower-order terms for the fid s. Speci cally, there are O(lg t*) levels

P
suhrthat r < t*and [, u; n*. Ead fid givesan extra cortribution of at most

cy; lglgu;=lgu; bits to the analysisin Lemma 6, for a constart ¢ > 0. For a given

65

level in the wavelet tree, we claim that the additional number of bits is
X
cy lglgu;=lgu; = O(n*lglgn*=Ign*): (2.20)
j=1
Hence,we get a total of O(n* Iglg n*=lg,« n*) bits of spacefor all the levels. In order
to prove our claim (2.20), rst note that there existsa constart > 1 sud that the
function f() = Iglg =1lg isconcae forany > . We then split the sumin
Equation (2.20) in two parts. The rst part involvesthe terms sud that u; 05
giving a total cortribution of O(r), since ¢ is constart with respectto n* andr, the
number of nonempty sublistsin the given level of the wavelet tree. The secondpart
involves only the terms sud that u; > o, for which the concavity of f () holds.
Multiplying by r=r and applying Jensen'sinequality [CT91], we obtain

P, P, !
r ¢ o ClausieieC jaus) o risiaren
r . Ig uj |g(jF:1 Uj Zr) |g(nX=r)

=1

Note the sum over the r valueson all levels of the wavelet tree is t* 1 (i.e. the
number of internal nodes), so that the total is O(t* + n* Iglgn*=Ig,x n*) additional
bits, thus completing the proof of Lemma 20. This term seemsdi cult to improve
due to strong evidencefrom Miltersen [Mil05]. In the following, when we invoke the
rank and selet operations, we specify the dictionary they referto unlessthis is clear

from the cortext.

2.7.2 Random Access to the

Compressed Representation of

We now descrilke how to store, in compressedormat, the function descriked in
Section 2.3.1, so as we can quickly compute any value (i), for 1 i n, by
decompressinga small portion of the format. We employ the conceptualtable T

descrited in Section2.3.2,and adopt T's encaling for the bwt given at the end of

66

Section2.3.2,exceptthat the wavelet treesare now augmerned with fid sasdiscussed
in Section2.7.1(cf. Theorem®6). Recallthat in orderto support a query for (i), we
needto decompresghe ith nonempty ertry in the concatenationin column major
order of the sublistsin T. (We refer to Table 2.5 for an example.) We needthe
following basicinformation: the list y cortaining entry (i); the context x sud that
the hx;yi sublist cortains (i); the elemen z stored explicitly in the normalized
hx; yi sublist (seeTable 2.5); the number of elemens # x in all cortexts prior to X.
In the examplefor (2) = 10,wehavey = i, x = s, #x = 7,andz = 3. The
value for (i) is then # x + z becauseof the normalization of the sublists descriked

in Section2.3.2. We execute v e main stepsto answer a query.

. Query (i):

1. Consult a directory G to determine (i)'s list y and the number of elemetts in
all prior lists, #y. (We now know that (i) isthe (i #y)th elemen in list y.)
In the exampleabove, we consultGto nd y=i and#y = 0.

2. Consultalist LY to determinethe context x of the (i # y)th elemen in list y.
For example,we consultL' to determinex = s. We identify the hx;yi sublist
and # p, the number of ertries in previoussublists hx; y4 with y°< vy.

3. Look up the appropriate ertry in hx;yi to nd z. This ertry occupiesposition
i #y #pinsidehx;yi; hence,z = sele:tg(i #y #p) for context x. In the
example,we look for the rst entry in the hs;ii sublist and determinez = 3.

4. Consult a directory F to determine # x, the number of elemers in all prior
contexts. In the example,after looking at F, we determine# x = 7.

5. Return # x + z asthe solutionto (i). The examplewould then return (i) =

#x+z=7+ 3= 10.

We now detail someof the steps given above, describing the set of auxiliary data

structures.

67

Directories G and F

We descrile the details of the directory G (and the analogousstructure F), which
determines (i)'s list y and the number of elemens in all prior lists #y. We can
think of G conceptuallyasa bitv ector of length n. For ead nonempty list y (consid-
eredin lexicographicalorder) cortaining n¥ = P x2P, n*Y elemers (where P, is the
optimal pre x cover de ned in Section2.2), we write a 1, followed by (n¥ 1) Os.
Intuitiv ely, eat 1 represets the rst elemen of a list. Sincethere are as many 1s
in G asnonempl lists, G cannot have morethan | = 1s. To retrieve the desired
information in constart time, we computey = rank(G;i) and#y = selet(G;y) 1.
The F directory is similar, whereeat 1 denotesthe start of a corntext x (considered
in lexicographicalorder), rather than the start of a list, followed by (n* 1) Os. Since
there are at mostc = jP,] h possiblecortexts, we have at most that many 1s.

We usefid s to storethesedirectories.

Lemma 21. We can store G using

n niglgn n niglgn
IgI + 0 ign =0 g 1+ + ign

bits of space, and F using space (in bits) of

n o niglgn n +nlglgn

CHP lgn =0 JPullg 1+jPhj lgn

List-Sp ecic Directory LY

Once we know which list y our query (i) is in, we must nd its context x. We
createa directory LY for ead list y, exploiting the fact that the entries are grouped
into hx; yi sublists as follows. We can think of LY conceptually as a bitvector of
length n¥, the number of items indexedin list y. For eatc nonempty hx;yi sublist
(in lexicographicalorder by x) cortaining n*Y elemens, we write a 1, followed by

(n*Y 1) 0s. Intuitiv ely, ea 1 represetts the rst elemen of a sublist. Sincethere

68

areasmarny 1sin LY asnonemply sublistsin list y, that directory cannot have more

than minfj P,j;nYg 1s. Directory LY is madeup of two distinct componerts:

The rst component isafid that producesa nonempty cortext numberp> 0. In
the example,the samecortext x = phasp = linlisti whilehasp= 2in list p. It also
producesthe number # p of items in all prior sublists. In the example,context x = p
has#p = 0inlist i, and#p = 1in list p. To retrieve the desiredinformation in
constart time, we computep = rank(LY;i #y) and#p= selet(LY;p) 1.

In order to save space,we actually store a single directory sharedby all lists y.
For ead list y, we canretrieve the list's p and # p values. Conceptually we represeh
this global directory L as a simple concatenation(in lexicographicalorder by y) of
the list-speci ¢ bitvectorsdescrilked above. The only additional information we need
is the starting position of ead of the above bitvectors, which is easily obtained by
computing start = #y. We computep = rank(i) rank(start) and# p = selet(p +
rank(start)) start 1= selet(rank(i)) start 1. Weimplemert L by a single
fid storing s ertries in a universeof sizen, wheres = i x2p, U is the number of

nonempty sublists.

Lemma 22. We can computethe local nonempty context numter p and # p in con-

stant time, and the space usal (in bits) is

g n + 0 niglgn
S Ilgn

N niglgn
Ign

n
=0 slg 1+ —
g S

The secondcomponert mapsp, the local context number for list y, into the global
onex. Sincethere are at most jP,] di erent cortexts x for nonempty sublists h; yi
and at most nonemply lists y, we usethe concatenationof bitvectorsof jP,j bits
eat, wherebitvector bV correspndsto list y and its 1s corresnd to the nonempty
sublists of list y. We represeh the concatenationof bitvectorsb’ (in lexicographical

order by y) using a single fid . Mapping a value p to a cortext x for a particular

69

list y is equivalert to idertifying the position of the pth 1 in b¥. This canbe doneby

a constart number of rank and selet queries.

Lemma 23. We can map the local nonemptycontext numker p to x in constanttime,

and the space usel (in bits) is

Ig jP;j +0 (1Pnj) 1glg(iPyj) - o M

I9(iPxJ)

Time and Space Complexit y

Theorem 7. The neighlor function can be represente in a compresseé format for
a text of n symiwls overthe alphalet usingnH,+ O(nlglgn=Ig n)+ g lg(1+ n=¢’)

bits of space, where g = O("), sothat eachcall to takesO(lg) time.

Proof. The spaceoccupancyis that indicated by Theorem 2, exceptthat Lemma 6

should be replacedby Lemma 20 plus the additional terms indicated in Lemma 21,
P

Lemma 22 and Lemma 23, wheres = ,,, t* is boundedby g’. The time costis

constart exceptfor the wavelet tree, as stated in Lemma 20, wheret* . O

Theorem 8. The neighlor function can be representel in a compressé format
using nHp + O(n) + ¢flg(1 + n=¢f) bits of space, sothat eachcall to takesO(1)

time.

Proof. The proof is analogousto that of Theorem7, exceptthat for eat context X,
the wavelet tree is replacedby a setof t* indexabledictionaries [RRR0Z] represeting
sublistshx;yi for1 y t* with dg n”:y e+ O(n*Y Iglgn*Y=Ign*Y) bits (sincewe
only needsele&t operations on them, there is no needto usean fid). When we need
to perform seIe:tS for cortext x, we just run the selet operation on the indexable
dictionary for hx;yi. By Lemma 4, using indexable dictionaries adds a term that
sumsup to O(n) in the bound of Theorem 7, but we only perform O(1) constart-

time queriesto a singledictionary, in total, O(1) time. This sdhememay pay when

70

is not a constart, sinceit requiresadditional O(n) = o(nlg) bits of spacefor the

auxiliary data structures. O

2.7.3 Random Access to the

Compressed Representation of LF

The madinery for the compressedepreseration of canbe reusedalsofor the LF
mapping. In [FMO5], it is shovn that LF (i) = C[L[i]]+ Occ(i; L[i]) forany1 i n.
Here,for any y 2 , vector C[y] courts the number of occurrencesof symbols y°< y
appearingin the text T, and Occ(i; y) is the number of occurrencesf y appearingin
the rst i positionsof the bwt (hereit isidentied with L). It turns out that, giveni,
we can compute the cortext x and the list y = L[i] as described for Query (i) in
Section2.7.2. Then, we canobtain Occ(i; y) asthe value of rankS(i #y #p)+#y

for cortext x. The following are corollariesof Theorems7 and 8.

Corollary 1. The LF mappingcan be representel in a compressé format for a text
of n symiols overthe alphalet usingnH, + O(nlglgn=Ig n)+ g°lg(1+ n=¢) bits

of space, whee g2 = O("), sothat eachcall to LF takesO(lg) time.

In particular, we note that in Corollary 2, we can usethe indexable dictionaries
sincewe invoke rank(i) for a suitable sublist hx; yi, sud that y = L[i], the ith symbol
in the bwt . This correspnds to the weak form of rank supported by indexable

dictionaries.

Corollary 2. The LF mapping can be representel in a compressé format using

nHp + O(n) + g’ lg(1 + n=¢) bits of space, so that each call to LF takesO(1) time.

71

2.8 Using the Framew ork for Compressed Su X

Arra ys

In this section, we use the madinery dewloped so far to acdhieve text indexing,
showncasingthe insights we obtained in our prior investigation. In the remainder of
this chapter, we will detail the results of our csa, though analogousmethods hold
for the fm -index implemenrted with the wavelet tree. In fact, there are a whole host

of methods now that use or the LF mapping (seethe survey in [NMO06a]).

2.8.1 Compressed Sux Arrays (CSASs)

Torecap,a standardsu x array [GBS92 MM93] is an array cortaining the position
of ead of the n su xes of text T in lexicographicalorder. In particular, SA[i] is the
starting position in T of the ith su x in lexicographicalorder, T SA[i];n . The size
ofasux arrayis (nlgn) bits, asead of the positionsstoreduseslg n bits. A su x

array allows constart time lookupto SAJi] for any i. In orderto achieve self-indexing,
we also usethe notion of the inverse sux array SA !, sud that SA [j]=i if and
only if SA[i] = j. In other words, SA ![j] givesthe rank in the lexicographicorder

of sux TI[j; n] amongthe suxes of T.

The csa cortains the sameinformation asa standard (inverse)su x array, though
it operatesonly on a compressedormat. For the rest of the chapter, we assumethat

the csa supports the following set of operationsas given in [GV05, Sad03 Sad02b].

De nition 2. Givenatext T of length n, a compressé su x array (csa) for T sup-
ports the following operations without requiring explicit storageof T or its (inverse)
sux arrays, SA and SA *:
compresqT) producesa compressedepresetation, Z, that encales(i) text T,
(ii) its sux array SA, and (jii) its inversesu x array SA *;

72

lookup, (i) returns the value of SA[i], the position of the ith sux in lexico-
graphicalorder,for 1 i n;

lookup, *(j) returns the value of SA '[j], the rank of the jth sux in T, for
1 j n

substring, (i; ¢) decompressethe rst c symbol pre x ofthesux T SA[i];n ,

forl i nandl c¢ n SA[i]+ 1

We drop someof the parametersfrom the operationslisted in De nition 2 when-
ewer their usageis clearfrom the context. For example,if we wish to decompresghe
c = 6 synmbols belongingto the text substring T[18; 25], we indicate the correspnd-
ing operationsasfollows. First we nd the lexicographicposition, lookup (18) = 186,
of its correspnding su x and then we executesubstring'16; c).

The structure of a csa is recursiwe in nature, whereead of the " = Iglg n levels
indexeshalf the elemerts of the previouslevel. Hence the kth level indexesn, = n=2
elemens. We review and usethis recursive decompsition given below:!

1. Start with SA; = SA, the sux array for text T.

2. Foreahh 0 k< 7, transform SA, into a more succinctrepresetation through

the useof a bitvector By, function rank(By; i), neighbor function , and SAy.1
(represeting the recursion).

3. The nal lewel, " = Iglg n is written explicitly.

SA, is not explicitly stored (except at the last level *), but we referto it for the
salke of explanation. By is a bitvector sudh that B[i] = 1 if and only if SA[i] is
even. Even-positioned su xes are represeted in SAg+; with their positions divided
by 2. To retrieve odd-positionedsu xes, we employ the neighbor function |, which

mapsa position i in SA, cortaining the value p into the positionj in SA¢ cortaining

we usethe neighbor function to emphasizeits importance to our methods; for the full level

approad, Grossiand Vitter usethe partial function ¢ in their exposition.

73

the value p+ 1. In words, isthe function from Section2.3.1applied to SA«
instead of SA. Hence,we can equivalertly descrite by the following formula (also

handling the casewhen SA([i] = n):

n (0}
k(i) = j sudthat SAJj]= (SAJi] mod n) + 1

A lookup for SA([i] can be answeredin the following way:
8
< 2 SAwi rank(By;i) if By[il=1
SA(i] = Ax+1 (Bk: 1) kli]
- SAc k() 1 if Bg[i]= O.

An exampleof the recursionfor atext T is given belon, wherea< b < # and #
is a special end-of-text symbol. (The text T is borrowed from [GV05], but note that
the | function is usedinstead.) No further levels are needed,sincethe four su x

array pointers at level 3 are stored explicitly.

1234567 8 91011121314151617181920212223242526272829303132

T: abbabbabbabbabaaabababbabbbabbat

SA;: 1516131719107 4 1 21282431141218 9 320272330118 5 2 2622292532
B: 010001010011 01110 01001010111001
9 10101011111212131415151516

8 101112131517181921222328 9

rank(Bo;i): 01111 22333455¢67838

N © O

o 2 414162024252627293031321 3 5 6

123456 7 8 910111213141516
SA;: 85214127 6 9 310154 1 131116
B;: 101110100101 0001
rank(B1;i): 112 3 4455566777738
10 87 911141 6 101215162 3 4 5 13
123456738
SA;;: 41763528
12314
B, 10010011
SA;: 2 31 4
rank(B,;i): 1 112 2 2 3 4
22 67831452

74

Here, o(4) = 16,sinceSAq[4] = 17and SA[16]= 17+ 1= 18. For this example,
supposewe already know SA;. To retrieve SAq[16], since Bo[16] = 1, we compute
2 SAifrank(Bo; 16)]= 2 SA1[8]= 2 9= 18. Toretrieve SAy[4], sinceB,[4] = 0, we
compute SA)[o(4)] 1= SAH16] 1=18 1= 17.

The csa hastwo incarnationsthat shav someinherert space/timetradeo s. The
rst (time-e cient) versionreducesthe spacerequiremert to O(nlg Iglg n) bits,
while lookup takesonly O(lglg n) time. This version explicitly usesthe recursive
structure explained above. The second(space-e cient) versionskips all but a con-
stant fraction of theselevels,for some0 < 1, relying on a succinctdictionary D
to perform the task of By, but instead mapping elemeits seeral levels away. This
scheme reducesthe spacerequiremen to O(!nlg), howewer lookup now takes
O(lg n) time. In practice, the secondsdhemeis much better, as the slovdown in
searting is reasonable.We remark that Sadalkane[Sad03]hasshavn that the space
complexity can be restated in terms of the order-O ertropy Hy Ig , giving asa
result O(Hgn) bits.

In orderto compressSA * alongwith SA, it su ces to keepSA. ! in the last level *,
asthe restof the machinery for compressingSA and SA ! isidentical [Sad03,Sad02b].
Hencethe costof lookup ?* is the sameasthat for lookup, and it su ces to discussthe
latter only. Moreover, it is not dicult to extend the substring operation using
for any value of k, sud that ead application of | decompresseg2 ¥) symbols at
atime, for a total costof O(c=2¥) time plus the cost of a lookup. We usethe inverse

su x array and this extendedversionof substringin Section2.9.

2.8.2 High-Order Entrop y-Compressed Sux Arrays

We considerthe task of attaining entropy boundsfor the usageof spacein the csa by

usingour uni ed algorithmic framework for | at ead level k, which cortributes the

75

bulk of the spacethat the csa uses.In the rest of this section,we prove the tradeo s
showvn in Table 2.1 for the spaceand time complexity of a csa and its supported

operations as given in De nition 2.

Theorem 9 (Time-E cien t Entrop y-Compressed Sux Arra ys). Implement-
ing a csa usesnHylglg n+ O n Iglglg n=Iglg n+ Iglgn=Ig n+1lg =Ilg n +

"n +) bitsandO nlg + "(n +) preprocessingtime for compress for
any arbitrarily smal constant0 < < 1. (The space increasesto O(n) = o(nlg)
when is non-oconstant.) Each lookup takesO(lglg n) time and each substring call

for ¢ symlwls takesthe cost of lookup plus O(c=Ig n) time.

It is worth noting that the spaceboundin Theorem9isnHIglg n+o(nlg) bits
whenh + 1 Ilg n for any arbitrary positive constat < 1. (We x sud that
+ < 1) Whenlg = (Ig n), the spacebound reducesto O(nH}) + o(nlg)
bits and lookuptime is O(1). A better spaceusagecanbe obtainedwith the following

tradeo .

Theorem 10 (Space-Ecien t Entrop y-Compressed Sux Arrays). Imple-
menting a csa uses 'nH,+ O nliglgn=Ig n+ "(n +) bitsandO nlg +
"(n +) preprocessingtime for compress for any arbitrarily smal constants
0 < < land O < 1=2. Each lookup takes O (Ig n)=! Ig time and

each substring call for ¢ symlwls takesthe cost of lookup plus O(c=Ig n) time.

For an alphabet of non-constan size,we can usethe following corollary of Theo-

rem 10:

Corollary 3 (Space-E cien t Entrop y-Compressed Sux Arra ys). Imple-

menting a csa uses nHp+ O(n+ "(n +) bitsandO nlg + "(n +)

2The assumptionon h + 1 lg n is reasonablesincelLuczak and Szpankowski [LS97] show that

the averagephraselength of the Lempel-Ziv encading for ergodic sourcesis O(lg n) bits.

76

preprocessingtime for compress for any arbitrarily smal constants0< < 1 and
0< 1=2. Each lookup takesO (Ig n)=! time and each substring call for c

symiwls takesthe cost of lookup plus O(c=Ig n) time.

The spacebound in Theorem 10 and Corollary 3 is nHy + o(nlg) when
h+ 1 lg nfor =1(1) andany arbitrary positiveconstart < 1(we x sud

that + < 1). A special casegivesthe best spacebound in this chapter:

Theorem 11 (Nearly Space-Optimal Entrop y-Compressed Sux Arra ys).
Implementinga csa usesnH, + O niglgn=Ig n+ "(n +) bitsandO(nlg +
"(n +)) preprocessingtime for compress for any arbitrarily small constant 0 <
< 1. Eachlookup takesO(lg® n=Iglg n) time and each substring call for ¢ symtwls

takesthe cost of lookup plus O(clg) time.

The csa in Theorem 11 is a nearly space-optimalself-indexin that it usesthe
samespaceas the compressd text| nHy bits|plus the lower-order terms for the
text indexing directories. For example, we get nH, + O(nlglgn=Ign) bits when

=0O(1l)andh+ 1 Ig n for any arbitrary constart < 1 (we X sud that
+ < 1). All spaceboundsmertioned above include implicitly the costM (T; ;h)

of the statistical model, which is dominated by the other lower-order terms.

Compressed Representation of the Neigh bor Function

We now showv how to obtain entropy boundsfor implemerting ¢ at ead level k of a
csa. Wereferto the madinery discussedor the implemertation of in Section2.7.2.
Since = o andn = ng, we can use either of Theorems7 and 8 for level k = 0.
Hencewe restrict our focuson level k > 0, for which we are interestedin extending
the boundsof Theorem8. We intro ducesomeusefulnotation to this end. We denote
the number of elemerts at level k by n, = n=2¢, and the number of elemetts at level k

that arein cortext x by n¥. Similarly, wede ne n} asthe number of elemetts at level k

77

in list y; and n;¥ asthe number of elemets at level k that arein both cortext x and

P P

P .
list y, that is, the sizeof sublist h; yi. Note that n, =, =" nf =" m”.

Lemma 24. For any levelk, the ¢ function can be representel in a compresse
format using nH, + O(ng + 2k+h) bits of space, sothat each call to ¢ takesO(1)

time.

Proof. We conceptuallypartition the symbolsof the text T into n=2¢ non-overlapping
segmets of 2¢ symbols ead, assumingwithout lossof generality that n is a multiple
of 2. We refer to eadh segmen as a \meta-symbol" and we can regard the text T
asanewtext T, consistingof n=2¢ meta-synbols over the alphabet °= K. (These
meta-synbols are precisely those correspnding to the 9 lists at level k. We still
draw cortexts of length h from the original text T.) Note that SAy is the su x

array for T, and is the corresppnding function at level k. Consequetly, we can
implement | alongthe linesdescrikedin Section2.7.2. Howeer, a direct application
of Theorem8 to Ty for the analysisof the spaceusagerequiressomeobsenations to

obtain the claimed bounds.

First, we needto re ne the analysis by reviewing the spacecomplexity of the
auxiliary data structures in Section 2.7.2, indexing them by k to denote their use
at level k. Directories Gy and Fy require O(ny) bits of spaceby Lemma 21 (where
| = l;n = ny), usingthe factthat Ig § a. Directories Ly, for all lists y at level k,
occupy atotal of O(ng + 2k+h) bits by Lemma22 and Lemma23 (wheren = ny and
S ng is an upper bound on the number of sublists at level k).

Second,we needto relate the high-order entropy of T, with Hy, in our analysis.
The currernt Ty is built on all of the eventext positions of T, ;. Similarly, there is
alsotext built on odd positions. Let T = Ty and T2 denotethe two di erent ways of
mergingewery two symbolsof T, ;. Whenre ected to T, note that T and T overlap

in T exceptfor O(2%) initial or nal symbolsin T. Hence,they essetially encale the

78

sameinformation. We bound the ertropy of TP and T¢ together, shaving that their
total ertropy is no morethan nH?+ nH?,, bits, which can be boundedby 2nH, by
Theorem 1. Hence,represeting any of the two requiresat most nHy, + O(2Ig)
bits, proving the lemma (since we needthat bound for TS). For the sale of clarity,
let n}Y? denotethe number of occurrencesin T? of the concatenatedsequenceyzx,
wherey;z 2 2 and x 2 P,. Wesetn}¥Y? = 0 whenx is not alignedto a position

of T? re ected in T. We similarly de ne n}¥? for TZ. Then, their ertropy is

NHR(TY) + nHR(TE) =
X n* X nx

lg X 11, %12, x; 2 2 + Ig x;11.

X2Ph n0 1n0 y ==y 1O X2Ph ne

(2.21)

Using Equation (2.14), we separatethe terms in (2.21) fully into a product of

. . . . k+1 . ..
binomial coe cien ts with 2 total terms. Then, since | | o forall positive

a b;c d, wesimplify by combining the respective termsin (2.21) to get

) . .ok ok = Q—
N6l px6i2: s 2002 o 2k Y2
x2P, x2Py, yiZz
''Q
X X X;Z |
n ok n
= Ig Q XYzl Q z2]
. 2k ! 2k =
x2P, y;z2 2 |
X X|)
n*! 2k n .
= |g Q e N 22 T
ok N oy 2k 8
x2P, z2 yiz2

— 0 0
= nH,+ nH.

by the de nition of high-order empirical ertropy H? from equation (2.9) and multi-
nomial coe cien ts. Thus, oneof the two texts at level k requiresat most nH, bits to
encale (sincenH? nHy andnH?,; nHP). We build level k on this text, storing
one bit to indicate whether we are storing even or odd text positions at ead level,

thus proving the lemma. O

79

Bounds for the Entrop y-Compressed Sux Array

We have almost all of the pieceswe needto prove Theorems9{11 for csa. We begin
with the proof of Theorem9. We de ne * = Iglg n to be the last level in the csa,
as given in Section 2.8.1. We introduce a special level *°= " 0O(1), sud that
2° = O(n) for any arbitrary constart 0 < < 1. Our choice of “° implies that
2°= (g n)yand2 °= O(1).
Instead of storing all levels as discussedn Section2.8.1,we only store the levels
k=0;1g %lg % 1;1g°% 2;:::;°9 1, %0f the recursionin the csa. (Notice the gap
between0 and Ig "% and the gap between®and °.) For ead of theselevelsup to *°

we store a bitvector By and a neighbor function | as descriked in Section 2.8.1,
with their spacedetailed in the points below:

1. Bitvector Bg storesnq-o ertries out of a universeof sizen, implemened asan in-
dexabledictionary [RRR0Z] using O(niq-olg(n=nig-0)) = O(nlglglg n=Iglg n)
bits. Forlg™® k "9 1, bitvector B, storesn,=2 ertries out of a universeof
sizeny, implemerted as an indexable dictionary requiring O(ny) bits. Hence,
the total contribution is O(nlglglg n=Iglg n) bits.

2. Neighbor function ¢ is implemerted as descrited in Section2.8.2. The space
boundsarestatedin Theorems7{8 whenk = 0, eithernH,+ O(nlglgn=Ig n)+
g Ig(1+ n=cP) or nHp+ O(n)+ ¢° Ig(1+ n=¢P) bits of spacewhereg® = O("*1).
For k > 0, we use Lemma 24, which gives P LQ o(NHp + O(ng + 2k+h)) <
NHh(lglg n 1)+ O(nyg-o+ 2\0”“) bits, wherethe secondterm canbe bounded
asO(ngo+ 2 *M) = O(n=Iglg n+ "n).

3. Level k = * should explicitly store the sux array SA- and the inverted su x
array SA !, accordingto what we described in Section2.8.1. To signi cantly
reducethe spaceusage,we now store the arrays at level * + Igt(n) where we

x t(n) = lglg n. Hencewe store SA 44 (n), SA 1 along with an array

"+lg t(n)?

80

LCP 4 ¢(n) for the longestcommon pre x information [MM93] to allow fast
searting in SA g4 (n), With a total spacecortribution of O(nlg =Iglg n)

bits for level * + Igt(n).

Summing up the boundsin points 1{3, we obtain a nal boundof nHyIglg n+
O n lglglg n=Iglg n+Iglgn=Ig n+lg =Ig n + "(n +) bits of spacerequired
for the csa, for any arbitrarily small constart 0 < < 1. Note that the latter
boundisnHylglg n+ o(nlg)+ O("(n +)). The spacehasan additional term

O(n) = o(nlg) when is non-constan, sincewe useTheorem8 for level k = 0.

Building the above data structuresis a variation of what wasdonein [GV05]; thus
it takesO nlg + "(n +) time to compress(asgivenin De nition 2). The lookup
operation requiresO(2'9 °+ *0+ 2+9 1M ") = O(Iglg n) time becauseaccessingny
of the data structuresin any level requiresconstart time. (Note that, for level k = 0,
we use Theorem 7 if = O(1) or Theorem 8 otherwise). A substring query for
¢ symbols requiresO(c=lg n + Iglg n) time since -» decompresse®’ = (Ilg n)
symbols at a time, as we remarked in Section 2.8.1. This completesthe proof of

Theorem9.

We now discussthe complexity of csa that leadsto Theorem 10. We keep a
constart number 1= of the levelsasin [GV05], where0 < 1=2. In particular, we
storelevel 0, level “° and then onelevel every other * %levels;in sum,1+ 1= = 1=
levels,where = =(1)with 0< < 1. Eachsud levelk "Ostoresthe following
data structures:

A directory Dy (in place of By in point 1 above) storing the ny, - o (or n:
whenk = 9 ertries of the next sampledlevel. Note that Dy, which storesn - o
ertries out of a universeof sizen, requiresjust O(n-+9% = O(nlglg n=Ig n)
bits by using an indexable dictionary [RRR0Z. Eac of the other Dy's add a

geometrically decreasingcortribution upper boundedby the costof Dg.

81

A neighoor function implemerted as given in point 2 above. For all levels
k= "02"0%::: neighoor function | cortributes a (geometrically decreasing)
total of O(n-0) = O(n=Ilg n) bits, in addition to the term of O(2‘0"“) =

O("n) asbefore. Note that the analysisfor 4 is asgivenin point 2 above.
The total required spaceis therefore (where >)

I, + O niglg n nliglgn o= InH.+ O niglgn -
Ilg n lg n lg n

(2.22)
The arrays mertioned in point 3 above, exceptthat wenow x t(n) = I1g nlg .

Thus, we obtain a total spacecortribution of O(nlg =t(n)) = O(n=Ig n) bits.

In sum, we obtain a total spacecomplexity that is boundedby Equation (2.22).
Thus, we are able to save spaceat a small cost to lookup, namely, O(2 °lg +
(1= 1)2 °+ 219t °) time, wherethe Iy factor in the rst term is due to
the implemertation of with the bounds of Theorem 7. Simplifying, we obtain
O(lg nlg +t(n)) = O(g nlg)= O((lg n)=! Ig). The substring operation
for ¢ symbols requiresan additional O(c=Ig n) time. We candrop the Ig factor to
O(1) in Corollary 3 by using Theorem 8 for the analysisof . Building the above
data structures is again a variation of what was done for Theorem 9, so compress

requiresO(nlg + "n) time, thus proving Theorem10.

Finally, we prove Theorem 11, which is an interesting special caseby a simple
modi cation of the schemedescribed above. Herewe just keeplevels0 and ™ + Igt(n)
wheret(n) = Ign=Iglgn. We store the following data structures:

Dictionary Dg storesn- g ¢(n) €rtries over a universeof sizen in O(n-4q ¢(n) (" +
lgt(n))) = O(n(lglg n+ Igt(n))=(t(n)Ilg n)) bits using an indexable dictio-
nary [RRROZ.

The neighbor function o from point 2 above, with the boundsof Theorem?7.
The three arrays asgiven in point 3 above, usingO(nlg =t(n)) bits.

82

Thus, the total spaceis nHy + O(n(lglg n+ Igt(n))=(t(n)lg n) + niglgn=Ilg n +
nlg =t(n)) = nH, + O(nlglgn=Ig n) bits. We also have to add O M Ig(1 +
n= 1) bits for the statistical model. The lookup costis boundedby O(2 *9 (™ |g) =
O(t(n)lg nlg) = O(lg?n=Iglgn), wherethe Iy factor comesfrom the cost of a
callto ¢ (with the boundsof Theorem?7). Similarly, decompressingad symbol in

substringhasa O(lg) cost.

2.9 Applications to Text Indexing

We usethe csa asan integral componert of an e cient text indexing structure that
attains the hth-order ertropy for atext T of n symbols over alphabet . Throughout
this section, we assumethat h + 1 lg n for any arbitrary constant < 1 to
guarantee that the enading of the empirical statistical model requireso(n) bits.** Our
high-order entropy-compressedext indexessupport fast searding of a pattern P
of length m in O(m + polylg(n)) time with only nHy, + o(n) bits, where nHy, is
the information-theoretic upper bound on the number of bits required to encale
the text T of length n (cf. Section2.2). We also descrile a text index that takes
o(m) seard time and useso(n) bits on highly compressibletexts with a small-sized
alphabet . The full list of tradeo s for the spaceand time complexity of compressed

text indexing is shavn in Table 2.2.

2.9.1 High-Order Entrop y-Compressed Text Indexing

We now preset our seard of a pattern P of length m in the csa for T. We needthe

following pattern matching tool to seard for P in a sequenceof cortiguous su xes

3This condition is not satis ed if keepingthe sux array uncompresse for the text T requires
nearly the same spaceas encading the hth-order empirical statistics of T. HenceT is not a

low-entropy text.

83

stored in the csa, in compressedorm, where the proof of Lemma 25 is given in

Section2.9.2.

Lemma 25 (P attern Matc hing Tool). Given a sequene of r conseutive su xes
stored in the csa, we can search for the leftmost and the rightmost of thesesu xes
having a pattern P of lengthm as a pre x, in O(m + r) syml comparisons plus

O(r) lookup and substring operations.

We showv how to seard P using the csa and the tool in Lemma 25. We rst
perform a binary seart of P in SA 4), Which is stored explicitly along with
LCP-4q t(n), the longestcommonpre x information requiredin [MM93]. (The term t(n)
dependson the implemenation of the csa asdescrikedin Section2.8.2.) Becauseve
have the longestcommonpre x information, the binary sear® requiresonly O(m)
symbol comparisonsplus O(lg n) lookup and substring operations. At that point, we
locater = 2*91" = O(t(n)lg n) cortiguous su xes stored, in compressedorm,
in the csa. We run the pattern matching tool in Lemma 25 on theser su xes, at
the cost of O(m + t(n) Ig n) symbol comparisonsand O(t(n)lg n) calls to lookup
and substring which is alsothe asymptotic cost of the whole seartr. The following
resultsshov seeral tradeo s that we obtain with the simple seart sdhhemedescrited

sofar.

Theorem 12. Givenatext T of n symlols over an alphalet , wecan replae T by
a csa occupying nHy + O(nlglgn=Ig n) bits, sothat searching for a pattern of
lengthm takesO(m=Ig n+ (Ign)*)= (g)Y@ 3)=¢)) time, for any xed value
of 0 < 1=2. Reporting each occurrenc of the pattern P will take no more than

O((Ig n)@*)= (g Y& 3)= D) time.

Proof. Using Theorem10,we havet(n) =1g nlg ,where = =(1). TheO(m+

t(n)lg n) symbol comparisonsgive a cortribution of O((m + Ig** nlg)=lg n) =

84

O(m=Ilg n+ Ig nlg), sincewe can decompressand compare (Ig n) adjacen

symbols with O(1) RAM operations. The O(t(n)lg n) = O(lg** nlg) calls to

lookup and substring (see Lemma 25) give a cortribution of O(lg**? nlg®) =
O((lg n)(l+)=1)(|g)(1 3)=1))_]
For example, xing = 1=2in Theorem 12 when = O(1), we obtain a seart

time of O(m=Ign+occ Ig® n) with a self-indexoccupying 2nHy, + O(nlglg n=p Ign)
bits, where occ is the number of occurrencesreported. We can reduce the space
to nHy bits plus a lower-order term, obtaining the rst nearly space-optimalself-

index with polylg(n) reporting time.

Theorem 13. Given a text of n symlwls over an alphalet , we can repla® it by a
csa occupyingnearly optimal space, i.e., nH,+ O(nlglgn=Ig n) bits, sothat search-
ing for a pattern of lengthm takesO(mlg + lg*n=(Iglgnlg)) time. Reporting

each pattern occurrence takesO(mlg + Ig*n=(Ig®lgnlg)) time.

Proof. Using Theorem11,we havet(n) = Ign=Iglgn. The O(m+ t(n)lg n) symbol

comparisongortribute O(mlg + Ig?n=Iglgn) time in total, while the O(t(n)Ig n) =

O(lg®n=(Iglgnlg)) callsto lookup and substring cortribute O(lg* n=(Ig?Ignig)).
O

If we augmen the csa to obtain the hybrid multi-level data structure in [GV05],
we can improve the lower-order terms in the seart time of Theorem 12, where
ttn) =Ig nlg and = =1) > . We usea sparsesuXx tree storing ev-
ery other (t(n) Ign)th sux using O(n=t(n)) = O(n=Ig n) bits to locate a portion
of the (compressed)su x array storing O(t(n) Ign) su xes. Howewer, we do not
immediately run our pattern matching tool from Lemma 25; instead, we employ a
nestedsequencef space-e ciert Patricia tries [MRS01a]of sizelg' n until we are

left with segmets of r = Ig n adjacert suxes in the csa, for any xed value of

85

1> 2 > 0. This shemeadds O(n=r) = O(n=Ig n) bits to the self-index,
allowing us to restrict the seart of pattern P to a segmen of r consecutie su xes
in the csa. At this point, we run our pattern matching tool from Lemmaz25 on these

r suxes to identify the leftmost occurrenceof the pattern.

Theorem 14. Given a text of n symlols over an alphalet , we can repla@ it by
a hybrid csa occupying *nHy + O(nlglgn=Ig n) bits, so that searching for a
pattern of length m takes O(m=Ig n + Ig' nilg*) time, for any xed value of

1>! 2=(1)>0and0< 1=3.

Proof. Seartingin the sparsesu x treetakesO(m=Ig n+lg nlg) time asin [GV05],
wherethe secondterm is our lookup costin Theorem10with = =(1). Then,
the searth goes through a constart number of space-e cient Patricia tries with
O(lg' n) callsto lookup and substring ead of O(lg nlg) time, requiring a total
of O(lg' nlgt) time by Theorem10. Finally, the pattern matching tool is run on a
segmehofr = O(lg n) suxes, in O(g? nlg)= O(lg' nlg*) time. The costof
comparing (Ig n) synbolsat atime and decompressinghem sumsto O(m=Ig n),

wherethe additional cost of substring is accoured for above. O

For low-erntropy texts, we provide the rst self-indexwith small alphabets that is

sublinearboth in spaceand in seart time.

Corollary 4. WhenHy, = o(1) for a text over an alphalet of size = O(1), the self-
indexin Theorem 14 occupiesjust o(n) bits and requireso(m) search time. Reporting

each occurrene takeso(lg n) time.

2.9.2 A Pattern Matc hing Tool

In this section,we prove Lemma25 by describingthe implemertation of the following
pattern matching tool. Given a list of r sequences$; S; in lexicographical

86

order, the pattern matching tool iderti es the least sequences; having P asa pre x
in O(m + r) time. (ldentifying the greatestsud sequences analogous.) We rst
assumethat theser su xes are explicitly given. Next, we shav how to adapt the

tool whenthesesu xes are stored, in compressedorm, in the csa.

Our seart tool is reminiscen of the Patricia seart [Mor68], the Hirschberg's

sequenal seart [Hir78], and the Bit-T ree seart [Fer92], as we only needone full

to-right order. We start out by comparingthe symbols of P againstthe symbols of S;
consecutiely until there is a mismatch. We then nd the rst match in S, starting
with the symbol that causedthe mismatd with S;. We repeat this processstarting
at S,. We stop when we have examinedall the sequencesinsuccessfully(declaring
that there is no occurrenceof P), or we succeedin matching the synbols of P at
sequenceS;. The steps are detailed below, where we denote the kth symbol of a
sequences by S[K]:
1. Seti = 1andk = 1.
2. Increment k until either k > m or Sj[k] 6 P[k]. If k > m, go to step 4;
otherwise, nd the smallestj > i sud that S;[k] = P[k].
3. If sudh j doesnot exist, declarethat P is not the pre x of any sequenceand
quit with a failure. Otherwise, assignthe value of j to i.
4. If k m, goto step2. Otherwise,chedk whetherS; hasP asapre x, returning

S asthe leastsequencen caseof successgeclarea failure otherwise.

Denoting the positions assignedto i in step 3 with i; < i, < < ik, we obsene

that we do not accessthe rst k 1 symbolsof S, 41, ..., Si,, which could be

i o
potential mismatdes. In general,we compareonly a total of O(ix + k) synbols of
i, againstthosein P, whereiy r. Only when we have readed the end

of the pattern P (i.e. k > m) do we seti = i,, and perform a full comparisonof P

87

againstS; in order to determineif there is really a match. This resultsin a correct

method notwithstanding potential mismatces.

a pre x. The cost of the saarch is O(m + r) time, where m is the lengthof P.

Proof. SupposeP is a pre x of S;, where S; was identi ed by our seart tool. We
rst shav that P is not a prex of S;;:::;S; 1. Supposeby cortradiction that a
sequenceS; hasP asa pre x, wheref < i. Supposethat we are matching the kth
symbol of P at the time we examineS;. SinceP is a pre x of S, we have a match
and our seart tool scansthe (k + 1)st symbol in P, the (k + 2)nd symbol in P and
soon, matching all of them with S;. Hence,our seard tool identies S with f 6 i,
giving a cortradiction. This logic provesthe rst part of the lemma; namelythat S;
is the least sequencenaving P as a pre x, becausewe considerthe sequencess; in

lexicographicalorder.

To prove the secondpart, we know that our seart tool fails to match P. To see

with j i, hasP asa pre x. Let k be the position of the rightmost symbol in P
that we compareto S;. Our method implies that the kth symbol in §; is di erent
from that of P. Hence,P cannotbe a pre x of §;, giving the cortradiction.

Finally, the time required is O(m + r), as eat comparisonin our method con-

tributes to at most 2m matchesand at mostr mismatdes. O

88

of g. To useour seart tool, we needto decompresstarting from the kth synbol of
asux S; by knowing its position g+ i in the csa. (Recall that SA[g+ i] cortains
the starting position of S; in the text.) To this end, it suces to decompresshe
rst symbolsin the sux at position SA * SA[g+ i]+ k 1 in the csa, whereSA
and SA ! denote the sux array and its inverse (as mertioned in De nition 2).
Equivalertly, the latter sux S; canbe obtained by removing the rst k 1 symbols
from S sincej = SA[q+ i]+ k 1. This sthemeonly requiresa constart number of
lookup operations and a single substring operation, with a costthat is independert

of the value of k, thus proving Lemma 25.

2.10 Conclusions

We have preserted a uni ed algorithmic framework for analysisof compressionand
text indexing. We descriked two techniques|a context-sensitivepartitioning scheme
and the wavelettree|to provide the rst optimal spacebounds for the Burrows-
Wheeler transform aside from lower-order terms. We then usedthis critical frame-
work to dewelop a text indexing structure basedon a high-order erntropy-compressed
sux array that exhibit sewral tradeo s between occupied space,seart, and de-
compressiontime. We descrited how to implemert them as a self-index requiring
nHy + O(niglgn=Ig n) bits of spaceand allowing seardiesof patterns of length m
in O(mlg + polylg(n)) time. Our schemeprovidesthe rst self-indexthat asymp-
totically realizesthe high-order ertropy Hy per symbol of the text. We also proved
how to achieve the rst self-indexwith sublinearsizeo(n) in bits and sublinearquery

time o(m) for low-ertropy texts over an alphabet of constan size.

The mostimmediate goal is to addresswhether a compressedull-text index with
nHy + O(polylg(n)) bits and O(m + polylg(n)) query time exists. If not, it would

separateindexing from compressionfor very low-ertropy strings. Beyond that, we

89

would like to achieve nHy, + O(nlglgn=Ig n) bits with an optimal O(m=Ig n+ occ)
seard time. A compelling problemis to improve the time for lookup sothat ead call
takesconstart time. Another interesting challengewould be to support appraximate

matches(those that match patterns with somethreshold of error).

90

Original Sorted Mappings Sux Array

Q F L| i LF@G) (1i)] SAJ]
mississippi# i ppi#missis s | 1 8 7 8 ippi#
#mississippi i ssippi# mis s | 2 9 10 5 issippi#
i# mississipp i ssissippi# m| 3 5 11 2 ississippi#
pi# mississip i #mississip p | 4 6 12 11 i#
ppi# mississi m ississippi #1165 12 1 mississippi#
ippi# mississ | p i#mississi p| 6 7 10 pi#
Sippi# missis | p pi#mississ i | 7 1 ppi#
ssippi# missi | s ippi# missi s | 8 10 sippi#
issippi# miss | s issippi# mi s | 9

9
7
4 sissippi#
6
3

[EEN
[EEN
oo © oo N P O b~ W

sissippi# mis | s sippi# miss i | 10 2 ssippi#
ssissippi# mi | s sissippi# m i | 11 3 ssissippi#
ississippi# m| # mississipp i |12 4 12 #

Table 2.3: Matrix Q for the bwt containing the cyclic shifts of text
T = mississippi# (column “Original’). Sorting of the rows of Q, in which the
rst (F) and last (L) symbols in eat row are separated(column "Sorted). Func-
tions LF and for eat row of the sorted Q (column "Mappings). Sux array SA

for T (column 'Sux Array").

91

context x | list i list m|list p|list s |list #

i ; h3i i hi; 2i ;

m ; ; ; ; hbi
p hri ; hGi ; ;
s h10; 11i ; ; h8; 9i ;
hl.2 ; ; ; ;

Table 2.4: An exampleof our conceptualtable T, whereead sublist hx; yi cortain

n*Y ernries. The cornexts x are assaiated with rows and the lists y are assaiated

with columns.

context x | n* [#x |list i |list m|list p|list s |list #
i 410 X h3i hi ht; 2i X
m 1| 4 ; ; ; ; hli
p 2| 5 Hi ; hili ; ;
S 4 | 7 | K34 ; ; hi; 2i ;
1| 11| hii ; ; ; ;

Table 2.5: The sublists of Table 2.4 in normalizedform. The value of n* is de ned
asin Equation (2.9) and indicates the interval length in the row for cortext x. The
value # x should be addedto the sublists' ertries in row x to obtain the sameertries

in Table 2.4.

92

Chapter 3

When Indexing Equals Compression:
Exp erimen ts with Compressing Su X
Arra ys and Applications

3.1 Intro duction

Sux arrays and sux trees are ubiquitous data structures at the heart of seweral text
and string algorithms. They are usedin a wide variety of applications, including pattern
matching, text and information retrieval, Web searding, and sequenceanalysisin compu-
tational biology [Gus97. We considerthe text asa sequencel of n symbols, ead drawn
from the alphabet = f0;1;:::; g. The raw text T occupiesnlgj j bits of storage.

The su x treeis a powerful text index (in the form of a compacttrie) whoseleavesstore
ead of the n su xes cortained in thetext T. Sux trees[MM93, McC76] allow fast, general
searding of patterns in T in O(mlgj j) time, but require roughly 4nlgn bits of space|
16 times the size of the text itself, in addition to needinga copy of the text. The su X
array is another well-known index structure. It maintains the permuted order of 1;2;:::;n
that correspondsto the locations of the su xes of the text in lexicographically sorted order.
Su x arrays [GBS92 MM93] (that also store the length of the longestcommonpre x) are
nearly asgood at searhing. Their seard time is O(m + Ig n) time, but they require a copy
of the text; the spacecost is only nlgn bits (which can be reduced about 40% in some
cases).

There are a number of other commonindexesthat give accesdo the text, howewer, none
of thesecan operate without the text itself. Compressedsu x arrays [GV05, Rao02 Sad03,
Sad02b]and opportunistic FM-indexes[FM05, FMO01] represett modern trends in the design
of advancedindexesfor full-text searding of documerts. They support the functionalities of

su x arraysandsu x trees(which are more powerful than classicalinverted les [GBS97),

93

yet they overcomethe aforemertioned spacelimitations by exploiting, in a novel way, the
notion of text compressibility and the techniques dewveloped for succinct data structures
and bounded-universedictionaries [BM99, Pag0l, RRR02].

A key idea in these new schemesis that of self-indexing If the index is able to seart
for and retrieve any portion of the text without accessinghe text itself, we no longer have
to maintain the text in raw form|whic h can translate into a huge spacesavings. Self-
indexes can thus replace the text asin standard text compression. Howewer, self-indexes
support more functionality than standard text compression. In these cases,the indexing
schemeis itself a compressionmethod. We focus on these scenarios,where indexing equals
compression.

Grossi and Vitter [GV05] deweloped the compressedsu x array using 2nlgj j bits in
the worst casewith o(m) searding time. Sadakane [Sad03 Sad02b]extended its func-
tionality to a self-index and related the spacebound to the order-0 empirical entropy H .
Ferraginaand Manzini devisedthe FM-index [FM05, FMO01], which is basedon the Burrows-
Wheeler transform (bwt) and is the rst to encade the index sizewith respect to the hth-
order empirical ertropy Hy, of the text, encading in (5+)nHy + o(n) bits. Grossi, Gupta,
and Vitter [GGV03] exploited the higher-order entropy Hy, of the text to represen a com-
pressedsu x array in just nHp + o(n) bits. The index is optimal in space,apart from
lower-order terms, achieving asymptotically the empirical entropy of the text (with a mul-
tiplicativ e constart of 1). More results appeared subsequetly, and we refer the reader to
the survey in [NM064] for the state of the art.

The above self-indexesare so powerful that the text is implicitly encaded in them
and is not neededexplicitly. Searting decompresses negligible portion of the text and is
competitiv e with previoussolutions. In practical implementation, thesenew indexesoccupy

around 25{40% of the text sizeand do not needto keepthe text itself.

94

3.1.1 Our Results

In this chapter, we provide an experimertal study of compressedsu x arrays in order to
evaluate their practical impact. In doing so, we exploit the properties and intuition of our
earlier result [GGV03] and dewvelop a new designthat is driven by experimental analysis
for enhancedperformance. Brie y , we mertion the following new contributions. The work
in this chapter was a collaborative e ort with Luca Fosdini, Roberto Grossi, and Je rey

Scott Vitter.

Sincecompressedsu x arrays hinge on succinctdictionaries, we provide a new practical
implementation of succinctdictionaries that takeslessspacethan the predicted spacebased
on a worst-caseanalysis. We then usethesedictionaries (organizedin a wavelettree), along
with run-length encading (RLE) and encaling, to achieve a simpli ed \encoding” for high-
order contexts. This construction shavs that Move-to-Font (MTF) [BSTW86], arithmetic,
and Hu man encaling are not strictly necessaryto adcieve high-order compressionwith
the Burrows-Wheeler Transform (bwt). Recent work of Ferragina et al. [FGMSO05] shows
how to nd an optimal partition of the bwt to attain the samegoal; we take a di erent
route and show that the wavelet tree implicitly leadsto an optimal partition when using

RLE and integer encaling.

We then extend the wavelet tree so that its seart can be sped up by fractional cas-
cading and an a-priori distribution on the queries. In addition, we describe an algorithm
to construct the wavelet tree in O(n + min(n;nH) 1gj j) time, introducing the novel
concept that indexing/compression time should be related to the compressibility of the
data. (Said in another way, highly compressibledata should not only be more compact
when compressedput should also require lesstime to index and compress.) Recerly Hon,
Sadalane, and Sung have showvn how to build the compressedsu x array and FM-index
in O(nlglgj j) time [Sad03. One of our main results in this chapter is to give an analysis
of our practically-motiv ated structure and shaw that it still has competitive theoretical

guarantees on spaceconsumption, namely, 2nH , + o(n) bits of space.

We alsodetail a simpli ed versionof our structure which senesasa powerful compressor

95

for the Burrows-Wheeler Transform (bwt). In experimerts, we obtain a compressionratio
comparableto that of bzip2 . In addition, we go on to obtain a compressedepresenation
of fully equippedsu x trees(and their assaiated text) in a total spacethat is comparable

to that of the text alone compressedwith gzip .

In the rest of the chapter, we use "bps' to denote the average number of bits needed
per text symbol or per dictionary entry. In order to get the compressionratio in terms of

a percertage, it su ces to multiply bps by 100/8.

3.1.2 Outline of Chapter

The rest of the chapter is organized as follows. In the next section, we build the critical
framework in describingour practical dictionaries, providing both theoretical and practical
intuition on our choice. We then describe a simple schemefor fast accesdo our dictionaries
in practice. In Section 3.3, we describe our wavelettree structure, which forms the basis
for our compressionformat wzip. In Section 3.4, we describe a practical implementation
of compressedsu x arrays [GV05, GGVO03], grounded rmly with theoretical analysis. In
Section 3.5, we discussa space-e cient implementation of sux trees. We conclude in

Section 3.6.

3.2 A Simple Yet Powerful Dictionary

As previously mentioned, compressedsu x arrays make crucial useof succinctdictionaries.
Thus,we rst focuson our implemertation of them. Werecall that succinctdictionaries are

constart-time rank and selectdata structures occupying tiny space. They store t ertries

n

A n bits, plus additional bits for fast

chosenfrom a boundeduniverse[0:::n 1]in Ig
accesdo the entries. The bound comesfrom the information-theoretic obsenation that we
need Ig | bits to erumerate ea of the | possiblesubsetsof [0:::n 1]. Equivalertly,
this is the number of bitvectors B of length n (the universesize) with exactly t 1s, such

that entry x is stored in the dictionary if and only if B[x] = 1. The dictionaries support

96

seweral operations. The function ranky(B;i) returns the number of 1sin B up to (and
including) position i. The function selet,(B;i) returns the position of the ith 1 in B.
Analogousde nitions hold for 0s. The bit B[x] can be computed asB[x] = rank;(B;x)
rank.(B;x 1). In the following, we considerthe succinct dictionaries called fully indexable
dictionaries [RRR02], which support the full repertoire of rank and selet for both Os and
1sin Ig § + o(n) bits.

Let p(1) = t=n be the empirical probability of nding a 1 in bitvector B, and p(0) =
1 p(1l). Wede ne the empirical entropy Ho as

Ho= p(0)Igp(0) p(1)Igp(l):

As shawvn in [GGVO03], the empirical enropy Hg can be approximated by %Ig ’t‘ . Thus,
we can think of succinct dictionaries as Oth-order compressorsthat can also retrieve any
individual bit in constart time. Speci cally, the data structuring framework in [GGVO03]
usessu x arrays to transform succinct dictionaries into a high-order entropy-compressed
text index. As a result, we stressthe important consideration of dictionaries in practice,
sincethey corntribute fast accesdo data aswell assolid, e ective compression.In particular,
sud dictionaries avoid a complete sequetial scanof the data whenretrieving portions of it.
They also provide the basis for space-e cient represenation of trees and graphs [Jac89a

MR99].

3.2.1 Practical Dictionaries

We now explore practical alternativesto dictionaries for usein compressedtext indexing
data structures. When implementing a dictionary D, there are two main spaceissuesto
consider:

The second-orderspaceterm o(n), which is often incurred to improve accesgime to

the data, is non-negligible and can dominate the Ig rt‘ term.

The Ig 't‘ term is not necessarilythe best possiblein practice. As with strings, we

can adchieve \entropy" boundsthat are better than Ig 't‘ nHo.

97

Before describing our practical variant of dictionaries, let's focus on a basic represetia-
tion problem for the dictionary D seenasa bitvector Bp. Do we always needlg { bits to
represen Bp ? For instance, if D storesthe even numbersin a bounded universeof sizen,
a simple argumernt basedon the Kolmogorov complexity of Bp implies that we can repre-
sen this information with O(Ig n) bits. Similarly, if D storesn=2 elemens of a cortiguous
interval of the universe, we can again represent this information with O(lg n) bits. The

Ig rt‘ term treats thesetwo casesthe samea random set of t = n=2 integersstored in D;

thus, the worst-casebound is Ig nrz‘z n bits of space.That is, it is a worst-casemeasure

that doesnot accourt for the distribution of the 1s and Os inside Bp, which may allow

n

A bound

signi cant compression(as in the previous examples). In other words, the Ig

only exploits the sparsity of the data we wish to retain.

This obsenation sparksthe realization that many of the bitv ectorsin commonuseare
probably compressible,even if they represen a minority among all possiblebitv ectors. Is
there then somegeneralmethod by which we can exploit these patterns? The solution is
surprisingly simple and useselemenary notions in data compressioNf\WMB99]. We brie y

describe those relevant notions.

Run-length encading (RLE) represens ead subsequenceof identical symbols (a run)
asthe pair ("; s), where " is the number of times that symbol s is repeated. For a binary
string, we do not needto encale s, sinceits value will alternate betweenO and 1. (We

explicitly store the rst bit.)

The length * is then encaded in somefashion. One such method is the code, which
represerts the length ~ in two parts: The rst encades 1+ big c in unary, followed by
the value of © 299 ¢ encaded in binary, for a total of 1+ 2blg c bits. For example, the

codesfor * = 1;2;3;4;5;::: are1;010;011;00100;00101;:::, respectively. The code
requiresasymptotically fewer bits by encading 1+ blg “c via the coderather than in unary,
thus requiring 1+ blg c+ 2blglg 2'c bits. For example,the codesfor * = 1;2;3;4;5;:::
are1;0100;0101;01100;01101;:::, respectively. Byte-aligned codesare another simple

encaling for positive integers. Let Ib(") = 1+ big "¢, the minimal number of bits required

98

to represen the positive integer . A byte-aligned code splits the Ib(*) bits into groupsof 7
bits ead, prependinga \continuation" bit as most signi cant to indicate whether there are
more bits of = in the next byte. We refer to [WMB99] for other encalings.

We can represett a conceptual bitvector Bp by a vector of nonnegative \gaps" G =
foi1;00;:::;0:0, whereBp = 09011091 :::0%1 and each gg 0. We assumethat Bp ends
with a 1; if not, we can usean extra bit to denotethis caseand encade the nal gap length
separately We alsoassumethat t n=2 or elsewe reversethe role of 0 and 1. Using gap

encading we cannot require lessthan

Xt
E(G) = Ib(gi + 1) (3.1)
i=1

to store the gapscorresponding to Bp. We now shaw that E(G) is closely related to the

optimal worst-caseencaling of Bp, which takeslg 't‘ bits.

Fact 1. For a conceptual bitvector B of known length n, suchthat Bp endswith a 1, its

gapenmding G satis es
E(G) < Ig ? + 1=2Ig(t(n t)=n)+ Ige[(1=(12t) + 1=(12(n t)) 1=(12n+ 1)]+Ig P 2
wheret n=2is the number of 1sin Bp.

Proof. By convexity, the worst-caseoptimal costoccurswhen the gapsare of equal length,
ie.g+1 n=t, giving E(G) = P }=1 Ib(gi+1) tlb(n=t) t+tig(n=t) (n t)lg(n=(n
t)) + tlg(n=t), sincet (n t)Ilg(n=(n t)) whent n=2. By Stirling's inequality, Ig 't‘ >
tlg(n=t)+(n t)lg(n=(n t)) 1=2Ig(t(n t)=n) [(1=(12t) + 1=(212(n t)) 1=(12n+ 1l)]lge

g P 2 , thus proving the fact. O

An approad that works better in practice, although not quite aswell in the worst case,

P o NN
j 2tand ;7 = n) whereeither Bp = 1:0213:::0rBp = 0t1203:::. (Wecan

determine which caseby a single additional bit.) Using run-length encading, we cannot

require lessthan

X
E(L)= 1Ib(") (3.2)
i=1

99

bits. By a similar argumernt to Fact 1, we can prove the following:

Fact 2. For a conceptual bitvector Bp of known length n, suchthat Bp endswith a 1, its

run-length enaoding L satises E(L) < E(G)+t, wheret n=2is the numbker of 1sin Bp.

Proof. We rst considerthe casewhere we encade ead run of 1sin unary encaing, i.e.,
we encale eat 1 using onebit. In total, the t 1srequiret total bits. We encade ead run °
of Osin Ib(") bits; thus, the encaing of Os is unchanged. (Note that this schemeis still
decadeablewhen the code is usedinstead of |b, sincethere are no zero-lengthruns and

codesbeginwith 0.) It is plain to seethat E(L) E(G) + t. If we changeour encading
of 1sto uselbinstead of unary, encaling the runs of 1s will certainly take no more than t

bits, thus proving the fact. O

We do not claim that E(G) or E(L) is the minimal number of bits required to store D.
For instance, storing the even numbersin Bp implies that *; = 1 (for all i), and thus
E(L) Ig ’t‘ 2t = n. Using RLE twice to encade Bp, we obtain O(lg n) required
bits, asindicated by Kolmogorov complexity. On the other hand, nding the Kolmogorov

complexity of an arbitrary string is undecidable[LV97].

Despite its theoretical misgivings, we give experimental results on random data in Ta-
ble 3.1 shawving that E(L) Ig } . Data generatedare bitvectors Bp whosegap encal-
ing G is produced by choosing a maximum gap length and generating uniformly random
gapsin G between0 and that maximum length (reported on a logarithmic scalein the rst
column). The secondcolumn, denoted RLE+ , reports the average number of bits per
gap (bpg) required to encade Bp using RLE to generateL and the code to encale the
integersin L, asdescribed before. The third column, denoted Gap+ , reports the average
number of bits per gap required to encale Bp using the gapsin G represerted with the

code. The fourth column reports the value of Ig ’t‘ , Where n is the length of Bp and t
is the number of 1sin it. Sincet is alsothe number of gapsin G, the gure is still the
averagenumber of bits per gap. In the last two columns, we report similar results for the

averagenumber of bits per gapin E(L) and E(G).

100

lg(gap)| RLE+ Gap+ lg ? E(L) | E(G)
1 1.634 2.001 1.378| 1.315| 1.500
2 2.900 3.000 2427 | 2.199| 2.000
3 4477 4.000 3439 3.111| 2.500
4 6.256 5.625 4442 | 3.998| 3.313
5 8.142 7.374 5445 | 5.000| 4.187
6 10.091 9.193 6.440 | 5.995| 5.097
7 12067 | 11116 7443 | 6.993| 6.058
8 14075 | 13073 8444 | 7.989| 7.037
9 16,056 | 15.030 9.444 | 8.990| 8.015

10 | 18124 | 17029 | 10449 | 10004 | 9.014

Table 3.1: ComparisonbetweenRLE encaling (RLE+), gap encaling (Gap+),
and related measured(lg ’t‘ , E(L), and E(G)). Ead bitvector Bp is produced by
choosinga maximum gaplength and generatinguniformly random gapsof Os between
consecutie 1s. The gap column indicatesthe maximum gap length on a logarithmic

scale. The valuesin the table are the bits per gap (bpg) required by ead method.

E(L) outperforms|lg | for real data sets, since the worst casefor RLE (all equally
spacedls) hardly occurs. We alsoobsene that RLE+ outperforms Gap+ for small gap
sizes(namely 4 or less). This behavior motivates our choice for RLE to implemert succinct
dictionaries (in the context of compressedext indexing), sincemany gap sizesare small in

our distributions.

3.2.2 Empirical Distribution of RLE Values and Codes

To validate our choice of using RLE+ encaling, we generatedreal data setsfor succinct
dictionaries and performed experimernts, comparing the spaceoccupancyof seweral di erent
encalings instead of the code. We took text les from the Canterbury and Calgary

Corpora [Can], obtained their Burrows-Wheelertransform (bwt), performed the wavelet

101

tree construction on the bwt according to the text indexing structure of [GGVO03], and
recordedthe sets of integersthat needto be stored succinctly. On these sets, we ran the
experiments summarizedin Table 3.2 and Table 3.3. We measuredthe total amount of bits
required by every encdling for ead text le and divided that amourt by the length of eath
le; hence,the valuesin the tables are the bits per symbol (bps) required by ead encading

method.

For Table 3.2, ead encaling scheme is usedin conjunction with RLE to provide the
results in the table. (We alsoreport Gap+ for comparison purposes.) Gol refersto the
Golomb code, and usesthe median value asits parameter b. Manis refersto the Maniscalco
code [Nel] that is tailored for usewith RLE in bwt. Ber is the skewed Bernoulli model with
the median value as its parameter b. MixBer usesjust one bit to encale gaps of length
1, and for other gap lengths, it usesone bit plus the Ber code. This experiment shows
that the underlying distribution of gapsin our data is Bernoulli. (When b= 1, the skewed
Bernoulli code is equalto .) Notice that, exceptfor random.txt , codesare lessthan
1 bps from E(L). For random text, codesdo not perform as well as expected. E(G)
and Gap+ outperform their respective courterparts on random.txt , which represens the
worst casefor RLE. Finally, we do not get improved results by using RLE and codes
as shawvn in Table 3.2, namely just E(L) + P !:1 blglg(2°;)c bits by Fact 2. Although
coding requires 2E(L) t bits, it outperforms in practice, since is more e cient for

small run-lengths. Table 3.2 suggests asbest encading to couplewith RLE.

A natural questionarisesasto the choiceof the simplistic encaling, sincetheoretically
speaking,a number of other pre x codes(, , and skewed Golomb, for instance) outperform
codes. Howewer, encaling seemsextremely robust accordingto the experiments above.
We considerfurther comparisonswith fractional coding and Hu man pre x codes[WMB99]
in Table 3.3. In the table, the fourth column reports the bps required for the code in
which any run-length other than 1 is encaded using , whereasa sequencef s 1sis encaled
with the code for 1 followed by the code for s; the fth to Mo at's arithmetic coder in

Section 3.2.3; the sixth column refersto the Hu man code in which the cost of encaling

102

File E(L) | E(G) | RLE+ Gap+ RLE+ Gol Manis | Ber | MixBer

book1 1.650| 2.736 | 2.597 3.367 2.713 | 20.703 | 20679 | 2698 | 2.721
bible.txt 1.060| 2.432| 1.674 2.875 1.755 | 15643 | 16678 | 1.726 | 1.738
E.coli 1552 1.591| 2.226 2.190 2.520 2562 | 2265|2448 | 2.238

random.txt | 5.263 | 4.871 | 8.729 6.761 8.523 | 25121 | 18722 | 8818 | 8.212

Table 3.2: Comparisonof various coding methods whenusedwith run-length (RLE)
and gap encaling for eat le listed. Unless stated otherwise, the listed coding
method is usedwith RLE. The les indicated are from the Canterbury Corpus[Can].
The valuesin the table are the bits per symbol (bps) required by eath method.

the (large!) pre x tree is not cournted (which explainsits sizebeing smaller than that of the
arithmetic code). The last two columnsrefer to the rangecaler mentioned in Section 3.2.3,
where we employ either a xed sladk parameter a = 0:88 or choosethe best value of a
adaptively. These results reinforce the obsenation that encaling is nearly the best.
In Section 3.2.3, we formalize this experimental nding more clearly by curve- tting the

distribution implied by onto the distribution of the run-lengths.

Improving upon to encale these RLE valuesrequires a signi cant amournt of work
with more complicated methods. For the purposesof illustration, considerthe comparison
of encaling to that of an optimal Hu man encaling, givenin Table3.3. The codediers
from Hu man encaling by at most 0.1 bps (except for random.txt , where the di erence
is 0.8 bps), and as sud, this meansthat the majority of RLE values are encaled into
codewords of roughly the samelength by both Hu man and encaling. This newsis both
encouragingand discouraging. It seemsthat there is no real hope to improve upon using
pre x codes,sinceHu man codesare optimal pre x codes[WMB99]. Further improvemert
then, in somesense hecessitateanore complicated techniques (such as arithmetic coding),
which have their own host of di culties, most often a greatly increasedencading/decoding

time.

103

File +escape | arithm. | Human | a= 0:88 | adaptive a

alice29.txt 2.3527| 2.5816| 2.5934 2.4964 | 2.3296 2.3247 2.3272
asyoulik.txt 2.6304| 2.9104| 2.9129 2.7324 | 2.5946 2.5875 2.5873

bible.txt 1.6109| 1.7677| 1.7839 1.8190 | 1.5963 1.5901 1.5903
cp.html 2.6949| 2.9554| 2.9310 2.7170 | 2.6487 2.6465 2.6543
fields.c 2.4387| 2.6145| 2.5894 2.4645 | 2.3228 2.4186 2.4186

grammar.lsp | 2.8121| 3.0636| 2.9948 | 2.9282 | 2.6694 | 2.7648 2.7648
kennedy.xls 1.4269| 1.6051| 1.4718 1.6834 | 1.3521 1.3998 1.3968
Icet10.txt 2.0933| 2.2902 | 2.3047 | 2.1727 | 2.0736 | 2.0650 2.0684
plrabn12.txt 2.4686| 2.7469| 2.7521 | 2.6591 | 2.4354 | 2.4277 2.4269
ptt5 0.7731| 0.8600| 0.8617 | 0.9983 | 0.7613 | 0.7582 0.7580
random.txt 6.7949| 7.9430| 7.7460 | 6.1273 | 6.0004 | 6.5210 6.4187
sum 2.9500(3.2324| 3.1803 | 2.9184 | 2.8765 | 2.8792 2.8698
world192.txt 1.4699| 1.5890| 1.6095 | 1.5815 | 1.4555 1.4540 1.4550
xargs.1 3.3820| 3.7303| 3.6564 | 3.3763 | 3.3068 | 3.3404 3.3404

Table 3.3: Comparisonof various coding methods whenusedwith run-length (RLE)
encaling. The les indicated are from the Canterbury and Calgary Corpora [Can].

The valuesin the table are the bits per symbol (bps) required by eatc method.

3.2.3 Statistical Evidence Justifying Codes

We motivate our choice of encaling more formally, with statistical evidencesuggesting
that the underlying distribution of RLE values matches the distribution that the code
(or equivalertly Bernoulli, with b = 1) encadesoptimally. For instance, considerthe em-
pirical cumulativ e distribution of the RLE valuesfor bible.txt , showvn in Figure 3.1. This

distribution is tted by the function
odf (x) = e & X2 N"; (3.3)

where parameter a 2 R* is a constart depending on the data le. For instance, in the
Canterbury Corpus, we obsene that a 2 [0:5; 1:8], depending on the le (e.g.,a = 0:9035

for bible.txt). We compute the derivative of cdf asif it were a continuous function and

104

Figure 3.1: The x axis shaws the distinct RLE valuesfor bible.txt in increasing
order. Left: The empirical cumulative distribution togetherwith our tting function
cdf from (3.3). Certer: The empirical probability density function together with our
tting function pdf from (3.4). Right: The empirical probability density function

togetherwith the tting function %, where = e+2.— is the normalizing factor.

we obtain the probability density function

| |
a=x .)é- asi
)= 22— . ix2N%;a2R* (3.4)
X i1 |

P asi
where the term = _; 2= is the normalization factor. As one can seefrom Figure 3.1,

function (3.4) ts the empirical probability density of the RLE valuesfor bible.txt ex-
tremely well, suggestingthat approximating the cdf by a cortinuous function incurs negli-

gible error.

Since pdf (x) X% as x approadesin nit y, we have
! !
ae ax - R ge @ 1
x2 _ i2 X2

lim e #¥=1)
x11

Sincethe code is optimal for distributions proportional to 1=x?, we nally have some
reasonablemotivation for the successof the code on an RLE stream. Howewer, these
results only indicate the measureof successon pre x codes; encalings which can assign

fractional bits may yet yield signi cant improvemen.

lWe employed the matlab function called LSQCurvefit , which nds the best tting function in

terms of the least squareerror betweenthe function and the raw data to be approximated.

105

We performed various tests with Mo at's implemertation of an arithmetic coder,? but
the results were not satisfying when comparedwith the code. To resole this problem,
we use the statistical model of cdf to tailor an arithmetic coder to perform well on RLE
values. Recall that both pdf and cdf depend on the knowledge of the parameter a in
formula (3.3), which in turn dependson the le being encaled. (We ran experimerts with
a xed a= 0:88, which alsoyielded good results on most les that we tested.) To this end,
we take a fast (and free) arithmetic-style coder usedin szip called range coder [Sch]. We
encale the RLE length * by assigningit an interval of length cdf " + 1) odf (") = pdf (°).3
With this kind of compressor,we improve the compressionratio by 1{5% with respect
to encding. (SeeTable 3.3 for the comparison.) We then transform our arithmetic
compressorso that the parameter a could be changedadaptively during execution, hoping
for a better compressionratio. We needa cueto infer a from the values already read, so

we usea maximum likelihood estimation (MLE) algorithm.

The main hurdle to simply using a maximum likelihood estimator (MLE) is its assump-
tion of independert trials. (In our terminology, this assumption would imply that ead
run-length " is independertly drawn from its pdf.) We compute the (normalized) autoco-
variance of the RLE valuesto get an idea of \now independert" our RLE valuesare. This
method is widely adopted in signal theory [AUT] as a good indicator of independenceof
a sequenceof values, though it doesnot necessarilyimply independence.In our case,the
correlation betweenconsecutive RLE valuesis very low for the les in Canterbury corpus,
which again, though it doesnot imply independencein the strict sense,is a strong indica-
tion nonetheless.With this obsenation in mind, we assumestatistical independenceof the

RLE valuesin order to de ne the likelihood function

2The code (written in Java at <http://mg4j.dsi .unimi. it>) is inspired by the arithmetic coder
of J. Carpinelli, R. M. Neal, W. Salamonsenand L. Stuiver, which isin turn basedon [MNW98].
3This encading appearsto be faster than using the cumulativ e counts of the frequency of values

already scanned,like other well-known arithmetic coders.

106

! !
¥ e ax R ge o
2 i2
X:]

VK
Ix(a;xg;::05x) = pdf(xj) =
i=1 i=1

Wewant to nd the value of a wherely readesits maximum. Equivalertly, we can nd

the maximum of Iglx(a;x1;:::;Xk) = Lx(a;x1;:::;Xk). We dierentiate Ly with respect
to a and get !

@, X e= —EXKE—H(x)l

@g 1 _kizl Xi 1

where H (x) is the Harmonic mean of the sequencex. By denoting the left hand term
by f(a), we havea = f Y H(x) . Unfortunately, f () is not an analytical function
and is very dicult to compute, even for xed a. For instance, when a = 0, we have
f(a) = % = 0:7307629 where () is the Riemann Z function. We apply numerical meth-
ods to approximate the function for a 2 [0:5;1:8] (which is the range of interest for us).
Surprisingly, all this work leadsto a small improvemen with respect to the non-adaptive
version (where a = 0:88). Looking again at Table 3.3, the improvemert is negligible, rang-
ing from 1{2% at best. The best caseis the le random.txt (in the Calgary corpus), for

which the hypothesisof independenceof RLE valuesholds with high probability by its very

construction.

3.2.4 Fast Access of Exp erimen tal-Analysis-Driv.en Dictio-

naries

In this section, we focus on the practical implementation of our schemethat encadesthe
conceptual bitvector Bp by RLE+ encaling and usesadditional directories on this en-
coding to support fast access.In particular, we proposea simplied version that exploits
the speci ¢ distribution of run-lengths when dictionaries are employed for text indexing
purposes.Our dictionaries support rank and selet primitiv esin O(lg t) time (with a very

small constart) to obtain low spaceoccupancyfor our dictionary D seenasa bitv ector Bp

P N o
j 2tand i =n),whereeither Bp = 110213:::0rBp = 011203:::. (Weusea

107

single extra bit to denote which caseoccurs.)

(1) Let (x) denote the code of the positive integer x. We store the stream (1)
("2) ("j) of encaded run-lengths. We store the stream in double word-aligned form.
Each portion of such an alignmert is called a sgment, is parametric, and cortains the
maximum number of consecutive encaled run-lengths that t in it. We pad ead segmen
with dummy 1s, sothat they all have the samelength of O(1) words. (This padding addsa
total number of bits which is negligible.) Let S= S; S, Sk bethe sequenceof segmelts

thus obtained from the stream.

(2) We build a two-lewvel (and parametric) directory on S for fast decompression.

The bottom level storesjS;j° and jS;j! for eah segmen S;, wherejS;j° (respectively,

jSij!) denotesthe sum of run-lengths of Os (respectively, 1s) relative to S;. We store

consecutie valuesof i. The sizeof ead group is O(1) words.

The top level is composedof two arrays (Ag for 0s, and A, for 1s) of word-aligned
integers. Let jG;jj° (respectively, jGjj!) denotethe sum of run-lengths of Os (respec-
tively, 1s) relative to G;j. The ith erntry of A storesthe pre x sum P }:1 jijo. The
entries of A; are similarly de ned. We also keep an array of pointers, where the
ith pointer refersto the starting position of G; in the byte-aligned encaling at the
bottom level (sincethe rst two arrays can sharethe samepointer). To perform the
binary seart in Ag or A;, we require O(Igt) time. All other work (accessingthe

array of pointers and traversing the bottom level) is O(1) time.

The implementation of rank and selet follows the same algorithmic structure. For
example, to compute selet,(x) we perform a binary seard in A1 to nd the position |
of the predecessorx® = A;[j] of x. (Interpolation seart does not help in practice to
get O(lg Igt) expectedtime in this case.) Then, using the jth pointer, we accesshe byte-

aligned codesfor group G; and scanG; sequetially with partial sumslooking at O(1) jS;j°

108

and jSij valuesuntil we nd the position of the predecessox®for x x%inside G;. At
that point, a simple o set computation leadsto the correct segmen S; (due to our padding
with dummy bits). We scanthe O(1) words of S; to nd the predecessomof x x° x%
in S;. We accunulate the partial sum of bits that are to the left of this predecessor.This
sum is the value to be returned as selet;(x). In rank, we reversethe role of the partial

sumsin how they guide the seart, but the seard is largely the same.

As should be clear, the accessis constart-time except for the binary seard in Ag
or A;. In Section3.3, we will organizemany of thesedictionaries into a tree of dictionaries,
performing a seriesof selet operations along an upward traversal of p nodes/dictionaries in
the tree. Sincewe needto perform a binary seart in ead of thesep dictionaries, we obtain
a cost of O(plgt) time. This costis prohibitiv e: we now describe a method to reducethe

time to O(p + Igt) using an idea similar to fractional cascading[CG86].

Supposedictionary D is the child of dictionary D?in the tree. Supposealso that we
have just performeda binary seart in Ag of D. We can predict the position in Ag of D°to
coninue searhing. Soinstead of searding from scratch in Ag of D we retain a shortcut
link from D to indicate the next place to seard in Ay of D with a constart number of
additional seard steps. Thus, the binary seard in p dictionaries along a path in the tree
will be costly only for the rst node in the path (the root). This approadt requires an
additional array of pointers for the shortcut links, though aswe will shov in Section 3.4.4,

the additional spacerequired can be made negligible in practice.

3.3 Review of Wavelet Trees

In this section, we review the wavelet tree from Section 2, which forms the basisfor both
our indexing and compressionmethods. The wavelettree reducesthe redundancy inherent
in maintaining separatedictionaries for ead symbol appearingin the text; ead successie
dictionary only encades those positions not already accourted for previously. Encoding

the dictionaries this way achievesthe high-order entropy of the text. Howewer, the lookup

109

ipssm#pissii
11312122

ipssm#pissii
0100010010011
pSs#psSs imiii
00001000 001000

pss#pss
413

psspss
2212

113 12 12 2 4 13 213 2 2 12 |
‘1101110101010010001001011 0101011010010101\0

Figure 3.2: Left: an examplewavelet tree. Right: an RLE encaling of the wavelet
tree. Bottom: actual encading in memory of the right tree in heap layout with

encaling.

time for a particular item could be linear in the number of dictionaries, as a query must
badktrack through all the previous dictionaries to reconstruct the answer. The wavelettree
relatesa dictionary to an exponertially growing number of dictionaries, rather than simply
all prior encaded dictionaries. Consider the example wavelet tree in Figure 3.2 (which we
have augmerted to explain somepractical considerationsas well), built on the bwt of the

text mississippi# , where# is an end-of-text symbol.

We implicitly assaiate ead left branch with a 0 and ead right branch with a 1. Each
internal node u is a dictionary with the elemens in its left subtree stored as 0, and the
elemers in its right subtree stored as 1. For instance, considerthe leftmost internal node
in the left tree of Figure 3.2, whoseleaves are p and s. The dictionary (aside from the
leading 0) indicates that a single p appearsin the bwt string, followed by two s's, and so
on. We don't actually store the leaves of the wavelet tree; we have included them here for
clarity. The secondtree indicates an RLE encading of the dictionaries, and the bottom
bitv ector indicates its actual storageon disk in heap layout with a encaing of the run-
lengths described previously. The leading O in ead node of the wavelet tree createsa

unique assaiation betweenthe sequenceof RLE valuesand the bitv ector.

110

Sincethere are at most| | dictionaries (one per symbol), any symbol from the text can
be decaled in just O(lgj j) time by using a balanced wavelet tree. This functionality is
alsosu cien t to support multik ey rank and select, which we support for any symbol c2 .

See[GGVO03] for further discussionof the wavelet tree.

We intro duce two improvemerts for further speedingup the wavelet tree|use of frac-
tional cascadingand adoption of a Hu man pre x tree shape. First, we implement shortcut
links for fractional cascadingas described at the end of Section3.2.4. Second,we minimize
accesscost to the leaves by rearranging the wavelet tree. One can prove that theoreti-
cally, the spaceoccupancy of the wavelet tree is oblivious to its shape [GGV03]. (We defer
the details of the proof in the interest of brevity, though the reader may be satis ed with
the obsenation that the linear method of evaluating dictionaries is nothing more than a

completely skewed wavelet tree.)

We performed experimerts to verify the truth of this theoretical obsenation in practice.
Briey , we generated 10; 000 random wavelet trees and computed the spacerequired for
various data. Our experiments indicated that a Hu man tree shape was never more than
0.006bps more than any of our random wavelet trees. Those savings were lessthan a 0.1%
improvemert in the compressionratio with respect to the original data. Most generated
trees (over 90%) were actually worsethan our baselineHu man arrangemen, and did not

justify the additional computation time.

Sincethe shape doesnot seemto a ect the spacerequired, we can organizethe wavelet
tree to minimize the accesscost (for instance), under the assumption that the distribution
of calls to the wavelet tree is known a priori. To describe the above more formally, let f (c)
be the estimated number of accessedo leaf ¢ 2 in the wavelet tree (which again is
not stored explicitly). We build an optimal Human pre x tree by using f (¢) as the
probability of occurrencefor ead c. It is well-known that the depth of ead leafis at most
1+1g P « T (x)=f(c), which is nearly the optimal averageaccessostto c. Thus, on average,

P
we require 1+ Ig , f (x)=f(c) callsto rank or selet involving leaf c.

Lemma 27. Given a distribution of accessesto the wavelettree in terms of the estimated

111

Hu man | Cascading| bible.txt book1
No No 1.344 1.249
No Yes 1.269 1.296
Yes No 1.071 0.972
Yes Yes 1.000 1.000

Table 3.4: E ect on performanceof wavelet tree using fractional cascadingand/or
a Human pre x tree shape. The columns for Hu man and Cascadingindicate
whether that technique was usedin that row. The valuesin the table represen a
ratio of performancenormalizedwith the casein the last row. (Lower numbers are

better.)

numkber f (c) of accessesto each leaf ¢, we can shag it so that the average access cost to
P
leaf cis at most 1+ Ig , f (x)=f(c). The worst-case space occupancy of the wavelettree

does not changeas a result of this changeof shage.

In the experiments below, we make the empirical assumptionthat f (c) is the frequency
of ¢ in the text (other metrics are equally suitable as seenin Lemma 27), reducing the
weighted average depth of the wavelet tree to Hy Igj j. We performed experimerts to
demonstrate the e ectiv enessof fractional cascadingand the Hu man-st yle tree shaping.
Someresults are summarizedin Table 3.4. Each row contains one of the four possiblecases
indicating whether Hu man (rst column) and fractional cascading(secondcolumn) were
used. The last two columnsreport the corresponding timings for two text les, obtained by
decompressingthe ertire le using repeated calls to the wavelet tree. This method is not
the most e cient way to decompressa le, but it doesgive a good measureof the average
cost of a call to the wavelet tree. Timings are normalized with the casein the last row. As
can be seenfrom the data, fractional cascadingdoesnot always improve the performance,

while Hu man shaping gives a respectable improvemert.

The resulting wavelet tree is itself an index that achieves0-order compressionand allows

112

decding of any symbol in O(Hp) expectedtime. In particular, it's possibleto decompress
any substring of the compressedext using just the wavelet tree. This structure is a perfect
example where indexing is compression. We performed some experimerts to evaluate the
0-order compressionof wave obtained by usingthe RLE+ encading with the wavelet tree.

We do not add additional structures supporting fast accessn wave

We obtained the gures reported in Table 3.5 for sometext les from the Canterbury
and Calgary Corpora [Can], and somenew les available on TREC Tipster 3 [Tip]. Our
results for waveare in the secondcolumn. The arithmetic code [RL79] givesbetter results
than wavewhen run on the same les, asreported in the third column arit . The next v e
columnsreport the gures for other compressorson the same les. In thesecolumns, bzip2
version 1.0.2 is the Unix implemertation of block sorting basedon the Burrows-Wheeler
transform; gzip is version 1.3.5; lha is version 1.14i [Iha]; and vhl is Karl Malbrain and
David Scott's implementation of Jerey Scott Vitter's dynamic Hu man codes; zip is
version 2.3. Note that a direct comparisonof the methods may not be meaningful in some
casesbecauseof di erent parameters; for example, bzip2 works on blocks of 900Kb and
book1 is the only le within this size (768771bytes). The purposeof Table 3.5 is to show
that wave is not particular e cient as a 0-order compressorwhen applied directly to a
text le. Surprisingly, when applied to the bwt stream obtained from that le (denoted
wzip), its performanceimprovesa lot with respect to wave as shown in the last column of

Table 3.5.

The lessonlearnedsofar suggestghat the wavelet tree, coupledwith RLE and encad-
ing, is a simple but e ective meansfor compressingthe output of block-sorting transforms

sudh as bwit.

3.3.1 Ecien t Construction of the Wavelet Tree

In this section, we discusse cien t methods of constructing our wavelet tree. In particular,
we detail an algorithm to create the wavelet tree in just O(n+ min(n;nHy) Igj j) time.

Directories that enable fast accessto our wavelet tree can be created in the sametime.

113

File wave | arit | bzip2 | gzip | lha vhl | zip wzip

book1 5.335 | 4.530| 2.992 | 2.953| 2.967| 4.563| 2.954| 2.619
bible.txt 5.004 | 4.309| 1.931 | 1.941| 1.939| 4.353| 1.941| 1.631
E.coli 2.248 | 2.008| 2.189 | 2.337| 2.240| 2.246| 2.337| 2.181
world192.txt | 5.572 | 3.043| 1.736 | 1.748| 1.743| 5.031| 1.749| 1.519
ap90-64.txt 5.392 | 4913| 2.189 | 2.995| 2.862| 4.938| 2.995| 1.668

Table 3.5: Wavelettreewith RLE+ encaling asa plain 0-ordercompressofcolumn
wave and appliedto the bwt stream(columnwzip). Remainingcolumnsare for other

compressors.The valuesin the table are in bits per symbol (bps).

We can add thesedirectories to our wzip format for fast access.We now describe wzip in
detail. The headerfor wzip cortains three basic piecesof information: the text length n,
the block sizeb, and the alphabet size . The body of the encading is then dn=bke blocks,
eadt block encading b corntiguous text symbols (except possibly the last block). Recall that
the nodesof the wavelet tree are stored in heapordering (examplein Figure 3.2). We break
this stream into blocks and encade it. The format for a block is given below:

A (possibly compressed)itv ector of j | bits that storesthe symbols actually occur-

ring in the block. Let j] be the number of symbols presen. (For large , we

may store the bitv ector in the header,with smaller bitv ectorsin the blocks that refer

only to the symbols stored in the bitv ector in the header).

The dictionaries encaded with RLE+ , concatenated together according to heap

order. The wavelettree has implicit leavesand 1internal nodeswith dictionaries.

(SeeFigure 3.2 for an example.)

We do not needto store the length of ead encading, asit is already implicitly encaled.
When processing,the encading for the root node of the wavelet tree endswhen the sum of
the encaded RLEs equalsn. (Theserun-lengths may be spreadover seweral blocks.) At this
point, we know the total nhumber of Os and 1s, plus the (dummy) leading 0. The number

of Os is the sum of the RLE valuesin the left child of the root, and the number of 1sis the

114

sum of the RLE valuesin the right child of the root. We can go on recursively this way,
down to the implicit leaves, from which we can infer the frequency of the occurrencesof

eat symbol in the block.

3.3.2 Compression with bwt2wzip

In this section, we describe our compressionmethod bwt2wzip, which takesasinput the bwt
stream (the function in [GGVO03]) of the le and compressedt e cien tly usingour wavelet
tree techniques. Our approad introducesa novel method of creating the wavelet tree in
just O(n+ min(n;nHy) Igj j) time, which is alsofaster in practice, asthe ertropy factor
can signi cantly lower the time required. This behavior relates the speed of compression
to the compressibility of the input. Thus, we introduce a new considerationinto the notion
of compressibility|highly compressibledata should be easierto handle, both in terms of
spaceand time.

If we wereto build the wavelet tree naively from the bwt stream, we would run multiple
scanson the bwt to set up the bitv ector in ead individual node of the wavelet tree. Then,
we would compressthe resulting dictionaries with RLE+ encaling. A single-scanmethod
is made possibleby placing oneitem at a time in ead of the internal nodesfrom its root-
to-leaf path via an upward walk. Given any internal node in the tree, the set of values
stored there are producedin increasingorder, without explicitly creating the corresponding
bitv ector. Since processingead symbol in the bwt could take up to O(lgj j) time, it
requires O(nlgj j) time in total. We describe a re nement of this construction method
requiring O(n + min(n;nHy) Igj j) time. This method is faster in practice, since the
ertropy factor can signi cantly lower the time required for compressibletext.

Let c be the current symbol in the bwt stream, and let u be its corresponding leaf in
the wavelet tree. (Recall that the numbering of internal nodes follows the heap layout.)
While traversing the upward path in the wavelet tree to the root, we decide whether the
run of bits in the current node should be extended or switched (from 0 to 1 or vice versa).

Howewer, we do not perform this task individually for ead symbol. Instead, we process

115

consecutive runs of equal symbols ¢, sa r¢ in humber, in the input simultaneously. We
then extend the runs in ead internal node of the wavelet tree r. units at a time. Let n,
be the number of such runs that we processfor the ertire bwt stream.

To make things more concrete, we usethe following auxiliary information to compress
the input string bwt. Notice that the leavesof the wavelet tree are not explicitly represened;
givena symbol c2 , it suces to know its leaf number leaf [c]. We also allocate enough
spacefor the dictionaries dict [u] of the internal nodesu. We keepa ag bit [u] for eat
internal node u, which is 1 if and only if we are currently encading a run of 1sin u. Below,
we describe and commert the main loop of the compression.We do not specify the task of
encaling the RLE valueswith codes, asit is a standard computation performed on the

dictionaries dict [u] of the internal nodesul.

1 while (bwt != end) {

2 for (c=*wt, rc =1; bwt I= end && c == *(++bwt); r_c++) ;
3 u = leaf[c];

4 while (u>1) {

5 if ((u &O0x1) != bitu >>=1]) {

6 bit] =1 - bitful; *(++dictlu]) = O; }

7 *(dict[u]) +=r_¢;

8 }

9}

We scanthe input symbol ¢ from the current position in the bwt to determine r, the
length of the run of ¢ (line 2). We determine the heap number of the (virtual) leaf u
assaiated with c (line 3) and start an upward traversal (lines 4{7). We closethe run in
the current node u and start a new run in the following two cases:

1. We arrive from the left child of u and the current run in u is made up of 1s; or

2. We arrive from the right child of u and the current run in u is made up of Os.

We expressthis condition succinctly in line 5, where (u & 0x1) is 1 whenu is a right child,

and u >>= 1 denotesu's parent whose ag bit indicates if the current run is of 1s. We

116

complemen its value and prepare for the next ertry in the current dictionary (line 6). We
then extend the current run-length by r. (line 7). We exit the loop at the root (whenu = 1
in line 4).

The time required to perform these actions over the whole bwt input stream is O(n)
to scanthe bwt stream, and O(n, Igj j), to perform the n, traversals of the wavelet
tree, taking O(lgj j) time. It turns out that the number of runs n, processedby our
algorithm is n, = O(min(n; nH})), proving our bound. Sincen, n trivially , we shov
that n, = O(nH}), thus capturing preciselythe high-order ertropy of the text. Note that n,
is asymptotically upper-boundedby the number of runs nq in all of the dictionaries of the
internal nodesin the wavelet tree. This bound holds, sinceeither the beginning or the end
of a run in the bwt stream must correspond to the beginning or the end (or vice versa)
of at least one distinct run in a dictionary. (Otherwise, we could extend the run in the
bwt stream, except possibly for the rst or the last run). Thus, n, = O(ng). Since eath
run length will require at least one bit to encade (i.e., Ib(’) 1 for any ©~ 1), we can
simply bound the sum of the logarithm of their run-lengths. Theorem 16 provesthat a
single wavelet tree encaded with RLE+ adhieves O(nH 1) bits of space,thus proving that
n, = O(nNHp). The proof technique makesuse of the framework in [GGVO03], and is proved

in Section3.4.2.

3.3.3 Decompression with wzip2bwt

Decompressionis a fairly straightforward task oncethe encaling has been done, though
somecare must be taken when decomposingsetsof runs. The decompressioralgorithm rst

performsa downward traversalto identify the symbol ¢ to decompress.It then performsan
upward traversal, analogousto that in bwt2wzip, exceptthat it decremeits the RLE values
by r¢, producing in output r. instancesof c. Howewer, the value of r is not necessarily
the last RLE value examinedalong this path; rather it is the minimum amongthem. The
reasonstems from the fact that the runs in the dictionaries in the internal nodes (except

for the root) may correspond to a union of runs that were disjoint in the input string bwt.

117

Fortunately, the minimum value among those in an upward traversal from a leaf refersto

an individual run in the bwt stream, and it is the valuere.

To decompress,we use auxiliary information in bwt2wzip, a variable alphabetsize
and an array symbol. The former denotesthe actual number of symbolsin the bwt stream;
the symbols are numbered from 0 to alphabetsize - 1. To recover the original value, we
remap them using array symbol. We now commert on our main loop for decading. (Again,

we do not describe how to decade the RLE valueswith the code, asit is a standard task.)

1 while(r_c = *(dictfu=1])) {
while ((u = (u << 1) | bitju]) < alphabetsize)
if (*(dict[u]) <r_c) r_c = *dictfu)]);

C = u - alphabetsize;

if (!(*(dictlu >>=1]) -=rc)) {
bitu] =1 - bitlu]; ++dictu]; }

2

3

4

5 while (u>1)
6

7

8 for(¢ =symbollc]; r c-—-; *bwt+t+) =c) ;
9

We start with the RLE value in the dictionary of the root (u = 1in line 1). We perform
the downward traversal (line 2), guided by the current run of 1s or 0s, looking at the ag
bit [u] to branch either to the left (bit [u] = 0) or the right (bit [u] = 1) in the heaplayout.
We also keepthe minimum RLE value in r¢ (line 3), as previously mertioned. When we
reach a leaf, we nd the rank of the symbol to decale (line 4). Note that lines 4 and 8
are the analogueof line 2 in bwt2wzip, except that we output symbol ¢ after remapping
it, with symbol in the current position indicated by the bwt stream. The upward traversal
in lines 5{7 is similar to the downward traversalin lines 4{7 of bwt2wzip, exceptthat we
decreasethe RLE valuesin the dictionaries. The time required for decompressionfollows

the sameargumernt as for compression.

118

3.3.4 Performance and Exp eriments for wzip

In this section, we discussour experimental setup and detail our results for the speed
of accessof our compressionalgorithm. We used se\eral platforms to test our algorithms:
ATH = Athlon AMD 1GHz 512MB Linux, gccversion3.3.2(Debian); AXP = AMD Athlon
XP 1.8GHz512MB Linux, gccversion 3.2.220030222Red Hat Linux 3.2.2-5);PlI1 = Intel
Pertium 111 1GHz 512MB Windows XP, gcc version 3.2 (mingw special 20020817-1);PIV
= Pentium IV 2GHz 1GB Windows XP, gcc version 3.2 (mingw special 20020817-1);and
XEO = Intel Xeon 2GHz 2GB Linux, gcc version 3.3.120030626(Debian prerelease). We
drew our data from the Canterbury and Calgary corpora. The rst three rows of Table 3.6
are les from those corpora; the last two rows are the concatenation of all the les in the

same.

We compare our performancewith a simple routine that copiesthe input bwt stream
into another array. We normalize the timings of our routines with respect to this simple
copy operation. We don't compare with the scan operation, as the compiler often cheats
and doesn't generatecode to scanfor an empty loop. In our experimens, bwt2wzip (com-
pression)is 2|6 times slower than a simple copy operation, and wzip2bwt (decompression)
is 3|7 times slower. The di erence in performancedependsmainly on the architecture of
the processormather than the input le. (Consult Table 3.6 for proof of this fact, with bold
gures for the minimum and the maximum.) The computation of RLE takesroughly 30%
of the total time in bwt2wzip and 40%in wzip2bwt.

With regardto ne tuning performancein the code for bwt2wzip and wzip2bwt, eath
time we accessan ertry pointed to by dict [u], we may initiate a cadce miss. Also, we
needto pre-allocate more spaceto accommalate all the dictionaries (whose nal sizeis
known only at the end of the compression,which is too late). We alleviate this problem
by syndironizing the accesgo the decaded RLE values. In particular, we can provide the
sameaccesgattern during the execution of bwt2wzip and wzip2bwt. Somecare must be

taken at initialization to maintain this information.

Consequetly, the RLE values are scrambled among the dictionaries and follow the

119

bwt2wzip wzip2bwt

File ATH | AXP P11 PIV | XEO || ATH | AXP Pl PIV | XEO
ap5.txt 4811 | 2.822| 2244 | 4.878 | 5250 || 6.736 | 4.200 | 3.438 | 6.232 | 6.500
bible.txt 4.093| 2.688 | 2.162 | 3.473 | 4370 || 5.302 | 3.656 | 2910 | 4.746 | 5.037

world95.txt 3.077| 2.375| 1.946 | 2.705| 3.800 || 3.744 | 3.167 | 2.698 | 3.750 | 4.450

calgary 4.465| 3.481 | 2566 | 4.162 | 5565 || 6.256 | 5.148 | 3.939 | 5.643 | 6.826
canterbury 4.419 | 3.091| 2324 | 3.255| 5.625 || 5.839| 4.318 | 3522 | 4.614 | 6.625

Table 3.6: Running times for bwt2wzip and wzip2bwt normalized with that of a
simple copy routine. File sizesin bytes are 5,000,000for ap5.txt , 4,047,392for
bible.txt , 2,899,483for world95.txt , 3,215,493for calgary , and 2,810,784for

canterbury .

accesyattern of wzip2bwt. To solwve this problem, we no longer keepa pointer in dict [u];
instead, we temporarily store the current RLE value for u. As a result, except for dict [u],
bit [u], and symbol, accesdo the other structures is sequetial, which enablesus to exploit
the many levels of cadhe. Moreover, we do not needto allocate temporary storageto keep
the RLE valuesthat we will encade. Rather, we can produceeat RLE value and encade it
onthe y. A drawbadk of this approad is that we losecompatibility with the text indexing
functionalities in Section 3.4.

It is worth noting that the total cost of compressionand decompressionis much larger
than what we discussedsofar. We must alsoaccourt for the costof su x sorting to obtain
the bwt stream from the input text le (in addition to that of bwt2wzip) and the cost of

obtaining the text le from the bwt stream (in addition to that of wzip2bwt).

3.4 Practical Sux Arrays:
Indexing Equals Compression

We explored dictionary methods which perform well in practice. Now, we apply these

dictionary methods to compressedsu x arrays [GGV03, GV05, Sad03,Sad02b]and shaw

120

both experimental successaswell asatheoretical analysisof thesepractical methods. First,

we provide somebadkground notions from [GV05, GGVO03].

3.4.1 Compressed Sux Arrays (CSA)

To recap, a standard sux array [GBS92 MM93] is an array cortaining the position of
ead of the n suxes of text T in lexicographical order. In particular, SA[i] is the starting
position in T of the ith sux in lexicographical order, T SA[i];n . The size of a su x

array is (nlgn) bits, as ead of the positions stored useslgn bits. A sux array allows
constart time lookup to SA[i] for any i. The compressedsu x array [GV05] cortains the

sameinformation asa standard su x array.

De nition 3. Givenatext T of length n, a compressé su x array [GV05, Sad03,Sad02b]
for T supports the following operations without requiring explicit storageof T or its (in-
verse)su x array:
compress producesa compressedepresertation that encades(i) text T, (ii) its su x
array SA, and (iii) its inversesu x array SA 1;
lookup in SA returns the value of SA[i], the position of the ith su x in lexicographical
order,for1 i n;lookupin SA ! returns the value of SA 1[j], the rank of the jth
sux inT;
substring decompressethe portion of T corresponding to the rst ¢ symbols (a pre x)

ofthesux inSA[i],forl i nandl c¢ n SAJ[i]+ 1.

The data structure is recursive in nature, where ead of the * = Iglgn levels indexes
half the elemens of the previous level. Hence,the kth level indexesny = n=2X elemerts.
The recursive decomposition is given below:

1. Start with SAg = SA, the sux array for text T.

2. Foreath 0 k< Iglgn, transform SAg into a more succinct represertation through

the useof a bitv ector By, rank function rank(By;i), neighbor function , and SAx+1

(represerting the recursion).

121

3. The nal level, " = Iglgn is written explicitly, using n bits.

SA is not explicitly stored (except at the last level *), but we refer to it for the sake
of explanation. By is a bitvector such that By[i] = 1 if and only if SAk[i] is even. Even-
positioned su xes are divided by 2 and represerted in SAx+1. In order to retrieve odd-
positioned su xes, we employ the neighbor function , which maps a position i in SAk
containing the value p into the position j in SA¢ containing the value p+ 1. We describe

it by the following formula (also handling the casewhen SAy[i] = n):

n 0
k()= j sucthat SAJj]= (SAJilmodn)+ 1 : (3.5)

A lookup for SA([i] can be answeredin the following way:
8

SAl] = < 2 SAk+1 rank(By;i) if Byfi]= 1
" SAx k() 1 if By[i]= 0.

The represenation of By and rank(By;i) usesstandard techniquesand is easyto com-
press. The major hurdle for compressionremainsin the represenation of |, which is at
the heart of compressedsu x arrays and indexing in general. The key to the compression
of i (which leadsto aboundin terms of nH) is that we can partition the function into
a seriesof increasing subsequencegor sublists) that refer to positions in the text storing
the concatenatedstring yx, for ead symboly 2 and cortext x 2 P, , the optimal pre x
cover [FGMSO05] for contexts of length at most h. These sublists hx; yi can be stored by
succinct dictionaries using Ig nngy bits, where nj is the number of suxes of T pre xed

by context x at level k and n),fy is the number of su xes in T pre xed by the concatenated

wherec = jP,j and x; 2 P,, is lexicographically before ;.1 , also forms an increasing sub-
sequence.We call theselists -lists, one for eady symbol y in the text. Each dictionary
is stored according to a much-reduced universe size using the wavelet tree; we refer the
readerto [GGVO03] for further details on the consequencesf this obsenation with regard

to compression.

122

3.4.2 Practical Considerations for Compressed Sux Arrays

In this section, we apply our practical dictionaries to the CSA framework we described in
Section 3.4.1, achieving practical data structures that implicitly achieve at most twice the

high-order entropy of the text.

Theorem 15. We can enawde the ny entries in all sublistsat levelk of the compressé su x
array using at most 2nHy, + o(n) bits, if we store each sublist as a sucinct dictionary D

using RLE+ enading.

Proof. Eacdh of our dictionaries D takesat most E(L)+ P lg(gi + 1) bits of space(sincethey
are RLE+gamma dictionaries). SinceE(L) E(G)+t by FactlandE(G) = P lg(gi+ 1)+t
by Fact 2, we can bound the size of ead dictionary by 2E(G). Thus, we can replace our
dictionaries with the onesin the analysis in [GGVO03], at most doubling the theoretical

worst-casebounds. The result follows automatically from the analysisin [GGV03]. O

This discovery brings up a remarkable pointjour practical dictionary is blind to the
universe size that was so carefully constructed in [GGVO03] to allow the use of the fully
indexable dictionaries from [RRR02] (whose spaceoccupancyis almost linearly dependert
on the universesize).

We proposeoperating implicitly on any partition Py, h (including a partition based
on the optimal pre x cover P, [FGMSO09]) for h 0, wherejPnj n ,for some0O< < 1.
(This reasonableassumption is also usedin [GGV03].) We argue that due to the nature
of our directory, we are still able to achieve the higher-order ertropy given in [GGV03].
Said more mathematically, we can split the costin [GGV03] asnH + M (h), where M (h)
refersto the overheadnecessaryto encade a statistical model for contexts of length up to h.
Howewer, the term M (h) may becomelarge for su cien tly large valuesof h, sincewe may

have nHy = 0 in this case.

Fact 3. There existsan h®< n, suchthat for each h > h® we havenH = 0.

123

Proof. Build a sux tree on the text terminated with n endmarkers that do not appear
elsewhere. Consider one of the internal nodes storing the longest string, say of length h®
Then, for any cortext h > h® prune the su x tree, leaving only strings of length h+ 1. We
can predict the (h+ 1)st symbol with conditional probability p= 1, sincewe are on an arc
leading to a terminal node. (There are no more branches.) At this depth, every symbol
can be predicted with perfectaccuracy The information cortent of suc a distribution is 0,
requiring no bits (i.e., everything is encaded in M (h) bits in the model, which relates to

the pruned su x tree). Hence,nHy = 0 for h > h° O

In similar cases(in our experiments when h > 4 and for more moderate casesthan
Fact 3), the cortribution of M (h) may dominate the expression.This obsenation motivates
the needto adknowledge the model cost as a signi cant factor in compression. Now we
prove our main theorem in this section, which describeshow to encale the function in

equation (3.5).

Theorem 16. We can enade the neightor function using 2nH, + o(n) bits with en-

coding, thus implicitly achieving high-order entropy.

Proof. For easeof exposition, we \number" the lexicographically ordered symbols y as
1 vy | jand similarly number the lexicographically ordered cortexts x as1l X
iPnj. Recall that ead list is an increasing subsequenceof positions. In [GGV03], we
conceptually break down the lists that constitute the neighbor function of compressed
su x arrays into sublists for ead context of order up to h (to scalethe universesizein the
dictionaries). We now encade all the sublists for the same symbol in one shot using our
succinct dictionaries and the wavelet tree. The di erence in encaing is that we save space
by not storing pointers to the beginning of ead sublist (which can cortribute signi cantly
to the spaceM (h) for the statistical model). On the other hand, our gapscan be longer
when the gap we encale traversesa sublist. The idea of the proof is to show that the

savings more than make up for the loss. We de ne the problem below formally.

Let g bethe jth gapin list y (composedof n¥ items) suc that the jth item s; in

124

list y is in cortext xj 2 Py and the (j + 1)stitem s;j.1 in list y is in context X;+1, where
Xj Xj+1. Thus,s; isin sublist hx;j;yi and sj+1 isin sublist hx; .1 ;yi. We decomposethe
gap g into three parts:

gjo, the length of the jump out of sublist h;;yi;

gjog the length of the jump over empty sublists inside of list y, namely a subsetof the

g°®the length of the jump within sublist ;.1 ;yi.

By denition, g = g’+ g’ g% The value g°*%s the only non-zero quartity when s;
and sj+1 are in the samecortext x i.e,, xj = x = xj+1. Said dierently, g = g*n this
case, since we are not encaling a gap that jumps over other sublists. This is the same
costincurred in [GGV03] when the sublists are treated separately (since they never encade
a gap that traversesa sublist). Sincelgg; lg(g’ + g% + Ig g*>’we can bound our total
overhead by

X X1 X X1

lgg lgg’® lg(g”+ g% = o(n);
y2 i=1 y2 i=1

this is exactly the additional costwe incur by treating all of our sublists together. Sincewe
incur overheadfor ead sublist exactly once,taking Ig(gjo+ gj09 = O(lg n) bits, we canbound
this cost by the number of sublists among the ertire structure of [GGV03]. We now give
more details on bounding the above quartity. Let the number of cortexts ¢ = jPnj=n ,
where 0 < < 1, the samerestriction as [GGV03]. For list y, we can have at most
minf ¢;nYg items with non-zerovaluesfor g and g*° SinceP i(@+g) n,wecanencae

thesegapsusing a dictionary, taking Ig

= o(n) bits per list. We can similarly apply the
bound for eath list, taking at most j | times as much space,which is again o(n) bits.
Finally, sincewe are using encaing instead of a more e cien t code, we at most double
the encaling cost of ead dictionary asin Theorem 15, thus doubling the entropy term and

proving the claimed bound. O

125

3.4.3 Sux Array Compression

One major advantage of sux sorting (block sorting) is that not only doesit compress
accordingto high-order erntropy, it alsoconciselyrepreserts the underlying statistical model,
typically exploited using a Move-to-Font (MTF) encaler [BSTW86] (as it happensin
bzip2). We now describe how to use our succinct dictionaries (RLE+), the sux array
(block sorting), and the wavelet tree (incremental represenation of dictionaries) to acieve
a compressionratio comparableto that of methods such as bzip2 , without using MTF,
arithmetic, or multi-table Hu man encaing. (Seealso [WMO01].) Basedon our analysis,
we concludethat our approad avoids explicit treatment of the order of cortext, but allows
for indirect context merging through the run-length encaing.

The outcome of our experiments is summarizedin Table 3.7, where the rows represerts
sometext les from the Canterbury and Calgary corpora exceptthe last ones(ap90-64.txt ,
ap90-100.txt), which are somenews les available on TREC Tipster 3 [Tip]. Each row
represerts duplicated experiments performed as follows. (Figure 3.2 may help the reader.)

1. We obtain the bwt stream from the input text le.

2. If (MTF = Yes), we transform the bwt stream using MTF.

3. We build the wavelet tree on the stream resulting from the previous two steps.

4. For eadth bitvector Bp found in the wavelet tree, we produce the corresponding se-

quencel of (positive) integer run-lengths.

5. We encale the integersin the sequenced. thus obtained, using one of the following

encaings: code, code, Gol code, Manis code, Ber code, or MixBer code.

6. We divide the total number of bits required by the encading in the previous step by

the sizeof the input text le to obtain the bits per symbol (bps).

Column E (L) reports the bpsquantit y usingformula (3.2) in Section3.2.1. Wetake E(L)
as an empirical lower bound to the gures for the other codes. (Note that the integersin
L changewhen using MTF, asa consequencef step 2.) The last six columns of Table 3.7
report the resulting bps gures for the , , Gol, Manis, Ber, and MixBer codes. Gol

refersto the Golomb code, and usesthe median value as its parameter b, Manis refersto

126

code [Nell]; Ber is the skewed Bernoulli model with the median value as its parameter b;
MixBer usesjust one bit to encale gapsof length 1, and for other gap lengths, it usesone
bit plus the Bernoulli code.

Table 3.7 shows that that Move-To-Font (MTF) and Hu man/arithmetic coding are
not strictly necessaryto achieve high-order compressionin our case;seethe column for
the code for an example. Notice that Maniscalcoand Golomb gain a huge savings from
using MTF: We do not have an explanation for the gap between Golomb and Bernoulli
without using MTF. (Golomb encales a positive integer x using 1+ b(x 1)=kc+ bighbc
bits, wherebis the medianvaluein our case.) In almost all casesthe code performsbetter
than any other method for ea le, asidefrom E(L).# In summary, we obtain high-order
compressionwith three simple ingrediernts: su x arrays, wavelet trees, and dictionaries

basedon RLE and encding.

3.4.4 Sux Array Functionalities

We now have all the ingredients for implementing compressedu x arrays. We still needto
store SA- and its inverse,aswell asa dictionary to mark the positionsin the original su x

array represered in SA-. Here we face a similar problem to that of the directories in our
dictionary D where, if we follow the sametechniques, we sparsify thesearrays. In Table 3.8,
we shawv the number of bits per symbol neededfor compressedsu x arrays on some les
from the Canterbury corpusand TREC Tipster 3 [Tip]. Weincur a minimal overhead cost
for adding su x array functionality; moreover, our potentially costly fractional cascading

in our wavelet tree requires almost negligible space(0.006 bps).

“Note that valuesfor the code from Table 3.5 are larger than their corresponding (non-MTF)

ertries in the column, asthe former must includes somepadding bits to allow fast access.

127

File MTF | E(L) Gol Manis Ber MixBer

book1 No | 1650 | 2.585 | 2691 | 20.703 | 20679 2723 | 2.726
book1 Yes | 1.835| 2.742 | 3.022 3.070 2874 2840 | 2921
bible.txt No | 1060 | 1.666 | 1.740 | 15643 | 16678 1742 | 1.744
bible.txt Yes | 1.181 | 1.753 | 1.940 2.040 1926 1826 | 1.844
E.coli No | 1552 | 2.226 | 2.520 2562 2.265 2448 | 2.238
E.coli Yes | 1584 | 2.251 | 2.566 2445 2.232 2398 | 2.261

world192.txt No | 0950 | 1.536 | 1553 | 19901 | 21993 1587 | 1.589
world192.txt Yes | 1.035| 1.570 | 1.707 2001 1.899 1630 | 1.643

ap90-64.txt No | 1.103| 1.745 | 1.814 | 24071 | 25995 1815 | 1.830
ap90-64.txt Yes | 1.235| 1.840 | 2.031 2.148 2.023 1915| 1.935

ap90-100.txt No | 1077 | 1.703 | 1.772 | 24594 | 26.191 1772 | 1.787
ap90-100.txt Yes | 1.207 | 1.797 | 1.985 2104 1.982 1870 | 1.890

Table 3.7: Measureof the e ect of MTF on various coding methods when usedwith
RLE. The MTF columnindicateswhenit is used. The valuesin the table are in bits

per symbol (bps) and the lowest per row are shovn in boldface.
3.5 Space-Ecien t Sux Trees

In this section, we apply our ideason su x arrays and compressionto the implementation
of a space-e cient version of sux trees[Kur99]. Sux trees are at the heart of many
algorithms on strings and sequencesso their full functionality is needed[Gus974d. Thus,
we support a suite of navigational, hierarchical, and seard capability. From a theoretical
point of view, asu x tree canbeimplemented in either O(nlgj j) bits or JCSAj+ 6n+ o(n)
bits [Sad024, which is signi cantly larger than that of the compressedsu x arrays discussed
before. The bottleneck comesfrom retaining the longestcommonpre x (LCP) information,
which requires at least 6n bits [Sad02b]. As an alternative, the sameinformation can be

maintained in at least 4n bits to retain the tree shape of at most 2n 1 nodes[MRSO014,

128

book1 | bible.txt E.coli world192.txt ap90-64.txt ap90-100.txt
overhead | 0.166 0.050 0.050 0.067 0.032 0.032
2.785 1.681 2.231 1.586 1.700 1.659
CSA overhead | 0.328 0.210 0.210 0.228 0.192 0.191
CSA 2.946 1.841 2.391 1.747 1.860 1.818

Table 3.8: Comparison of spacerequired by and the compressedsu x array
(CSA), given in bits per symbol (bps). Overheadrefersto all spaceother than the
RLE+ encaling for the data itself.

though there is someslovdown since LCP information is not stored explicitly.® In either
case,a separate(compressed)su x array is neededto encale the leavesof the sux tree.
Since LCP information encades the internal nodes of the sux tree, the bound reduces
to lessthan 6n bits in practice. Despite our dictionaries, however, the spacerequired for
LCP information is not drastically diminished, sincewe are anyway encading the internal

structure of the sux tree.

To adiieve lessthan 6n bits, we employ a simple heuristic based on an arbitrarily
chosenslovdown factor S = O(lg n). We implement part of the lowest common ancestor
simpli cation introduced in [BFCO04]. We use our dictionaries and sparsi cation of the
ertries, sped up with tricks to take advantage of parallelism in modern processors.Once
we have this structure, we use just O(1) additional words to get a represeration of a
sux tree. For example, we obtain 2.98 bps (bookl), 2.21 bps (bible.txt), 2.54 bps
(E.coli), and 2.8 bps (world192.txt). These sizesare comparable to those obtained
by gzip, namely, 3.26 bps (bookl), 2.35 bps (bible.txt), 2.31 bps (E.coli), and 2.34
bps (world192.txt).® A point in favor of the compressedrepreseration of sux treesis

that they t in main memory for large text sizes,while regular su x trees must resort to

SA recert manuscript by Jesper Jansson,Kunihik o Sadakane, and Wing-Kin Sungimproves over
thesebounds.
5The comparisonwith gzip is just to show that our implementation is spacee cien t, not a reason

to replacegzip .

129

external memory techniques. A drawbad is that accessinghe former requires more CPU
time. Newertheless,we expect that their performanceis superior when comparedto regular
sux treesin external memory. Seweral applications have such large su x trees, e.g., a
su x tree for the human genome.

We exploit a folklore relationship betweensu x tree nodesand intervals in the su x
array, which has beenusedrecertly to devisee cien t algorithms [AK 004, AASA01]. For
ead node u, there are two integers1 Ur n such that SA[u,:::u,;] contains all
the su xes stored in the leavesdescendingfrom u. Thus,anodeu (u;;uy;) is atriple
of integersin our represertation, where ", represens the LCP of the strings of the text
beginning at positions SA[u;] and SA[u;]. For ead node u, we use this information to
support the following operations:

reacing u's parert;

branching to u's child v by reading symbol s;

nding the label of the edge(u; v) (with cost proportional to the length of the label);
computing the skip value of u;

determining the number of leaves descendedrom u;

chedking whether u is an ancestorof v;

computing the lowest common ancestorof u and v;

following the su x link from u to v, in the style of McCreight or Weiner [Gus974.

We useKasai et al.'s linear-time method [KLA * 01] to compute LCP information. We
modify Sadalane's method [Sad02b]to store only LCP valueslarger than 2Ign; it works
and compressesvell. (We also explicitly store LCP valuesfor a few constart-size LCP s
to speedup searting.) We also implemert the doubling technique of Farach-Colton and
Bender [BFCO04] to compute LCP information in constart time, though we can trade time
to reducethe spacerequired.

We baseour algorithms on the fact that we canuseLCP information to go from node u
to node v by extending their intervals suitably and usethe sameinformation to navigate in

the compressedsu x array. We defer the standard details for most operations and discuss

130

only how to follow the su x link from u to v.

Letu (u;ur; y)andv (vi;vr; v). We useour wavelettree to nd two valuesu? u?
sudhthat vy u? u® v. To nd v and v;, we obsene that Icp(SA[uJ; SA[u?]) ..
We perform two binary seardes, one for u? going to the left subtree and the other for u®
going to the right subtree. To nd v-, at ead step of our binary seart in position i, we
compute Icp(SA[i]; SA[u?]) and compareit with *,. Depending on the outcome, we can
decidewhich way to go. Sincev; is the leftmost position such that Icp(SA[v|]; SA[uY) "\,
we can nd v, in a logarithmic number of steps. Finding v, is similar.

We now discussour experimental setup for the sux tree and sux array applica-
tions. Many experiments were run on the machines ATH and XEO that we described in
Section 3.3.4. The data setswere drawn mainly from the Canterbury corpus, TREC Tip-
ster 3[Tip], and electronic booksfrom the Gutenberg project at <http://promo.net/pg/>

Our source code is written in C in an object-oriented style. Our code is organized
as v e distinct modules, which we now describe briey. Module dict implemerts our
crucial dictionaries (Section 3.2). Module phi implements the wavelet tree and its use
in compressedsu x arrays (Section 3.3), while module csa implemerts the compressed
sux array and related functionality (Section 3.4). Module Icp stores LCP information
and module st implements sux tree functionality, though we avoid storing any nodes
explicitly (Section 3.5). The latter module requires fast decompressionof symbols, access
to the sux array and its inverse,and fast computation of LCP information, all of which

are provided in the other modules.

3.6 Conclusions

In this chapter, we develop the simple notions of run-length encaling (RLE) and encading
to achieve competitive compressionratios and fast compressionand decompressiortime for
both indexing and compressionalgorithms. (Of course, we must add the dominant cost
of computing bwt by sux sorting and that of inverting it.) Someindependert work has

alsoshawvn that compressedsu x arrays are still competing in seart time [HLS* 04]. The

131

techniques we have dewveloped are practically sound, but also groundedin solid theoretical
analysis and strong notions of encading both the data and the underlying model. Our
method is tunable to the accesgattern of any le, which is a property unknown in similar
work on compressedindexing. While we do not claim that our software is a ready-to-use
library, we intend to perform intensealgorithm engineeringto further tune the seard time
of our indexing structures, though much hasalready beendone. We construct the index in

competitiv e time (roughly 1-2 minutes for 64 MB of data on our test system).

Our compressionalgorithm wzip does not require any additional parameters beyond
the text size,alphabet size,and block size,and is tailored to work for large alphabets, e.g.,
Unicode, UTF/16. Our method performs integer bit assignmems and does not resort to
costly computation of fractional bits, asdoesan arithmetic coding technique. A simple copy
operation is only 2{6 times faster than our wzip compression,and only 3{7 times faster
than our decompression. As a matter of fact, our encaling algorithm is so fast that its
major bottleneck is the encading and decaling of . Howewer, the real bottleneck remains

the fast computation of the bwt, namely by su x sorting.

Despite theseobsenations, data in http://www.maximumcompression. comshaws that
our method doesnot achieve the best compressionratio on the market. On the other hand,
our ideasare easyto implemen, asthey useintroductory material on standard compres-
sion techniques. Our wavelet encaling is in somesenserelated to inversion coding [Deo03,
though the analysis in [GGV03] is the rst to truly understand its impact. More criti-
cally, howewer, the wavelet tree servesas a vast improvemert in accesgime over inversion
coding ideas. Other pre x codes (e.g., those in [Deo02 Fen96 Fen02 How97]) preser
other re nements with varioustradeo s. Theoretical exploration of the suite of algorithms
from [Deo03 could illuminate other approacesthan the oneswe have taken.

Both our compressionand indexing methods depend directly upon the spacebounds of
our dictionaries; any improvemert there yields signi cant savings on our method. The best
possible compressionachievable is that empirically establishedby E(L) in formula (3.2);

howewer, aswe sav in our experimerts with Hu man encaling, RLE+ encdaing performs

132

quite competitiv ely with respect to Hu man codesin practice (and we didn't even count
the spacerequired for the pre x tree for Hu man encaling). Our key to spacereduction
is to exploit the underlying entropy in the text using a transform and a solid method of

remaoving redundancy using the wavelet tree.

133

Chapter 4

Compressed Dictionaries and
Data-Aw are Measures

In this chapter, we proposemeasuresfor compresseddata structures, in which spaceusage
is measuredin a data-aware manner. In particular, we considerthe fundamental dictionary
problem on set data, wherethe task is to construct a data structure for represeting a setS
of n items out of a universeU = f0;:::;u 1g and supporting various querieson S. We
use a well-known data-aware measurefor set data called gap to bound the spaceof our

data structures.

We describe a novel dictionary structure operating in near-optimal time that requires
gap+ O(nlg(u=n)=Ign) + O(nlglg(u=n)) bits. Under the RAM model, our dictionary
supports membership, rank, and predecessoiqueriesin nearly optimal time, matching the
time bound of Anderssonand Thorup's predecessostructure [ATO0O], while simultaneously

improving upon their spaceusage. We support selectquerieseven faster in O(lg Ig n) time.

4.1 Intro duction

The proliferation of data is a problem that is su o cating our abilities to manageinforma-
tion. Massiwe data setsfrom biological experimerts, Internet routing information, sensor
data, and audio/video devicesrequire new methods for managing data. In many of these
casesthe information content is relatively small comparedto the sizeof the original data.
We want to exploit the huge potential to save spacein these cases. Howewer, in many
applications, data also needsto be indexed for fast query processing. The new trend of
data structure designconsiderstime and spacee ciency together: The ultimate goalis to
build structures that operate in the optimal (or nearly so) time bound, while requiring the

minimum amount of space,tuned for the particular input data.

134

Ideally, the spacerequired for a structure should be de ned with respect to the Kol-
mogorov complexity of the data upon which the structure is built, asit is the spaceof the
smallest program that can generatethe input data. Unfortunately, it is undecidable for
arbitrary input, making it an inconveniert measurefor practical use. Thus, other measures
of compressibility are used as a framework for data compression,like entropy for textual

data.

One fundamental type of data is set data, which consistof a subsetS of n items from a
universeU = f0;:::;u 1g. Somespeci ¢ examplesinclude IP addresses|UPC barcodes,
and ISBN numbers: set data also appear in inverted indexesfor libraries and web pages,
as well as results from sciertic experiments. In many natural examplesof set data, S is
not a random subsetof U and can be compressed.(For instance, considera set S with a

few tightly clustered items spreadthroughout U.)

In this chapter, we use the gap measure [BMNM * 93] (described formally in Sec-
tion 4.2.2), which hasbeenusedextensiwely asa reasonablespacemeasurein the context of
inverted indexes[WMB99]. The gap measurecouns the spacerequired to encade the dis-

tances between successie items and is usually much lessthan the information-theoretic

u

. € nlg(u=n) bits.! (This bound is known as the information-

lower bound of dg

theoretic minimum becauseit is the minimum number of bits neededto di erentiate the

u

, Possiblesubsetsof n items out of a universeof sizeu.) A gap-style encading can be

u
n

potentially much smallerthan dig - e bits for many of the data setsabove, sinceit exploits

short distancesbetweenitems.

We usethesenotions of compressibility to designcompresseé data structures that index
the data in a succinct way and also allow fast access.In particular, we addressthe funda-
mental dictionary problem where we designa data structure to represen a subsetS that
supports various querieson S. In this chapter, we preser compressedrepresertations for
both fully indexabledictionaries (FID) and indexabledictionaries (ID), improving the space

required by previous results while maintaining near-optimal query time. In particular, un-

Throughout the chapter, we assumethe baseof the logarithm is 2.

135

der the unit-cost RAM model, we dewelop a fully indexabledictionary (FID)|a data struc-
ture supporting rank and selectqueries|of sizegap + O(nIg(u=n)=Ign) + O(nIglg(u=n))
bits, while supporting rank in time matching Andersson and Thorup's (nearly-optimal)
predecessosstructure [AT00] and selecteven faster in O(lg Ign) time. When n 2 o(u), our
fully indexable dictionary is asymptotically equalto gap space(with a constart of 1). This

is important because,for most real-life data, n u and gap is signi cantly lessthan the

u

worst-caseinformation-theoretic minimumdg |

ebits. To our knowledge,this result is the
rst of its kind. Even when consideredfrom a worst-caseperspective, our data structures
are the rst to take O(nlg(u=n)) bits with near-optimal query time. We also dewelop an
indexable dictionary (ID)|a data structure supporting partial rank and selectqueries|in

the samenumber of bits that supports ead query even fasterin O(lg Ign) time. This result
is the rst to operate with gap-style boundsin spacewith time sublogarithmic in terms of
the number of items stored. Moreover, our data structures are useful in practice; we also
have a practical implementation and we discussalgorithmic engineeringand experimental

results in near the end of this chapter. Our results shov that gap is about 10 40% of

dg r‘]‘ e for many practical data sets.

The work in this chapter is a collaborative e ort with Wing-Kai Hon, Rahul Shah, and

Jerey Scott Vitter.

4.1.1 Comparisons to Previous Work

Previousresults of Jacobson[Jac89, Munro [Mun96], Brodnik et al. [BM99], Pagh[Pag99,
and Raman et al. [RRR02] dewelop dictionaries that support constart-time queries. The
best among these are the indexable dictionaries (ID) (supporting partial rank and select)

and the fully indexable dictionaries (FID) (supporting rank and select) by [RRR02], both

u

supporting constart-time queries. Their ID requires Ig |

+ o(n) + O(Ig Ig u) bits, and
their FID requires Ig ﬁ + O(ulglgu=Igu) + O(lglgu) bits. These results seemquite
strong, as the constart factor assaiated with the information-theoretic minimum term

is 1; unfortunately, the spaceis not boundedin a data-aware manner.

136

Recen work by Mekinen and Navarro [MNO6] and Sadakane and Grossi[SG0§ achieves
an FID with constart time queriestaking gap+ O(nlglg(u=n)) + O(ulglgu=Igu) bits of
space? Both of thesedata structures are meaningful as methods to achieve constart-time
queriesover a gap represenation. Still, theseFID structures do not work well whenn u,

as the o(u) term will be much (even exponertially) larger than the information-theoretic

u

minimum term dg

e, dwar ng any savings we want to achieve. For instance, consider
a typical example of maintaining a dictionary for IP lookup, storing say 217 IP addresses
out of a universeof size2%2. In this case,dg | eis roughly 345,661(about 2!8) bits while
their o(u) term is roughly 6:71 108 (about 22°) bits|sev eral orders of magnitude larger

u

than the information-theoretic minimum dg | e bits.

Blandford and Blelloch [BBO4] proposedan interesting schemethat allows easytrans-
formation of any FID implemerted with O(n) pointers into another that requires O(gap) +
O(u Igu) bits for any 0< < 1.3 After the transformation, query time is sloved down
by a factor of 1= comparedwith time required by the original dictionary. Blandford and
Blelloch's schemeallows usto have FIDs with spaceboundedin a data-aware manner. How-
ever, their analysisstill has a potertially excessie u® term. We note that their method
can be tuned by some of the techniques dewveloped in this chapter to achieve (1 +)gap
bits of space.Howe\er, this increasegheir seard time by a multiplicativ e factor of 1= . In
addition, they require either complex RAM operations or a decaling table that may require
more space. This is in part becausetheir space-saings approad is fundamertally di erent
from our own; it padks a variable number of items into a constart number of memory words
and fetchesthe information in a constart number of RAM operations or by useof a large
decaling table. In cortrast, our data structure fetchesoneitem at a time. We describe

this structure in more detail in Section4.4.

A fundamental aspect of a dictionary's seard capabilities is captured by the predecessor

2The middle term O(nlglg(u=n)) comesfrom encaling the extra bits neededfor a pre x code
(such asa code).

3They only claim O(nIg((u + n)=n)) + O(u lgu) bits in their paper.

137

problem, since dictionaries that (implicitly) solve the predecessomproblem require funda-
mentally more spaceand time than those that do not. Precisely the predecessorquery
determinesthe largestitem in S smallerthan the query. Fredman and Willard [FW93] pro-
posedthe well-known fusion tree which supports predecessogueriesin O(Ig n=Iglg n) time.
The query time was later improved by Beameand Fich's key result [BF99]. In particular,
Beameand Fich describe a data structure taking O(n?Ig u) bits of spacethat supports mem-
bershipand predecessoqueriesin BF (u; n) = O(minf (Ig Ig u)=(lg IgIg u); P (Ign)=(Iglgn)g)
time. They also show that this bound is tight as long as we have only O(n°® Igu) bits
available Patrascu and Thorup [PTO06] improved their spaceto O(n+exp(18" 1gu) g y)

bits of space,but unfortunately this improvemert doesnot help our data structure.

Andersson and Thorup [ATOO] provide a transformation to Beame and Fich's data
structure, improving the spaceto O(nlgu) bits and making the data structure dynamic

using exponertial seard trees. However, the query time increasesto
(s

AT (u;n) = O min

)!

lgn
lglgu

lgn lglgu
Ilglgn’ Iglglgu

lglgn; lIglgn+

Sincerank and selectcan be usedto answer predecessomueries, we improve Anders-
sonand Thorup's structure in terms of spacewithout sacri cing query time. In the worst
case,our fully indexable dictionary comparesfavorably with both Raman et al. [RRR02]
and Blandford and Blelloch [BB04]. With respect to the former, though we cannot sup-
port O(1)-time queries, we have eliminated the problematic o(u) spaceterm. Our query
time|lwhic h is AT (u; n)|is already closeto the optimal BF (u;n). For our indexable dic-
tionary, when comparedwith Raman et al.'s ID structure [RRR02], we pay a small price
in the lookup time in exdhange for achieving spaceboundsin terms of gap, which may be

signi cant in practice.

The table in Figure 4.1lists the theoretical results with practical estimatesfor the space

required to represen the various compresseddictionaries we mertioned. In all reported

41t is this result that necessitatesRaman et al.'s FID [RRR02] o(u) spaceterm, sinceconstart-time

rank and selectqueriesimply constart-time predecessolqueriesas well.

138

bounds, we refer to fully-indexabledictionaries (FID). Note that BF (u;n) AT (u;n) for

any u and n.

Figure 4.1: Time and spaceboundsof dictionaries for rank and selet queries.

Theoretical Practical?

Paper Time Space(bits) Space(bits)
this chapter | AT (u;n) gap+ o(lg ;) whenn u 1,830,959
[BBO4] AT (u; n) 2gap+ (u) 1;855/116
[VEBKZ771° | O(lglgu) (nlgu) > 3;200, 000
[ATOO] AT (u; n) (nigu) > 3;200,000
[BF99] BF(u;n) (n?Igu) > 320,000 000, 000
[PTO6] BF (u;n) (nlvee (g8 gu) gy > 10; 000, 000
[Jac894 o) u+ (ulglgu=Iigu) > 4,429 185 024
[RRROZ2] o(1) lg + (ulglgu=Igu) > 136,217,728
[MNO6] Oo(1) gap+ O(nlglg(u=n)) + (ulglgu=Igu) > 136,017,728
[SGOq o) gap+ O(nlglg(u=n)) + (ulglgu=Igu) > 136,017,728

aThe practical spacebounds are for indexing our upc_32 le, with n = 100,000and
u = 2%2. The values for [VEBKZ77, BF99, Jac89h RRR02, MN06, SG0q are esti-
mated by their reported spacebounds. For thesemethods, we relaxedtheir query times
to O(lg Igu) to provide a fairer comparisonin spaceusage.

bThe theoretical spacebound is from Willard's y-fast trie implementation [Wil84].

4.1.2 Outline of the Chapter

The organization of the chapter is as follows. In Section 4.2, we introduce three space
measuresfor set data and show the strong relationship among them. In Section 4.3, we
dewelop a binary seardable dictionary represenation (BSD, which senesas an important
componert in our main results. In Section 4.4, we describe our fully indexable dictionary
and analyze it for both gap-style bounds and worst-casebounds. We achieve a fully in-

dexable dictionary supporting rank in AT (u; n) time and selectin O(lg Ign) time, taking

139

gap+ o(nlg(u=n)) bits of space,or O(nlg(u=n)) bits in the worst case. Note that fully
indexable dictionaries that take O(n°® Igu) bits of spaceare subject to the lower bound
of [BF99]; hence,thesetimes are near-optimal with respect to BF(u;n). In Section 4.5,
we presen our indexable dictionary result, which cannot solve predecessorgueries, and
can thus improve upon the query times from [BF99]. Section 4.6 details our experimental

ndings. We concludein Section4.8.

4.2 Dictionaries and Data Aw are Measures

Let S = hsy;:::;sni be an ordered set of n items from a universeU = f0;1;:::;u 19
of sizeu; that is, i < j implies s; < sj. We want to represert S in a succinct form so
that we can perform basic dictionary querieson its compressedrepreseration. We de ne
dictionaries more formally in Section4.2.1. The normal concernof a dictionary is how fast
one can answer a query, but spaceusageis also an important consideration. We would like
the dictionary to usethe minimum spacefor represening S, regardlessof how quickly it
can be searted. There are somecommon measuresto describe this minimum space. The

rst measureis nlgu, which is the number of bits neededto store the items s; explicitly in

u

an array. The secondmeasureis the information-theoretic minimum dg

e nlg(u=n),
which is the worst-casenumber of bits required to di eren tiate betweenany two distinct n-
item subsetsof universeU. In Section4.2.2we describe two more measuredor represerting
the set S, motivating these as reasonablemeasuresfor analyzing the spacerequired by a
dictionary. We show strong relationships between these measuresin Section 4.2.3, along

with someexperimertal results that illustrate their relative performance.

4.2.1 The Dictionary Problem

The dictionary problem appears as a fundamental black box componert in a number of
applications usedto o er fast access(for somequeries, even constart-time access)to the

data. Someexamplesinclude sux arrays and IP lookup tries. Our interest is to exploit

140

the great potential for a functional but compresseddictionary data structure. In some
applications, dictionaries are the bottlenecks, both in terms of spaceand query time.

We describe somefundamertal querieson set data. Here,a 2 U. The member(S;a)
function indicates whether a appearsin the set S. The rank(S;a) function returns the
number of items in S that are lessthan or equal to a. The select(S;i) function returns
the ith smallestitem of S, for i ranging from 1 to n. The prank(S;a) function is a rank
function, but only for items of S. The pred(S;a) function returns the predecessoof a, the
largestitem x in S such that x < a. We de ne theseformally below.

member(S;a) = 1if a2 S, 0 otherwise
rank(S;a) = fsjjsi ag
prank(S;a) = rank(S;a) if a2 S, 1 otherwise
select(S;i) = s;
pred(S;a) = maxfsjjs; < agif rank(S;a 1)> 0, 1 otherwise

Jacobson[Jac89b] has discussedand motivated the power of rank and select
functions at somelength. In particular, he shavsthat the operation setf rank; selecty
can perform more powerful queriesthan the operation set f member, predyg. As a
result, much of the subsequenwork has consideredrank and select as fundamertal
operations on dictionary structures (such as [RRR02 Pag99, BB04]). To further
illustrate this point, note that the right-hand column can be de ned solelyin terms
of rank and select For instance, memberS;a) = rank(S;a) rank(S;a 1) and
predS;a) = select(S;rank(S;a 1)) if rank(S;a 1) > 0. We now de ne some

corveniert notation to descrile di erent kinds of dictionaries.

De nition 4. An indexabledictionary (ID) represeis a subsetS U and supports
the queriesprank(S;a) and select(S;i). A fully indexabledictionary (FID) represets

asubsetS U and supports the queriesrank(S;a) and select(S;i).

Fully indexabledictionariescansolwe predecessoqueries,and sothey immediately
nd application in rich problem areasas|P lookup structures [CDG99], compressed

text indexing [GGVO03], and su x arrays [GVO0O].

141

Supposethat for the set S of n items, eat item s; is also ass@iated with a
piece of satellite data d;. To allow quick retrieval of the satellite data once the

item is given, we could consider a set S° of tuples of the form hkey; datai, with

de ne lookup(S%a) = d; whena = s; for somej and null otherwise.

De nition 5. A lookup dictionary (LD) is a data structure represeting a set S°

that supports the query lookup(S°© a).

Let A = d;d,:::d, beabitvectorof length jAj = P ;Jdij with the data d; concate-
nated together. If ead pieceof satellite data d; is of a xed length r, a simple array
structure of n r bits can be usedto store the satellite data. We can construct an
ID on S, sothat for any item s;, the prank query returns the position in A whereits
satellite data is stored. Combining this with RRR's ID result, we obtain the following

lemma, which is usedextensiwely in our data structuresin Sections4.4 and 4.5.

Lemma 28. There exists a lookup dictionary (LD) with m(g+ r) bits supprting
lookup(S%a) in constant time, whee m = jSY, g Igu is the number of bits to

representeach keyin S andr is the numker of bits for each satelite data. O

When the satellite data are variable-length, we still storethem using P i Jdij bits.
Howewer, we needto know the starting position of eat satellite data item. To do this,
we storean ID on m items, wherethe ith item denotesthe starting bit position of the
ith pieceof satellite data amongthe P . Jdij possiblepositions. We ask select queries
to determinethe location of the ith satellite data item. The result of Blandford and

Blelloch [BB0O5] on arrays of variable-lengthbitstrings alsoprovidesthis functionality.

4.2.2 The gap and trie Measures

Onewell-known method for represeting the setS is gapenading [BMNM * 93], which
is often usedin compressingnverted indexes. (We refer the readerto [WMB99] for

142

a detailed treatment of the various applications of this method, as well as a source
for further references.)Considerthe gapsbetweenconsecutie itemsin S, wherethe

ith gapg isequalto s; sj ;. We can now represeh the set S as the stream of

can be stored using variable length encaling depending upon their size. Supposewe
could store ead g; in dg(g + 1)e bits. Then, the total space,which we call the gap
measure, is
X
gap(S) = dg(g + 1)e

i=1
bits. Note that we cannot merely store ead g, in dg(g + 1)e bits and decale the

stream uniquely; we also needto know the separation boundariesbetween succes-
sive items. One popular technique to \mark" theseseparationsis by using a pre x
code suth asthe code [EIli75]. In coding, we represeh ead g; in dg(g + 1)e+
2dglg(g + 1)e bits, wherethe rst dglg(g + 1)e bits store the unary encaling of
the number dglg(g + 1)e, the next dglg(g + 1)e bits are the binary represetation
of the number dg(g + 1)e, andthe nal dg(g + 1)e bits arethe binary represetation
of g. We can then represen the stream of gapsG = g;; @; :::; g, by concatenating
the encaling of eat g sud that G is uniquely decadable. We refer to these ex-
tra bits of overheadbeyond gap(S) as the decaling overheadZ(S). For coding,
Z(S) = ZP ; dglg(g + 1)e bits. Our theoretical resultsin this chapter make use of
the code.

Another exampleof a pre x code is the nibble code proposedin [BB04]. In this
chapter, we will primarily use a variation of the nibble code called nibble4 in our
experimerts. For this scheme,we write a \nibble" part of ddg(g; + 1)e=4e in unary,
which is followed by 4 bdg(g + 1) + 3e=4c bits to write the binary represetation
of g;, paddedout to multiples of four bits. (Later, we descrike nibble4 xed, which

we use for 64-bit data. It encadesthe rst part in binary in four bits, sincefor a

143

universesizeof 2°4, we would needto write 64=4 = 16 di erent lengths.)

By Jensen'sinequality,® gap(S) is maximized when all gapsg, are the same. In
this case,gap(S) would requireroughly nIg(u=n) bits, sinceead of the n gapswould
be of sizeu=n. Z(S) is also maximized in this casefor coding. Hence,Z(S) is
roughly 2nlglg(u=n) bits. Other pre x codes,sut asthe code [EIi75] and some
conmbination of Hu man and xed-length coding, resultin asomewhatdi erent Z(S).
In this chapter, we usethe encaling shemeand denotethe bit represetation of S
using this encaling by GAPS). The sizeof GAES) is JGARS)j = gap(S) + Z(S) bits.

Another method for compressiorof S is the pre x omissionmethal (POM) [KS02],
which is generally usedto represeh bitstrings of arbitrary length. Considerthe bit-
strings sorted lexicographically We can represem ead bitstring with respect to the
previous bitstring by omitting the common pre x of the two. To compressS by
POM, we think of ead item of S asits Igu-length bit represetation. The POM
for S can also be seenas a subtree (of n leaves) of the complete binary tree on u
leaves(which is atrie). We denotethis subtreeby Tree(S). Eadc left edgeof Tree(S)
represets a 0, and ead right edgerepresetts a 1. Each root-to-leaf path in this trie

denesanitemsin S.

Forx;y 2 S, let x y denotethe bitstring formed by omitting the commonpre x
of x and y from the bit represetation of x. More precisely let jlcp(x; y)j denotethe

length of the longestcommonpre x of x andy; then, x yisthelastigu jlcp(x;y)j

is the bit represeation of s; in Igu bits andl; = s; s; ;. Let jl;j denotethe number

of bits in I;. Thus, the cost of this represetation, which we call the trie measure, is

- X“ - - - - X1 - -
trie (S) = ilij = jsij + ISi S 1)
i=1 i=2

which equalsthe number of edgesin Tree(S). Similar to the gap measure the above

. P . .
5For a concave function f and x; + X5 + + Xk = X, ; f(xj) is maximized when x; = x=K.

144

represetation with trie (S) bits is not decalableasead string |; is of variable length.
Hence,we needsomeextra bits Z{S) for decaling, which takesZP dgjlije bits in
the caseof encaling. We use TRIHS) to denotethe bit represetation of S using
POM, which takesjTRIES)j = trie (S) + Z{S) bits of space.

Let S + a denotethe setin which the positive integer a is added (modulo u) to

mod ug. We de ne the shifted trie measure strie(S) = min,ftrie (S + a)g, which
correspnds to the number of bits neededto compressS by POM under the "best
shift. We denote STRIES) to be the correspnding TRIES + a), and we de ne
the spacerequiremen jSTRIKS)] similarly. Note that jSTRIES)] also includesthe
additional overheadof Ig u bits to storethe number a to retrieve the original S. Next,
we arguethat trie (S) could be somewhatlarger than gap(S), but strie(S) is closeto
gap(S).

Below, we surigmarizethe notation introducedin this section.

gap(S) = ., dg(g + 1)e strie(S) = minftrie (S+ a)g
JGARS)] = gap(S) + Z(S) JSTRIES)j = strie(S) + Igu
: .. Py . : o : o
trie(S) = jsy+ s Si 4 x yi=lgu jlep(x;y)]
jTRIES)j = trie (S) + ZYS) Tree(S) is atrie that storesthe binary

represerations of items of S

4.2.3 Relationship Between gap, trie and strie

In this section, we shawv a strong relationship betweenthe gap, trie and strie mea-
sures. For any item s;, dg(g + 1)e is always smaller than jl;j, but jl;j could be
much larger. For example,whens; ; = 2¢ lands = 2 jl;j = k even though
dg(g + 1)e= 1. We show that this casecannot occur too frequertly and prove that
trie (S) 2gap(S); furthermore, by applying a ‘random shift', suc casesare almost

all eliminated. In the following lemma, we shav that trie (S) can be more tightly

145

boundedusing this intuition.

Lemma 29. The trie measure on the setS+ a requirestrie (S+a) gap(S)+2n 2

bits on averageover all valuesof a 2 [1; u].

Proof. We proceedby shawing that the sum P Jrie (S + a) is at most u(gap(S) +
2n 2) bits. Recallthat for agapg, jl;j must be at leastdig(g; + 1)e bits long. For an
arbitrary choiceof a, jl;j canrangefrom dg(g + 1)eto Igu bits in length. We court
how many times ead jl;j contributes to the sum. For an arbitrarily chosengap g;,
there are exactly g valuesof a sudh that jl;j will branch from root(Tree(S)). Thus,
the total costincurred is g Igu bits. Similarly, there are 2g; valuesof a sud that jl;j
would cortribute Igu 1 bits to the sum. In general,forj < Igu dg(g + 1)e, there
are 2 g valuesof a sud that jl;j would cortribute Igu j bits to the sum. Finally,
the number of times jl;j = dg(g + 1)eis at most u(249@+e g)=pda@+lie Thys,

jlij contributes to the sum with

|g ud |9(g| +1) el ' . u 2d|g(g| +l) e gl
2g(gu j)+ T dg(g + 1)e

j=0
2ug;

= udg(g + 1)e glgu+ 2dg(g +D) 20;:

We alsoincur an additional cost ass@iated with shifts suc that s; + a > u, where
we chargejl;j with Igu bits, cortributing an additional g Ig u bits. Summingup and
averagingover eat of the u possibleshifts, we seethat the gap g requiresan average
of lessthan dg(g + 1)e+ 2 bits. We then sum this over all possiblegaps, shaving
that an averagetrie (S+ a) is P " (dg(g + e+ 2 2g=u) = gap(S)+ 2n 2 bits,

thus proving the lemma. O
Sincethe minimum is lessthan the average,we obtain the following corollary.

Corollary 5. The shifted trie measure, strie(S), is at mostgap(S) + 2n 2.

146

Note that jl;j is boundedon averageby dg(g + 1)e+ 2 bits. Sincethe decaling
overheadis d2lgjlije with the code, we canbound the total overheadZP dgjlije by
2nlglg(u=n) bits using Jensen'sinequality. Thus, the spacerequiremer jSTRIES)]
is at most strie(S) + 2nlglg(u=n) + Igu bits.

We provide someexperimertal results on real data setsin Figure 4.2, which bear
out the theoretical ndings in this section. Here, the les tested are descriked in
Section4.6.1,and the spaceis reported (in bits) alongthe y-axis. The gure on the
left shavs data les with a universeof sizeu 2%, and the gure on the right shows
data les with u 2% Notice that gap(S) is signi cantly smaller than Ig . for
real data. In fact, nibble4 is a decaleable gap encaling that also outperforms the

information-theoretic minimum. Sincegap(S) is lessthan trie (S) for all of the les,

we are free to usethe gap measurefor the remainder of our experimertal results.

Data-Aware Measures (Space) Data-Aware Measures (Space)
7000000 14000000
6000000 - 12000000 -
5000000 - 10000000 +
2 2
S 4000000 - M Info Min S 8000000 4 M Info Min
£ Otrie(S) £ Otrie(S)
& 3000000 Ogap(S) ||| § 6000000 - Ogap(S)
& @ Nibble4 & ONibble4
2000000 - 4000000 -
1000000 - m 2000000 -
0 - T T T 0 - T
ipl ip2 upc_32 isbn titles upc_48

Figure 4.2: Comparisonoflg ., trie(S), gap(S), and a gap stream encaled ac-

cording to the nibble4 code for the data les in Section4.6.1.

4.3 Binary Searchable Dictionary Represen tation

Despite all the dewelopmen on the POM model, the trie encaling of S does not
support time-e cient queriesas we would like. Klein and Shapira [KS02] use the

trie encaling to seart in compresseddictionaries, but their searting algorithm

147

essetially consistsof a linear scanof the items in the dictionary and takesat least
(n) time. Most algorithms using gap encaling also need a linear scan. In this
section, we build a binary seartable data structure BSD which resohes rank and
selectqueriesin O(Ign) time. We show that the spacerequired by this structure is
gap bits plus low-order terms. In fact, the main point of this sectionis in showving
that a binary-seardable represetation requiresabout the samenumber of bits as
simplelinear encaling shemes.Also, BSOs our main building block and will be used

later in this chapter to support fast lookup in our FID and ID dictionary structures.

Fig. A. The left hand side
shows a binary search tree
built on the items 1, 4, 8,
9, 12, 13, and 15. Beneath
that is its pre-order layout on

disk, where the arrows rep-

resert pointers to the right
subtree. The right hand side

shows the trie built on the

same items. Beneath that is

| |mm| Omo' 0011 ° | 101' o ju | the corresponding layout on

disk, but eac item s is en-

coded with respect to anc(s).

For instance, 8 is encoded in
the layout on the right as 0,
since anc(8) = 9 diers from

it by a single bit.

The BSDstructure encalesa pre-ordertraversalof a balancedbinary seart tree T
built onthe n itemsof S. In Figure A, the pre-ordertraversalfor the setSis 9, 4, 1,
8, 13,12, and 15. The key point is that instead of storing ead item s; explicitly in
lgu bits, we encade an item with respect to an ancestoranc(s;), de ned as follows.

Let A; be the set of all the ancestorsof s; in the binary seart tree T. Then,

148

anc(sj)) = x 2 A;j sud that Icp(si;x) is maximized over all ancestorsin A;. We
represen s; by s; anc(s;) usinglgu jlcp(si; anc(s;))j bits, reminiscen of our trie
encaling. Now we de ne the BSIPS) encaling.

We usea recursiwe layout to descrike the pre-ordertraversal of the binary seart
tree of n items. Let the subsetsS, = hsy; Sy i San=ze 11 @Nd Sg = MSyn=se+1 ; :i%; Snli
represen the left and right subtreesof the syp-2cth item. Generally let S;; =
hsi;Si+1; 5 Sji. Let anc(sg=2¢) = 0. For BSIS), let |BSIPS)j denote the number
of bits neededto encale BSIPS). Then, we de ne the BSDencaling as

BSIDS) = I’Bdn=2e anc(sdn=2e); jBS[oSL)J’ BSDSL); BSIDSR)i :

Note that sg,=0e aNCc(Sgn=2¢) IS a variable-length string, which is stored using
coding. The term jBSIPS,)j constitutes additional overheadbut is neededin order to
jump to the right half of the set while searding. (We will call this term the pointer
cost, and we will referto it in our experimertal section.) In fact, we could actually
store just minfj BSIDS,)j; jBSIPSR)jg bits (with an additional n bits to indicate our
choice), alongwith remenbering whichever wassmallerof the left and right subtrees®
Newertheless,it turns out that BSDrequiresnearly the samespaceas doesthe TRIE
encaling. Next, we descrite how rank and select functions can be supported in

O(Ig n) time using BSIPS), and then we analyzethe spaceusageof BSI)S).

We useBSIPS) asa bladk box on O(Ig n) items and achieve O(lg Ign) time; how-
ewer, in order to do so, we must be able to decale a -codeditem (or bitstring) in
O(1) time in the RAM model. We assumethat the word size of the madine is at
leastIgu bits, and that we are allowed to perform addition, subtraction, multiplica-
tion, and bitshift operationsin O(1) time. We alsoassumethat we can calculatethe

position of the leftmost 1 of a subword x of Iglgu bits in O(1) time. (This task is

6Making this improvemert would require the structure to be built from the bottom-up rather than

with our recursive formulation above; we defer those details in the interest of clarity.

149

equivalert to calculating dg(x + 1)e whenthe word x is seenas an integer.) We can
also easily encale and decale the operator using bitshifts and additions. These
assumptionsare su cient to allow O(1) decaing time. If this model is not applica-
ble, we can simulate the decaling by explicitly storing the decaling result of every
possiblelg Ig u-bit number in a table with Igu entries. Note that this table takes
O(lgulglglgu) bits, which is negligible overhead’

In order to support rank and select, we just needto store the single value n
(in Ign bits) at the beginning of the BSDto indicate how many items are stored
within the structure. Since our structure is a well-de ned balanced binary tree,
at any node x with ny items, we know that the size of our left subtree cortains
dny,=2e 1 items, and our right subtree cortains n, dny=2e items. Hence, we
can compute rank and select basedupon this information. More precisely given
BSIDS), rank(S;a) and select(S;i) can be computedin O(lg n) time by calling the
recursive functions rrank(BSDS); a; 0; u; n) and rselect(BSPS); i; O; u; n) asdetailed
below. In the pseudaode, the function root(B) returns the rst encaled string in B
(i.,e., root(B) = s; and(sj)), and the function decodéx; '; r) returns the item s;
that correspndsto the root of B. The latter function can be computed by rst

determining anc(s;j), which is oneof * or r basedon the rst bit of root(B). Then,

"We could reducethe sizeof this table even further to O(Ig Ignlglglglgn) bits by using a slightly

di erent encaing schemethan the code.

150

si = (anc(sj) div 2¥) 2 + root(B), wherey = jroot(B)j.

function rrank(B;a;’;r;n) f function rselect(B;i; *;r;n) f
if (n= 0) return O; X root(BSDS));
X root(B); z decodéx; ';r);
z decodéx; ;r); if (i = dn=2e) return z;
if (z= a) return dn=2e+ 1; else if (i > dn=2¢)
else if (z< a) return
return dn=2e+ rselect(BSPSg);i dn=2e;z;r;n dn=2e);
rrank(BSPSg);a;z;r;n dn=2e); else return

else return rrank(BSDS,);a;"; z;dn=2e 1); rselect(BSPS,);i; *; z;dn=2e 1);

g g

We denotethe rank(S;a) and select(S;i) that operate on BSIPS) by the functions
BSD_rank(B;a) and BSD_selet(B;i), whereB is a pointer (of Igu bits) to BSDS).

Lemma 30. The BSPS) representation requires at most trie (S) + O(nlglg(u=n))

bits and supports rank and selet functions in O(lg n) time.

Proof. The spaceof BSIDS) can be divided into three parts: (i) the spacefor all
si anc(sj); (i) their decaling overhead;and (iii) the spaceto encale all jBSIS,)],
usedto jump to the right half of the encaling. We now descrite the spacerequired
for eat of theseparts.

The spacefor (i) can be shovn to be equalto the number of edgesin Tree(S),
which is exactly trie (S). To provethis, it su ces to show that eat edgein Tree(S) is
encaled only oncein its BSIDS) represemation. Let item s be encourtered according
to its pre-orderbinary seart tree traversal. Let A be the set of all ancestors on the
root-to-leaf path leadingto s in the binary seart tree. In the trie structure, the path
to s must lay betweentwo root-to-leaf paths in the trie: either the path leading to
its rightmost encaled ancestoron its left | or its leftmost encaded ancestoron its

right r. Weencales anc(s), which must either bel orr. (This could be the parert

151

of s.) Sinceno other edgein the trie that lies betweenthe path to | and the path

to r hasbeenusedthusfar, ead trie edgeis encaled only oncein any BSDstructure.

For (ii), the overheadis analogougo Z(S) andwe canboundit by O(n Iglg(u=n))
usingJensen'snequality. In particular, we must encale the length of the newbranch
for s. Essemially, we are encaling n items out of a universeof trie bits to indicate
the starting bit position of eat brandh's encaling. By Jensen'sinequality, the worst
casefor this encaling occurswhenall n items encale the length trie =n, requiring at
most nlg(trie=n) nlg((2 i 1gg)=n) = O(nlglg(u=n)) bits. We must also know
anc(s), the ancestorwe choseto encale from. We remenber our choiceautomatically
accordingto the rst bit of the encaled string|la leadingbit of 0 meanswe choser

and a leading bit of 1 meanswe chosel.

For (iii), we analyzethis by consideringthe cortribution of jBSIDS,)j at ead level
of the binary seart tree of S. At level 1, i.e. the root level, jBSIPS,)j is at most
lg(nlg(u=n)) bits. At leveli, this cortribution is maximized (by Jensen'sinequality)
when all of the 2' * cortributing terms are equal. (In other words, all trees are the
samesize.) Thus, the spaceusageat level i is boundedby 2' lg((n=2' 1) Ig(u=n)).
Summingup, we have
” n

i 1
279 5

u u
lg— = lglg— + :
~ gn Onggn n ;

which is a path recursionsum [GK81]. O

The above lemmasuggestghat BSPS+ a) would require fewer than than trie (S+
a) bits, plus O(nlglg(u=n)) bits for any a. Thus by Corollary 5, min,fi BSDS + a)jg
is at most gap(S) + O(nlglg(u=n)) bits. For the rest of the chapter, we assumethe
BSDrepresetation for S is basedon its best possibleshift. Thus, we obtain the
following theorem, which will be usedin further construction of our data structures

in Sections4.4 and 4.5.

152

Theorem 17 (BSD). The representation BSIDS) is a fully indexabledictionary
(FID) occupyinggap(S) + O(nIglg(u=n)) bits, while supprting rank and selet func-
tions in O(Ign) time. O

Next, we descrite BSGA[S), a simple and implemertable variant of the BSIDS)
represemation that we usein our experimertal resultsin Section4.6. The key idea
of BSGAM) is to directly encale the dierence js; anc(s;)j using gap encaling.
Precisely we replacethe encaling s; anc(s;) from BSIPS) by dg(jsi anc(sj)j+ 1)e.
We alsostore oneadditional bit to indicate which ancestorencaless;. Usinga similar

analysisto that in Lemma 30, we arrive at the following corollary.

Corollary 6. The representation BSGARS) is a fully indexabledictionary (FID)
occupyinggap(S) + O(nlglg(u=n)) bits while supprting rank and selet functions in
O(lg n) time. O

Proof. It suces to shav that for eat item s;, its encaling in BSGAFs no more
than in BSD Let g = js; and(sj)] be the gap we wish to encale, and let jl;j =
lgu jlep(si; anc(s;))j be the length of its encaling in BSD Recall that for any
gap g, jlij must be at least dg(g + 1)e bits long. Thus, under a random shift,
jlij can range from dig(g, + 1)e to Igu bits in length. Since BSGARNcaless; in
the minimum required, we automatically arrive at the rst spaceterm gap(S). The
BSGARepresetation alsorequiresan additional n bits to indicate which ancestor(of
| or r) encalesthe current gap; this is accouned for in the secondspaceterm. The

rest of the BSGARepresemation follows from BSD O

Though the BSGARata structure seemsto do little more than avoid an arbi-
trary shift, its consequenceare far more interesting: BSGARIustrates that a non-
consecutie gap structure can still acieve gap-style bounds. In a sense,BSGAP
presens a way to store ead of the n nodesin a binary seart tree for S in fewer

than lgu bits. Moreover, it's an extremely simple (and implemertable) technique.

153

4.4 The Fully Indexable Dictionary Structure

In this section, we descrile our rst main result, Theorem 18. We build a simple
two-lewel hierarchical framework to obtain a fully indexable dictionary (FID) sud
that rank takes AT (u;n) time and select takes O(Iglgn) time. The challengein
designingsud a data structure lies in only spending gap(S) + O(nlg(u=n)=Ign) +
O(nlglg(u=n)) bits in the process.

We descrike our structure in a bottom-up way. At the bottom level, we store
a BSDdictionary for ewvery dg?ne items from set S, ead of which can resohe a
rank or selectquery in O(lglgn) time. We alsostore B:f ir st_rank along with eah
BSDB, whereB:first_rank is the rank in S of its rst item in B. We also keep

an array P[L:dn=Ig® ne], whereP[i] storesa pointer to the ith BSDstructure, which

select In orderto support rank, let 8 = fs;ji mod (Ig2n) = 1g bethe setof smallest
items from eat BSD We build an instance of Anderssonand Thorup's predecessor
structure [AT00] on $, called R. To support rank, we use a lookup dictionary L
from Lemma28built on S askeyswith pointers to the correspnding BSDassatellite
data. We denotethe processof looking up the satellite data assaiated with s 2 8
by L:lookup(s). Then, rank and select can be solved as follows.

function rank(S;a) f function select(S;i) f

s predR;a); j d=(g%n)e
B L:lookup(s); B PJ[I
return return
B:firstrank + BSD_rank(B;a); BSD_selet(B;i B:first_rank + 1);
g g

We arealmostreadyto show the main theoremof this section,but rst, werequire

the following lemma.

154

Lemma 31. Let S;;S;;:::; Sk be a partition of S, with each S; consisting of items of
conseutive ranksin S. Precisely, each S; consists of items s;; ;41 ;:::;s for some

j . Then, P :‘:1 jBSDS))j gap(S) + O(klgu) + O(nlglg(u=n)).

Proof. Let u; = maxfs 2 S;,g minfs 2 S;g+ 1 and n; = jS;j. By Theorem 17,
jBSDS))j] gap(Sj)+ O(n;lglg(ui=n;)). Thus,the Iemmafollowssincep :‘zl gap(S)
gap(S)+ O(k Ig u), and by Jensen'snequality, we show that P :‘:1 O(n; Iglg(ui=n;))
O(nlglg(u=n)). O

Based on the above lemma, we obtain the main theorem below, along with a
worst-caseanalysis in Corollary 7, since gap and O(nlglg(u=n)) are bounded by

O(nIg(u=n)).

Theorem 18. We implement a fully indexabledictionary (FID) using a total of
gap(S) + O(nlg(u=n)=Ign) + O(nlglg(u=n)) bits sothat rank queriestake AT (u; n)

time and select queriestake O(IgIg n) time.

Proof. For select, we require O(Iglgn) time to traversethe ith BSDdictionary.
For rank, the time bound is dominated by the predecessorquery in R, taking
AT (u;n=Ig®n) = O(AT (u;n)) time. This shavs our time bounds. For our space
bounds, the n=Ig? n BSDstructures require a total of gapg(S) + O(n lg(u=n)=Ign) +
O(nlglg(u=n)) bits. The array P andthe eld B:f ir st_rank takeat mostO(n=Ig?n)

lgu = O(nlg(u=n)=Ign) bits in total, proving the theorem. O

Corollary 7. We implementa fully indexabledictionary (FID) using no more than
O(nlg(u=n)) bits so that rank queriestake AT (u;n) time and select queriestake

O(lglgn) time. O

Finally, we capture a technically interesting space-timetradeo of our FID, ob-

tained by scalingthe sizeof the groupings. This obsenation implies that the second-

155

order spaceterm in our structure canbe madearbitrarily small, at the costof a slight

increasein the query times.

Corollary 8. For any > 1, we can implementa fully indexabledictionary (FID)
in total space gap(S) + O(nlg(u=n)=lg *n) + O(nlIglg(u=n)) bits so that the func-
tion rank takes AT (u;n=Ilg n) + O(Iglgn) time and the function select takes

O(Iglgn) time. O

4.5 The Indexable Dictionary Structure

In this section,we build upon the approad of the last section. We partition S into
lower level BSDstructures, eah of sizeat most Ig® n. We usea top level “distributor’
structure which enablesus to accessthe correct BSDwhile answering a query. In
cortrast to the last section, if the query item is not presen in S, our top level
distributor may not return any assaiated BSD Hence,we cannot support rank or
predecessogueries.

Our top level distributor takes O(lgIgn) time to return the correct BSD This
is lessthan AT (u; n) time; the partitioning sthemeis somewhatmore complexthan
that in our FID. As aresult, we cansupport partial rank or selectqueriesin O(lg Ig n)
time. To managethe spacerequired, we limit the number of partitions to be at most
O(nlglgn=Ig®n), sothat the overheadincurred by our top level distributor can be
boundedby the samesecond-ordeiterm asin our FID.

Next, we descrike our top level distributor structure, which is analogousto the
van EmdeBoas(VEB) tree [VEBKZ77]. With this distributor structure, onany given

input X, we canreport x is not in S, or obtain the BSDthat can cortain x e cien tly.

156

45.1 The Top Level Distributor Structure

Our distributor structure is a recursiwe structure analogousto a VEB tree. Instead
of having O(lg g u) levels of recursionasin the casefor a VEB tree, our distributor
hasonly h = 3lglgn levels. At the top level (Level 1), we have a single distributor
(with parameterp = 0 to be explainedshortly) to distribute all itemsin S. For level
i=1toh 1,aleveli distributor with parameterp connectsto somelLevel i + 1
distributors, which are then usedto distribute the items recursiwely; the parameterp
indicates that all the input items sharethe same rst p bits. At the bottom level
(Level h), a Level h distributor directs the items to their designatedBSDstructures.
More precisely fori = 1to h 1, aLeveli distributor with parameterp = p; works

as follows:

1. Partition the items into groupsaccordingto the rst p; + (Igu)=2' bits.

2. For ead group with more than Ig® n items (which we call a densegroup), the

items are passedto a Level i + 1 distributor with parameterp = p; + (Igu)=2'.
3. For all items not in a densegroup, they are grouped together.

(a) If the number of items is at most Ig® n, the items are passedto a Level h

distributor with parameterp = p;.

(b) Otherwise,the items are passedo a Leveli+ 1 distributor with parameter

pP=p.

We can easily show the following by the recursive de nition above: At a Level i
distributor with parameterp = p;, if we partition the items into groupsbasedon the
rst p + (2lgu)=2' bits instead, the sizeof eat groupis at mostIg®n. Making useof
this fact, a Level h distributor with parameterp = py partitions the n; input items

into groupsbasedon their rst p, + (2Igu)=2" bits, sud that eah group is of size

157

at mostlg®n. The ny, items are then directed to the designatedBS[data structures,
with ead BSDcortaining at most O(Ig® n) items. With the above data structure D,

we can nd the BSDthat can cortain x by calling f ind _BSD (D; x) asfollows:
function find_BSD(D;x) f

D; Level 1 distributor from D;

: function retrieve BSD(D;p;x) f
i 1,pp O

) L the LD storedin D;
fori=1toh 1

y x[p+ 1:p+ (2lgu)=lg3n];
return L:l ookup(y);

(Di+1;pi+1) distribute(Di;i; pi;X);
if (D; is a Level h distributor)
Pn P, break;

return retrieve.BSD(Dn; pn; X);

The function distr ibute(D;;i; pi; X) retrievesthe Level i + 1 distributor with pa-
rameter p = p; in which x is distributed accordingto the rst p; + (Ig u)=2' bits. The
notation x[:r] (r) denotesthe substring of the bitstring represetation of X,
starting at the "th bit and ending at the rth bit. The function L:l ookup(y) returns
lookup(S(L);y) if y 2 S(L), whereS(L) denotesthe set of keysstoredby L.

Oncewe obtain the BSDB that cancortain x, determining whetherx isin B can
be donein O(lgIgn) time. Thus, if find _BSD(D; x) canbe donein O(lg Ign) time,

the total time to answer member(S;x) is alsoO(lg Ig n).

45.2 Distributor Detalils

In this part, we give details of the distributor that supports distr ibute(D;;i; p;; X) at
Leveli (i 2 [1;h 1]) and retrieve.BSD (Dp; pn; X) at Level h e ciently. We make
useof an LD of Lemma28to adiewve this. Basedon this implemertation, we shov
that f ind_BSD(D;x) canbe donein O(lglgn) time.

Fori = 1to h 1, aleveli distributor with parameter p maintains an LD

158

of Lemma 28 that storesthe p + (Igu)=2' bits correspnding to a densegroup as
keys, and storing the Ig u-bit pointer to the correspnding Level i + 1 distributor as
satellite information. It also explicitly storesan “escag' pointer to the Level h or

the Level i + 1 distributor that correspndsto items not in densegroups.

For a Level h distributor with parameterp, we usea di erent structure. Let n, be
the number of items managedby this distributor. We store the number k of distinct
BSI[3 containing thesen;, items and an array A[1::k] storing the pointers to theseBSI3.
Recallthat all the n;, items sharethe rst p bits, and the distributor heredistributes
anitem into a group accordingto the rst p+ (21gu)=2" bits. Therefore,we maintain
an LD of Lemma 28 for the (2Igu)=2" bits that correspndsto a non-empty group,
starting at the (p + 1)st position. For the satellite information, we store the array

ertry of the correspnding BSDwhich again takes (2 Igu)=2" bits.

A Minor Mo di cation. If eadn BSDdata structure correspndsto items in con-
secutiwe ranks, we can bound the total spaceby gap+ O(nlIglg(u=n)) bits. Unfortu-
nately, in the current scheme,a BSDdata structure directed by a Level h distributor
may not correspnd to items of consecutie ranks. For instance, let s; and s; be
two items in the sameBSD then at somelevel, an intermediate item s;.; may be
partitioned into a densegroup, while s; and s; are items not in the densegroup.
Consequetly, the intermediate item s;,; is not stored in the sameBSDass; and s;.
In order to bound the spaceas desired,we usea little x: for eat existing BSD
in the current sheme,we split the items into maximal groups of consecutie ranks,
and store ead group in a separateBSD Essemially, we transform the existing BSD
into a list of BSB sothat ead new BSDcorrespnds to items of consecutie ranks.
Then, a Level h distributor now directs the item into one of the k lists of BSIB (as
opposedoneof the k BSB before). We store an array A[1::k] for the pointers to the k

lists; for ead list, we store the number k°® of BSBit cortains. (Note that k® Ig®n,

159

sincethe total number of items in a BSDOs O(lg®n).) We alsostore an array B[1::k9
sud that BJi] storesthe pointer to the BSDwhosesmallestitem is the ith smallest
amongthat of the other BSI3. With the above implementation, distribute(D;i; p;X)
(Lines3and6in find_ BSD(D;x)) foreahi = 1to h 1canbedonein O(1) time.
Then at Level h, we obtain the list of BSI3 that can cortain x in O(1) time. After
that, we usebinary seard on x againstthe smallestitems of the BSBto nd the BSD
that cancortain x (Line 8). The time requiredis O(lg k9, which is at most O(lg Ig n)
sincek® Ig®n. Then, find_BSD(D:x) canbe donein O(lgign) time.

4.5.3 Solving Partial Rank and Select Queries

The partial rank query can be readily supported by our data structure in O(IlgIgn)
time, asshawvn in the pseudo-cde belon. To enablethe selectquery, we additionally
maintain an array F[L:n=Ig®n] suc that F[i] storesa pointer to a list of BSB
that can cortain the items with rank in [(i 1)Ig®n;ilg®n]. For ead list, we store
number k%of BSBin the list, and an array G[1::k° for pointers to the k°°BSB sudh
that G[1]:f ir st_rank < G[2]:f ir st_rank < G[3]f ir st_rank < ::: < G[K:f ir st_rank.

160

Then, select(S;j) can be solwed in the following pseudo-cde.
function prank(S;x) f
B find_BSD (D;x);
function select(S;j) f
if (B = null) return -1,
G Fldi=lg®n€g;
else
k% the number of BSBin the list G;
r B:f ir st_rank;
i Binar ySearch(G; k%j);
r® BSD_rank(B;X);
ri G[i]:f ir st_rank;
if (BSD_selet(r%B) = x)
return BSD_selet(j ri+ 1;G[i]);
return r+r°% 1;

else return -1;

The function Binar ySearch(G; k%j) returns i sud that G[i]:firstrank < j <
G[i + 1]:f ir st_rank using binary seard), which takes O(lg k° time. The total time
required for selectis O(Ig k° + O(lgign) = O(lg Ign).

4.5.4 Space Analysis
To bound the total spaceusage,we will make useof the following lemma.
Lemma 32. We showthat

1. the total numker of distributors, P ih=1 di, is at mostO(nlglgn=Ig®n), and

2. the total number of BSDdata structuresis at most O(n Iglgn=Ig®n).

Proof. For all the distributors in our data structure, we useDist(r; p;i) to denotethe
Level i distributor sud that all the items managedby it sharethe samepre x r of
length p. We call a distributor denseif it managesmore than Ig®n items; otherwise,

it is called sparse Note that sparsedistributors only occur at Level h.

161

For Level i, the number of densedistributors is at mostn=Ig® n, becausahe items
they manageare disjoint. Thus, there are at most 3nIglgn=Ig>n densedistributors
in total. For eat sparsedistributor Dist(r;p;h), there must exist a densedistributor
Dist(r; p;i) for somei. Wemap Dist(r; p;h) to Dist(r; p;i) sud that i is maximized.
Note that it is a bijection. Thus, the number of sparsedistributors is bounded by

the number of densedistributors, and the rst claim follows.

If two consecutie rank items s; and s;+; are stored in di erent BSIS, we call
(sj;sj+1) acut. A cut canhappenin oneof two ways: (1) if s; and s;,; comefrom
two distributors, or (2) if s; and s;j.; comefrom the sameLevel h distributor which
is dense. Note that the number of cuts is equal to the number of BSB. Now, we

court the number of cuts as follows.

For cuts of the rst type, considerthe smallestlevel i sud that the s; and s;j 41
arein di erent distributors, say D- and D,. (This implies that they are at the same
Leveli 1 distributor.) Then, by the de nition of a distributor, either D or D, must
be dense.We assaiate the cut with the densedistributor(s). Then, in this mapping,
a densedistributor can be asseiated with at most two cuts, namely when it takes
the rolesof D- and D,, respectively. Thus, the number of cuts of the rst typeis

boundedby the number of densedistributors, which is O(nlglgn=Ig®n).

The number of cuts of the secondtype is, by de nition, boundedby O(n=Ig®n).

Thus, the secondclaim follows. O

Next, we notice that for a particular i, items managedby di erent Level i dis-
tributors are disjoint. Let d; denotethe number of Level i distributors in our data
structure. Also, recallthat the spacefor anLD is O(m(g+ r)) bits wherem is the num-
ber of items, q is the number of bits neededto represen eadh key (i.e., p; bits for the
LD in a Leveli distributor, and 2Igu=Ig®n bits for the LD in a Level h distributor),

andr is the number of bits for eat satellite data (i.e., g u bits for the LD in aLeveli

162

distributor, and 2lgu=Ig®n bits for the LD in a Level h distributor). Then, for any i
in [1;h 1], the spaceoccupiedby all Level i distributors is equalto the spaceof LD
for densegroups+ spacefor escag pointers O(n=Ig*>n Igu)+ d; Igu bits. On the
other hand, the spaceoccupiedby all Level h distributors is equalto spaceof LD for
non-emply groups+ spacefor k + spacefor arrays A[1::k] and k®+ spacefor arrays
B[1:k9 O(n 2lgu=lg®n)+dylgu+O(n=Ilg*>n+d,) Igu+O(niglgn=Ig®n) Igu
bits, wherethe inequality follows from Lemma 32.

Next, the extra spaceneededby the partial rank and selectstructuresis equalto
spacefor rank of the smallestitem of ead BSD+ spacefor F[1::n=Ig®n] and k°°+
spacefor G[1::k% O(nlglgn=Ig®n) Igu+ O(n=Ig®n) Igu+ O(nlglgu=Ig®n)
lg u bits. The total spacerequiremern for all distributors is at mostP ih=1 (O(n=Ig®n)+
d) lgu + O(n(lg lgn)(Ig u)=Ig®n) which is O(n(lg Ig n)(Ig u)=Ilg®n) + P ihzl dilgu
O(n(lg Ign)(Ig u)=lg®n) bits, wherethe last inequality is basedon Lemma 32.

Finally, sincethe above spaceterms can be bounded by O(nlg(u=n)=Ign) and
the spaceof all the BSDdata structures is bounded by gap+ O(nlglg(u=n)) bits

(Lemma 31), we have the following theorem.

Theorem 19. Given a set S of n items from a universe [1; u], we implement an
indexabledictionary (ID) in gap(S) + O(nlg(u=n)=Ign) + O(nlglg(u=n)) bits sup-
porting partial rank and selet queriesin O(lg Ign) time. O

4.6 Exp erimen tal Results

In this section,we presen our experimertal results, basedonthe BSGABtructure from
Corollary 6. Recallthat the BSGABtructure is organizedsimilarly to a BSDbut gap
encalesthe di erence betweenan item s and its best ancestoranc(s). Section4.6.1
descrilkesthe experimertal setupthat we usefor our results. In Section4.6.2,we dis-

cussvariousissueswith the spacerequiremens of our BSGABtructure and give some

163

intuition about how to encale the various parts of the BSGABtructure e ciently. In
Section4.6.3,we descrike a further twealable parameterfor our BSGABtructure and

useit asa black box to succinctly encale blocks of data.

Apart from the code, the nibble code [BB04], and the nibble4 code we have
mertioned in Section4.2.1,in this section,we alsoreferto a number of variations of

pre x codesas follows:

The delta squaed code encalesthe value dg(g; + 1)e using codes, followed
by the binary represetation of g,. For instance,the delta squaredcode for 170

is 001 00 1000 10101010.

The nibble4dGammaencales the \nibble" part of the nibble4 code using the
code instead of unary.2 For instance, the nibble4AGamma code for 170 is

01 0 10101010.

In casethe universesize of the data set is at most 232, we will also have the
xed5 code which encadesthe value dg(g + 1)e in binary using v e bits. For

instance,170is encaled as 01000 10101010.

For larger universesizes(sudh as our 2%4-sized ones), we usethe nibble4 xed
code, a mix of the nibble4 code and the xed5 code. Here, we encale the
\nibble" part of the nibble4 code using four bits.

For eat of thesecodes, we create a small table of valuesso that we can decale
them quickly whenappropriate. As descritedin Section4.3, thesetablesadd negligi-
ble space,and we have accourted for this (and other) table spacein the experimertal

results that we descrike throughout the chapter.

8The \nibble" part will be an integer between1 and 16. The code for an integer x is a unary

encading of dg xe followed by the binary encaling of x in dig(x + 1)e bits.

164

4.6.1 Experimental Setup

Our sourcecode is written in C++in an object-oriented style. The experimerts
were run on a Dell PowerEdge 650 with 3 GB of RAM. The madine was running

Cenos 4.1, with a gnu g++3.4.4 compiler. The data setsusedwere as follows:

ipl: List of IP addressebtained from Duke University's Computer Science
Departmert. The list refersto 159,690P addresseshat hit the Duke CS pages
in the month of January 2005.

ip2: Similar to ip1, but this list consistsof 148,700IP addresseghat hit the
Duke CS pagesin February 2005.

upc_32: List of 100,000UPC codesobtained from items sold by the Wal-Mart

supermarket that t in a universeof size 2%,
isbn : List of 390,000SBNs of booksat the Purdue Libraries in a 32-bit format.

upc_48: List of 432,223UPC codesin the original 48-bit format obtained from

items sold by the Wal-Mart supermarket.

title : List of 256,391book titles from Purdue Libraries, corverted into a

numeric value out of a universeof size 2%4.

4.6.2 Code Comparisons for Encodings and Pointers

We performed experimerts to comparethe space/time tradeo s of using di erent
encalings in place of nibble4. We summarizethose experimerts in Figure 4.3. The
gures in the top row shav the time required to process10,000randomly generated
rank querieswith a BSGABtructure using the codeslisted, averagedover 10 trials.

The gures in the bottom row shav the space(in bits) requiredto encale the BSGAP

165

data structure using the listed pre x codes. Each of the bottom two rows also has
the information-theoretic minimum and gap(S) listed for reference.

It is clearthat both xed5 and nibble4 are very good codesin the BSGABtructure
for the 32-bit case; xed5 is slightly faster than nibble4, and nibble4 is slightly more
space-e cient. (For the isbn le, nibble4 is signi cantly more space-e cient.) For
64-bit les, nibble4 is the clear choice. Sinceour focusis on spacee ciency, the rest
of the chapter will build BSGABtructures with nibble4. (For our 64-bit data sets,we

will actually usenibble4 xed.)

Comparison of Prefix Codes (Time) Comparison of Prefix Codes (Time)
0.35 0.6
031 05
~ 0.25 O Gamma o4 TGamma
& B Delta 2 W Delta
o 0.2 O Delta Squared 2
c " c ODelta Squared
= O Fixed5 < 0.3 B Nibble
2015 ENibble g :
£ . = ONibble4
. B Nibble4 ko2 W Nibble4Gamma
0.1 H Nibble4Gamma
0.05 1 01
0 0 -
ipl ip2 upc_32 isbn upc_48 title
Comparison of Prefix Codes Comparison of Prefix Codes
on BSGAP stream (Space) on BSGAP stream (Space)

8000000 18000000

7000000 A _ 16000000 - “

6000000 . | |BGamma 14000000 BGamma
- W Delta 2 12000000 - W Delta
= 5000000 + O Delta Squared =
a . o O Delta Squared
c OFixed5 = 10000000 bl
= 4000000 + B Nibble = H Nibble
b BNibbled & 8000000 + D Nibble4
[[N

3000000]
& mNibble4Gammal| | & 6000000 A o I'\r']'f';b"ji‘:]eamma

2000000 - Binfo Min 4000000 + mgap(s)

Hgap(S)
1000000 - 2000000
0 : : : 0 -+
ipl ip2 upc_32 isbn upc_48 title

Figure 4.3: Comparisonof codesand measuredor the data les in Section4.6.1.

Next, we investigatethe cost of theseBSGAPBointers and seeif a di erent choice
of code for just the pointers can improve its cost. We summarizethe space/time
tradeo s in Figure 4.5. The gure shaws the pointer costs(in bits) of eady BSGAP

structure. As we can see,nibble4 and nibble are both space-e cient for the pointer

166

Comparison of Prefix Codes Comparison of Prefix Codes
on Gap Stream (Space) on Gap Stream (Space)
8000000 14000000
7000000 - 12000000 4
6000000 - BGamma oG
B Delta 10000000 - amma
z 5000000 ODelta Squared 2 B Detta
s ; OFixeds 2 8000000 | . z,i'g’l‘ Squared
< 4000000 H mNibble < o N:bble .
g ENibble4 S 6000000 B NIDOIAG
& 3000000 [| |mNibble4Gamma| | & o Inlfo l\jin amma
2000000 L |Info Min 4000000 19 mgap(s)
W gap(S)
1000000 - 2000000 -
0 T T T 4 0+
ipl ip2 upc_32 isbn upc_48 title

Figure 4.4: Comparisonof gap+codes,lg ;| , and gap(S) for real-data les, de-

scribed in Section4.6.1.

distribution. Howeer, nibble4 is again the logical choice, sinceit is both the most
space-e cient and very fast to decale. If we remove these pointer costsfrom the
total spacecost for the BSGABtructure, we seethat this spaceis alout the sameas
enaxding the gap stream sequentially; as sud, we can think of the pointer overhead

for BSGARs a costto support fast searting.

Comparison of Prefix Codes Comparison of Prefix Codes
for BSGAP Pointers (Space) for BSGAP Pointers (Space)
1800000 2500000
1600000
1400000 - 2000000 -
- O Gamma - O Gamma
2 1200000 MW Delta 2 1500000 M Delta
‘2 1000000 DO Delta Squared 2 O Delta Squared
f OFixed5 'j:: OFixed5
g 8000001 W Nibble & 1000000 - W Nibble
& 600000 4 ENibble4 & ENibble4
W Nibble4Gamma B Nibble4Gamma
400000 - 500000
200000 |
0 + o+
ipl ip2 upc_32 isbn upc_48 title

Figure 4.5: Comparison of pre x codes for BSGARointers for the data les in

Section4.6.1.

4.6.3 BSGAPThe Succinct Binary-Searc hable Black Box

In this section,we focuson the practical implemertation of our fully-indexable dictio-

nary, modeledafter Corollary 6. To make our practical dictionary, we replace[AT0O]

167

with a simple binary seart tree, and introduce a new parameterh = O(lg Ign) that
doesnot a ect the theoretical time for BSGABut providesa noticeableimprovemern
in practice. For eat group of Ig? n items that is stored using BSGARwe further tune
our structure to resort to a simple sequetial encaling scheme when there are at
most h items left to searty, whereh = O(lgIgn). Theoretically, the time required
to seard in the BSGABtructure is still O(lglgn). We employ this technique when
sequetal decaling is fast enough,to avoid writing bits to jump to the right half
of the tree. (We call this the pointer cost) In our experimerts, we actually let h
rangeup to Ig?n, to seethe point at which a sequetial decaling of h items becomes
impractical. It turns out that thesefew adjustmerts to our theoretical work result

in a fast and succinctpractical dictionary.

For the rest of the section, we de ne a parameter b that governs the number
of items cortained in eatch BSGARtructure and a parameter h that cortrols the
degreeof sequetial encaling within a BSGABata structure, asdescrited above. We
denote a particular con guration of our dictionary structure by D(b;h). Let BB
refer to the data structure in [BB0O4]. In this framework, BB is a special caseof our
dictionary D (b;h) whenh = b

In Figure 4.6, we shov a space/time tradeo for BB and our dictionary. Eadc
graph plots spacevs. time, wherethe time is that requiredto processl0,000randomly
generatedrank queries,averagedover v e trials. Here,we tune BB to operate on the
samenumber of itemsin eadt block to avoid extra costsfor padding and give them the
samebene ts as BSGAReceiwes. For eat graphin Figure 4.6, we let the blocksizeb
rangefrom [2; 256]and the hybrid value rangefrom [2; . We collecttime and space
statistics for eatr D (b;h) data structure. The BB curve is generatedfrom the 256
points correspnding to D(b;b). For the BSGARuUrve, we partition the x-axis into
300 partitions and choosethe most time-e cien t implemertation of D (b;h) taking

that much space.Notice that our BSGABtructure corvergesto BB aswe allow more

168

spacefor the data structures, but we have someimprovemern for extremely small
space.

SinceBB is a subcaseof our BSGABtructure, onemight think that our space-time
curve should newer be higher than BB's. Howeer, the curve is generatedwith actual
data structures D (b;h) taking a particular spaceand time. So, the existenceof a
point above the BB curve on our BSGARurve simply meansthat there exists one

con guration of our data structure D (b;h) which hasthose particular results.

The parameterh is crucial to achieving a good space/time tradeo . Notice that
ash increasesthe spaceof D (b;h) decreasebecausene store fewer pointers in ead
BSGARMRata structure. One may think of transferring this saved spaceinto ertries
in the top level binary seart tree to speedup the query time. On the other hand,
the time required to seard at the bottom of eady BSGABtructure increasedinearly
with h. So, there must be somemoderate value of h that balancesthese costsand
arrivesat the bestspace/timetradeo . Hence,we collectall (b;h) pairs and evaluate
the best candidatesamongthem.

In Figure 4.7, we compareBB and our dictionary for 64-bit data. We plot space
vs. time, wherethe time is that requiredto processl,000randomly generatedrank
queries, averagedover v e trials. We collect data for D(b;h) as before, where the
rangefor b and h for upc_48 is [2;512]and title is [2; 2048]. Notice that our data

structure provides a clear advantage over BB asthe universesizeincreases.

4.7 Applications of Succinct Dictionaries

In this section,we descrike an application of our FID dictionariesto the caseof text
indexing. As we mertioned in Sections3.2.1and 3.2.2, run-length encaling (RLE)
canbe a better choicein someapplications, particularly whenthe input setS is dense

with respect to its universeU. As a slight deviation from the theme of this chapter,

169

Space vs. Time (ip1) Space vs. Time (ip2)
0.09 1 0.09 —
0.08 - 0.08 +
0.07 A 0.07 4
2 0.06 - 3 0.06 -
c BBO04 : BBO4
£ 1 £ 1
E 0.04 E 0.04
0.03 1 0.03 -
0.02 1 W 0.02 4 \\W\MWW
0.01 T T 0.01 T T
2250000 2750000 3250000 3750000 2000000 2500000 3000000 3500000
Space (in bits) Space (in bits)
Space vs. Time (upc32) Space vs. Time (isbn)
0.06 0.06
0.055 0.055
0.05 0.05
_.0.045 __0.045
[$] (s}
% 0.04 5 3 004 5
c BBO4 c BBO4
£ 0.03 £ 003
~ 0.025 ~ 0.025
0.02 0.02
0.015 0.015
0.01 + T T 0.01 + T T T
1750000 2250000 2750000 3500000 5500000 7500000 9500000
Space (in bits) Space (in bits)

Figure 4.6: Comparisonof BB and BSGABNn 32-bit data les in Section4.6.1.

we considerencaling shemesto managethesedensedata sets.

We descrike a new practically-motivated data structure called BSRLEhat is a
modi cation of our BSGABtructure, but it performswell on densesubsets.We then
apply it to text indexesand descrile a seriesof experimerts shovcasing space/time
tradeos. In Section4.7.1, we descrile our experimenrtal setup. Section4.7.2 de-
scribesthe BSRLElata structure; it improves upon the practical dictionary in Sec-
tion 3.2.4in terms of space,basedon our discussionsn this chapter. Section4.7.3
preseis someresults on an improved csa in comparisonwith the FM-index [FMO5,

FMO1].

170

Space vs. Time (upc_48) Space vs. Time (title)

0.01 1 0.0004 1—
0.008 1

0.006 1

BB04
—BSGAP

Time (in sec)

0.004

Time (in sec)

BB04
o 77W\/\/\/\/\

0 : : : 0 : : :
9000000 11000000 13000000 15000000 5000000 8000000 11000000 14000000
Space (in bits) Space (in bits)

0.002]

Figure 4.7: Comparisonof BB and BSGABN 48-bit and 64-bit data les in Sec-
tion 4.6.1.

4.7.1 Exp erimental Setup

Our sourcecode is written in C++in an object-oriented style. The experimerts were
run on a Dell PowerEdge650with 3 GB of RAM. The madine was running Certos
4.1, with a gnu g++ 3.4.4 compiler. We chose data sets that were large enough
to obsene the space/time tradeo s, sincethe minimum indexing overhead can be
signi cant with respectto the le size. (For instance,we usetablesto quickly decale
our pre x codes,sud asnibble4 and the code. Thesetables, which are normally

negligiblein sizefor larger les, may be signi cant for small le sizes.)

alice29.txt : An ASCII versionof the book \Alice in Wonderland" from the

Canterbury corpus,with an original le sizeof 152,089bytes.

E.coli : DNA sequencdor the virus E.coli. The original le sizeis 4,638,690

bytes of space.

dblp.50MB. XML le that provides bibliographic information on major com-
puter sciencejournals and proceedingsobtained from dblp.uni-trier.de
Downloadedon Septenber 27, 2005and consistingof exactly 52,428,80ytes

of data.

171

english.50MB: Concatenation of English text les selectedfrom etext02 to
etextO5 collections of the Gutenberg Project. The headersfrom the project
were removed, to leave the actual text. Downloaded on May 4, 2005, and

consistingof exactly 52,428,80(bytes of data.

4.7.2 Binary Searchable Run-Length Encoding

Before describingour BSRLHElata structure, we brie y review run-length encaling.
We canrepresen a set S (with n items) out of a universeU of sizeu using a bitvec-
tor B of length u, whereeadt 1 represets an item in setS. Run-length encaling
represets eat subsequencef idertical bits (a run) in B asthe pair ("; b), where”
is the number of times that bit b is repeated. We can avoid encaling b by explicitly
storing the rst bit, sincebwill alternate between0 and 1. Suppose(without lossof

generality) the bitvector B correspnding to the setS is
B=0%120%:::121;

wheren; is the number of runs of 1sin B. We de ne the RLE measur as

201
rle(S) = dg(i + De
i=1
In the rest of Section 4.7, we will usethe code to store the length °, sinceit is

usefulin the text indexing setting, as showvn in Section3.2.2.

Now we descrite how to build the BSRLHKlata structure. We build a modi ed
subsetS°of sizen, correspndingto B. For ead run of 1s, we add a singlecandidate
item to S° A candidateitem r; is eitherthe rst orlast1in runi. (Wedescrite which
oneto choosewhen we build BSRLE We then write the represetation BSRLES),
which is a modi ed versionof the encaling of BSGARY for the set S° We reusethe

notation for S_ and Sg from BSDand BSGARvhere S, cortains the subsetof items

172

from S from runs 1 to dn;=2e 1, and Sg cortains the items from runs dn;=2e+ 1
to n;.

The BSRLENcdling is de ned as

BSRLB) = ITdn1:2e anc(rdn1:2e); \dn1:2e 1;pdn1:2e;jBSRLBL)j; BSRLBL); BSRLBR)i;

where the candidate elemen r4,, -5 IS Stored usingthe code, "¢,,e 1 indicates
the number of 1s in the dn,;=2eth run (not courting the candidate), stored using
the code, and pgn,=2e indicates the number of 1sin S in the left subtree S, of
the dn,=2eth run, not courting other candidateitems. (In other words, it storesthe
number of RLE-encaded items that arein S..) We store pgn, =2 USINg the nibble4

code.

Now we explain how to choosethe candidateelemen r;. If anc(r;) > r;, r; is the
last 1 in run i; otherwise,it is the rst 1 in run i. Computing r; in this way saves
spacein the encaling, but for easeof exposition, we assumethat r; is the rst 1 in
run ri, sincethe rst 1 caneasilybe determinedusingthe candidateelemen and ;.
We compute anc(r;) by building the ancestorset A; aswe did for BSD Howeer, at
eath ancestornoder; (correspndingto the jth run) for r;, we insert both the values
correspnding to the rst 1in runr; andthe last 1 in run r; into the ancestorsetA,;.

Given BSRLES), rank(S;a) and select(S;i) can be computedin O(lgn;) time
by calling the functions rrank(BSRLES); a;0;u; n,), rselect;(BSRLES);i; O;u;ny)
and rselecty(BSRLES);i; O;u; ny) detailed belonv. (As usual, rankq(S;a) = a
rank;(S;a).) In the pseudaode, the function decodenodgB) returns the values
ri, i, and p; for the ith node. (The techniquesusedto decale this information are
similar to BSD The variablesla and ra refer to the left and right ancestorsof the

currert run, respectively.

173

function rrank(B;a;la;ra;n) f
if (n= 0)return O;
r;;p decodenodgB);
if (a<r)
return rrank(BSRLES,); a;la;r;dn=2e 1);
elseif (a<r+) return dn=2e+ p+ (a r);
else return dn=2e+ p+

rrank(BSRLESR);a;r + © 1;ra;n dn=2e);

fungtion rselect,(B;i; la;ra;n) f
r;;p decodenoddgB);
C dn=2e+ p;
if (i<c)
return rselect;(BSRLES,);i; la;r;dn=2e 1);
elseif (i<c+)return r+ (i c©);

else return

rselect,(BSRLESR);i ¢ ;r+° Lrayn dn=2e);

174

function rselec(B;i; la;ra;n) f
r;;p decodenoddqB);
c r (dn=2e+ p);
if (n=0)
if (i>c)
return r+ (i ©);
if (i<c)
return la+ i;
if (i<c)
return rselecth(BSRLES,);i; la;r;dn=2e 1);
else if (i > c) return

rselec(BSRLESR);i c¢;r+° 1L1yra,n dn=2e);

Comparedto the practical dictionariesfrom Section3.2.4,the BSRLES) encaling
usesthe samespaceto encale the run-length valuesfor 0 and 1. Howewr, the
practical dictionaries store pre x sumsfor both 0 and 1, whereaswe only store them
for 1s. Moreover, sinceour pre x sumsare localized, we save even more space. In
addition, we have a clearspace/timetradeo : our data structure operatesin O(Ign;)
time (which is lessthan BSGA®O(lg n) time if n; is small enough),however, we may
spend more time on ead step since we decale more codes. We summarizeits

adhievemeris in the following lemma.

Lemma 33 (BSRLE). The representation BSRLES) is a fully indexabledictio-
nary (FID) occupyingrle(S) + O(nlglg(u=n)) bits while supprting rank and selet
functions in O(lgn;) time, where n; is the numker of runs of 1s in the bitvector

representationof S.

Proof. This proof follows from the proof of Lemma 30 and Theorem 17. Our BSRLE
175

encaling adievesrle(S) spaceby construction, sincethe run-lengths for the 1s are
stored explicitly, and the run-lengths for the Os are storedimplicitly by the encaling
of BSGARY. The only additional costwe have is to store p;, which is roughly the
number of 1sin S_ (the left subtreeof r;); the encaling of p; over all nodescan be
boundedby the pointer cost (to jump to the right subtree),and takesat most O(n)

bits of space. O

4.7.3 Exp erimental Results

In this section,we apply our BSRLHElata structure to the text indexing problem. In
particular, we improve upon the implemertation of compressedsu x arrays from
Chapter 3 and compareit to the FM-index[FM05, FMO01], a state-of-the-art data
structure with good theoretical results and practical performance. We make use of
the hybrid value h and block length bin tweakingthe BSRLEtructure, just aswe did
with BSGAPThroughout our experimerts with BSRLEwe use nibble4 to represem
pointers and auxiliary information, and codesto represem the actual RLE lengths.
For both codes,we maintain a small table of valuesto facilitate fast decaling; these
tables cortribute negligible space,and our experimertal results accoun for these

COosts.

Our goal is to index the text T of length u. We replace eah of the practical
dictionariesfrom the earlier csa implemertation (that wereusedin the wavelet tree)
with our new BSRLHElictionaries. This application was the main motivation for
deweloping BSRLHlictionaries. We also rede ned the fractional cascadingthat links
these BSRLHElictionaries together to improve the sequetial seartiesin the wavelet

tree.

We also drastically speed up the decaling of LCP valuesthat are neededby

the csa. Toreview, storethe LCP s using Sadalane'smethod [Sad02b].Howewer, we

176

cannot a ord to storeall 2u bits required. Instead, we store only LCP valueslarger
than 2lgu. To reducequery time, we alsostore a few dictionaries that keeptrack of
small LCP values. In particular, we maintain a dictionary D; drawn from a universe

of sizeu, sud that its ertries correspnd to the positionswith an LCP valueofi. We

that preseits space/time tradeo s.

The LCP lookup proceedsby nding out how many 1 bits appearin D; within
the range correspnding to the two strings in the LCP query. If there are none, we
proceedwith the seart in the next dictionary Di.; . Oncewe run out of dictionaries
to seart, we preform an inversesu x array query (SA 1) to get the location of the
two su xes that start at the Ith position in the original query su xes. Then we reuse
our original seriesof | dictionaries. This processavoids the (relatively) slowv lookup
time for (i), at a cost of someadditional storage.

We can organizethis seriesof dictionaries D; in terms of an LCP wavelettree,
providing, in theory, many of the bene ts we have described earlier for wavelet trees.
The main advantage hereis in improving the time bound|it's not clear whether an
ertropy bound makes sensefor the storageof LCP values. In practice, short LCP
valuesare much more commonand needto be retrieved in O(1) time, rather than

the O(lg 1) time for this wavelet tree.

The FM-index usesthree parametersin optimization: atwo-phasebucdketing stage
that is similar to our BSRLEstructure (but lacking the tuned top level with gap
encalings), and a frequency perceriage f. Supposef is 2% (the default for the
FM-index implemenation). The index inserts a special unique symbol at regular
intervals in text T sud that the total number of symbols is 2% of the text length.
This puts a maximum on the number of symbols that the FM-index hasto decale,
and it addresseshe sameproblemthat we weretrying to addressearlier by explicitly
storing LCP values. Asf increasesthe fewer symbol decalings are neededhowever,

177

this method requiresadditional (tuneable) space.We alsousethis ideawhentuning

our data structure.

In Figure 4.8, we show a space/time tradeo for our improved csa and the FM-
index. Ead graph plots spacevs. time for either count or locate queries. Each
row of graphs shaws the results for the les alice29.txt , E.coli , dblp.50MB, and
english.50MB, respectively. (Each le is descrikedin Section4.7.1.) We performed
count and locateon 1; 000randomly generatedpatterns P, averagedover v e trials.
The time reported for count is the number of milliseconds(msec)required per symiol
of the input pattern P, and the time for locateis the number of millisecondsrequired

per occurrenceof P in text T.

To generateead curve in the graphs, we generateall possibledata structures
using the various parametersfor eat implemenation. Then, we partition the x-axis
and chosethe most time-e cien t implemertation of csa and FM-index taking that
much space. Notice that our csa data structure is competitive with the FM-index
for nearly all ranges,although it is slightly slower as we increasethe spaceallowed.
Howeer, what is most interesting is its behavior when we allow a minimum of extra
bits of space. For this case,our data structure preserts the fastestimplemenation

for extremely succinct space.

4.8 Conclusions

In this chapter, we have formalized and deweloped measuredor analyzing the space
neededo store setdata. Thesemeasuresan provide a framework for further investi-
gation of compressediata structuring techniques. We have achieved a fully indexable
dictionary that operatesin near-optimaltime (AT (u; n)) to support rank, select,and
predecessogueries,while just taking gap+ O(nlg(u=n)=Ign) + O(nlglg(u=n)) bits
of storage. This result improves a number of compresseddata structures [RRR02,

178

ATO00, BB04] by reducingspaceusage while maintaining nearly-optimal time bounds.
Our gap term has a constart of 1, which is extremely important when considering
matters of spacee ciency. Equally important are the properties of the other space
terms|if n = o(u), they amourt to o Ig | bits. Also, our dictionary is the rst

that achieves O(nlg(u=n)) bits of space,without signi cantly sacri cing the query
times. (Recall that we take AT (u;n) BF(u;n) time.) We also provide an in-
dexabledictionary which operatesin gap+ O(nlIg(u=n)=Ign) + O(nlglg(u=n)) bits
and supports queriesin O(lg lgn) time. We conjecturethat if the spacefor an ID is
measuredn terms of gap, O(1) query time may not be possibleto achieve. Sincethe
gap measureinherertly exploits the encaling of items with respect to other items,

O(1) decdling time of an item (and thus searting) is not straightforward.

In addition, we have shavn evidencethat data-aware measuregsuch asgap) tend
to be smaller than conbinatorial measureson real-life data. Employing techniques
that exploit the redundancy of the data can lead to more succinct data structures
and a better understanding of the underlying information. As sud), we encourage
researbersto dewlop theoretical results with a data-aware analysis. In particular,
our BSGARata structure, alongwith BB (proposedin [BB04]) are extremely succinct
in practice for sparsedata sets. In addition, we provide someevidencethat BSGAP
is lesssensitive than [BB04] to an increasein the size of the universe. Finally, we
provide some useful information on the relative performanceof pre x codes with
respect to compressionspaceand decompressiortime.

There are two open problems. Is it possibleto give an indexabledictionary with
query times further reduced, and with spacemeasuredin a data-aware manner?
Another problem is whether we can extend our data structures to support dynamic

operations.

179

Space vs. Time for Count (alice29.txt)

Space vs. Time for Locate (alice29.txt)

0.05 4 1.2 E
1 114!

0.045 | L]
- 0.04 4 2091
% 0.035 - 208 =
% 0.03 E \ FM-Index o 06 FM-Index
£ 0.025 A g0
= i F 05

0.02] 0.4

0.015 03

0.01 1 : : 0.2 ; :

80000 130000 180000 80000 130000 180000
Space (in bytes) Space (in bytes)
Space vs. Time for Count (E.coli) Space vs. Time for Locate (E.coli)
0.06 2.00
0.05
1.50

o
o
=

—CSA
FM-Index

Time (in msec)
o
o
@

o
o
N

0.01 k

———

0.00 T T T
2000000 3000000 4000000 5000000
Space (in bytes)

—CSA
FM-Index

Time (in msec)
=
o
o

o
o
o

S

0.00 T T T
2000000 3000000 4000000 5000000
Space (in bytes)

Space vs. Time for Count (dblp.50MB)

o
=
(&)

o
[
w

I
S
-

o
o
©

Time (in msec)

o

o

N
L

0.05 T T T
15000000 30000000 45000000 60000000
Space (in bytes)

Space vs. Time for Locate (dblp.50MB)

0.25

0.20

Time (in msec)
o
=
(6]

o
=
o

0.05 T T T
15000000 30000000 45000000 60000000
Space (in bytes)

Space vs. Time for Count (english.50MB)

o
o
®

o
o
N

o
o
>

o
o
a

Time (in msec)

o
o
=

o
N\

0.03 T T 1
25000000 40000000 55000000 70000000
Space (in bytes)

Space vs. Time for Locate (english.50MB)

0.40 -
1l
‘g 0.30 A
@ i
E , —CSA
'\3 1 FM-Index
e i
i —_—~——~—~
0.10

T T 1
25000000 40000000 55000000 70000000
Space (in bytes)

Figure 4.8: Comparisonof csa and FM-index on court and locate.

180

Chapter 5

Dynamizing Succinct Data Structures

5.1 Intro duction

The new trend in indexing data structures is to compressand index data in one shot.
The ultimate goal of these compressedindexesis to retain near-optimal query times (as
if not compressed),yet still take near-optimal space(as if not an index). A few pioneer
results are [GV00, GGV03, FM05, RRR02, GMR06, FLMMO5 J; there are many others. For

compressedext indexing, seeNavarro and Mekinen's excellent survey [NMO06a].

Progressin compressedindexing has also expandedto more conbinatorial structures,
such as trees and subsets. For these suainct data structures, the emphasisis to store
them in terms of the information-theoretic (combinatorial) minimum required spacewith
fast query times [RRR02, Jac89h HMPO1]. Compressedtext indexing makesheavy use of

succinct data structures for set data, or dictionaries.

The vast majority of succinct data structuring work is concernedlargely with static
data. Although the spacesavings is large, the main deterrent to a more ubiquitous use
of succinct data structures is their notable lack of support for dynamic operations. Many
settings require indexing and query functionality on dynamic data: XML documerts, web
pages,CVS projects, electronic documert archives, etc. For this type of data, it can be
prohibitiv ely expensiwe to rebuild a static index from scratch ead time an update occurs.
The goal is then to answer queriese cien tly, perform updatesin a reasonableamount of
time, and still maintain a compressedversion of the dynamically-changing data.

In that vein, there have been someresults on dynamic succinct bitv ectors (dictionar-
ies) [RRRO1, HSS03,NM06b]. Howewer, these data structures either perform queriesin
far from optimal time (in query-intensive environments), or allow only a limited range of

dynamic operations (\ip" operations only). Here, we considerthe more general update

181

operations consisting of arbitrary insertion and deletion of bits, which is a certral chal-
lengein dynamizing succinct data structures for a variety of applications. We de ne the
dynamic text dictionary problem: Given a dynamic text T of n symbols drawn from an
alphabet , construct a data structure (index) that allows the following operations for any
symbol s 2 :

ranks(i) tells the number of s symbols up to the ith positionin T;

selets(i) givesthe position in T of the ith s;

char(i) returns the symbol in the ith position of T;

inserts(i) inserts s beforethe positioni in T;

deletg(i) deletesthe ith symbol from T.

Whenj j= 2, the above problem is called the dynamic bit dictionary problem. For the
static case,[RRR02] solvesthe bit dictionary problem using nH o + o(n) bits of spaceand
answersrank and selectqueriesin O(1) time, where H is the Oth order empirical entropy
of the text T. The bestknown time boundsfor the dynamic problem are given by [NMO06b],
achieving O(lg n) for all operations.t

The text dictionary problemis a keytool in text indexing data structures. For the static
case,Grossiet al. [GGVO03] presen awavelet tree structure that answersqueriesin O(lgj j)
time and takesnHg+ o(nlgj j) bits of space.Golynski et al. [GMRO06] improve the query
boundsto O(lglgj j) time, although they take more space,namely, nlgj j+ o(nlgj j)
bits of space. Nevertheless, their data structure presens the best query bounds for this

problem.

Developing a dynamic text dictionary basedon the wavelet structure canbe donereadily
using dynamic bit dictionaries (asis donein [NMO06b]) sinceupdatesto a particular symbol s
only a ect the data structures for O(lgj j) groupsof symbols accordingto the hierarchical
decomposition of the alphabet . The solution to this problem is given by Mekinen and
Navarro [NMO06b], with an update/query bound of O(Ignlgj j). Theseboundsare far from

optimal, especially in query-intensive settings. On the other hand, the best known query

1There is another data structure proposedin [HSS03, requiring non-succinct space.

182

bounds for static text dictionaries are given by [GMRO06], which treats eah symbol in
individually; an update to symbol s could potentially aect dierent data structures, and
thus may be hard to dynamize.
We list the following cortributions of this chapter:
We dewelop a general framework to dynamize many succinct data structures like
ordinal trees, labeled trees, dictionaries, and text collections. Our framework can
transform any static succinct data structure D for a text T into a dynamic succinct
data structure. Precisely if D supports rankg, seletg, and char queriesin O(t(n))
time and takes s(n) bits of space,the dynamic data structure supports queriesin
O(t(n) + Iglg n) time and updatesin amortized O(n) time and takesjust s(n) + o(n)
bits of space.
Our results represen near-optimal tradeo s for update/query times for the dynamic
text (and bit) dictionary problem. (For lower bound, see[PD06].)
We provide the rst succinct data structure for the dynamic bit dictionary problem.
Our data structure takesnHg + o(n) bits of spaceand requires O(lg Ign) time to
support ranks, selets, and char querieswhile supporting updatesto the text T in
amortized O(n) time.
We provide the rst near-optimal result for the dynamic text dictionary problem on
a dynamic text T. Our data structure requiresnlgj j+ o(nlgj j) bits of spaceand
supports queriesin O(Ig Ig n) time and updatesin O(n) time. Whenj j= polylg(n),
we can improve our query time to O(1).
Our framework can dynamize succinct data structures for labeled trees, text collec-

tions, and XML documerts.

The work donein this chapter is a collaborative e ort with Wing-Kai Hon, Rahul Shah,

and Je rey Scott Vitter.

183

5.1.1 Outline

In Section5.2, we summarizesomeexisting resultsincluding the RRR data structure [RRR02],
somestatic text dictionaries [GGV03, GMRO06], and somebrief construction bounds. Sec-
tion 5.3.1 describes our Bitindel data structure, which solvesthe dynamic bit dictionary
problem. Section5.3.3 describesthe rst part of our dynamic text dictionary; we describe
inX, which keepstrack of wherethe original text T hasbeenupdated. In Section5.3.4, we
then describe onlyX, which actually storesthe updatesthemselhes. The onlyX structure is
a non-succinctdata structure of independert interest that solvesthe dynamic text dictio-
nary problem. In Section 5.5, we apply our dynamic bit and text dictionaries to dynamize

ordinal trees, labeled trees, and the XBW transform [FLMMO5].

5.2 Preliminaries

We summarizese\eral important static structures that we will usein achieving the dynamic
results. The proofs of their construction are omitted due to spaceconstraints. In the rest
of this chapter, we refer to a static bit or text dictionary D, that requires s(n) bits and

answers queriesin t(n) time.

Lemma 34 ([RRRO2]). For a bitvector (i.e., j j = 2) of length n, there exists a static
data structure D called RRR solving the bit dictionary problem supporting rank, select,
and char queriesin t(n) = O(1) time using s(n) = nHo + O(nlglgn=Ign) bits of space,
while taking only O(n) time to construct. O
Lemma 35 (Section 2.4.3). For atext T of lengthn drawn from alphaket , there existsa
static data structure D called the wavelet tree solvingthe text dictionary problemsupprting
ranks, selets, and char queriesin t(n) = O(lgj j) time usings(n) = nHg+ o(nlgj j) bits
of space, while taking O(nH) time to construct. When j j = polylg(n), we can support
queriesin t(n) = O(1) time. O
Lemma 36 ([GMRO06]). For atext T of length n drawn from alphalet , there exists

a static data structure D called GMR that solvesthe text dictionary problem supporting

184

selets queriesin t1(n) = O(1) time and rank and char queriesin to(n) = O(lglgj j) time

usings(n) = nlgj j+o(nlgj j) bits of space, while taking O(n Ig n) time to construct. [

We alsousethe following static data structure called pre x-sum (PS) asa building block
for achieving our dynamic result. Supposewe are given a non-negative integer array A[1::t]
sud that P (Ali] n. We de ne the partial sumsP[i] = P }:1 A[i]. Note that P is a
sorted array, such that 0 PJ[i] P[j] nforalli<j. A prex-sum (PS) structure on A
is a data structure that supports the following operations:

sum(j) returns the partial sumP[j];

ndsum (i) returns the index j such that sum(j) i< sum(j + 1).

To support sum, we simply store array P explicitly, requiring O(tlIgn) bits of space.
To support ndsum , we take the t pre x sumsand cluster them into consecutiwe groups of
size O(lg? n). Within a group, we usea balancedbinary seard tree to support ndsum in
O(lg Ign) time in the standard way. Now we must determine which group to seard for a
given query. From ead of the O(t=Ig? n) groups, we store the largest pre x sum using a
hashing implemenation of a van Emde Boas (VEB) data structure. For the hashing, we
use [HMPO1] (Theorem 1.1), sothat we can construct the hash table deterministically in
O(t) time and taking O(t) bits of space. Along with ead entry in the hashtable, we also
store a pointer to its assaiated group to seard further. To answer ndsum (i), we seard
the VEB structure to nd the right group in O(lg Ign) time. We then follow the pointer to
the binary seart tree and spend an additional O(lg Ign) time.

Using [HSS03],we can support ndsum (i) in O(1) time in the special casewhere eah
array entry Afj] is betweenx and cx; c is a positive constart integer and x is a positive
integer. We briey sketch the idea now. To support ndsum , we partition the universen
into n=x blocks of length x. Since ead A[j] rangesfrom x to cx, the partial sumsP{j]
are within ¢ blocks of one another. Thus, n=x = ct. For the jth block, we explicitly
store B[j] = ndsum (xj) using O(Ig t) bits. To answer ndsum (i), we rst navigate to the
di=xeth block and retrieve the explicit solution r = B [di=x€] contained there. If P[r+ 1] i,

we return r + 1. Otherwise, we know that we are within x of the correct pre x sum and we

185

return r (becauseP[r + 1] PJ[r] x). We will require O(ctlgt) bits of spaceto store the

array B. Thus, we can write the following lemma.

Lemma 37. Let A[l:::t] be a non-negative integer array such that P (Ali] n. There
exists a data structure PS on A that supprts sum and ndsum in O(lglgn) time using
O(tlgn) bits of space and can be constructed in O(t) time. In the particular case where
x A[i] cxfor alli, wher x is a positive integerandc 1 is a positive constant integer,

sum and ndsum can be answeed in O(1) time. O

Proof. The proof follows from the above discussion,where we explicitly store the array P

and the array B for ead of the ct blocks. O

We also make use of a data structure called the Weight Balanced B-tree (WBB tree),
which wasusedin [RRR01, HSS03]. We usethis structure with Lemma 37 to achieve O(1)
time. A WBB tree is a B-tree de ned with a weight-kalance condition. A weight-balance
condition meansthat for any nodev at leveli, the number of leavesin v's subtreeis between
050 + 1and 20 1, where b is the fanout factor. Insertions and deletions on the WBB
tree can be performed in amortized O(lg,n) time while maintaining the weight-balance

condition.

We usethe WBB tree sinceit ensuresthat x Afi] c¢x wherec s a positive constart
integer, thus allowing constart-time seard at ead node. Howewer, a simple B-tree would
require O(Ig Ign) time in this situation. Also, WBB trees are a crucial componert of the
onlyX structure, described in Section 5.3.4. WBB trees are also used in Section 5.3.1

(although B-trees could be usedhere).

We de ne aweight balancedB-tree asfollows: all leavesof the WBB tree are considered
to be at level 0. A leveli node is connectedto its parent node at level i + 1. We de ne
a weight-talance condition, sud that for any node v at level i, the number of leavesin v's
subtreeis between0:50 + 1 and 20 1, wherebis the fanout factor. Thus, the degreeof an
internal node is (b) (from bto 4b), suc that the height of the tree is (Ig ,n9, where n®

is the number of leavesin the current tree.

186

After aleafisinsertedinto the tree, the weight-balance condition of somelevel- ancestor
of the leaf, say v, may be violated. Precisely this casehappenswhen the number of leaves
in v's subtreeis 2b. In this case,v will be split into two new nodesat the samelevel (called
a split operation), eah of them becomingthe root of a perfect subtree with b’ leaves.
(This split could causea restructuring of the ertire subtree that was split, but this follows
standard techniques.)

On the other hand, in casea leaf is deleted, the weight-balance condition of v at level i
may be violated; that is, the number of leavesin v's subtree becomes0:5b'. In this case,v
is mergedwith one of its neighboring siblings, and there will be two cases:

() if the total number of leaves after merging is lessthan 1:5b', the update nishes

(called a merge operation);
(ii) otherwise,the mergednodeis further split into two nodes,ead of them becomingthe

root of a subtreewith half the number of leaves(called a merge-then-split operation).

Basedon the above updating process,we have the following lemma and corollary.

Lemma 38. Exceptthe root, whena node v at leveli violates the weight-talance condition,

at least (b) leavesare inserted or deletel in v's subtree since the creation of v.

Proof. A node is created when there is either a split, merge, or merge-then-split evert. As
aresult, nodev cortains at least0:750' leaves(by merge-then-split) and at most 1:5b' leaves
at its creation. Thus, at least 0:250 leaves are deleted or at least 0:50' leaves are inserted

beforev can violate the weight-balance condition. O

Corollary 9. Supmsethat ¢; is the maximum cost of a split, a merge, or a merge-then-
split operation when a leveli node violates the weight-lalance condition. The amortized
cost for supporting the alove operations due to an insertion or deletion of a leaf is at most

P .
(ih=1 ¢i=B), wher h denotesthe current height of the tree.

Proof. We prove this result by a simple accourting method. A node is created with zero

tokens; when a leaf is inserted or deleted, it gives eath of its leveli ancestors (c;j=b)

187

tokens (precisely, 4c;=B tokensfor deletion and 2¢;=B tokensfor insertion). Thus, the total
number of tokensgivenis (P ih:1 ¢i=B) during an insertion or deletion operation. It is easy
to verify that there are at leastc; tokenswhen a node at level i violates the weight-balance
condition. In other words, an amortized cost of (i ih=1 G =B) for leaf insertion or deletion

is enoughto support split, merge,or merge-then-split operations. O

5.3 Data Structures

There are seeral data structures that support ranks and seletg queries. They are broadly
basedon two di erent approades: logarithmic, which createsa binary seart tree with a
height of Igj j with ead symbol's occurencesstored in the leaves; and log-logarithmic,
which is based on predecessorsearty and VEB. Despite the faster accessof the log-
logarithmic approad, it is dicult to update sinceead symbol s2 s treated separately
and updating one symbol will a ect the data structure for all other symbols. In cortrast
logarithmic approachesneedonly manageupdatesin a particular root-to-leaf path of their

binary seart tree, sothat only O(lgj j) internal nodesare a ected for ead update.
Our solution is built with three main data structures:
BitIndel : bitv ector supporting insertion and deletion, described in Section5.3.1;
StaticRankSelet: static text dictionary structure supporting ranksg, selestg, and char
onatext T;

onlyX: non-succinct dynamic text dictionary, described in Section5.3.4.

We use StaticRankSelect to maintain the original text T; we can use any existing
structure such as GGV or GMR mertioned in Section 5.2. For easeof exposition, unless
otherwise stated, we shall use GMR [GMRO06] in this section. We keeptrack of newly in-
sertedsymbols N in onlyX sudh that after every O(n® Ign) update operations performed,
updatesare mergedwith the StaticRankSelectstructure. Thus, onlyX newver contains more
than O(n! Ign) symbols. We maintain onlyX using O(n® Ig?n) = o(n) bits of space.

Finally, since merging N with T requires O(nlIgn) time, we arrive at an amortized O(n)

188

time for updating thesedata structures. Bitindel is usedto translate positions p; from the
old text T to the new positions ps from the current text T. (We maintain T implicitly

through the useof BitIndel structures, StaticRankSelect,and onlyX.)

5.3.1 Bitv ector Dictionary with Indels: Bitindel

In this section, we describe a data structure (Bitindel) for a bitvector B of original length n
that can handle insertions and deletions of bits anywhere in B while still supporting rank
and selet on the updated bitv ector B of length n®. The spaceof the data structure is
nHo + o(nY. When n®= O(n), our structure supports these updatesin O(n) time and
rank and selet queriesin O(lg Ign) time. (In [HSSO03],Hon et al. proposea non-succinct
Bitindel structure taking n°+ o(n9 bits of space.)
Formally, we de ne the following update operations that we support on the current
bitv ector B ° of length n®
inserty(i) inserts the bit bin the ith position;
deletg(i) deletesthe bit located in the ith position;
ip (i) ips the bit in the ith position.
For bitvector B® we construct a B-tree T with fanout between[n ;2n], for a xed
> 0. The leavesof T maintain cortiguous chunks of B °ranging from [n ;2n] in size,such
that the “th (leftmost) leaf correspondsto the “th chunk of B® Each leaf * maintains an
RRR [RRRO02] data structure :R that answers rank and selet querieson its O(n)-sized
chunks in O(1) time. Eadh internal node v of T maintains three arrays: countg, county,
and size. Let ¢ denotethe jth child node of v. The entry countolj] is the number of Os in
the part of the bitvector in the subtree of ¢;. The ertry countq[j] is the number of 1s in
the part of the bitv ector in the subtree of ¢;. The ertry siz€j] is the total number of bits
in the subtree of ¢;. To have fast accessto this information at ead node, we build a PS
structure on this information. (We don't actually store countg, count;, and size explicitly;
rather, we store a PS structure for eat array.)

The height of this tree is O(lg,, n9. To traversedown to a leaf for any operation, we

189

usethe PS structure at a node (using O(lg Ign) time) to determine the next node to visit
on the root-to-leaf path. Then, we query our RRR [RRR02] data structure :R at leaf °

and return the answer. Now we describe our operations in more detail.

function v:rankg(i) f function v:seletg(i) f

if (leaf (v)) return v:R:ranks(i); if (leaf (v)) return v:R:selets(i);
i v:size: ndsum (i); i v:countg: ndsum (i);

return v:countg:sum(j)+ return v:sizessum(j)+
G+1:ranks(i - visizessum(j)); G +1:Seletg(i - viocountsisum(j));

g g
Let r be the root node of T. Then, rankg(i) is answered by invoking r:ranks(i), and

selets(j) is answered by invoking r:selets(j).

Time Bounds. Ead of the ranks and selets queriesrequires O(lg Ign) time per node
traversedin the B-tree T. Sincethere are at most O(lg,, N9 suc nodesbeforeencourtering

a leaf, the total time is O((Ig,, N9 Iglgn).

Up dates. The ip (i) operation can be supported by performing a constart number of
insert, delete and rank operations. So, for updates, we consideronly insert and delete At
ewvery update operation, we traversethe B-tree as before. The pre x-sum data structures
in ead internal node along the path are rebuilt in O(n) time per node. At the leaf, R
is rebuilt. If the leaf node managesmore than 2n symbols or lessthan n , we invoke the
standard B-tree merge/split routines, propagating them up the tree as appropriate. In the

worst case,updatestake O(n Ig,, n9.

Space. There are at most O(n%n?) internal nodes (recall that ead leaf in the tree
correspnds to a chunk of O(n) bits), eah taking O(n lgn9 bits. Thus, the total space
for the internal nodesis O((n%n)Ign9Y. Let n; bethe number of 1sin B® The spacefor
the bottom-level R structures canbe boundedby dg r?f e+ o(n9 bits. As seenin [GGV03],

we can write the contribution asn™gq + o(n9 bits.

190

Lemma 39. Given a bitvector B? with length n® and original length n, we can create a
data structure that takesn™ o+ o(n9 bits and supports rank and seleet in O((Ig , nY Iglg n)
time, and indel in O(n Ig, n9 time. When n®= O(n), our time bounds become O(lg Ig n)
and O(n) respectively. O

The pre x sum data structure usedinside the B-tree is the main bottlenedck to query
times, allowing us only O(lg Ign) time access.Howewer, if we store three WBB-trees, then
separately in ead of them the special condition from Lemma 37 can be met allowing us

O(1) querieson pre x sum structures. We describe this result in the following section.

5.3.2 Constan t-Time Bitindel

In this section, we describe a constart-time query Bitindel data structure for bitv ector B of
original length n that can handle insertions and deletions of bits anywhere in B while still
supporting rank and selet on the updated bitv ector B °of length n® When n®= O(n), our
structure supports theseupdatesin O(n) time and rank and selet queriesin O(1) time.

We modify Bitindel to perform O(lg, n9 query time by taking three times as much
space,i.e., 3nH g+ o(n) bits. We briey overview the schemeand the results and then give
the details. Instead of a single B-tree, we store three WBB trees, weight balancedby size,
countg, and count;. With this new design, both sum and ndsum querieswithin a node
can be performedin O(1) time asead array entry AJi] of the corresponding size, count,
and count; arrays is betweenx and 2x for somenon-negative integer x [HSS03]. The rank
querieswill be answered using the WBB for size, while selets will be answered with the
WBB for counts.

For bitv ector B % we construct three WBB TreesU;V; W whoseleavesmaintain cortigu-
ous chunks of B¢ sud that the “th (leftmost) leaf correspondsto the “th chunk of B For
the moment, assumethat ead leaf * maintains its assaiated chunk of B © explicitly. The
internal leavesof U;V; W ead maintain the three arrays, countg, county, and size. (De ni-
tions are similar to above.) Howewer, U is weight-balanced on countg, V is weight-balanced

on count;, and W is weight-balanced on size. To summarize, we have the following trees:

191

WBB tree U, where the internal node v is weight-balanced on the array countg;
WBB tree V, wherethe internal node v is weight-balanced on the array count,; and

WBB tree W, where the internal node v is weight-balanced on the array size.

Queries. Queriesare performed as usual, where W answersranks queriesby traversing
according to the array size and returning ranks information by performing sum on the
countg array in internal nodes, plus the rank information from the explicitly-stored chunk
of B at the leaf. For selets, we consult the WBB tree storing counts and return selets
information by performing sum on the size array in internal nodes, plus the selet infor-
mation from the explicitly-stored chunk of B ?at the leaf. The queriesat eat level can be

donein constart time using Lemma 37.

Up dates. Here, we have to update all three trees. Without loss of generality, suppose
we deletea 1.
TraverseW by sizeto the appropriate leaf node and computeranky and rank;. Then
traverseupwards, decremeting the valuesof count; and size appropriately.
TraverseU by countg usingthe rankg computedin the previousstepto arrive at aleaf.
Then traverseupwards, decremetting the valuesof size and count, appropriately.
TraverseV by count; usingthe rank; computedin the previousstepto arrive at aleaf.

Then traverseupwards, decremetting the valuesof size and count, appropriately.

Apart from these updates at non-leaf levels, we need to reconstruct the RRR data
structures stored at leaf-level of the WBB tree also. This canbe doneeasilyfor W in O(n)
time. Howewer, for the structures U (and V) which is weight balanced by countq (resp.
count;) the leaflevel bitv ector stored using RRR canbealot longerthan n bits although it
is guaranteed to have only O(n) 0s. In suc a case,reconstructing RRR structure cantake
conceiably a lot more time. We proposea following x for this situation. Whenewer the
length of the bitv ector stored is more than O(n Ig?n) bits we explicitly write the positions
of Os in an array rather than storing RRR structures. Since the structure U (and V) is

select only, the query can be easily answered by constart time array lookup. Since bit

192

vector of length greater than n Ig?n is encaded using n Ign bits, the total spacefor suc
explicit encadings throughout the structure can be captured by o(n9 term. Now updates
of RRR structures can be donein O(n polylg(n)). This can be adjusted by using slightly

smaller .

Space. Since,we store three structures here (instead of one) the spaceis 3nHgq + o(n9
bits. The rest of the analysisis exactly the sameasin the previous subsectionand alsothe

spacefor explicit array encadings (instead of RRR) can be captures by o(n9 term.

Lemma 40. Given a bitvector B° with length n® and original length n, we can create a
data structure that takes3n™Hq + o(n9 bits and supports rank and seleet in O(lg, n9 time,
and indel in O(n Ig,, n% amortized time. When n®= O(n), our time bounds become O(1)

and O(n) respectively. O

If we change our Bitindel structure such that the bottom-level RRR [RRR02] data
structures are built on [lg?n; 2lg2 n] bits ead and set the B-tree fanout factor b= 2, we
can obtain O(lg n) update time with O(lg n) query time. In this sense,our Bitindel data

structure is a generalization of [NM06b].

5.3.3 Insert-X-Delete-an y: inX

Let x be a symbol other than those in alphabet . In this section, we describe a data
structure on a text T of length n supporting ranks and selets that can handle delete(i)
and inserty(i). That is, only x can beinsertedto T, while any characters can be deleted
from T. Notice that insertions and deletionswill a ect the answersreturned for symbolsin
the alphabet . For example, T may be abcaab, where = fa;b;cg. Here,rank,(4) = 2
and selecty(3) = 5. Let T bethe current text after somenumber of insertions and deletions
of symbol x. Initially , T = T. After someinsertions, the current T may be axxxbcaxabx.
Notice that ranka(4) = 1 and selecta(3) = 9. We represent T by the text T such that
when the symbols of the original text T are deleted, eah deleted symbol is replaced by

a special symbol d (whereasif x is deleted, it is just deleted from T9. Continuing the

193

example, after some deletions of symbols from T, T% may be axxxddaxabx. Notice that
ranky(4) = 1 and selecty(3) = 7.

We de ne an insert vector | such that I[i] = 1 if and only if T9i] = x. Similarly, we
de ne a deletevector D such that D[i] = 1 if and only if Tqi] = d. We alsode ne a delete
vector D for ead symbol s such that Dg[i] = 1 if and only if the ith sin the original text T
was deleted. The text Tis merely a conceptualtext: we refer to it for easeof exposition

but we actually maintain T instead.

To store T‘, we store T using the StaticRankSelectdata structure and store all of the I,
D, D bitvectorsusing the constart time Bitindel structure. Now, we describe T:insert(i),

T:delete(i), T:ranks(i), and T:selets(i):

T:insert (i). First, we convert position i in T to its corresponding position i%in T°
by computing i°= D:seletg(i). Then we must update our various vectors. We perform

| [insert1(i% on our insert vector, and D:inserto(i% on our delete vector.

T:delete (i). First, we convert position i in T to its corresponding position i%in T°
by computing i° = D:seletq(i). If i%is newly-inserted (i.e., 1[i9 = 1), then we perform
| :deletg(i% and D:deletg(i9 to reversethe insertion processfrom above. Otherwise, we rst

convert position i%in TOto its corresponding position i %%in T by computing i%= | :rankq(i9.
Let s = T:char(i%. Finally, to delete the symbol, we perform D:ip (i% and Ds:ip (j),

wherej = T:ranks(i%.

T:rank s(i). First, we corvert position i in T to its corresponding position i%in T by
computing i% = D:seletg(i). If s = x, return |:rank1(i%. Otherwise, we rst corvert
position i%in TOto its corresponding position i%in T by computing i°°= 1:rankq(i9.

Finally, we return Dg:ranko(j), wherej = T:ranks(i%.

T:selects(i). If s= x, computej = |:selety(i) and return D:rankg(j). Otherwise, we

compute k = Dg:seletg(i) to determine i's position among the s symbols from T. We

194

then compute k®= T:selets(k) to determineits original position in T. Now the position k°
from T needsto be mapped to its appropriate location in T. Similar to the rst case,we

perform k%= | :seleto (k% and return D:rankq(k®, which correspondsto the right position

of T.

T:char (i). First, we corvert position i in T to its corresponding position i%in T° by
computing i°= D:seletg(i). If 1[i9 = 1, return x. Otherwise, we corvert position i%in T°

to its corresponding position i%in T by computing i%= 1 :ranko(i% and return T:char(i%.

Space and Time. As can be seen,eat of the rank and sel&t operations requires
a constart number of accessedo Bitindel and StaticRankSelect structures, thus taking
O(1) time to perform. The indel operations require O(n) update time, owing to the
Bitindel data structure. The spacerequired for the above data structures comesfrom the

StaticRankSelectstructure, which requiress(n) = O(nlgj j+o(nlgj j)) bits of space,and

no

"° +6lg o + o(n9 +

the many Bitindel structures, whosespacecan be boundedby 3lg
O((n%n) Ig n9 bits where n%is number of deletes. If n®%%and n® n are boundedby n! |

then this expressionis o(n) bits.

Theorem 20. Let T be a dynamic text of original length n and current length n® with
characters drawn from an alphaet . Let n®be the number of deletions. If the number of
updatesis O(n!), wecan create a data structure using GMR that takesnlgj j+o(nlgj j)
bits of space and supports ranks(i) and seletg(i) in O(1) time and insert(i) and deletes(i)

in O(n) time.

5.3.4 onlyX-structure

Let T bethe dynamic text that we want to maintain, where symbols of T are drawn from
alphabet . Let n®be the current length of T, and we assumethat n®= O(n). In this
section, we describe a data structure for maintaining a dynamic array of symbols that

supports ranks and selets queriesin O((Ig,, n9(t(n) + Igign)) time, for any xed with

195

0 < < 1; here, we assumethat the maximum number of symbols in the array is O(n).
Our data structure takes O(n®lgn) bits; for ead update (i.e., insertion or deletion of a

symbol), it can be donein amortized O(n) time.

We describe how to apply the WBB tree to maintain T while supporting ranks and
selets e ciently, for any s 2 . 2 In particular, we choose < 1 and store the symbols
of T in a WBB W with fanout factor b= n where = =2 sudc that the ith (leftmost)
leaf of W storesT[i]. Each node at level 1 will correspond to a substring of T with O(b)
symbols, and we will maintain a static text dictionary for that substring sothat ranks and
selets are computed for that substring in t(n) = O(lglgj j) time. In ead level- node v-
with 2, we store an array size such that siz€li] storesthe number of symbols in the
subtree of its ith (leftmost) child. To have fast accesgo this information at ead node, we
build a PS structure to store size. Also, for ead symbol s that appearsin the subtree of v-,
v- is assa@iated with an s-structure, which consistsof three arrays: poss, humsg, and ptrs.
The entry poss[i] storesthe index of v-'s ith leftmost child whosesubtree contains s. The
entry numgJi] storesthe number of s in v-'s ith leftmost child whose subtree contains s.
The entry ptrg[i] storesa pointer to the s-structure of v-'s ith leftmost child whosesubtree
cortains s.

The arrays in ead s-structure (sizes, poss, and numg) are stored using a PS data
structure sothat we can support O(lg Ig n)-time sum and ndsum queriesin sizes or numg,
and O(lg Ig n)-time rank and selet queriesin poss. (Theserank and selet operations are
analogousto sum and ndsum queries,but we refer to them asrank and selet for easeof
exposition.) The list ptrg is stored in a simple array.

We also maintain another B-tree B with fanout n sud that ead leaf "¢ correspondsto

asymbol s that is currently presert in the text T. Each leaf storesthe number of (nonzero)

20ne may think of using a B-tree instead of a WBB-tree. Howevwer, in our design, a particular
node in the WBB tree will needto store auxiliary information about every symbol in the subtree
under that node. In the worst case,this auxiliary information will be as big as the size of the
subtree. If we usea B-tree, the cost of updating a particular node cannot boundedby O(n) time

in the amortized case.

196

occurrencesof s in T, along with a pointer to its corresponding s-structure in the root

of W. The height of B is O(lg,, j j) = O(1), sincewe assumej j n.

Answ ering char (i). We can answer this query in O(lglgn) time by maintaining a

B-tree with fanout b= n over the text. We call this tree the text B-tree.

Answ ering rank s(p). Recallthat ranks(p) recordsthe number of occurrencesof sym-
bol sin T[1::p]. We rst query B to determineif s occursin T. If not, return 0. Otherwise,
we follow the pointer from B to its s-structure. We then perform r:sizes: ndsum (p) to
determine the child ¢ of root r from W that contains T[p]. Supposethat T[p] is in the
subtree rooted at the ith child ¢; of r. Then, ranks consistsof two parts: the number of
occurrencesmy = r:numg:sum(j) (with j = r:possirank(i 1)) in the rst i 1 children
of r, and m», the number of occurrencesof sin ¢;. If r:poss:rank(i) 6 j + 1 (¢ contains no s
symbols), return m;. Otherwise, we retrieve the s-structure of ¢; by its pointer r:ptr[j + 1]
and continue courting the remaining occurrencesof s beforeT[p] in the WBB tree W. We

will eventually return mp + mo.

The above processeither (i) stops at someancestor of the leaf of T[p] whosesubtree
doesnot contain s, in which casewe can report the desiredrank, or (i) it stopsat the
level-1 node containing T[p], in which casethe number of remaining occurrencescan be
determined by a rankg query in the static text dictionary in t(n) = O(lglgj j) time. Since
it takesO(lg Ig n) time to ched the B-tree B at the beginning, and it takesO(Ig Ign) time
to descendead of the O(1) levels in the WBB-tree to count the remaining occurrences

the total time is O(lg Ign).

Answ ering selects(j). Recallthat selets(j) tells the number of symbols (inclusive)
beforethe jth occurrenceof s in T. We follow a similar procedureto the above procedure
for ranks. We rst query B to determine if s occurs at leastj times in T. If not, we
return 1. Otherwise, we discover the ith child ¢; of root r from W that contains the jth

s symbol. We compute i = r:poss:selet(r:nums: ndsum (j)) to nd out ;.

197

Then, seletg consistsof two parts: the number of symbols m; = r:sizessum(i) in the
rst i 1 children of r, and my, the number of symbols in ¢; beforethe jth s. We retrieve
the s-structure of ¢ by its pointer r:ptr[r:nums: ndsum (j)] and corntinue courting the
remaining symbols on or beforethe jth occurrenceof sin T. Wewill eventually return mq+
m,. The above processwill stop at the level-1 node containing the jth occurrenceofsin T,
in which casethe number of symbols on or beforeit maintained by this level-1 node can
be determined by a selets query in the static text dictionary in t(n) = O(lglgj j) time.

With similar time analysisasin ranks, the total time is O(lg Ign).

Up dates. We can update the text B-tree in O(n) time. We use a naive approad to
handle updates due to the insertion or deletion of symbolsin T: For ead list in the WBB-
tree and for ead static text dictionary that is a ected, we rebuild it from scratch. In
the casethat no split, merge, or merge-then-split operation occurs in the WBB-tree, an
insertion or deletion of s at T[p] will a ect the static text dictionary cortaining T[p], and
two structures in ead ancestornode of the leaf corntaining T[p]: the size array and the s-
structure corresponding to the inserted (deleted) symbol. The update costis O(n Ign) =
O(n) for the static text dictionary and for ead ancestor,soin total it takesO(n) time.

If a split, merge, or merge-then-split operation occurs at somelevel- node v- in the
WBB-tree, we needto rebuild the size array and s-structures for all newly created nodes,
along with updating the size array and s-structures of the parent of v-. In the worst case,
it requiresO(nC*Y Ign) time. By the property of WBB trees, the amortized update takes
O(n) time.

In summary, ead update due to an insertion or deletion of symbolsin T can be done

in amortized O(n) time.

Space complexit y. The spacefor the text B-tree is O(nlgj j+ n' Ign) bits. The
total spaceof all O(n!) static text dictionaries can be boundedby s(n) = O(nlgj j) bits.
For the spaceof the s-structures, it seemslike it is O(j jnt Ign) bits at the rst

glance, sincethere are O(n?) nodesin W. This spacehowewer is not desirable,sincej |

198

can be aslarge asn. In fact, a closerlook of our designrevealsthat ead node in W only
maintains s-structures for those s that appearsin its subtree. In total, ead character of T
contributes to at most O(1) s-structures, thus incurring only O(lg n) bits. The total space
for s structures is thus bounded by O(nIgn) bits.

The spacefor the B-tree B (maintaining distinct symbolsin T) is O(j jlgn) bits, which
is at most O(nlgn) bits. In summary, the total spaceof the above dynamic rank-select
structure is O(nIgn) bits.

Summarizing the above discussions,we arrive at the following theorem.

Theorem 21. For a dynamic text T of length at most O(n), we can maintain a data
structure on T using GMR to support ranks, selets, and char O(t(n)+ Iglgn) = O(lg Ign)
time, and insertion/deletion of a symtol in amortized O(n) time. The space of the data

structure is O(nlgn) bits. O

5.4 Constan t-time onlyX-structure

For the casewhenj j= O(polylg(n)), we can modify the onlyX structure soasto achieve
O(1) queries. This modi cation is similar to the one we made for our O(1) Bitindel struc-
ture.

Precisely let T be the dynamic text we want to maintain, n®be the length of T (which
is never more than 2n), and = =2bea xed constart. We maintain a WBB tree B for T
to answer the ranks and char query, and a WBB tree Vs for ead s 2 j j to answer the
corresponding selests query. For the WBB tree B, the fanout is b= n , sothat ead level-1
node corresponds to a block of (b) characters of T. These characters are maintained by
the StaticRankSelectstructure of [NFMMO06]. For ead level- internal node v in the tree
with © 2, we de ne an array size suc that size€]i] storesthe number of charactersin the
subtree of its ith child, which is maintained by a PS structure of [HSS03]. We also store
an array countg such that countg|i] storesthe number of character s in the subtree of the

ith child.

199

With the WBB tree B, rankg(i) can be answered by courting the number of s on or
beforethe TJi]. This is doneby (i) traversing B from root to the level-1 node v contain-
ing T[i] basedon the PS structures, and summing up the corresponding counts along the
way, and then (ii) querying the StaticRankSelect structure of v for the remaining courts.
The height of the tree is O(1) and ead level can be traversedin O(1) time, rankg(i) is
answeredin O(1) time. Similarly, we can useB to answer char(i) query in O(1) time.

For the WBB tree Vs for answer selets query, we usea similar approac aswe de ne
the Constant Time Bitindel structure. The weight is now balancedon countg (the number
of s in the subtree), instead of size (the number of charactersin the subtree). Each level-1
node will correspond to (b) s, and depending on the sparsity of these characters, they
will either be stored explicitly (if the position of the last s is at least blg n characters away
from the position of the rst s), or will be consideredas a bitv ector and stored by a RRR
structure. For the level- nodeswith ~ 2, we de ne the array countgs sud that count]i]
storesthe number of s in the subtree of its ith child, which is maintained by a PS structure
of [HSS03]. We also store an array size sud that size storesthe number of characters in
the subtree of the ith child. With the WBB tree Vs, selets(i) can be answered by courting
the number of characters beforethe ith s. This is done by (i) traversing Vs from root to
the level-1 node v containing the ith s basedon the PS structures, and summing up the
corresponding size along the way, and then (i) querying the explicit array or the RRR
structure of v to count the remaining characters beforethe ith s. The height of the tree is
O(1) and ead level can be traversedin O(1) time, seletg(i) is answeredin O(1) time.

The total spaceof the data structure is boundedby O(j jnlgn) bits. For updating due
to insertion or deletion of a character, it is again performed by a naive approad|rebuild
the a ected nodesfrom scratch. The amortized update time can be easily bounded by
O(b jlg?n) = O(n). And for the working spaceto perform the updates, obsene that
we can x ead node of eacr WBB tree one by one. Thus, the working spaceis only
O(blgn) = O(n) bits.

Summarizing, we have the following theorem.

200

Theorem 22. Supmsethatj j = polylg(n). For a dynamictext T of lengthat most O(n),
we can maintain a data structure on T using the wavelettree to supprt ranks, selets, and
char in O(t(n)) = O(1) time, and insertion/deletion of a symiol in amortized O(n) time.
The space of the data structure is O(j jnlgn) bits, and the working space to perform the

updatesat any time is O(n) bits. O

54.1 The Final Data Structure

Herewe describe our nal structure, which supports insertions and deletions of any symbol.
To do this, we maintain two structures: our inX structure on T and the onlyX structure,
whereall of the new symbols are actually inserted and maintained. After every O(n® Ign)
update operations, the onlyX structure is mergedinto the original text T and anew T is
generated. All assaiated data structures are also rebuilt. Sincethis construction process
could take at most O(nlIgn) time, this cost can be amortized to O(n) per update. The
StaticRankSelectstructure on T takess(n) = nlgj j+ o(nlgj j) bits of space.With this

frequent rebuilding, all of the other supporting structures take only o(n) bits of space.

We augmern the above two structures with a few additional Bitindel structures. In
particular, for ead symbol s, we maintain a bitvector | s such that 1s[i] = 1 if and only
if the ith occurrenceof s is stored in the onlyX structure. With the above structures, we
quickly describe how to support ranks(i) and seletg(i).

For ranks(i), we rst nd j = inX :ranks(i). We then nd k = inX :rranky(i) and
return j + onlyX:ranks(k). For seletg(i), we rst nd whether the ith occurrence of ¢
belongsto the inX structure or the onlyX structure. If Ig[i] = O, this meansthat the
ith item is one of the original symbols from T; we query inX :selets(j) in this case,where
j = lsirankg(i). Otherwise, wecomputej = |g:rank, (i) to translate i into its corresponding
position among new symbols. Then, we compute j ©= onlyX :selets(j), its location in T
and return inX :select, (j 9.

Finally, we shav how to maintain | s during updates. For delete(i), compute T[i] = s.

We then perform | s:delete(inX :ranks(i)). For inserts(i), after inserting sin T, weinsert it

201

into I s by performing I s:insert1(inX :ranks(i)). Let ny be the number of symbols stored in
the onlyX structure. We can bound the spacefor thesenew Bitindel data structures using
RRR [RRR02] and Jensen'sinequality by dg Qf e+ o(n% = O(n! Ig2n) + o(n) = o(n)

bits of space.Thus, we arrive at the following theorem.

Theorem 23. Given a text T of length n drawn from an alphaket , we create a data
structure using GMR that takess(n) = nlgj j+o(nlgj j)+ o(n) bits of space and supports
ranks(i), seletg(i), and char(i) in O(lglgn+t(n)) = O(lglgn+Iglgj j) time andinsert(i)
and deletg(i) updatesin O(n) time. O

For the special casewhenj j = polylg(n), we may now use [NFMMO06] as the Stati-
cRankSelectstructure, and the Constant Time Bitindel asthe Bitindel structure. For the
onlyX structure, we usethe one described in Section 5.4, whosespaceis o(n) if merging is

performed every O(n!) update operations. Then, we achieve the following theorem.

Theorem 24. Given atext T of lengthn drawn from an alphalet , with j j = polylg(n),
we create a data structure using the wavelettree that takess(n)+ o(n) = nHgo+ o(nlgj j)+
o(n) bits of space and supports rankg(i), selets(i), and char(i) in O(t(n)) = O(1) time

and insert (i) and deletg(i) updatesin O(n) time. O

We skip the details about the memory allocation issuesfor our dynamic structures and
rebuilding spaceissues. Howeer, the overhead for these issuescan be shovn to be o(n)

bits of additional space.

5.5 Dynamizing Ordinal Trees, Labeled Trees, and

the XBW Transform

In this section, we describe applications of our Bitindel data structure and our dynamic
multi-symbol rank/select data structure to dynamizing ordinal trees, labeledtrees, and the

XBW transform [FLMMO5].

202

Ordinal Trees. An ordinal tree is a rooted tree where the children are ordered and
speci ed by their rank. An ordinal tree can be represerted by the Jacobson'sLOUDS
represeniation [BDM * 05] using just rank and selet. Thus, we can use our Bitindel data
structure to represett any ordinal tree with the following operations:

v:parent(), returns the parent nodeof vin T;

v:child (i), returns the ith child node of v;

viinsert (k), inserts the kth child of node v;

v:deletgk), removesthe kth child of nodev;

Lemma 41. For any ordinal tree T with n nodes, there exists a dynamic representation of
it that takesat most 2n + O(nlglg n=Ign) bits of sppace and supprts updatesin amortized
O(n) time and navigational queriesin O(lgIgn) time. Alternatively, we can take 6n +

O(nlglgn=Ign) bits of space and support navigational queriesin just O(1) time. O

Labeled Trees, Text Collections, and XBW. A labeledtree T is a tree where
eadh of the n nodesis assciated with a label from alphabet . To easeour notation, we
will also number our symbols from [0;j j 1] such that the sth symbol is also the sth
lexicographically-ordered one. We'll call this symbol s. We are interested in constructing
a data structure that supports the following operationsin T:

insert(P), inserts the path P into T;

v:deletg)), removesthe root-to-v path for a leaf v;

sub@th(P), nds all occurrencesof the path P;

v:parent(), returns the parent nodeofvin T;

v:child(i), returns the ith child node of v; and

v:child(s), returns any child node of v labeleds.

Ferragina et al. [FLMMO5] proposean elegan way to solve the static version of this
problem by performing an XBW transform on the tree T, which producesan XBW text S.
They shaw that storing S is sucient to support the desired operations on T e cien tly,
namely navigational queriesin O(lgj j) time and submth(P) queriesin O(jPjlgj j) time.

203

In the dynamic casewhen we want to support insert or delete of a path of length m, we
obsene that either operation correspondsto an update of this XBW text S at m positions.
Using our dynamic framework, we can maintain a dynamic versionof this text S and achieve
similar results for the dynamic case.

Before explaining our data structure, we rst give a brief description of the XBW
transform [FLMMO05]. For a node v in T, let “[v] = 1 if and only if v is the rightmost
child of its parent in T. Let [v] be the label of v, and [v] be the string obtained by
concatenating the labels on the upward path from v:parent() to the root of T. We further
assumethat the node labels can be separatedinto two disjoint sets ; and | of labels for
internal nodes and leaves (respectively). We also let n; be the number of internal nodes
of T and n- be the number of leavesof T. We then construct a set S of n triplets, one for
ead tree node:

Visit T in pre-order. For ead visited node v add the triplet s[v] = h'[v]; [v]; [V]i
into S;

Stable-sort S accordingto the componen of ead triple.

The (output of the) XBW transform consistsof the arrays S- and S , wheretheserefer
to the rst and secondcomponerts of ead triplet (respectively) after the stable sort has
beenperformed. Ferragina, et al shav in [NFMMO06] that the tree T canbereconstructedby
storing thesearrays. The above transform is reminiscert of the Burrows-WheelerTransform
(BWT) for text documerts. Their structure supports navigational queries (parent, child)
operations, as well as a submth(P) seart, which nds the nodesv suc that the reversed
path rev(P) is a pre x of the concatenatedstring [v] [v]. In summary, they achieve the

following theorem for the static orderedtreesT:

Theorem 25 (Static XBW [FLMMO5]). For any ordered tree T with node labels drawn
from an alphalet , there exists a static sucinct representation of it using the XBW
transform that takes at most nH(S) + 2n + o(n) bits of space, while supprting navi-
gational queriesin O(lgj j) time. The representation can also answera subm@th(P) query

in O(mlgj j) time, where m is the length of path P. O

204

The full details of the result can be found in [FLMMO5]. Here, we briey recap the
data structures usedin their solution. For our result, we will shav that replacing these
structures with their dynamic courterpart is sucient to achieve a powerful facility to
update ordered trees (such as XML trees). For S+, [FLMMO05] usean RRR [RRR02] data
structure to maintain the bitvector of length n containing n; 1sin Ig r?i + o(n) bits of
space.For S , [FLMMO5] keeptwo data structures: F and S . The data structure F keeps
track of the number of occurencesof ead symbol sin . F is (conceptually) a bitv ector of
length n + j j storingj j 1ssud that selet;(i) selet;(i 1) 1 indicates the number

of occurrencesof the ith label sin T. Finally, S is stored using a wavelet tree [GGVO03].

For our dynamic XBW data structure, we replace the static implementations of S-
and F with our Bitindel data structure, supporting rank and selet in O(lgIgn) time and
updatesin O(lg, n°+ n) amortized time. Then, we replacethe S data structure with our
\nal structure" that allows ranks and selets in O(lg Ign) time and supports insertions
and deletionsin O(n) time. We usethe samealgorithms for parent and child operations
as [FLMMO5]. Sincethese algorithms require a constart nhumber of queriesto the above
data structures, we can now support these operations in O(lg Ign) time. For submth(P),

we again usethe samealgorithm, taking O(mlglgn) time, wherem is the length of P.

For insert(P) and deletg), these operations will be de ned on the original tree T
for some node u where we want to begin inserting or deleting. We describe a method
to translate any node u into a corresponding position v suc that the triplet S[v] in the
XBW transform [FLMMO5] corresponds to node u in T. For a path from root r to a
nodeu in T, say P = (up;Uuy;Uuy; ;Unh 1;Up) with ug = r and uy, = u, we describe a
sequencef child indicesC, = ¢1¢;::: ¢y, Wherec; indicatesthat u; is the ¢ith child of u; 1.
To translate u into the corresponding position v in the XBW transform [FLMMO5], we

perform the following convert operation.

205

function convert(C,) f
v 1;/] visthe root
for (i=1;i h;i++)
v v:child(c);
return v;
g
The above operation takes O(hlglgn) time to perform with our dynamic data struc-
tures, whereh + 1 is the depth of the node to be modi ed. Our later operations will take

this much additional time. We state the following lemma.

Lemma 42. For any node u at depthh + 1 in tree T, we can nd its correspnding
position in the XBW transform [FLMMO5] in O(h t(n)) time, wher t(n) is the amount
of time to perform a child(i) navigational operation by a data structure storing the XBW

transform. O

We now describe how to support insert(P) and v:deletg)) for node v in the XBW
transform [FLMMO5]. For corvenience,we rewrite P = pip> pm as the concatenation
of its m symbols. Furthermore, we assumethat node v refersto its position in the XBW
transform (easily done with convert(c,)). For insert(P), we traversethe path P in the
XBW transform until we encourter a leaf v. We nd v's last child. We then insert the
next symbol in P after this child, making the appropriate changesto S- and S . We also
update F sothat it maintains the correct count of alphabet symbols. For v:deletg(), note
that it's sucient to simply know the leaf node | = v of the path we wish to delete. To
executea deletion, we remove this leafl and propagateto I's parent, making the appropriate
changesto F, S, and S . We terminate if I's parent has more than one child. We shaw

the pseudo-cale belov. (We assumewe can accesghe value of any entry storedin the data

206

structures by our previous discussion.)

function v:deletg)) f // v hasno children
s S |v];

y F:selet (s);

function viinsert(pipz pm) f k Scranki(v 1) S-cranki(y 1)
if (S[v]2) return 1; p S :seletg(k + 1);
s S |v]; F.deletg(F:selet1(s) + 1);
y F:seleti(s); S :deletgv);
k S :rankg(v); if (S[v]=0)
z Scranki(y 1); S :deletgv);
VO Sselety(z + K); exit ;
S:ip (v9; else if (S'[v1]= 0)
Sinsertq (VO+ 1); S:ip (v 1)
S :insertp, (VO+ 1); S :deletg(V);
F:insert,(F:selet,(p1) + 1); exit ;
(VO+ 1)insert(p2 Pm); if (p<v)
g p:delete);
else

(p 1):delet);

g
The above processcan be expandedto also include routines for subtree insertion and

deletion (tinsert, tdelete). Notice that the above algorithms require O(m) queriesto our
dynamic data structures to insert or delete a path of length m. Thus, we arrive at the

following theorem using GMR.

Theorem 26 (Dynamic XBW). For any ordered tree T, there exists a dynamic suc-
cinct representation of it using the XBW transform [FLMMO5] that takes at most s(n) +
2n = nlgj j+ o(nlgj j) + 2n bits of space, while supprting navigational queries in
O(t(n) + Iglgn) = O(lg Ign) time. The representation can also answera submth(P) query
in O(m(t(n) + Iglgn)) = O(mIglgn) time, wher m is the length of path P. The update

207

operations insert (P) and deletg) at node u for this structure take O(n + m(t(n) + Ilglgn))

amortized time, where m is the length of the path P being inserted or delete. O

208

Chapter 6

Conclusions and Future Directions

In this thesis, we have explored the notion of compressingdata while retaining its acces-
sibility for important queriesin competitive time bounds. From generaltext indexing to
various instancesof dictionary problems, succinctdata structures can serne asreplacemerts
for their corresponding non-succinct versionswithout a signi cant tradeo in query per-
formance. In theory, a more ubiquitous use of these data structures seemslike a natural
progression. In a practical setting, we have discovered time and again that these succinct
data structures really can make a di erence in storing the data. Real-life data rarely ex-
hibits worst-caseor random behavior, so our measuresand techniquestruly do reducethe

data stored.

Our work is just the tip of othe iceberg. By itself, compressioncanleadto insights in un-
derstanding the underlying structure or information in alarge amourt of data, possibly even
a data set that contains a lot of \noise"; it can reduce network load [AAG™* 95, GKKV95],
I/O overhead[Vit01], or save battery power on mobile devices. Compressiontechniques
can also be usedas a tool to predict future trends and behavior [CKV93, KV98]. Paired
with fast query accesswe can apply thesegoalsto a wide variety of problems and expand
the power of queriesthat we consider. To this end, we encourageresearhersto develop the-
oretically and practically succinct data structures using a data-aware analysis. We brie y

mertion a few possibledirections where thesethemescan be expandedand explored.

IP Lookup Problem. Computer networks are expected to exhibit very high perfor-
mancein delivering data, owing to the explosive growth of Internet nodes. Routers forward
many padkets from input to output interfaces, based on the destination addressof the
padket. Briey, forwarding a padet requires an IP addresslookup in a routing table to

selectthe next hop appropriate for the padet. Becauseof the bottleneck on computation

209

time available to the router, this simple IP lookup is practically prohibitiv e. With suc a
realization, early assumptionsof the easeof IP lookups have vanished, replaced by the re-
ality that it is inconceivable to store all existing IP addressesxplicitly, sincerouting tables
would cortain millions of entries. In terms of our dictionary structures, given a query IP
address(as a string), our task would beto nd the item in our dictionary (composedof a
subsetof all possiblelP addresseshaving the longestpre x match with the query address.
The challengeis to dewelop a sound theoretical structure that is simple enoughto provide

blazingly fast practical results, while still retaining spacee ciency .

Text Indexing. A basicopen problem remainsin how to make compressedsu x arrays
(and in general, text indexes) dynamic; another question is whether it is possiblefor the
csa to bel/O ecient [Vit01]. Many applications appearin Gus eld's book [Gus974 that
usesu x arrays, su x trees,and their variants. For instance, we highlight a few examples
(many relevant to applications in computational biology), sud asthe space-e cient longest
commonsubstring problem, nding all maximal palindromesin linear time, exact matching

with wildcards, the k-mismatch problem, among others.

Multidimensional Matc hing. An interesting extension of our text indexing work,
with practical applications related to image matching, is to dewelop a data structure that
achieves similar spacebounds asthe 1-D caseand the sametime bounds as known multi-
dimensional data structures. Multidimensional data preseri a new challenge when trying
to capture ertropy, as now the critical notion of spatial information also enters into play.
(In a strict sensethis information was always presen, but we can anticipate more depen-
denceupon spatially linked data.) Stronger notions of compressionare applicable, yet the

seartesare more complicated. Achieving both, is again, a challenge.

Appro ximate Matc hing. Another major seriesof extensionsto our text indexing
work deals with improving the quality of the seard functionality provided. The two

major avors of seard functionality are fault-tolerant (approximate) matches and wild-

210

card matches. Wild-card matches are a subset of (and thus easier than) approximate
matches. Generally speaking, approximate matching is of a great deal of interest to a
number of communities. Computational biologists want to nd \related objects" in their
seartes[Gus974, without being constrainedto the strict notion of exactness.Inspecting

audio, video, or image clips for patterns rarely demand exact matches.

There hasbeena lot of work on approximate matching, especially in the computational
biology community. A comprehensie survey by Navarro [Nav01] provides insights on the
issuesinvolved. While edit distance (LCS measure)is one of the most popular approxi-
mation criteria, many others (like hamming distance, metric distance, etc.[MS0Q MS02))
have been consideredas well. In spite of considerable progressin approximate pattern
matching, there hasbeenvery little positive developmert on indexed searting for approx-
imate matches. The known index structures for approximate matching tend to take a huge
amourt of space,many times the text size. Indexed approximate searding is a di cult
problem and the area is quite new and active. There have been somerecert results by

Navarro et al. [MNZBY98, NBY0O, NBYSTO1].

211

Bibliograph y

[AAG* 95]

[Aar05]

[AASAO1]

[AK 004]

[ATOO]

[AUT]
[AV8S]

[Bau04]
[BB04]

[BBO5]

[BBKO3]

[BDFCO5]

[BDM* 05]

[BF99]

B. Awerbud, Y. Azar, E. F. Grove, M. Y. Kao, P. Krishnan, and J. S. Vitter.
Load balancing in the I, norm. In Proceedings of the IEEE Sympsium on
Foundations of Computer Sciene, volume 36, pages383{391, October 1995.

Scott Aaronson. NP-complete problemsand physical reality. SIGACT News
36(1):30, 2005.

Hiroki Arimura, Hiroki Asaka, Hiroshi Sakamoto, and SetsuoArik awa. E -
cient discovery of proximity patterns with sux arrays (extended abstract).
In CPM: 12th Symmsium on Combinatorial Pattern Matching, 2001.

Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusd. Replac-
ing sux treeswith enhancedsu x arrays. Journal of Discrete Algorithms,
2(1):53{86, 2004.

Arne Anderssonand Mikk el Thorup. Tight(er) worst-caseboundson dynamic
searting and priority queues.In ACM Symmsium on Theory of Computing
(STOC), 2000.

http://ccrma-www.stanford. edu/~jo s/mdft/ Autocorr elation .html .

Alok Aggarwal and Je rey Scott Vitter. The Input/Output complexity of
sorting and related problems. Communications of the ACM, 31(9):1116{1127,
1988.

Eric Baum. What is Thought? MIT Press,2004.

Daniel K. Blandford and Guy E. Blelloch. Compact represenations of or-
dered sets. In Proceadings of the ACM-SIAM Sympmsium on Discrete Algo-
rithms, January 2004.

Daniel K. Blandford and Guy E. Blelloch. Dictionaries using variable-length
keys and data, with applications. In Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms, January 2005.

Daniel K. Blandford, Guy E. Blelloch, and lan A. Kash. Compact represen-
tations of separablegraphs. pages679{688, 2003.

Michael A. Bender, Erik D. Demaine, and Martin Farad-Colton. Cade-
oblivious B-trees. SIAM J. Comput., 2005. (Also in IEEE FOCS 2000.).

David Benoit, Erik D. Demaine,J. lan Munro, RajeevRaman, VenkateshRa-
man, and SrinivasaRao. Represeting trees of higher degree. Algorithmica,
43(4):275{292,2005.

Paul Beame and Faith Fich. Optimal bounds for the predecessomproblem.
In ACM Symmsium on Theory of Computing (STOC), pages295{304, 1999.

212

[BFCO04]

[BMOO]

Michael A. Bender and Martin Farach-Colton. The level ancestor problem
simpli ed. Theoretical Computer Sciene, 321(1):5{12, 2004.

Andrej Brodnik and J. lan Munro. Membershipin constart time and almost-
minimum space. SIAM Journal on Computing, 28(5):1627{1640, October
1999.

[BMNM * 93] Timothy C. Bell, Alistair Mo at, Craig G. Nevill-Manning, lan H. Witten,

[BSTWS6]

[BW94]

[Can]

[CDG99]

[CG86]

[Cha04]

[CKV93]

[CT91]

[Deo02]

[DLO03]

[Eli75]

[EVKV02]

and Justin Zobel. Data compressionin full-text retrieval systems. Journal of
the American Sciety for Information Sciena, 44(9):508{531,1993.

Jon Bentley, Daniel Sleator, Robert Tarjan, and Victor Wei. A locally adap-
tive data compressionscheme. Communications of the ACM, pages320{330,
1986.

M. Burrows and D.J. Wheeler. A block sorting data compressionalgorithm.
Tednical report, Digital SystemsResearth Center, 1994,

The Canterbury Corpus, http://corpus.canterbur y.ac.nz.

Pierluigi Crescenzi,Leandro Dardini, and Roberto Grossi. Ip addresslookup
made fast and simple. In European Sympsium on Algorithms (ESA), pages
65{76, 1999.

Bernard Chazelle and LeonidasJ. Guibas. Fractional cascading:|. A data
structuring technique. Algorithmica, 1(2):133{162, 1986.

Bernard Chazelle. Who says you have to look at the input? The brave
new world of sublinear computing, 2004. Plenary talk at at the 15th Annual
ACM-SIAM Sympmsium on Discrete Algorithms (SODA 2004).

K. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data
compression.In Proceedings of the ACM SIGMOD International Conference
on Managementof Data, pages257{266, May 1993.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley-Interscience,New York, 1991.

Sebastian Deorowicz. Secondstep algorithms in the burrows-wheelercom-
pressionalgorithm. In Software{Practice and Experience, volume 32, pages
99{111, 2002.

Erik D. Demaine and Alejandro Lopez-Ortiz. A linear lower bound on index
sizefor text retrieval. J. Algorithms, 48(1):2{15, 2003.

Peter Elias. Universal codeword sets and represettations of the integers.
IEEE Transactionson Information Theory, IT-21:194{203, 1975.

Michelle E ros, Karthik Visweswariah, Sanjeev R. Kulkarni, and Sergio
Verdu. Universallosslesssourcecoding with the burrows-wheelertransform.
IEEE Transactionson Information Theory, 48(5):1061{1081 2002.

213

[Fel68]

[Fen96]

[Fen02]

[Fer92]

[FGGV04]

[FGMSO05]

[FLMMO5]

[FMO1]

[FMO5]

[FMMNO4]

[FTLO3]

[FWO3]

[GBS92]

William Feller. An Intr oduction to Prokability Theory and its Applications,
volume 1. John Wiley & Sons,New York, 3rd edition, 1968.

Peter Fenwick. Punctured elias codesfor variable-length coding of the inte-
gers. 1996. The University of Auckland, NZ. TR 137.ISSN 1173-3500.

Peter Fenwick. Burrows-Wheeler compressionwith variable-length integer
codes. In Software{Practice and Experience, volume 32, pages1307{1316,
2002.

David E. Ferguson. Bit-T ree: a data structure for fast le processing.Com-
munications of the ACM, 35(6):114{120, June 1992.

Luca Fosdini, Roberto Grossi, Ankur Gupta, and Je rey Scott Vitter. Fast
compressionwith a static model in high-order entropy. In Proceedings of the
IEEE Data Compression Conferencee, Snovbird, UT, March 2004.

Paolo Ferragina, Raaele Giancarlo, Giovanni Manzini, and Gabriella
Sciortino. Boosting textual compressionin optimal linear time. Journal
of the ACM, 52(4):688{713, 2005. (Also in CPM 2003, ACM-SIAM SODA
2004.).

Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muth ukrishnan.
Structuring labeledtreesfor optimal succincthnessand beyond. In Proceedings
of the IEEE Symmsium on Foundations of Computer Sciene, pages184{196,
2005.

Paolo Ferragina and Giovanni Manzini. An experimental study of an oppor-
tunistic index. In Proceedings of the Twelfth Annual ACM-SIAM Sympsium
on Discrete Algorithms, pages269{278. ACM/SIAM, 2001.

Paolo Ferragina and Giovanni Manzini. On compressingand indexing data.
Journal of the ACM, 52(4):552{581,2005. (Also in IEEE FOCS 2000.).

Paolo Ferragina, Giovanni Manzini, Veli Makinen, and GonzaloNavarro. Suc-
cinct represenation of sequences.Tednical Report DCC-2004-5, Departa-
mento de Ciencias de la Computacion, Universidad de Chile, August 2004.
(Also in SPIRE 2004.).

Peter Ferwick, Mark Titc hener, and Michelle Lorenz. Burrows Wheeler {
alternativesto move to front. Data Compression Conference (DCC), 2003.

Michael L. Fredman and Dan E. Willard. Surpassingthe information the-
oretic bound with fusion trees. Journal of Computer and System Scienes
47(3):424{436,1993.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indicesfor
text: PAT treesand PAT arrays. In Information Retrieval: Data Structures
And Algorithms, chapter 5, pages66{82. Prentice-Hall, 1992.

214

[GGVO03]

[GGVO04]

[GK81]

[GKKV95]

[GMO3]

[GMRO6]

[GRRO4]

[Gus97a]

[Gus97hb]

[GVO0]

[GVO5]

[Hir78]

[HLS* 04]

Roberto Grossi, Ankur Gupta, and Je rey Scott Vitter. High-order ertropy-
compressedtext indexes. In Proceedings of the ACM-SIAM Sympsium on
Discrete Algorithms, January 2003.

Roberto Grossi, Ankur Gupta, and Jerey Scott Vitter. When indexing
equals compression: Experiments with compressingsu x arrays and appli-
cations. January 2004.

Daniel H. Greeneand Donald E. Knuth. Mathematics for the Analysis of
Algorithms. Birkheuser, Boston, 1981.

E. F. Grove, M. Y. Kao, P. Krishnan, and J. S. Vitter. Online perfect match-
ing and mobile computing. In Proceedings of the Workshop on Algorithms
and Data Structures volume 955, pages194{205, 1995.

Anna Gal and Peter Bro Miltersen. The cell probe complexity of succinct
data structures. In Automata, Languagesand Programming, 30th Interna-
tional Colloquium (ICALP 2003), volume 27190f Lecture Notesin Computer
Sciene, pages332{344. Springer-Verlag, 2003.

Alexander Golynski, J. lan Munro, and Srinivasa Rao. Rank/select opera-
tions on large alphabets: a tool for text indexing. In SODA, pages368{373,
2006.

Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal
trees with level-ancestorqueries. In SODA '04: Proceadings of the fte enth
annual ACM-SIAM symmsium on Discrete algorithms, pages1{10. Scciety
for Industrial and Applied Mathematics, 2004.

Dan Gus eld. Algorithms on Strings, Trees, and Sequen@s Cambridge Uni-
versity Press,Cambridge, UK, 1997.

Dan Gus eld. Algorithms on Strings, Treesand Sequen@s: Computer Sciene
and Computational Biology. Cambridge University Press,1997.

Roberto Grossiand Je rey Scott Vitter. Compressedsu x arrays and su X
trees with applications to text indexing and string matching. In Proceedings
of the ACM Sympsium on Theory of Computing, volume 32, May 2000.

Roberto Grossiand Je rey Scott Vitter. Compressedsu x arrays and su X
trees with applications to text indexing and string matching. SIAM Journal
on Computing, 35(2):378{407,2005.

Daniel S. Hirschberg. A lower worst-casecomplexity for searding a dictio-
nary. In Proc. 16th Annual Allerton Conference on Communication, Control,
and Computing, pages50{53, 1978.

Wing-Kai Hon, Tak Wah Lam, Wing-Kin Sun, Wai-Leuk Tse, Chi-Kwong
Wong, and Siu-Ming Yiu. Practical aspects of compressedsu x arrays and
fm-index in searding dna sequences.In 6th Workshop on Algorithm Engi-
neering and Experiments (ALENEX) , 2004.

215

[HMPO1]

[How97]
[HSS03]

[HV94]

[Jac89a]

[Jac89b]

[KLA *01]

[KLVO6]

[KM99]

[Knu05]

[KS02]

[Kur99]

[KV98]

lha]
[LS97]

[LV97]

Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dic-
tionaries. 41(1):353{363,2001.

Paul G. Howard. Interleaving entropy codes. In Sequenes 1997.

Wing-Kai Hon, Kunihik o Sadalkane,and Wing-Kin Sung. Succinctdata struc-
tures for seardable partial sums. In ISAAC, pages505{516, 2003.

Paul G. Howard and Jerey Scott Vitter. Arithmetic coding for data com-
pression. Proceadings of the IEEE, 82(6), June 1994.

Guy Jacobson. Space-e cient static trees and graphs. In Proceedings of the
30th Annual IEEE Symmsium on Foundations of Computer Scien®, pages
549{554, 1989.

Guy Jacobson. Succinct static data structures. Tednical Report CMU-
CS-89-112,Dept. of Computer Science,Carnegie-MellonUniversity, January
1989.

Toru Kasai, Gunho Lee, Hiroki Arimura, SetsuoArik awal, and Kunsoo Park.
Linear-time longest-common-pre x computation in sux arrays and its ap-
plications. In Combinatorial Pattern Matching (CPM), pages181{192,2001.

Haim Kaplan, Shir Landau, and Elad Verbin. A simpler analysis of burrows-
wheelerbasedcompression.pages282{293, 2006.

S. Rao Kosargju and Giovanni Manzini. Compressionof low entropy strings
with lempel-ziv algorithms. SIAM J. Comput., 29(3):893{911,1999.

Donald E. Knuth. Combinatorial Algorithms, volume 4 of The Art of Com-
puter Programming. Addison-Wesley Reading, MA, USA, 2005. In prepara-
tion.

Shmuel T. Klein and Dana Shapira. Searting in compressedlictionaries. In
Data Compression Conference (DCC), 2002.

Stefan Kurtz. Reducing the SpaceRequirement of Sux Trees. Software {
Practice and Experience, 29(13):1149{117, 1999.

P. Krishnan and Je rey Scott Vitter. Optimal prediction for prefetching in
the worst case. SIAM Journal on Computing, 27(6):1617{1636,Decenber
1998.

http://www.infor.kanazawa- it. ac.j p/ ishii/lhaunix/

Tomasz Luczak and Wojciech Szpanlowski. A suboptimal lossy data com-
pressionbasedin approximate pattern matching. IEEE Trans. Information
Theory, 43:1439{1451,1997.

Ming Li and Paul Vitanyi. An Intr oduction to Kolmogorov Complexity and
Its Applications. Springer Verlag, 1997.

216

[ManO01]

[McC76]

[Mil05]

[MMO3]

[MNO6]

[MNWO8]

[MNZBY98]

[Mor68]

[MR99]

[MRO2]

[MRO4]

[MRRRO3]

[MRSO01a]

Giovanni Manzini. An analysisof the Burrows| Wheelertransform. Journal
of the ACM, 48(3):407{430,May 2001.

Edward M. McCreight. A space-economicaku x tree construction algo-
rithm. Journal of the ACM, 23(2):262{272,1976.

Peter Bro Miltersen. Lower bounds on the size of selection and rank in-
dexes.In Proc. the Sixteenth ACM-SIAM symmsium on Discrete Algorithms
(SODAO05), pages11{12, Philadelphia, PA, USA, 2005.

Udi Manber and GeneMyers. Su x arrays: a new method for on-line string
seartes. SIAM Journal on Computing, 22(5):935{948,1993.

Veli Mekinen and Gonzalo Navarro. Rank and selectrevisited and extended.
Theoretical Computer Sciene, 2006.

Alistair Mo at, Radford M. Neal, and lan H. Witten. Arithmetic coding
revisited. ACM Transactions on Information Systems(TOIS), 16(3):256{
294,1998.

Edleno Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo Baeza-Yates.
Fast searting on compressedtext allowing errors. In B. Croft, A. Mo at,
C. Rijsbergen, R. Wilkinson, and J. Zobel, editors, Proceedings of the 21th
Annual International ACM SIGIR Conferenae on Resarch and Development
in Information Retrieval (SIGIR'98) , pages298{306. York Press,1998.

Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Informa-
tion Coded In Alphanumeric. Journal of the ACM, 15(4):514{534, October
1968.

J. lan Munro and Venkatesh Raman. Succinct represetiation of balanced
parentheses, static trees, and planar graphs. SIAM Journal on Computing,
31:762{776,1999.

J. lan Munro and Venkatesh Raman. Succinct represettation of balanced
parenthesesand static trees. SIAM Journal on Computing, 31(3):762{776,
June 2002.

J. lan Munro and S. SrinivasaRao. Succinct represenations of functions. In
Annual International Colloquium on Automata, Languagesand Programming
(CALP) , volume 3142 of Lecture Notes in Computer Sciene, pages1006{
1015. Springer-Verlag, 2004.

J. lan Munro, Rajeev Raman, Venkatesh Raman, and S. SrinivasaRao. Suc-
cinct represenations of permutations. In Annual International Colloguium
on Automata, Languagesand Programming (CALP) , volume 2719 of Lecture
Notes in Computer Sciene, pages345{356. Springer-Verlag, 2003.

J. lan Munro, Venkatesh Raman, and S. SrinivasaRao. Spacee cient su x
trees. Journal of Algorithms, 39:205{222,2001.

217

[MRS01b]

[MS00]

[MS02]

[Mun96]

[Mut03]

[Nav01]

[NBYOO]

[NBYSTO1]

[Nel]

[NFMMOB6]

[NMO06a]

[NMO6b]

[Pag99]

J. lan Munro, VenkateshRaman, and Adam J. Storm. Represeting dynamic
binary trees succinctly. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-01), pages529{536, New York,
January 7{9 2001.ACM Press.

S. Muth ukrishnan and SuleymanCenk Sahinalp. Approximate nearestneigh-
bors and sequencecomparison with block operations. In ACM Sympmsium
on Theory of Computing (STOC), pages416{424,2000.

S. Muth ukrishnan and Suleyman Cenk Sahinalp. Simple and practical se-
guencenearest neighbors with block operations. In Combinatorial Patteren
Matching (CPM), pages262{278, 2002.

J. lan Munro. Tables. FSTTCS: Foundations of Software Technolay and
Theoretical Computer Sciene, 16:37{42, 1996.

S. Muthukrishnan. Data streams: Algorithms and applications, 2003. Ple-
nary talk at the 14th Annual ACM-SIAM Sympmsium on Discrete Algorithms
(SODA 2003).

Gonzalo Navarro. A guided tour to approximate string matching. ACM
Computing Surveys 33(1):31{88, 2001.

GonzaloNavarro and Ricardo Baeza-Yates. A hybrid indexing method for ap-
proximate string matching. Journal of Discrete Algorithms (JDA), 1(1):205{
239, 2000. Special issueon Matching Patterns.

Gonzalo Navarro, Ricardo Baeza-Yates, Erikki Sutinen, and JoseTarhio. In-
dexing methods for approximate string matching. IEEE Data Engineering
Bulletin, 24(4):19{27, 2001. Special issueon Managing Text Natively and in
DBMSs. Invited paper.

Mark Nelson. Run length encaing/RLE.
http://www.datacompression .in fo/R LE.shtml .

GonzaloNavarro, Paolo Ferragina, Giovanni Manzini, and Veli Mekinen. Suc-
cinct represenation of sequencesand full-text indexes. TALG, 2006. To
appear.

Gonzalo Navarro and Veli Makinen. Compressedull-text indexes. Tednical
Report TR/DCC-2006-6, University of Chile, 2006.

Gonzalo Navarro and Veli Mekinen. Dynamic entropy-compressedsequences
and full-text indexes.In CPM, pages306{317, 2006.

Rasnus Pagh. Low redundancy in static dictionaries with O(1) worst case
lookup time. In Proceedings of the International Colloquium on Automata,
Languages,and Programming, volume 1644 of Lecture Notes in Computer
Scien®, pages595{604. Springer-Verlag, 1999.

218

[Pag01]

[PDO6]

[PTO6]

[Rao02]

[RCO3]

[Ris84]

[RL79]

[RRO3]

[RRRO1]

[RRRO2]

[Rus05]

[Sad02a]

[Sad02b]

[Sad03]

[Sd]
[SGO6]

Rasrmus Pagh. Low redundancy in static dictionaries with constart query
time. SIAM Journal on Computing, 31:353{363,2001.

Mihai Patrascu and Erik Demaine. Logarithmic lower bounds in the cell-
probe model. SIAM Journal on Computing, 35(4):932{963,2006.

Mihai Patrascu and Mikk el Thorup. Time-spacetrade-os for predecessor
seart. In Proceedings of the ACM Sympsium on Theory of Computing,
pages232{240, 2006.

S. SrinivasaRao. Time-spacetrade-o s for compressedsu x arrays. IPL,
82(6):307{311,2002.

John H. Reif and ShenfengChen. Using di cult y of prediction to decrease
computation: Fast sort, priority queueand corvex hull on entropy bounded
inputs. In Proceedings of the IEEE Symmsium on Foundations of Computer
Sciene, volume 34, Palo Alto, 1993.

Jorma Rissanen. Universal coding, information, prediction, and estimation.
IEEE Transactionson Information Theory, IT-30:629{636, 1984.

Jorma Rissanenand Glen G. Langdon. Arithmetic coding. IBM J. Research
and Development 23(2):149{162,March 1979.

RajeevRamanand S. SrinivasaRao. Succinctdynamic dictionaries and trees.
In Annual International Colloquium on Automata, Languagesand Program-
ming (CALP), volume 2719 of Lecture Notes in Computer Scien®, pages
357{368. Springer-Verlag, 2003.

Rajeev Raman, Venkatesh Raman, and Srinivasa Rao. Succinct dynamic
data structures. In WADS, pages426{437,2001.

Rajeev Raman, Venkatesh Raman, and S. SrinivasaRao. Succinctindexable
dictionaries with applications to encaling k-ary treesand multisets. In ACM-
SIAM Symmsium on Discrete Algorithms, pages233{242,2002.

Frank Ruskey. Combinatorial Generation. 2005. In preparation.
Kunihik o Sadakane, 2002. Personal Communication.

Kunihik o Sadalane. Succinctrepresenations of Icp information and improve-
ments in the compressedsu x arrays. In Proceedings of the Thirte enth An-
nual ACM-SIAM Sympmsium on Discrete Algorithms. ACM/SIAM, 2002.

Kunihik o Sadalkane. New text indexing functionalities of the compressed
sux arrays. J. Algorithms, 48(2):294{313,2003. (Also in ISAAC 2000.).

Michael Schindler. http://www.compresscons ult. com/frangecoder.

Kunihik o Sadalkane and Roberto Grossi. Squeezingsuccinct data structures
into entropy bounds. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages1230{1239,2006.

219

[Sha4s]

[Tip]
[UKKO5]

[VEBKZ77]

[Vit84]

[Vit01]

[VK96]

[Wei73]

[Wilg4]

[WMO1]

[WMBO9]

[WMF94]

[ZL77]

Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379{423,July 1948.

TREC Tipster 3. http://trec.nist.gov/da ta/d ocs eng.html .

Esko Ukkonen. On-line construction of su x trees. Algorithmica, 14(3):249{
260, Septenber 1995.

Peter van Emde Boas, R. Kaas, and E. Zijlstra. Designand implementation
of an e cien t priority queue. Math. SystemsTheory, 10:99{127,1977.

Jerey Scott Vitter. Faster methods for random sampling. Communications
of the ACM, 27(7):703{718,July 1984.

J. S. Vitter. External memory algorithms and data structures: Deal-
ing with MASSIVE DATA. ACM Computing Surveys 33(2):209{271,
June 2001. Revised version from August 2007 is also available at
http://www.cs.duke.edu/ jsv/iPapers/catalog/node3 9.html.

Je rey Scott Vitter and P. Krishnan. Optimal prefetching via data compres-
sion. Journal of the ACM, 43(5), Septenber 1996.

Peter Weiner. Linear pattern matching algorithm. Proc. 14th Annual IEEE
Symposium on Switching and Automata Theory, pages1{11, 1973.

Dan E. Willard. New trie data structures which support very fast seart
operations. Journal of Computer and SystemScienes 28(3):379{394,1984.

Anthony lan Wirth and Alistair Mo at. Can we do without ranks in burrows
wheeler transform compression? In Data Compression Conference, pages
419{428, 2001.

lan H. Witten, Alistair Mo at, and Timothy C. Bell. Managing Gigabytes:
Compressingand Indexing Documents and Images Morgan Kaufmann Pub-
lishers, Los Altos, CA 94022,USA, secondedition, 1999.

Marcelo J. Weinberger, Neri Merhav, and Meir Feder. Optimal sequettial
probability assignmen for individual sequences.I[EEE Transactions on In-
formation Theory, 40:384{396,1994.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequetial data
compression. |IEEE Transactions on Information Theory, 23(3):337{343,
1977.

220

Biograph vy

Personal

Born in Kitc hener-Waterloo, Ontario, Canada, 18 July 1978.

Colleges and Univ ersities

Duk e Univ ersity Durham, NC
Ph.D. in Computer Science,August 2007.

Univ ersity of Texas at Dallas Richardson, TX
M.S. in Computer Science,May 2000.

B.S. in Computer Science,Summa Cum Laude, May 2000.

B.S. in Mathematics, Summa Cum Laude, May 2000.

Honors and Aw ards

National Scienceand EngineeringReseart Council of Canada(NSERC) Sdolarship
Winner, 2000-2001.

Excellencein Teading Assistartship in 1998-199%nd 1999-2000.

College Master's Award for Excellencein Computer Science.

Publications

Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and Srinivasa
Rao. On the Size of Succinct Indices. To appear in Proceedings of European
Symmsium on Algorithms (ESA), Eilat, Israel, October, 2007.

Ankur Gupta, Wing-Kai Hon, Rahul Shah,and Je rey Scott Vitter. A Framew ork
for Dynamizing Succinct Data Structures . Toappearin Proceedings of Interna-
tional Colloguium on Automata, Languages,and Programming (ICALP) , Wroclaw,
Poland, July 2007.

Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Je rey Scott Vitter. Compressed
Data Structures: Dictionaries and Data-Aw are Measures. To appear in
Proceedings of Theoretical Computer Sciene (TCS), January 2007.

Roberto Grossi, Ankur Gupta, and Je rey Scott Vitter. When Indexing Equals
Compression: Exp erimen ts With Compressing Sux Arra ys and Appli-

cations . To appearin Proceadings of the ACM Transactionson Algorithms (TALG) ,
January 2007.

221

Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Je rey Scott Vitter. Compressed
Dictionaries: Space Measures, Data Sets, and Exp erimen ts. In Proceedings
of the Workshop on Experimental and E cient Algorithms (WEA) , Menorca, Spain,
May 2006.

Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Je rey Scott Vitter. Fully Index-
able Data-Aw are Dictionaries . In Proceedings of the IEEE Data Compression
Conference (DCC), Snawbird, UT, March 2006.

Luca Fosdini, Roberto Grossi, Ankur Gupta, and Je rey Scott Vitter. Fast Com-
pression With a Static Mo del in High-Order Entrop y. In Proceedings of the
IEEE Data Compression Conference (DCC), Snowbird, UT, March 2004.

Roberto Grossi, Ankur Gupta, and Je rey Scott Vitter. When Indexing Equals
Compression: Exp eriments With Compressing Sux Arra ys and Ap-
plications . In Proceedings of the ACM-SIAM Sympmsium on Discrete Algorithms
(SODA), New Orleans, LA, January 2004.

Roberto Grossi, Ankur Gupta, and Je rey Scott Vitter. High-Order Entrop y-
Compressed Text Indexes. In Proceadings of the ACM-SIAM Sympsium on
Discrete Algorithms (SODA), Baltimore, MD, January 2003.

222

