
SUCCINCTDATA STRUCTURES
by

Ankur Gupta

Department of Computer Science
Duke University

Date:
Approved:

Je�rey Scott Vitter, Supervisor

Pankaj Agarwal

Roberto Grossi

Xiaobai Sun

Dissertation submitted in partial ful�llmen t of the
requirements for the degreeof Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2007

ABSTRACT

SUCCINCTDATA STRUCTURES
by

Ankur Gupta

Department of Computer Science
Duke University

Date:
Approved:

Je�rey Scott Vitter, Supervisor

Pankaj Agarwal

Roberto Grossi

Xiaobai Sun

An abstract of a dissertation submitted in partial ful�llmen t of the
requirements for the degreeof Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2007

Copyright c 2007by Ankur Gupta
All rights reserved

Abstract

The world is drowning in data. The recent explosionof web publishing, XML data,

bioinformation, scienti�c data, image data, geographicalmap data, and even email

communications hasput a strain on our abilit y to managethe information contained

there. The inux of massive data setswith all kinds of featurespresents a number

of di�culties with e�cien t management of storagespace,organization of informa-

tion, and data accessibility. A primary computing challengein thesecasesis how to

compressthe data but still allow them to be queried quickly. This thesis addresses

theoretical and algorithmic issuesarising from thesepractical concernsfor the prob-

lem of compressed text indexing, where we want to maintain e�cien t data storage

and rapid responseto querieson data.

The premiseof data compressioncomesfrom many real-life situations, wheredata

are often highly compressible.This compressibility constitutes a major opportunit y

for saving spaceand data query latency, and is a critical bottleneck for many applica-

tions. In mobile applications, for instance,spaceand the power to accessinformation

are at a premium. In a streamingenvironment, wherenew data are being generated

constantly, compressioncan alsoaid in prediction of upcomingtrends. In the caseof

bioinformatics, analyzing succinct representations of DNA sequencescould lead to a

deeper understandingof nature, perhapseven giving hints on secondaryand tertiary

structure, geneevolution, and other important topics.

We use text data as the subject of this particular study. We introduce a num-

ber of compresseddata structures for compressedtext indexing that enablearbitrary

searching for patterns in the provably bestpossibletime. The methodologyis distinct

in that the processof searching also encompassesdecoding; therefore, the original

document is no longer needed.Together, thesedata structures can be usedat mul-

iv

tiple levels of a compression-retrieval hierarchy to arrive at an overall text indexing

solution. Somestructures can be used individually as well, within or beyond the

scope of text indexing. For each data structure, we provide a theoretical estimate

of its spaceusageand query performanceon a suite of operations crucial to access

the stored data. In each case,we relate its spaceusageto the compressed size of

the original data and show that the supported operations function in near-optimal

or optimal time.

We alsopresent a number of experimental results using our methodology. These

experiments validate our theoretical �ndings, and we establishthat our methodology

is competitiv e with the state-of-the-art.

v

Ac kno wledgemen ts

First and foremost, I would like to thank my advisor Je�rey Scott Vitter. I'm not

surewhereI would be without his continued support and guidance.Je� 's insistence

on clarity and precision is a necessaryfoundation for any seriousgraduate student,

and I am grateful to have bene�ted from such a �rm vision.

I would also like to thank my committee members Roberto Grossi,Xiaobai Sun,

and Pankaj Agarwal for providing careful comments on my doctoral work. Special

thanks go to Roberto Grossi,who served asa collaborator and co-advisorthroughout

my graduatecareerand helped shape who I have become.I would also like to thank

Rahul Shahand Wing-Kai Hon, both of with whomI enjoyedworking and socializing.

I would like to thank my family for providing love and encouragement. My par-

ents, Umesh and Manju Gupta, and my brother Parag Gupta, were always there

when I most neededsomeone.I could not have completedthis work without them.

I cannot begin to expressin words the impact my wife Diksha had on me during the

�nal stagesof my studies;her concernfor and patiencewith long hoursand demand-

ing schedulesare truly amazing. Finally, my grandfather Ramswaroop Gupta has

always beena quiet strength in my life, with a deepcalm and a focus on the simple

things. I hope oneday to reach that pedestal.

I have a long list of friends whosecompanionshiphas broadenedmy life: Matt

Taylor, Rex Robinson,Sharlotte Greer,Tylan Watts, Andrew Strack, Priya Mahade-

van, Justin Moore, Kristina Killgrove, Patrick Reynolds,David Cherryholmes,and

Aaron Miller to namejust a few. I am glad to have met them.

I would like to o�er thanks to Michael E. Durbin, who advisedme while I was

at the University of Texasat Dallas. His mentorship played a big part in fueling my

enthusiasmtowardsComputer Science.I would alsolike to thank DianeRiggs,in the

vi

Department of Computer Scienceat Duke University. Shewas always there to o�er

help to students, whether it be paperwork, scheduling, or just a sympathetic ear.

vii

Con ten ts

Abstract iv

Ac knowledgemen ts vi

List of Figures xiii

List of Tables xiv

1 In tro duction 1

1.1 Text Compressionand Text Indexing 3

1.2 Dictionaries and Data-Aware MeasuresFor Set Data 5

1.3 Dynamizing SuccinctData Structures 6

2 An Algorithmic Framew ork for Compression and Text Indexing 8

2.1 Introduction . 8

2.1.1 Text Compression. 8

2.1.2 CompressedText Indexing . 11

2.1.3 Outline of Chapter . 16

2.2 High-Order Empirical Entropy . 16

2.2.1 Empirical Probabilistic High-Order Entropy 16

2.2.2 Finite Set High-Order Entropy 19

2.3 The Uni�ed Algorithmic Framework: Tighter Analysis for the BWT . 22

2.3.1 The BWT and (Compressed)Su�x Arrays 23

2.3.2 Context-BasedPartitioning of the BWT 25

2.4 Encoding Sublists in High-Order Entropy 29

2.4.1 Individually Encoded Sublists 30

viii

2.4.2 The SpaceRedundancyof Encoding Multiple Sublists 32

2.4.3 The Wavelet Tree . 36

2.4.4 SubsetEncoding With Small Integers 41

2.5 Encoding the Empirical Statistical Model 46

2.5.1 De�nitions and a Simple Bound 47

2.5.2 Nearly Tight Upper Bound on M (T; � ; h) 49

2.6 Nearly Tight Lower Bounds for the BWT 53

2.6.1 Constructing � -resilient Texts 55

2.6.2 Encoding a � -resilient Text . 59

2.7 Random Accessto the CompressedRepresentation of LF and � . . . 61

2.7.1 Wavelet Treesas SuccinctDictionaries 62

2.7.2 Random Accessto the CompressedRepresentation of � . . . 66

2.7.3 Random Accessto the CompressedRepresentation of LF . . 71

2.8 Using the Framework for CompressedSu�x Arrays 72

2.8.1 CompressedSu�x Arrays (CSAs) 72

2.8.2 High-Order Entropy-CompressedSu�x Arrays 75

2.9 Applications to Text Indexing . 83

2.9.1 High-Order Entropy-CompressedText Indexing 83

2.9.2 A Pattern Matching Tool . 86

2.10 Conclusions . 89

3 When Indexing Equals Compression:
Exp erimen ts with Compressing Su�x Arra ys and Applications 93

3.1 Introduction . 93

3.1.1 Our Results . 94

ix

3.1.2 Outline of Chapter . 96

3.2 A Simple Yet Powerful Dictionary . 96

3.2.1 Practical Dictionaries . 97

3.2.2 Empirical Distribution of RLE Valuesand Codes 101

3.2.3 Statistical EvidenceJustifying Codes 104

3.2.4 Fast Accessof Experimental-Analysis-Driven Dictionaries . . . 107

3.3 Reviewof Wavelet Trees . 109

3.3.1 E�cien t Construction of the Wavelet Tree 113

3.3.2 Compressionwith bwt2wzip 114

3.3.3 Decompressionwith wzip2bwt 117

3.3.4 Performanceand Experiments for wzip 118

3.4 Practical Su�x Arrays: Indexing Equals Compression. 120

3.4.1 CompressedSu�x Arrays (CSA) 120

3.4.2 Practical Considerationsfor CompressedSu�x Arrays 122

3.4.3 Su�x Array Compression . 125

3.4.4 Su�x Array Functionalities 127

3.5 Space-E�cient Su�x Trees. 128

3.6 Conclusions . 131

4 Compressed Dictionaries and Data-Aw are Measures 133

4.1 Introduction . 133

4.1.1 Comparisonsto PreviousWork 135

4.1.2 Outline of the Chapter . 138

4.2 Dictionaries and Data Aware Measures 139

4.2.1 The Dictionary Problem . 139

x

4.2.2 The gap and trie Measures. 141

4.2.3 Relationship Betweengap, trie and strie 144

4.3 Binary Searchable Dictionary Representation 146

4.4 The Fully IndexableDictionary Structure 152

4.5 The IndexableDictionary Structure 154

4.5.1 The Top Level Distributor Structure 155

4.5.2 Distributor Details . 157

4.5.3 Solving Partial Rank and SelectQueries 158

4.5.4 SpaceAnalysis . 159

4.6 Experimental Results . 161

4.6.1 Experimental Setup . 163

4.6.2 Code Comparisonsfor Encodings and Pointers 163

4.6.3 BSGAP: The SuccinctBinary-Searchable Black Box 166

4.7 Applications of SuccinctDictionaries 168

4.7.1 Experimental Setup . 169

4.7.2 Binary Searchable Run-Length Encoding 170

4.7.3 Experimental Results . 174

4.8 Conclusions . 176

5 Dynamizing Succinct Data Structures 179

5.1 Introduction . 179

5.1.1 Outline . 181

5.2 Preliminaries . 182

5.3 Data Structures . 186

5.3.1 Bitv ector Dictionary with Indels: BitIndel 187

xi

5.3.2 Constant-Time BitIndel . 189

5.3.3 Insert-X-Delete-any: inX . 191

5.3.4 onlyX-structure . 193

5.4 Constant-time onlyX-structure . 197

5.4.1 The Final Data Structure . 199

5.5 Dynamizing Ordinal Trees,LabeledTrees,and the XBW Transform . 200

6 Conclusions and Future Directions 207

Bibliograph y 210

Biograph y 219

xii

List of Figures

2.1 An examplewavelet tree. 36

2.2 A wavelet tree for context i in our example. 38

3.1 Distinct RLE valuesfor bible.txt in increasingorder. 105

3.2 An RLE-encoded wavelet tree. 110

4.1 Time and spaceboundsof dictionaries for rank and select queries. . . 138

4.2 Comparisonof lg
� u

n

�
, trie (S), gap(S), and a gap stream encoded ac-

cording to the nibble4 code for the data �les in Section4.6.1. 146

4.3 Comparisonof codesand measuresfor the data �les in Section4.6.1. 164

4.4 Comparisonof gap+codes, lg
� u

n

�
, and gap(S) for real-data �les, de-

scribed in Section4.6.1. 165

4.5 Comparison of pre�x codes for BSGAPpointers for the data �les in
Section4.6.1. 165

4.6 Comparisonof BB and BSGAPon 32-bit data �les in Section4.6.1. . . 168

4.7 Comparisonof BB and BSGAPon 48-bit and 64-bit data �les in Sec-
tion 4.6.1. 169

4.8 Comparisonof csa and FM-index on count and locate. 178

xiii

List of Tables

2.1 Trade-o�s betweentime and spacefor the implementation of csa and
its supported operations. 13

2.2 Trade-o�s between time and spacefor the compressedtext indexing
basedon the csa. 14

2.3 An exampleof the bwt for the text T = mississippi# 91

2.4 An exampleof our conceptualtwo-dimensionaltable T 92

2.5 Normalized form of the conceptualtable T 92

3.1 ComparisonbetweenRLE encoding (RLE+), gapencoding (Gap+),
and related measures(lg

� n
t

�
, E(L), and E(G)). 101

3.2 Comparison of various coding methods when used with run-length
(RLE) and gap encoding. 102

3.3 Comparison of various coding methods when used with run-length
(RLE) encoding. 103

3.4 E�ect on performanceof wavelet tree usingfractional cascadingand/or
a Hu�man pre�x tree shape. 112

3.5 Wavelet tree with RLE+ encoding as a plain 0-order compressor,
applied to the bwt stream. 113

3.6 Running times for bwt2wzip and wzip2bwt normalized with that of
asimplecopy routine. 119

3.7 Measureof the e�ect of MTF on various coding methods when used
with RLE. 127

3.8 Comparisonof spacerequired by � and the compressedsu�x array
(CSA), given in bits per symbol (bps). 128

xiv

Chapter 1

In tro duction

The problem of data proliferation is challenging our abilit y to manageinformation. Classic

algorithms are greedy in terms of their spaceusageand cannot accessonly a tiny portion

of the data. This trend has not goneunnoticed by researchers, as evidencedby the recent

issuesin data streaming [Mut03] and sublinear algorithms [Cha04]. Unlike these cases,

many problems require the entire dataset to be stored in compressedformat but still need

it to be queried quickly. In fact, compressionmay have a more far-reaching impact than

simply storing data succinctly: \That which we can compresswe can understand, and

that which we can understand we can predict," as observed in [Aar05]. Much of what we

call \insigh t" or \in telligence" can be thought of as simply �nding succinct representations

of sensorydata [Bau04]. For instance, we are far from fully understanding the intrinsic

structure of biological sequences,and as of today, we cannot compressthem well either.

Researchers have consideredthese issuesin several algorithmic contexts, such as the

design of e�cien t algorithms for managing highly-compressible data structures. They

have carefully studied the exact resourcesneededto represent trees [BDM + 05, GRR04,

MRS01a, MRS01b, MR02], graphs [Jac89a, BBK03], sets and dictionaries [BB04, BM99,

Pag01, RR03, RRR02], permutations and functions [MRRR03, MR04], and text indexing

structures [FM05, GV05, GGV04, FGGV04, Sad02b,Sad03]. The goal is to design algo-

rithms with tight spacecomplexity s(n). The Kolmogorov complexity for representing data

provides a lower bound on the value of s(n) for each representation studied. Kolmogorov

complexity essentially de�nes compressionin terms of the sizeof the smallestprogram that

can generatethe input provided [LV97]. However, Kolmogorov complexity is undecidable

for arbitrary data, so any compressionmethod is known to be suboptimal in this sense.1

1Extrap olating from [Aar05, Bau04], the undecidability of Kolmogorov complexity implies that

there is a computational limit on �nding succinct representations for sensorydata.

1

The hope is to achieve s(n) + o(s(n)) bits, with nearly-optimal asymptotic time bounds,

i.e. O(t(n)) time, while remaining competitiv e with state-of-the-art (uncompressed)data

structures [Jac89a].

Providing an accurate analysis of spaceoccupancy (up to lower-order terms) is moti-

vated by the above theoretical issuesas well as the following technological issues. Space

savings can translate into faster processing(by reducing disk accesses),which results in

shorter seektimes or allows data storage on faster cache levels. A recent line of research

usesthe I/O computation model [Vit01] to take into account someof theseissues,such as

cache-oblivious algorithms and data structures [AV88, BDFC05]. Somealgorithms exploit

data compressionto achieve provably better time bounds [RC93, KV98, VK96]. From an

economicalstandpoint, compresseddata would require lessmedia to store (such as RAM

chips in search enginesor portable computing devices)or lesstime to transmit over regu-

lated bandwidth models (such as transmissionsby cell phones).

Similar goals for analyzing time bounds are di�cult to achieve due to the complexity

of modern machines, unlesssomesimple computation model (such as one reminiscent of

the comparisonmodel) is used. Sourcesof imprecision include cache hits/misses, dynamic

re-ordering of instructions to maximize instruction parallelism, disk scheduling issues,and

latency of disk head movements. Spacebounds, on the other hand, are relatively easierto

predict and canoften bevalidated experimentally. This concreteveri�cation is an important

component of research due to technological advancesthat may a�ect an otherwise good

bound: 64-bit CPUs are on the market (increasing the pointer size or address space),

Unicode text is becoming more commonplace(requiring more than 8 bits per symbol as

in ASCII text), and XML databasesare encoding more data as well (adding a non-trivial

amount of formatting data to the \real" information). We needto squeezeall this data and

provide fast accessto its compressedformat. For a variety of data structures, therefore, the

questionremains: Can we achieve a near-optimum compressionand simultaneously support

asymptotically fast queries?

In this thesis, we addressthis question for a number of applications focusedaround the

2

problem of compressed text indexing. The goal is to developan index for an input text T that

can e�cien tly search for any arbitrary substring of the text, and the index itself requires

spaceproportional to the size of the optimally-compressed input text T. Our work focuses

on developing both the text indexes,and shedslight on the critical components necessary

to achieve the best possibleindex. We also develop a number of thesecomponents, which

are meaningful results in their own right. We now briey overview thesecomponents, and

explain how they work together.

1.1 Text Compression and Text Indexing

Our main interest is on text data. Properly addressingthe text data issuealso requires

e�cien t solutions to a number of derivative succinct indexing problems. In this context,

the tight spacecomplexity s(n) is better expressedin terms of the entropy of the particular

text at hand. See[Sha48]for the de�nition of entropy and [CT91] for the relation between

entropy and Kolmogorov complexity.

We want to develop tight spacebounds for text compression, i.e. storing a text in

a compressedbinary format. We additionally want to design compressed text indexes to

decode any small portion of the text or search for any pattern as a substring of the text,

without decompressingthe binary format entirely. In particular, we study how to obtain a

compressedrepresentation of the text that is a self-index, namely, we desirea compressed

binary format that is also an index for the text itself.

We considerthe text T asa sequenceof n symbols, whereeach symbol is drawn from the

alphabet � of size� . Sincethe raw text T occupiesn lg � bits of storage,T is compressible

if it can be represented in fewer than n lg � bits.2 It is a simple fact that no encoding of T

can take fewer bits than the entropy of T, which measureshow much randomnessis in T.

Here, entropy is related to the size of the smallest program which generatesT, according

2In this thesis, we use the notation lgc
b a = (lgb a)c = (lg a=lg b)c to denote the cth power of the

base-b logarithm of a. If no baseis speci�ed, the implied baseis 2.

3

to the Kolmogorov complexity. So, we expect that the entropy of T is a lower bound to

the spacecomplexity s(n) for compresseddata structures that store T.

The entropy bound is ideal, but we can only quantitativ ely analyze an approximation

of it, namely,

nH h + M (T; � ; h) (1.1)

in terms of bits of space. In formula (1.1), H h � lg � is the hth-order empirical entropy

of T, which capturesthe dependenceof symbols on their context, madeup of the h adjacent

symbols in the text T. As n increases,M (T; � ; h) denotes the number of bits used to

store the empirical probabilities for the corresponding statistical model in T: informally,

M (T; � ; h) represents the number of bits required to store the number of occurrencesof yx

as a substring of the text T, for each context x of length h and each symbol y 2 �.

(These quantities are discussedformally in Sections 2.2 and 2.3.) As h increases,nH h

is non-increasing and M (T; � ; h) is non-decreasing. Thus, carefully tuning the context

length h gives the best choice for minimizing space. An interesting problem is how to

obtain nearly optimal spacebounds where s(n) is approximated by formula (1.1) for the

best choice of h. In practice, English text is often compressibleby a factor of 3 or 4, and

the best choice for h is usually about 4 or 5. Lempel and Ziv have provided an encoding

such that h � � lg n + O(1) (where 0 < � < 1) is su�cien tly good for approximating the

entropy; Luczak and Szpankowski prove a su�cien t approximation for ergodic sourceswhen

h = O(lg n) in [LS97].

In Chapter 2, we present a uni�ed algorithmic framework to obtain nearly optimal

spacebounds for text compressionand compressedtext indexing, apart from lower-order

terms. In particular, we provide a tight analysis of the Burrows-Wheelertransform (bwt)

establishing a bound of nH h + M (T; � ; h) bits Using the sameframework, we also obtain

an implementation of the compressedsu�x array (csa) that achievesnH h + M (T; � ; h) +

O(n lg lg n= lgj � j n) bits of spacewhile still retaining competitiv e full-text indexing func-

tionalit y.

The novelty of the proposedframework lies in its useof the �nite set model instead of

4

the empirical probabilit y model (as in previous work), giving us new insight into the design

and analysis of our algorithms. For example, we show that our analysis gives improved

bounds since M (T; � ; h) � minf g0
h lg(n=g0

h + 1); H �
h n + lg n + g00

hg, where g0
h = O(j� jh+1)

and g00
h = O(j� jh+1 lg j� jh+1) do not depend on the text length n, while H �

h � Hh is the

modi�ed hth-order empirical entropy of T. We go on to describe someclassesof texts for

which the abovebound is nearly tight, showing that they areamongthe hardest to compress

with the bwt . We alsoexaminethe importanceof lower-order terms, asthesecandwarf any

savings achieved by high-order entropy. Moreover, we show a strong relationship between

a compressedfull-text index and the succinct dictionary problem. This last consequenceis

a key observation, sinceit neatly separatesthe text indexing problem into that of encoding

a seriesof dictionary data structures.

In Chapter 3, we also report on a new experimental analysis of high-order entropy-

compressedsu�x arrays, which retains the theoretical performanceof previous work and

represents an improvement in practice. Our experiments indicate that the resulting text

index o�ers state-of-the-art compression. In particular, we require roughly 20% of the

original text size|without requiring a separateinstance of the text. We can additionally

usea simple notion to encode and decode block-sorting transforms (such as the Burrows-

Wheeler transform), achieving a compressionratio comparable to that of bzip2 . We also

provide a compressedrepresentation of su�x trees (and their associated text) in a total

spacethat is comparableto that of the text alone compressedwith gzip .

1.2 Dictionaries and Data-Aw are Measures For Set

Data

In Chapter 4, we consider the fundamental dictionary problem on set data, where the task

is to construct a data structure for representing a set S of n items out of a universeU =

f 0; : : : ; u � 1g and supporting various querieson S. Dictionaries are usedextensively in text

indexing and other applications with a text input (such asthe databaseapplications of XML

5

selectivity estimation) asa building block in designingentropy-compresseddata structures.

For text-based applications, dictionaries serve as a powerful black box that operate within

someentropy-aware partitioning of the data. Any improvements to a dictionary structure

would have tremendousimpact on all such dependent applications.

We use a well-known data-aware measurefor set data called gap to bound the space

of our data structures. We describe a novel dictionary structure that requires gap +

O(n lg(u=n)=lg n) + O(n lg lg(u=n)) bits. Under the RAM model, our dictionary supports

membership, rank, and predecessorqueriesin nearly optimal time, matching the time bound

of Anderssonand Thorup's predecessorstructure [AT00], while simultaneously improving

upon their spaceusage.We support selectquerieseven faster in O(lg lg n) time.

Our dictionary structure usesexactly gap bits in the leading term (i.e., the constant

factor is 1) and answers queries in near-optimal time. When seen from the worst case

perspective, we present the �rst O(n lg(u=n))-bit dictionary structure that supports these

queries in near-optimal time under the RAM model. We also build a dictionary that

requires the samespaceand supports membership, select, and partial rank queries even

more quickly in O(lg lg n) time.

We show that for many (real-world) datasets,data-aware methods lead to a worthwhile

compressionover combinatorial methods. To our knowledge,theseare the �rst results that

achieve data-aware spaceusageand retain near-optimal time.

1.3 Dynamizing Succinct Data Structures

We present a framework in Chapter 5 to dynamize succinct data structures, to encourage

their useover non-succinct versionsin a wide variety of important application areas. Our

framework can dynamize most state-of-the-art succinct data structures for dictionaries,

ordinal trees, labeled trees, and text collections. Of particular note is its direct application

to XML indexing structures that answer subpath queries[FLMM05]. Our framework focuses

on achieving information-theoretically optimal spacealongwith near-optimal update/query

6

bounds.

As the main part of our work, weconsiderthe following problem central to text indexing:

Given a text T over an alphabet �, construct a compresseddata structure answering the

querieschar(i), ranks(i), and select s(i) for a symbol s 2 �. Many data structures consider

thesequeriesfor static text T [GGV03, FM05, SG06,GMR06]. We build on these results

and give the best known query boundsfor the dynamic version of this problem, supporting

arbitrary insertions and deletions of symbols in T.

Speci�cally , with an amortized update time of O(n �), any static succinct data struc-

ture D for T, taking t(n) time for queries, can be converted by our framework into a

dynamic succinct data structure that supports ranks(i), select s(i), and char(i) queries in

O(t(n) + lg lg n) time, for any constant � > 0. When j� j = polylg(n), we achieve O(1)

query times. Our update/query bounds are near-optimal with respect to the lower bounds

from [PD06].

The best previously-known query times for this problem were O(lg n lg j� j), given

by [NM06b], although their update bounds are also O(lg n lg j� j). Our framework can

be easily modi�ed to achieve similar bounds.

Nevertheless,we focus on faster query/slower update for both theoretical and practical

considerations. Theoretically speaking, our query bounds match (or nearly match) the

bounds given by fastest known static data structures. With this query bounds as the

target, our update bounds are nearly tight with respect to the applicable lower bounds

known for the partial sumsproblem [PD06]. Practically, our choice of faster query/slower

update is well-suited for many data structuring environments in string matching, databases

and XML indexing.

7

Chapter 2

An Algorithmic Framew ork for
Compression and Text Indexing

2.1 In tro duction

In this chapter, we describe a uni�e d algorithmic framework that achieves the �rst nearly

optimal spaceboundsfor both text compressionand compressedtext indexing. We provide

a new tight analysisof text compressionbasedon the Burrows-Wheeler transform [BW94]

(hereaftercalledthe bwt). Wealsoprovide a newimplementation of compressedtext index-

ing basedon the compressed su�x array [FM05, GV05, Sad03] (hereafter called the csa).

A key point of our uni�ed approach is the useof the �nite set model instead of the empir-

ical probabilit y model adopted in previous work, giving us new insight into the analysis.

We capture the empirical probabilities encoded in M (T; � ; h) bits (seeFormula (1.1)) by

employing a two-dimensional conceptual organization which groups contexts x from the

text by their predicted symbols y. This schemecan be seenas an alternative way to model

an arbitrary partition of the bwt . We then restructure each context accordingly, encoding

each group with an algorithm that storest items out of a universeof sizen in the informa-

tion theoretic minimum spacedlg
� n

t

�
e bits (since there are

� n
t

�
subsetsof t items out of n).

In Sections2.1.1 and 2.1.2, we detail our results for text compressionand text indexing,

which reach nearly optimal spacebounds for both areas. The work in this chapter was a

collaborative e�ort with Roberto Grossi and Je�rey Scott Vitter.

2.1.1 Text Compression

In this section,we discussour results for text compression,which are basedon the Burrows-

Wheeler transform (bwt). Simply put, the bwt rearrangesthe text T so that it is easily

compressedby other methods. In practice, the compressedversionof this transformed text

8

is quite competitiv e with other methods [Fen96, Fen02, FTL03]. The bwt is at the heart

of compressorsbasedon block-sorting (such as bzip2) that outperform Lempel-Ziv-based

compressors(such as gzip). We provide a method for representing the bwt in compressed

format using well-known results from combinatorial enumeration [Knu05, Rus05] in an

unusualway, exploiting the functionalit y of ranking and unranking t-subsetsfor compressing

and decompressingthe t items thus stored.1 We collect and store this information in our

new wavelet tree, a novel data structure that we use to represent the LF mapping (from

the bwt and used in the fm -index [FM05]) and the neighbor function � (at the heart of

the csa [GV05]). Our framework-basedanalysis gives a bound of nH h + M (T; � ; h) bits

for any given h as input, thus matching Formula (1.1). The best value of h can be found

using the optimal partitioning of the bwt as given in [FGMS05], so that our bound holds

for any h (simply becauseFormula (1.1) cannot be smaller for the other valuesof h). For

comparisonpurposes,we give an upper bound on the number of bits neededto encode the

statistical model,

M (T; � ; h) � min
�

g0
h lg(n=g0

h + 1); H �
hn + lg n + g00

h

	
; (2.1)

where g0
h = O(� h+1) and g00

h = O(� h+1 lg � h+1) do not depend on the text length n.

In Formula (2.1), H �
h � Hh is the modi�e d hth-order empirical entropy (seeSection2.2)

introduced in [Man01] to show that the bwt can be represented in at most (5 + �)nH �
h +

lg n+ gh bits, where� � 10� 2 and gh = O(� h+1 lg �). The latter bound is important for low-

entropy texts, sincethe compressionratio scaleswith high-order entropy; this bound cannot

beattained whenreplacingH �
h by Hh. Werefer the readerto [Man01] for previousliterature

on the subject. In contrast, the compressionratio of Lempel-Ziv algorithm [ZL77] doesnot

scalefor low-entropy texts: although its output is boundedby nH h + O(n lg lg n= lg n) bits,

it cannot be smaller than 2:5nH 0 bits for somestrings [KM99]. Note that the bwt is a

booster for 0th-order compressorsas shown in [FGMS05], where a closeconnection of the

1We use the term t-subset instead of the more usual k-subset terminology, becausewe use k to

denote the levels of our compressedsu�x array (described later). A similar observation holds for

entropy Hh , which is often referred to as H k in the literature.

9

optimal partition of the bwt with the su�x tree [McC76] attains the best known space

boundsfor the analysisof the bwt , namely, 2:5nH �
h + lg n + gh bits and nH h + n + lg n + gh

bits. The related compressionmethods do not require the knowledge of the order h and

take O(n lg �) time for generalalphabets.

Using (2.1), we can compare our analysis with the best bounds from previous work.

When compared to the additiv e term of O(n lg lg n= lg n) in the analysis of the Lempel-

Ziv method in [KM99], we obtain an O(lg n) additiv e term for � = O(1) and h = O(1),

giving strong evidencewhy the bwt is better than the Lempel-Ziv method. Indeed, since

M (T; � ; h) � g0
h lg(n=g0

h + 1), our bound in (1.1) becomesnH h + O(lg n) when h = O(1)

and � = O(1), thus exponentially reducing the additiv e term of n of the H h-basedanalysis

in [FGMS05]. In this case, our bound closesthe gap in the analysis of bwt , since it

matches the lower bound of nH h +
(lg lg n), up to lower-order terms. The latter comes

from the lower bound of nH �
0 +
(lg lg n) bits, holding for a large family of compressors

(not necessarilyrelated to bwt), asshown in [FGMS05]; the only (reasonable)requirement

is that any such compressormust produce a codeword for the text length n when it is fed

with an input text consisting of the samesymbol repeated n times. Since H h � H �
0 , we

easily derive the lower bound of nH h +
(lg lg n) bits, but a lower bound of nH h +
(lg n)

probably exists sincenH �
0 � lg n while nH h can be zero.

As for the modi�ed hth-order empirical entropy, we show that our analysis in (1.1)

can be upper bounded by n(H h + H �
h) + lg n + g00

h bits using (2.1). Since H h � H �
h , our

bound in (1.1) is strictly smaller than 2:5nH �
h + lg n + gh bits in [FGMS05], apart from the

lower-order terms. Actually , our bound is de�nitiv ely smaller in somecases.For example,

while a bound of the form nH �
h + lg n + gh bits is not always possible[Man01], there are

an in�nite number of texts for which nH h = 0 while nH �
h 6= 0. In these cases,our bound

from (1.1) is nH �
h + lg n + g00

h bits.

We also describe a classof non-trivial texts where our bound is nearly tight. In partic-

ular, we show that our analysis is nearly tight for any chosenpositive constant 0 < � � 1,

namely, there exists an in�nite family of strings such that for any n-long string in the

10

family, its bound in Formula (1.1) satis�es n(((k � 1)=k)� H h + H �
h) � o(nH �

h) � nH h +

M (T; � ; h) � n(� H h + H �
h) + lg n + g00

h , where k > d1=�e is a constant. (The de�nition of

these families is intimately related to our analysis.) Finally, encoding and decoding take

O
�
n(nH h=lg n + 1) + g00

h

�
time; however, as shown in [GGV04], we can userun-length en-

coding in place of subset encoding in a practical setting, reducing the time complexity to

O(n lg �).

2.1.2 Compressed Text Indexing

In this section,wediscussour analysiswith respect to text indexing basedon the compressed

su�x array (csa). Text indexing data structures preprocessa text T of n symbols drawn

from an alphabet � such that any query pattern P of m symbols can be answered quickly

without requiring an entire scanof the text itself. We denotea substring T[i]T [i + 1] � � � T [j]

of contiguous text symbolsby T[i; j]. Dependingon the typeof query, wemay want to know

if P occurs in T (occurrenceor search query), how many times P occurs in T (counting

query), or the locations where P occurs in T (enumerative query). An occurrence of

pattern P at position i identi�es a substring T[i; i + m � 1] equal to P. Becausea text

index is a preprocessedstructure, a reasonablequery time should have no more than a

polylg(n) cost plus an output sensitive cost O(occ), whereocc is the number of occurrences

retrieved (which is crucial for large-scaleprocessing).

Until recently, thesedata structures were greedyof spaceand also required a separate

(original) copy of the text to be stored. Su�x trees [McC76, Ukk95, Wei73] and su�x ar-

rays [GBS92, MM93] are prominent examples.The su�x tree is a compact trie whoseleaves

store each of the n su�xes contained in the text T, namely, T[1; n]; T [2; n]; : : : ; T [n; n],

where su�x T[i; n] is uniquely identi�ed by its starting position i . Su�x trees [McC76,

MM93] allow fast queries of substrings (or patterns) in T in O(m lg � + occ) time, but

require at least 4n lg n bits of space,in addition to keeping the text. The su�x array SA

is another popular index structure. It maintains the permuted order of 1; 2; : : : ; n that

corresponds to the locations of the su�xes of the text in lexicographically sorted order,

11

T
�
SA[1]; n

�
, T

�
SA[2]; n

�
, . . . , T

�
SA[n]; n

�
. Su�x arrays [GBS92, MM93] (that store the

length of the longest common pre�x) are nearly as good at searching as are su�x trees.

Their time for �nding occurrencesis O(m + lg n + occ) time, but the spacecost is at least

n lg n bits, plus the cost of keepingthe text.

A new trend in the design of modern indexes for full-text searching is addressedby

the csa [GV05, Rao02, Sad03,Sad02b]and the opportunistic fm -index [FM05], the latter

making the very strong intuitiv e connection between the power of the bwt and su�x

arrays. They support the functionalities of su�x arrays and overcomethe aforementioned

spacelimitations. In our framework, we implement the csa by replacing the basic t-subset

encoding with succinct dictionaries supporting constant-time rank and select queries. The

rank query returns the number of entries in the dictionary that are lessthan or equal to

the input entry; the select query returns the i th entry in the dictionary for the input i .

Succinct dictionaries store t keysover a boundeduniversen in the information theoretically

minimum spacedlg
� n

t

�
e bits, plus lower-order terms O(n lg lg n= lg n) = o(n) [RRR02]. We

show a closerelationship betweencompressinga full-text index with high-order entropy to

the succinct dictionary problem. Prior to the work of this chapter, the best spacebound

was 5nH h + O
�
n � +lg lg n

lg n + n� � 2� lg �
�

bits for the fm -index, supporting a new backward

search algorithm in O(m + occ � lg1+ � n) time for any � > 0 [FM05]. We refer the reader

to the survey in [NM06a] for a discussionof more recent work in this area.

Weobtain several tradeo�s betweentime andspaceasshown in Tables2.1and2.2.

For example,Theorem 13 gives a self-index requiring nH h + O(n lg lg n=lg� n) bits

of space(where h + 1 � � lg� n for an arbitrary positive constant � < 1) that allows

searching for patterns of length m in O(m lg � + occ� polylg(n)) time. Thus,usingour

new analysisof the bwt , our implementation provides the �rst self-index reaching

the high-order empirical entropy nH h of the text with a multiplicativ e constant of 1;

moreover, we conjecture that g0
h lg(n=g0

h + 1) additional bits are not achievable for

text indexing. If true, this claim would imply that addingself-indexingcapabilitiesto

a compressedtext requiresmore spacethan M (T; � ; h), the number of bits encoding

12

bits of space lookup & lookup� 1 substring conditions notes

nH h lg lg� n + o(n lg �) + O
�
� h (n� + �)

�
O(lg lg� n) O(c

lg � n + lg lg� n) any 0 < � < 1 Thm.9

� � 1nH h + O
� n lg lg n

lg �
� n + � h (n� + �)

�
O

�
(lg� n)�= 1� � lg �

�
O

�
c

lg � n + (lg� n)�= 1� � lg �
�

any 0 < � < 1, 0 < � � 1=2 Thm.10

� � 1nH h + O(n) + O
�
� h (n� + �)

�
O

�
(lg� n)�= 1� �

�
O

�
c

lg � n + (lg� n)�= 1� �
�

n = o(n lg �) for � = ! (1) Cor.3

nH h + O
� n lg lg n

lg � n + � h+1 lg(1 + n=� h+1)
�

O(lg2 n= lg lg n) O(clg � + lg2 n= lg lg n) any 0 < � < 1 Thm.11

Table 2.1: Trade-o�s betweentime and spacefor the implementation of csa and its supported operations. (SeeDe�ni-

tion 2.) The lower-order terms in the spacecomplexity are all o(n lg �) bits except � h(n� + �) (becauseof M (T; � ; h)),

which is o(n lg �) when h + 1 � � lg� n for any arbitrary positive constant � < 1 (we �x � such that � + � < 1). In all

cases,compressrequiresO(n lg � + � h(n� + �)) time.

13

bits of space search/count time enumerative time (per item) conditions notes

� � 1nH h + O(n lg lg n
lg �

� n) O
�

m
lg � n + (lg n)(1+ �)=(1 � �) (lg �)(1 � 3�)=(1 � �)

�
O

�
(lg n)(1+ �)=(1 � �) (lg �)(1 � 3�)=(1 � �)

�
any 0 < � � 1=2 Thm.12

nH h + O(n lg lg n
lg � n) O(m lg � + lg4 n=(lg2 lg n lg �)) O(lg4 n=(lg2 lg n lg �)) 1 > ! � 2�=(1 � �) Thm.13

� � 1nH h + O(n lg lg n
lg �

� n) O(m
lg � n + lg! n lg1� � �) O(lg! n lg1� � �) 0 < � � 1=3 Thm.14

Table 2.2: Trade-o�s betweentime and spacefor the compressedtext indexing basedon the csa, under the assumption

that h + 1 � � lg� n for any arbitrary positive constant � < 1. The lower-order terms in the spacecomplexity are all

o(n lg �) bits. In all cases,the construction takesO(n lg �) time and usesa temporary areaof O(n lg n) bits of space.

14

the empirical statistical model for the bwt . Actually, we also conjecture that the

O(n lg lg n=lg� n) term is the minimum additional cost for obtaining the O(m lg �)-

time search bound. Bro Miltersen [Mil05] proved a lower bound of
(n lg lg n=lg n)

bits for constant-time rank and select querieson an explicit bitvector (i.e. � = 2).

(Other tradeo�s for the lower boundson sizearereported in [Mil05, DLO03, GM03].)

While this result doesnot directly imply a lower boundfor text indexing, it remainsas

strong evidenceof the di�cult y of improving the lower-order terms in our framework

sinceit is heavily basedon rank and select queries.

As another example, considerTheorem 14, where we develop an hybrid imple-

mentation of the csa, occupying � � 1nH h + O(n lg lg n=lg�
� n) bits (0 < � � 1=3), so

that searching is very fast and takesO(m=lg� n + occ � lg! n lg1� � �) time (1 > ! >

2�=(1� �) > 0). For low-entropy text over an alphabet of size� = O(1), weobtain the

�rst self-indexthat simultaneously exhibits sublinear sizeo(n) in bits and sublinear

search and counting query time o(m); reporting the occurrencestakes o(lg n) time

per occurrence.

Also, due to the ambivalent nature of our wavelet tree, we can obtain an im-

plementation of the LF mapping for the fm -index as a byproduct of our method.

(SeeSection 2.7.3 for more details.) We obtain an O(m lg �) search/count time by

using the backward search algorithm in [FM05] in nH h + O(n lg lg n=lg� n) bits. We

alsoget O(m) time in nH h + O(n) = nH h + o(n lg �) bits when � is not a constant.

This avenue has been explored in [FMMN04], showing how to get O(m) time in

nH h + O(n lg lg n=lg� n) bits when � = O(polylg(n)), using a wavelet tree with a

fanout of O(lg� n) for someconstant 0 < � < 1. All theseresults together imply that

the fm -index canbe implemented with O(m) search time usingnearly optimal space,

nH h + O(n lg lg n=lg� n) bits, when either � = O(polylg(n)) or � =
(2 O(lg n= lg lg n)).

The spaceis still nH h + O(n) = nH h + o(n lg �) for the other valuesof � , but we do

not know if the lower-order term O(n) can be reduced.

15

2.1.3 Outline of Chapter

The rest of the chapter is organizedas follows. In Section2.2, we describe the dif-

ferencesbetweenvarious notions of empirical entropy and proposea new de�nition

basedon the �nite set model. In Sections2.3{2.7, we describe our algorithmic frame-

work, showing a tighter analysis of the bwt and detailing our new wavelet tree.

In Section2.8, we usethis framework to achieve high-order entropy compressionin

the csa. In Section2.9, we apply our csa to build self-indexingdata structures that

support fast searching. In Section2.10, we give some�nal considerationsand open

problems.

2.2 High-Order Empirical Entrop y

In this section,we formulate our analysisof the spacecomplexity in terms of the high-

orderempiricalentropy of a text T of n symbolsdrawn from alphabet � = f 1; 2; : : : ; � g.

For easeof exposition, we \n umber" the symbols in alphabet � from 1 to � = j� j,

such that the renumberedsymbol y is also the yth lexicographicallyorderedsymbol

in � = f 1; 2; : : : ; � g. Without loss of generality, we can assumethat � � n, since

we only needto considerthose symbols that actually occur in T. In particular, we

discussvarious notions of entropy from both an empirical probability model and a

�nite set model. In Section2.2.1,we considerclassicnotions of entropy accordingto

the empirical probability model. We describe a new de�nition basedon the �nite set

model in Section2.2.2.

2.2.1 Empirical Probabilistic High-Order Entrop y

We provide the necessaryterminology for the analysisand explore empirical prob-

abilit y models. For each symbol y 2 �, let ny be the number of its occurrencesin

16

text T. With symbol y, we associate its empirical probability, Prob[y] = ny=n, of

occurring in T. (Note that by de�nition, n =
P

y2 � ny , so the empirical probabil-

it y is well de�ned.) Following Shannon'sde�nition of entropy [Sha48], the 0th-order

empirical entropy is

H0 = H0(T) =
X

y2 �

� Prob[y] � lg Prob[y]: (2.2)

SincenH 0 � n lg � , expression(2.2) simply states that an e�cien t variable-length

coding of text T would encode each symbol y basedupon its frequencyin T rather

than simply using lg � bits. The number of bits assignedfor encoding an occurrence

of y would be � lg Prob[y] = lg(n=ny).

Wecangeneralizethe de�nition to higher-orderempirical entropy, soasto capture

the dependenceof symbols upon their context, made up of the h previous symbols

in the text. For a given h, we considerall possibleh-symbol sequencesx that appear

in the text. (They are a subsetof � h, the set of all possibleh-symbol sequencesover

the alphabet �.) We denote the number of occurrencesin the text of a particular

context x by nx , with n =
P

x2 � h nx asbefore,and we let nx;y denotethe number of

occurrencesin the text of the concatenatedsequenceyx (meaningthat y precedesx).2

Then, the hth-order empirical entropy is de�ned as

Hh = Hh(T) =
X

x2 � h

X

y2 �

� Prob[y; x] � lg Prob[yjx]; (2.3)

whereProb[y; x] = nx;y =n represents the empirical joint probability that the symbol y

occurs in the text immediately before the context x of h symbols and Prob[yjx] =

nx;y =nx represents the empirical conditional probability that the symbol y occurs

immediately beforecontext x, giventhat x occursin the text. (Werefer the interested

2The standard de�nition of conditional probabilit y for text documents considers the symbol y

immediately after the sequencex. It makesno meaningful di�erence, sincewe could simply use

this de�nition on the reversedtext as discussedin [FGMS05].

17

readerto [CT91] for moredetailson conditional entropy.) Setting h = 0, weobtain H 0

as de�ned previously. In words, expression(2.3) is similar to (2.2), except that we

partition the probability spacefurther accordingto contexts of length h in order to

capture statistically signi�cant patterns from the text.

An important observation to note is that Hh+1 � Hh � lg � for any integerh � 0.

Hence,expression(2.3) states that a better variable-length coding of text T would

encode each symbol y basedupon the joint and conditional empirical frequencyfor

any context x of y.

Manzini [Man01] givesan equivalent de�nition of (2.3) in terms of H 0. For any

given context x, let wx be the concatenationof the symbols y that appear in the

text immediately before context x. We denote its length by jwx j and its 0th-order

empirical entropy by H0(wx), thus de�ning Hh as

Hh =
1
n

X

x2 � h

jwx jH0(wx): (2.4)

One potential di�cult y with the de�nition of Hh is that the inner terms of the

summation in (2.4) could equal 0 (or an arbitrarily small constant), which can be

misleadingwhen consideringthe encoding length of a text T. (One relatively trivial

caseis whenthe text contains n equalsymbols,asno symbol needsto be\predicted".)

Manzini introduced modi�e d high-order empirical entropy H �
h to addressthis point

and capture the constraint that the encoding of the text must contain at least lg n

bits for coding its length n. Using a modi�ed

H �
0 = H �

0 (T) = maxf H0; (1 + blg nc)=ng (2.5)

to make the change,he writes

Ĥh =
1
n

X

x2 � h

jwx jH �
0(wx): (2.6)

Unfortunately, Ĥh+1 � Ĥh doesnot necessarilyhold in (2.6) as it did for Hh. To

solve this problem, let Ph be a pre�x cover, namely, a set of substringshaving length

18

at most h such that every string from � h has a unique pre�x in Ph. Manzini then

de�nes the modi�e d hth-order empirical entropy as

H �
h = H �

h (T) =
1
n

min
Ph

X

x2 Ph

jwx jH �
0 (wx): (2.7)

so that H �
h+1 � H �

h does hold in (2.7). Other immediate consequencesof this

encoding-motivated entropy measureare that H �
h � Hh and nH �

h � lg n, but nH h

canbe a small constant. Let the optimal pre�x cover P �
h be the pre�x cover that min-

imizesH �
h in (2.7). Thus, Equation (2.7) canbe equivalently stated by the expression

H �
h = 1

n

P
x2 P �

h
jwx jH �

0 (wx).3

The empirical probabilities usedin the de�nition of the high-order empirical en-

tropy canbeobtainedfrom the number of occurrencesnx;y , where
P

x2 P �
h ;y2 � nx;y = n.

Indeed,ny =
P

x2 P �
h

nx;y andnx =
P

y2 � nx;y . This discussionmotivatesthe following

de�nition, which will guide us through our high-order entropy analysis.

De�nition 1. The empirical statistical model for a text T drawn from an alphabet �

for contexts of length up to h is composedof two parts stored using M (T; � ; h) bits:

i. The partition of � h induced by the contexts of the pre�x cover P �
h .

ii. The sequenceof non-negative integers,nx;1; nx;2; : : : ; nx;� , wherex 2 P �
h . (Re-

call that nx;y is the number of occurrencesof yx as a substring of T.)

We denote the number of bits used to store the information in parts (i){(ii) by

M (T; � ; h), as n increases.

2.2.2 Finite Set High-Order Entrop y

We provide a new de�nition of high-order empirical entropy H 0
h, basedon the �nite

set model rather than on conditional probabilities. We use this de�nition to avoid

3A minor technical note: h now refers to the length of the longest substring in P �
h , sinceno larger

value of h can yield a more succinct entropy measure.

19

dealing with empirical probabilities explicitly. We show that our new de�nition is

Hh � O(jP �
h j lg n) � H 0

h � Hh � H �
h , so that we can provide bounds in terms of H 0

h

in our analysis.

For easeof exposition, we \n umber" the lexicographicallyorderedcontexts x as

1 � x � � h. Let the multinomial coe�cien t
� n

m1 ;m 2 ;:::;m p

�
= n!

m1 ! m2 !���mp ! represent the

number of partitions of n items into p subsetsof sizem1; m2; : : : ; mp. In this chapter,

we de�ne 0! = 1. (Note that n = m1 + m2 + � � � + mp.) When m1 = t and m2 = n � t,

we get preciselythe binomial coe�cien t
� n

t

�
. We de�ne

H 0
0 = H 0

0(T) =
1
n

lg
�

n
n1; n2; : : : ; n�

�
; (2.8)

which counts the number of possiblepartitions of n items into � unique buckets, i.e.

the alphabet size. Weusethe optimal pre�x cover P �
h in (2.7) to de�ne our alternative

high-order empirical entropy4

H 0
h = H 0

h(T) =
1
n

X

x2 P �
h

lg
�

nx

nx;1; nx;2; : : : ; nx;�

�
: (2.9)

For example, consider the text T = mississippi# . Fixing h = 1 and taking

P �
h = � h, we have that all contexts are of length 1. For context x = i occurring

ni = 4 times in T, we have the symbols y = m; p, and s appearing n i ;m = ni ;p = 1

and ni ;s = 2 times in T. Thus, the contribution of context x = i to nH 0
1(T) is

lg
� 4

1;1;2

�
= lg 12 bits. In the next theorem,we show that our formulation of �nite set

entropy is smaller than the usual de�nition of empirical probabilistic entropy.

Theorem 1. For any given text T and context length h � 0, we haveH 0
h � Hh.

Proof. It su�ces to show that nH 0
0 � nH 0 for all alphabets �, sincewe know that

lg
� nx

nx; 1 ;n x; 2 ;:::;n x;�

�
� jwx jH0(wx). Setting P �

h = � h in (2.9) and applying Manzini's

de�nition of entropy in (2.4) naturally leadsto the claim.

4Actually , it can be de�ned for any pre�x cover Ph , including Ph = � h .

20

The bound nH 0
0 � nH 0 trivially holds when � = 1. We �rst prove this bound for

an alphabet � of � = 2 symbols. Let t and n � t denotethe number of occurrencesof

the two symbols in T. We want to show that nH 0
0 = lg

� n
t

�
� nH 0 = t lg(n=t) + (n �

t) lg(n=(n � t)) by (2.8). The claim is true by inspection whenn � 4 or t = 0; 1; n � 1.

Let n > 4 and 2 � t � n � 2. We apply Stirling's double inequality [Fel68] to obtain

nn
p

2� n
en� 1=(12n+1)

< n! <
nn

p
2� n

en� 1=12n
: (2.10)

Taking logarithms and focusingon the right-hand sideof (2.10), we seethat

lg n! < n lg
n
e

+
1
2

lg n +
1

12n
lg e+ lg

p
2� : (2.11)

Similarly to (2.11), we take the left-hand sideof (2.10), and obtain

lg n! > n lg
n
e

+
1
2

lg n +
1

12n + 1
lg e+ lg

p
2� : (2.12)

Applying (2.11) and (2.12) to lg
� n

t

�
= lg(n!) � lg(t!) � lg((n � t)!), we have

nH 0
0 = lg

�
n
t

�
< nH 0�

1
2

lg
t(n � t)

n
� lg e

�
1

12t + 1
+

1
12(n � t) + 1

�
1

12n

�
� lg

p
2� :

(2.13)

Sincet(n � t) � n and 1=(12t + 1) + 1=(12(n � t) + 1) � 1=(12n) by our assumptions

on n and t, it follows that nH 0
0 � nH 0, proving the result when � = 2.

Next, we show the claimed bound for the generalalphabet (� � 2 and h = 0)

and by using induction on the alphabet size (with the basecase� = 2 as detailed

before). We write

lg
�

n
n1; n2; : : : ; n�

�
= lg

��
n � n�

n1; n2; : : : ; n� � 1

�
�

�
n
n�

��
: (2.14)

We useinduction for the right-hand sideof (2.14) to get

lg
�

n � n�

n1; n2; : : : ; n� � 1

�
�

� � 1X

y=1

ny lg
n � n�

ny
; (2.15)

21

lg
�

n
n�

�
� n� lg

n
n�

+ (n � n�) lg
n

n � n�
: (2.16)

Summing (2.15) and (2.16), we obtain
P �

y=1 ny lg n
ny = nH 0, thus proving the claim

for any alphabet size� .

The above discussionnow justi�es the use of H 0
h in our later analysis, but we

continue to state bounds in terms of Hh as it represents more standard notation.

The key point to understandis that we can derive equationsin terms of multinomial

coe�cien ts without worrying about the empirical probability of symbols appearing

in the text T.

2.3 The Uni�ed Algorithmic Framew ork:

Tigh ter Analysis for the BWT

The characterization of the high-orderempirical entropy in terms of the multinomial

coe�cien ts given in Section2.2.2drivesour analysisin a uni�ed framework for text

compressionand compressedtext indexing. In this section,we begin with a simple,

yet nearly optimal analysisof the Burrows-Wheelertransform (bwt). Section2.3.1

formally de�nes the bwt and highlights its connectionto (compressed)su�x arrays.

Our key partitioning scheme is described in Section 2.3.2; it serves as the critical

foundation in achieving a high-order entropy analysis for the bwt . Sections2.4.2{

2.4.3 motivate and develop our multi-use wavelettree data structure, which serves

asa exible tool in both compressionand text indexing. We �nish the upper bound

analysisof the bwt in Section2.5, and the lower bound in Section2.6.

22

2.3.1 The BWT and (Compressed) Su�x Arra ys

We now give a short description of the bwt in order to explain its salient features.

Consider the text T = mississippi# in the example shown in Table 2.3, where

i < m< p < s < # and # is an end-of-text symbol. The bwt forms a conceptual

matrix Q whoserows are the cyclic (forward) shifts of the text in sorted order and

storesthe last column L = ssmp#pissiii written as a contiguous string. Moreover,

the last column L is an invertible permutation of the symbols in T. In particular,

LF (i) = j in Table 2.3 indicates for any symbol L[i], the corresponding position j

in F whereL[i] appears. For instance,LF (3) = 5 sinceL[3] = moccursin position 5

of F ; LF (8) = 10 sinceL[8] = s occursin position 10 of F (as the third s amongthe

four appearing consecutively in F).

UsingL and LF , wecanrecreatethe text T in reverseorder by starting at the last

position n (corresponding to #mississippi), writing its value from F , and following

the LF function to the next value of F . Continuing the example from before, we

follow the pointers from LF (n): LF (12) = 4, F [4] = i ; LF (4) = 6, F [6] = p;

LF (6) = 7, F [7] = p; and so on. In other words, the LF function givesthe position

in F of the precedingsymbol from the original text T. Thus onecould store L and

recreateT, sincewe can obtain F by sorting L and the LF function can be derived

by inspection. Note that L is compressibleusing 0th-order compressors,boosting

them to attain high-order entropy [FGMS05]. In the following, we connectthe bwt

with L.

Clearly, the bwt is related to su�x sorting, since the comparisonof any two

circular shifts must stop when the end marker # is encountered. The corresponding

su�x array is a simple way to store the sorted su�xes. The su�x array SA for a

text T maintains the permuted orderof 1; 2; : : : ; n that correspondsto the locationsof

the su�xes of the text in lexicographicallysortedorder, T
�
SA[1]; n

�
, T

�
SA[2]; n

�
, . . . ,

23

T
�
SA[n]; n

�
. By dropping the symbolsafter # in the sortedmatrix Q (column `Sorted'

in Table 2.3), we obtain the sequenceof sorted su�xes represented by SA (column

`Su�x Array' in Table 2.3). In the exampleabove, SA[6] = 10 becausethe sixth

largestlexicographicallyorderedsu�x, pi# , beginsat position 10 in the original text.

We make the connectionbetweenthe bwt and SA more concreteby describing

the neighbor function �, introduced to represent the csa in [GV05]. In particular,

the � function indicates, for any position i in SA, the corresponding position j in SA

such that SA[j] = SA[i]+ 1 (a sort of su�x link similar to that of su�x trees[McC76]).

For example in Table 2.3, �(6) = 4 sinceSA[6] = 10 and SA[4] = 11. As can be

seenfrom Table 2.3, LF (�(i)) = �(LF (i)) = i for 1 � i � n; thus, thesefunctions

are inversesof each other. Hence,the � function is alsoan invertible representation

of the bwt . (The � function can also be thought of as the FL mapping while the

LF mapping can be thought of as the encoding of inversesu�x links.) Encoding

the � function is no harder than encoding LF . In the following, we make useof this

connectionto achieve a high-order empirical entropy analysisof the bwt .

The � function can be implemented by using � lists as shown in [GV05]. Given

a symbol y 2 �, the list y is the set of positions from the su�x array such that

for any position p in list y, T[SA[p]] is preceded by y.5 In words, it collects the

positions where y occurs in the text basedupon information from the su�x array.

The fundamental property of these� lists is that each list is an increasing seriesof

positions. For instance,list i from our exampleis h7; 10; 11; 12i sincefor each entry,

T[SA[p]] is precededby an i . The concatenationof the lists y for y = 1; 2; : : : ; �

gives�. Going on in the example,list mis h3i ; list p is h4; 6i ; list s is h1; 2; 8; 9i , and

list # is h5i . Their concatenationyields the � function shown in Table 2.3. Thus,

the value of �(i) is just the i th nonempty entry in the concatenationof the lists, and

belongsto somelist y.

5Speci�cally , y = T[SA[p] � 1] for SA[p] > 1, and y = T[n] when SA[p] = 1.

24

We can reconstruct SA and the bwt by using � and the position f of the last

su�x SA[f] = n, where �(f) is the position in SA containing the �rst su�x. Con-

tinuing the examplefrom before(where f = 12) we can recreateSA by iterating �

as �(f) = 5, SA[5] = 1; �(5) = 3, SA[3] = 2; �(3) = 11, SA[11] = 3, and so on. In

general,we compute �(f), �(�(f)), . . . , so that the rank j in SA for the i th su�x

in T (1 � i; j � n) is obtained as j = � (i)(f) by i iterations of � on f . However, this

processnot only recovers the valuesof SA, but also the corresponding lists y (which

provide the symbols for the bwt by the de�nition of � lists). In particular, symbol y

occurs in the j th position of the bwt , where j = � (i)(f). In the example,symbol

y = # is in position �(f) = 5 of the bwt becausethe f th entry in � is in list #;

symbol y = mis in position �(5) = 3 becausethe �fth entry is in list m; symbol y = i

is in position �(3) = 11, and soon.

2.3.2 Con text-Based Partitioning of the BWT

We now show our major result for this section;we describe a nearly optimal analysis

of the compressibility of the Burrows-Wheelertransform with respect to high-order

empirical entropy, exploiting the relationship between the bwt and su�x arrays

illustrated in Section2.3.1.

Let P �
h be the optimal pre�x cover as de�ned in Section 2.2, and let nx;y be

the corresponding values in Equation (2.9), where x 2 P �
h and y 2 � (see also

De�nition 1). We denoteby jP �
h j � � h the number of contexts in P �

h . The following

theorem formalizesthe bounds that we anticipated in Formulas (1.1) and (2.1) for

our analysis.

Theorem 2 (Space-Optimal Burro ws-Wheeler Transform). The Burrows-

Wheeler transform for a text T of n symbols drawn from an alphabet � can be com-

25

pressed using

nH h + M (T; � ; h) (1.1)

bits for the best choice of context length h and pre�x cover P �
h , where the number of

bits required for encoding the empirical statistical model behind P �
h (see De�nition 1)

is

M (T; � ; h) � min f g0
h lg(1 + n=g0

h); H �
hn + lg n + g00

hg; (2.1)

where g0
h = O(� h+1) and g00

h = O(� h+1 lg � h+1) do not depend on the text length n.

We devote the rest of Section2.3 and 2.5 to the proof of Theorem2. We describe

our analysisfor an arbitrary pre�x cover Ph, soit alsoholdsalsofor the optimal pre�x

cover P �
h as in Equation (2.9). Sinceevery string in � h has a unique pre�x in Ph, it

follows that Ph inducesa partition of the su�xes storedin the su�x array SA (or the

corresponding circular shifts of T). In particular, the su�xes starting with a given

context x 2 Ph occupy contiguous positions in SA. In the exampleof Table 2.3, the

positions 1; : : : ; 4 in SA corresponds to the su�xes starting with context x = i .

Our basic idea is to apply context partitioning to the � lists discussedin Sec-

tion 2.3.1. We implement our idea by partitioning each list y further into sub-

lists hx; yi by contexts x 2 Ph. Intuitiv ely, sublist hx; yi stores the su�xes in SA

that start with x and are precededby y. Thus, each item p in sublist hx; yi indicates

that T
�
SA[p] � 1; SA[p] + h

�
= yx. For context length h = 1, if we continue the

examplein Table 2.3, we break the � lists by context (in lexicographicalorder i , m,

p, s, and #, and numbered from 1 up to jPh j). The list for y = i is h7; 10; 11; 12i ,

and is broken into sublist h7i for context x = p, sublist h10; 11i for context x = s,

and sublist h12i for x = #. We recall that the fundamental property of � lists is that

each list is an increasingseriesof positions. Thus, each sublist hx; yi we have created

is alsoincreasing and contains nx;y entries, wherenx;y is de�ned as in Equation (2.9)

and De�nition 1.

26

We build a conceptual2-dimensionaltable T that follows De�nition 1; seeTa-

ble 2.4 for an instance of T on our running example (for h = 1). (Each row x

implicitly represents the su�xes in SA that start with context x and the columnsy

are the symbols \predicted" in each context.) The contexts x 2 Ph correspond to the

rows and the � lists y are stored in the columnsx. The columnsof T are partitioned

by row accordingto the contexts. Our table T hassomenicepropertiesif we consider

its rows and columnsas follows:

� We can implement the � function by accessingthe sublists in T in column

major order, as discussedin Section2.3.1.

� We have a strong relationship with the high-order empirical entropy in Equa-

tion (2.9) and the statistical empirical model of De�nition 1, if we encode these

sublists in row major order.

For any context x 2 Ph, if weencodethe sublistsin row x usingnearly lg
� nx

nx; 1 ;n x; 2;:::;n x;�

�

bits, we automatically achieve the hth-order empirical entropy when summing over

all the contexts as required in Equation (2.9). For example,context x = i should be

represented with nearly lg
� 4

1;1;2

�
bits, sincetwo sublists contain one entry each and

one sublist contains two entries. The empirical statistical model should record the

partition inducedby Ph and which sublistsare empty, and shouldencode the lengths

of the nine nonempty sublists in Table 2.4, using M (T; � ; h) bits.

The crucial observation to make is that all entries in the row corresponding to a

given context x create a contiguous sequenceof positions. For instance, along the

�rst row of Table 2.4 for x = i , there are four entries that are in the range 1: : : 4.

Similarly, row x = s contains the four entries in the range 8: : : 11; row s should

be encoded with lg
� 4

2;2

�
bits. We represent this range as an interval [1; 4] with the

o�set # x = 7. We call this representation a normalization, which subtracts the value

of # x from each entry p of the sublists hx; yi for y 2 �. In words, we normalize the

27

sublistsin Table2.4by renumbering eachelementbased on its order within its context

and obtain the context information shown in Table 2.5. Here, nx is the number of

elements in each context x, and # x represents the partial sum of all prior entries;

that is, # x =
P

x0<x nx0
. (Note that the valuesof nx and # x are easily computed

from the set of sublist lengthsnx;y .) For example,the �rst entry in sublist hs; i i , 10,

is written as3 in Table2.5, sinceit is the third element in context s. We canrecreate

entry 10 from # x by adding # s = 7 to 3. As a result, each sublist hx; yi is a subset

of the rangeimplicitly represented by interval [1; nx] with the o�set # x. We exploit

this organization to encode the bwt .

Enco ding: We run the boosting algorithm from [FGMS05] on the bwt to �nd

the optimal valueof context order h and the optimal pre�x cover P �
h usingthe costof

nH 0
h + M (T; � ; h) accordingto Equation (2.9). (Recall that H 0

h � Hh by Theorem1.)

Oncewe know h and set Ph = P �
h , we can cleanly separatethe contexts and encode

the � function as described in our table T . Thus, we follow the two stepsbelow,

storing the following components of T :

1. We encode the empirical statistical model given in De�nition 1.

2. For each context x 2 Ph, we separatelyencode the sublists hx; yi for y 2 � to

capture high-order entropy. Each of thesesublists is a subsetof the integersin

the range[1; nx] with o�set # x. Thesesublists form a partition of the integers

in the interval [1; nx].

The storage for step 1 is M (T; � ; h), the number of bits required for encoding

the model (see De�nition 1). The storage required for step 2 should use nearly

lg
� nx

nx; 1 ;n x; 2 ;:::;n x;�

�
bits per context x, and should not exceeda total of nH h bits plus

lower-order terms, oncewe determineP �
h , as stated in Theorem2.

Decoding: We retrieve the empirical statistical model encoded in step 1 above,

which allows us to infer the number of rows and columnsof our table T , and which

28

sublists are nonempty and their lengths. (Note that the valuesof n, nx and # x can

beobtainedfrom theselengths.) Next, we retrieve the sublistsencodedin step2 since

we know their lengths. At this point, we have recovered the content of T , allowing

us to implement the � function with the columnsof T asdiscussedbefore. Given �,

we can decode bwt as described at the end of Section2.3.1.

We will completethe proof of Theorem2 in Sections2.4 and 2.5.

2.4 Enco ding Sublists in High-Order Entrop y

At the end of Section2.3.2,we built a partitioning schemethat considerseach con-

text x 2 Ph independently. In this section,we focus on the problem of encoding the

sublists hx; yi for y 2 � (i.e., step 2 of encoding). As a reminder, thesesublists form

a partition of the integers in the range [1; nx] with o�set # x. Moreover, since# x

can be easily inferred using the information from the empirical statistical model in

De�nition 1, we can recreatethe original positions stored in the sublists as usual.

We will encode sublists one context at a time. In other words, we encode the

sublists hx; 1i ; hx; 2i ; : : : ; hx; � i at once. One way to do this encodeseach context x

by encoding the string wx (from Section2.2.1), which consistsof the symbols y that

precedex, concatenatedtogether in bwt order. To encode wx , we canuseis a quasi-

arithmetic coder from [HV94] (Theorem 1), requiring lg
� nx

nx; 1 ;n x; 2;:::;n x;�

�
+ 2 bits of

space.

Lemma 1 (Quasi-Arithmetic Coder [HV94]). Supposeweknowthe valuesof nx

and nx;1; nx;2; : : : ; nx;� for eachcontext x. We can encodeall contextsusingonequasi-

arithmetic coder for each context x taking just nH h + O(� h) bits of space. Decoding

any context requires O(nx) operations on integersof sizeO(�).

In the rest of this section, we detail an alternative method of encoding each

29

context x, motivated by applications to text indexing. We begin by encoding each

sublist independently, and then evaluate the redundancyof such methods. In partic-

ular, Section2.4.3describesan important data structure to text indexing, the wavelet

tree.

2.4.1 Individually Enco ded Sublists

In this section, we consider individually encoding each sublist hx; yi in context x.

Since the positions in each sublist are always increasing, we can represent a sub-

list hx; yi as a subset S of t items drawn from a universe of size n0. In terms of

our notation for sublist hx; yi , t = nx;y and n0 = nx . It will also be useful to

view the subset S as an implicit bitvector B of length n0: If S contains the ele-

ments 1 � s1 < s2 < � � � < st � n0, the si th entry in the bitvector is 1, for 1 � i � t

and the remaining n0 � t bits are 0.

In this section, we will describe two methods: the �rst usest-subsetencoding

from [Knu05, Rus05]; the secondusesa quasi-arithmetic coder on the bitvector B .

We will uset-subsetsand this quasi-arithmetic coding schemeheavily over the next

few sections;thesemethods will later be improved in Section2.4.4.

Enco ding Sublists Using t -subset Enco ding

One method to encode S is to use t-subsetencoding from [Knu05, Rus05], which

requires the information-theoretic minimum of dlg
� n0

t

�
e bits. Each t-subsetcan be

encoded or decoded with O(n0) operations on large integers. By \large", we mean

integersof size! (lg n) bits. All the t-subsetsare enumeratedin somecanonicalorder

(say, lexicographicorder) and the r th subsetin this order is encoded by the value r

written in binary, which requiresdlg
� n0

t

�
e bits. We will use the following canonical

ordering for our subsets: the largest index value r refers to the subsetS where the

30

�rst t positions in the implicit bitvector B are all 1.

We now describe an algorithm to take a value r and generatethe subsetS of t

items out of a universeof sizen0 that r represents. We call this procedureunranking

the value r . Our algorithm will generatethe implicit bitvector B of length n0; each

bit position B[i] is initialized to 0.

function unr ank(B ; r; n; t) f

if (t = 0) return B;

for (i = 1 to n)

if (r >
� n� i

t

�
)

B [i] 1;

r r �
� n� i

t

�
;

t t � 1;

g

The unr ank function operatesin O(n0) time, but usesoperationson largeintegers

of size! (lg n) bits. To perform expandedoperations,we simply computeB and use

brute-force methods to answer queries. The \ranking" algorithm that reversesthis

processis straightforward.

We highlight the functions rank and select as two advancedoperations of par-

ticular interest, since they are often used in our remaining data structures. For a

bitvector B of sizen0, the function rank1(B ; i) returns the number of 1s in B up to

(and including) position i . The function select1(B ; i) returns the position of the i th 1

in B. We can alsode�ne rank0 and select0 in terms of the 0s in B.

When we have t-subsets,we can support rank and select by unranking the index

value r into its implicit bitvector B , and then performing a brute-force linear walk

to return the correct answer.6 We summarizetheseresults into the following lemma.

6Time boundsare not the issueat this stage;we addresstheseconcernsin Sections2.4.4and 2.7.1.

31

Lemma 2 (t-subset Enco ding). Let the subsetS consist of t items drawn from a

universeof sizen, where we already knowt and n (and do not need to encode them).

Then, we can use t-subsetencoding to representS using lg
� n

t

�
+ O(1) bits of space

and can be encoded or decoded using O(n) operations on large integers, i.e., integers

of size ! (lg n) bits.

Enco ding Sublists Using Quasi-Arithmetic Enco ding

As we saw in Section 2.4.1, using t-subsetencoding to represent a subsetS with t

items drawn from a universeof sizen0 requiresO(n) operationson large integers. To

avoid the large integer computations,we can usea quasi-arithmetic coder [HV94] to

encode or decode the implicit bitvector B . The coder will sequentially encode the

positions of B , encoding whether each bit is a 0 or a 1. At any step of the encoder,

the probability of the next bit being a 1 is t=n0 (for the current valuesof t and n0);

the probability of the next bit being a 0 is 1 � t=n0. We summarizethis schemein

the following lemma.

Lemma 3 (Quasi-Arithmetic Subset Enco ding). Let the subsetS consist of t

items drawn from a universeof size n, where we already know t and n (and do not

need to encode them). Let B be the implicit bitvector related to S. Then, we can use

a quasi-arithmetic coder to representS (by encoding B) using lg
� n

t

�
+ O(1) bits of

space and can be encoded or decoded using O(n) operations on small integers.

To support r ank and select, we will use a brute-force method once we have

recoveredB. We reducethe encoding and decoding time for storing a subsetS from

O(n0) time to O(t) time in Section2.4.4,where t represents the number of items in

subsetS (or equivalently, the number of 1s in B).

32

2.4.2 The Space Redundancy of Enco ding Multiple Sublists

In this section, we revisit encoding each sublist hx; yi independently of the others.

One (simple) method would be to encode each sublist hx; yi as a subsetof t = nx;y

items out of a universeof n0 = nx items using t-subsetencoding or quasi-arithmetic

coding, described in Section2.4.1. To encode and decode sublist hx; yi , we can use

subsetrank and unrank primitiv es (respectively) on a sequencer of dlg
� nx

nx;y

�
e bits,

or encode or decode the implicit bitvector B related to sublist hx; yi .

Unfortunately, despitethe fact that t-subsetencoding (and quasi-arithmetic cod-

ing) is locally optimal for sublist hx; yi does not imply that it is globally optimal

for encoding all the sublists together. In fact, summing the sizeof subsetencodings

for all the sublists shows that the total spaceadds an O(n) term to the entropy

bound nH h! This �nding is given in the following lemma. First, we briey de�ne

someusefulnotation. Let tx be the number of nonempty sublistscontained in a given

context x and, without lossof generality, let the number of entries in the nonempty

sublists be nx;1, nx;2, . . . , nx;t x
, where

P
1� y� tx nx;y = nx .

Lemma 4. Given context x, the following relation holds,

X

1� y� tx

lg
�

nx

nx;y

�
= lg

�
nx

nx;1; nx;2; : : : ; nx;t x

�
+ O(nx): (2.17)

Proof. When tx = 2,
P

1� y� tx lg
� nx

nx;y

�
= lg

� nx

nx; 1 ;n x; 2 ;:::;n x;t x

�
and the lemmais trivially

proved. Thus, let tx > 2, so that the following holds.

X

1� y� tx

lg
�

nx

nx;y

�
= lg

��
1

nx;1! nx;2! : : : nx;t x !

�
(nx !)tx

(nx � nx;1)! (nx � nx;2)! : : : (nx � nx;t x)!

�

� lg
�

1
nx;1! nx;2! : : : nx;t x !

(nx)(nx)
�

= lg
�

1
nx;1! nx;2! : : : nx;t x !

�
+ nx lg nx

Since lg
� nx

nx; 1 ;n x; 2 ;:::;n x;t x

�
= lg

�
nx !

nx; 1 ! nx; 2 ! :::nx;t x !

�
and lg nx ! � nx lg nx � nx lg e +

1=2lg nx + 1=12n lg e + lg
p

2� by Stirling's inequality [Fel68], the claim is proved.

33

The additional term of O(nx) in Equation (2.17) is tight in several cases;for example,

when tx = nx > 2 and each nx;y = 1.

The apparent paradox implied by Equation (2.17) can be resolved by realizing

that each subsetencoding only represents the entries of oneparticular sublist; that is,

there is a separatesubsetencoding for each symbol y in context x. In the multinomial

coe�cien t of Equations (2.9) and (2.17), all the sublists are encoded together as

a multiset. Thus, it is more expensive to have a subset encoding of each sublist

individually rather than having a singleencoding for the entire context. In Lemma4,

the O(nx) additional bits account for the extra cost incurred by encoding, for each

sublist hx; yi , not only the positions of wx where y appears, but also the positions

where it does not appear. When summedover all n entries in all sublists and all

contexts, this term givesan O(n) contribution to the total spacebound.

To avoid this excessencoding cost, we perform a scaling of the universe.For con-

text x, we apply the scalingof the universeasfollows. When we encode sublist hx; yi ,

we only encode its positions in terms of positions not used by sublists hx; y0i for

1 � y0 < y. (These positions are those corresponding to the remaining 0s in the

resulting bitvector.) In this way, we iterate the scalingto the sublists:

1. We represent sublist hx; 1i using nx;1-subsetencoding in a universeof sizenx ,

using dlg
� nx

nx; 1

�
e bits.

2. For y = 2; 3; : : : ; tx , we represent sublist hx; yi using nx;y -subsetencoding in a

scaleduniverseof sizen0 = nx �
P y� 1

y0=1 nx;y 0
, with dlg

� n0

nx;y

�
e bits.

Wegivean exampleusingTable2.5for context x = i . Here,sublist hx; mi contains

the third position in the interval [1; 4] = f 1; 2; 3; 4g; the correspondingbitvector 0010

is encodedin dlg
� 4

1

�
ebits. When weencodesublist hx; pi , weonly encodeits positions

in terms of positions not used by sublist hx; mi . In other words, we are encoding

which of the remaining positions f 1; 2; 4g (corresponding to the 0s in the bitvector

34

for sublist hx; mi) contain the symbol p. In this case,entry 4 in sublist hx; pi sublist

corresponds to the third remaining position in f 1; 2; 4g (out of three items in the

scaleduniverse). The resulting bitvector 001, is encoded in dlg
� 3

1

�
e bits. The only

remaining positions now are f 1; 2g, corresponding to the two remaining 0s in the

scaleduniverse. To encode sublist hx; si , we only encode those positions not used

by sublists hx; mi and hx; pi . Sublist hx; si contains the remaining available positions

and we implicitly encode the bitvector 11 encoded in dlg
� 2

2

�
e = 0 bits of space.The

total number of bits for context x is dlg
� 4

1

�
e + dlg

� 3
1

�
e + dlg

� 2
2

�
e < lg

� 4
1;1;2

�
+ 3 as

required.

To recover the 2nd position in the hi ; si sublist, we have to �nd the position j of

the 2nd non-position in the the hi ; pi sublist (i.e. the position j of the 2nd 0 in its

corresponding bitvector). For this example,we can seethat j = 2. Then we have to

�nd the position of the 2nd non-position in the hi ; mi sublist, and so on, cascading

the query until an answer is reached. Finding the right position in the bitvectorsuses

a rank or select query (which we usemore when we discusstext indexing).

Note that the last sublist, hx; tx i , is encoded using dlg
� nx;t x

nx;t x

�
e = 0 bits. We

introducethe notion of depth of a context x, which measuresthe maximum number

of sublists in context x that must be examinedto recover the entries of any sublist

of x. As we shall seelater, the depth is related to decompressiontime; in the above

scheme,the depth is tx . The lemma below capturesthe time and spacerequired for

our incremental representation scheme.

Lemma 5 (Incremen tal Represen tation of Sublists). Using the incremental

representation of sublists by scaling the universe, we can encode the t x nonempty

sublistsfor each context x in fewer than lg
� nx

nx; 1 ;n x; 2 ;:::;n x;�

�
+ tx bits, so that the depth

is tx .

Proof. Weshow that the information theoretically minimum spacerequiredto encode

35

all sublists in context x is

�
lg

�
nx

nx;1

� �
+

�
lg

�
nx � nx;1

nx;2

��
+

�
lg

�
nx � nx;1 � nx;2

nx;3

� �
+ � � � +

�
lg

�
nx;t x

nx;t x

��

< lg
� �

nx

nx;1

��
nx � nx;1

nx;2

��
nx � nx;1 � nx;2

nx;3

�
� � �

�
nx;t x

nx;t x

��
+ tx

= lg
�

nx !
nx;1! nx;2! � � � nx;t x !

�
+ tx = lg

�
nx

nx;1; nx;2; : : : ; nx;t x

�
+ tx :

Wecanreplacetx by � in the multinomial coe�cien t of the above formula because

the empty sublists do not contribute. The depth of the above approach is sequential

in terms of tx , the number of nonempty sublists within x. Thus, the depth is tx ,

sincewe potentially have to backtrack through each nonempty sublist to recover the

entries of the last sublist in the context.

p s

i m

 ipssm#pissii

 psspss

 pss#pss imiii

100010010011

0001000 01000

011011

Figure 2.1: An examplewavelet tree.

2.4.3 The Wavelet Tree

As we saw in Section 2.4.2, the linear representation of sublists in Lemma 5 for

context x may requiresup to tx querieson nonempty sublists to decode an answer.

We insteadprovide the wavelettree data structure, which is of independent interest,

that reducesthe number of querieson nonempty contexts to just lg tx � lg � . A

36

wavelet tree is a binary tree structure that reducesthe compressionof a string from

alphabet � to the compressionof � binary strings. We now describe the wavelet tree

data structure for any string T of length n drawn from an alphabet �.

Our wavelet tree data structure is a completebinary tree with � leaves, one for

each symbol appearingin T. For each internal nodeu of this binary tree, we associate

two vectorsof the samelength: a text vector Tu composedof symbols drawn from �,

and bitvector Bu. At the root node r , Tr and B r are both of length n. At the root,

we set Tr = T. Let � L be the lexicographicallysmallestd� =2e symbols present in T,

and � R be the lexicographically largest b� =2c symbols present in T. Then, we set

B r [i] = 0, if Tr [i] 2 � L , and B r [i] = 1 otherwise.

We recursethis processon the n0 positionscontaining a symbol in � L for the left

subtreeof r , and on the n1 positionscontaining a symbol in � R for the right subtree

of r . The text vector for left child r l is the concatenationof the symbols j such that

B r [j] = 0. The right child is processedsimilarly. The wavelet tree data structure

only storesBu for each node; it storesit in somecompressedform, such as t-subset

encoding (described in Section2.4.1).

To explain our wavelet tree data structure moreclearly, we will refer to the exam-

ple in Figure 2.1, built on the bwt of the string mississippi# . Here, each internal

node u consistsof the two vectors Tu and Bu. (We have drawn the leaves here for

clarity, though they are not neededin the wavelet tree.) Supposewe wanted to know

which symbol appearsin text position 9 (which is an s in this example).`We observe

that B r [9] = 0, which tells us that the correct symbol is contained in � L = f p; s; #g.

Furthermore, since the 9th position of B r is the sixth 0, we know that our answer

correspondsto the 6th position on the left child c1. (Computing this information re-

quiresa rank query, which we will describe in detail in Section2.7.2,when we want

fast access.For now, we explicitly compute it using t-subsetsor a quasi-arithmetic

coder in a brute-forceway, asdescribed in Section2.4.1.) We proceedto search in the

37

6th position. Bc1 [6] = 0 which meansthe correct symbol is contained in � L = f p; sg,

so we again go to the left subchild c2, searching for the 5th position there. Here,we

�nd that Bc2 [5] = 1, which leadsus to the leaf representing s, which we return as

the answer.

The key observation is to note that each of the tx � 1 internal nodesrepresents

elements relative to its subtrees. Rather than the linear relative encoding of sub-

lists we had in Section 2.4.2, we use a tree structure to reducethe dependencyon

previously encoded information. In particular, to decode any particular sublist in a

wavelet tree, a query would only needto accessO(lg tx) internal nodesin a balanced

wavelet tree. In somesense,the earlier approach correspondsto a completelyskewed

wavelet tree, as opposedto the balancedstructure now. Recovering the entries of

any sublist hx; yi proceedsexactly as in Section2.4.2,except that we start from the

leaf corresponding to sublist hx; yi and examineonly the subsetsin its ancestors.

Figure 2.2: A wavelet tree for context i in our example.

Interestingly, any shape of the wavelet tree givesthe sameupper boundson space;

the only aspect that changesfrom an altered shape is the number of queriesrequired.

We give a short examplefor context i on our continuing examplein Figure 2.2. We

group sublistshi ; mi and hi ; pi together, thus obtaining positionsh3; 4i for them. For

this grouping, the corresponding bitvector would be 1100, represented with dlg
� 4

2

�
e

38

bits. Then, the hi ; si list would be represented asbefore,with dlg
� 2

2

�
e bits. We need

a further subsetencoding to distinguish between hi ; mi and hi ; pi , but on a scaled

universewith bitvectors01 and 1, respectively, using dlg
� 2

1

�
e and dlg

� 1
1

�
e bits. The

total spaceis still boundedasbefore,namely, dlg
� 4

2

�
e+ dlg

� 2
2

�
e+ dlg

� 2
1

�
e+ dlg

� 1
1

�
e <

lg
� 4

1;1;2

�
+ 3, sincethe terms of the form dlg

� k
k

�
e = 0 do not contribute. With this

intuition �rmly in mind, we now detail the generallemma and its proof.

Lemma 6 (W avelet Tree Compression). Supposewe know the valuesof nx and

nx;1; nx;2; : : : ; nx;� . Using a wavelet tree for each context x, we can encode the tx

nonemptysublistsfor context x in fewer than lg
� nx

nx; 1 ;n x; 2;:::;n x;�

�
+ tx bits, so that the

depth is O(lg tx).

Proof. We analyze the spacerequired in terms of the contribution of each internal

node'st-subsetencoding. We prove that this cost is the logarithm of the multinomial

coe�cien t in Equation (2.9) for the high-order empirical entropy.7 Note that the

leaves of the wavelet tree do not contribute to the cost since they generateterms

of the form dlg
� nx;y

nx;y

�
e = 0 in the calculations for the number of required bits. By

induction, it is simple to verify that the spacerequired amongall the tx � 1 internal

7In somesense,we are calculating the spacerequirements for each sublist hx; yi , propagated over

the entire tree. For instance, in the example above, hx; yi is implicitly stored in each node of

its root-to-leaf path. We could analyze it this way and show that the two notions are the same,

though we defer the argument in the interest of brevity.

39

nodesis

lg
�

nx;1 + nx;2

nx;2

�
+ lg

�
nx;3 + nx;4

nx;4

�
+ � � � + lg

�
nx;t x � 1 + nx;t x

nx;t x

�

+ lg
�

nx;1 + � � � + nx;4

nx;3 + nx;4

�
+ lg

�
nx;5 + � � � + nx;8

nx;7 + nx;8

�
+ � � � + lg

�
nx;t x � 3 + � � � + nx;t x

nx;t x � 1 + nx;t x

�

...

+ lg
�

nx;1 + � � � + nx;t x

nx;1 + � � � + nx;t x =2

�
= lg

�
nx

nx;1; nx;2; : : : ; nx;t x

�

= lg
�

nx

nx;1; nx;2; : : : ; nx;�

�
:

Hence, each wavelet tree encodes a particular context in precisely the high-order

empirical entropy, which is what we wanted in Equation (2.9). As in the proof of

Lemma5, the rounding dueto the ceilingsaddsfurther tx bits to the abovebound.

Lemma 6 is a key result for many applications, such as text indexing and range

searching. One of its more subtle contributions is in achieving a near-optimal 0th-

order compressorusing a seriesof optimally-stored succinct dictionaries. The con-

nectionbetweenthesetwo conceptsis a recurring themein state-of-the-art bwt com-

pression. The wavelet tree servesas a natural way to expressthe 0th-order entropy

of a string with alphabet � using several strings with a binary alphabet.

The advantage of using the wavelet tree for text indexing will be clear in the rest

of the chapter, wherewe usethe � function described in Section2.3.1. In Section2.7,

wewill replacethe t-subsetencodingswith fully indexabledictionaries[RRR02] inside

the nodesof the wavelet tree. We will exploit its organization for compressedtext

indexing, as we detail in Sections2.8 and 2.9.

One problem with our current implementation of the wavelet tree is its use of

subsetencoding usingt-subsetsor quasi-arithmeticcoders,requiring O(n) operations.

To solve this problem, we introduce our subset encoder in Section 2.4.4, which is

a data structure of independent interest. It will replace the subset encodings the

wavelet tree, without adding any additional space.

40

2.4.4 Subset Enco ding With Small In tegers

In this section,we describe a technique for subsetencoding, storing a set S of t items

out of a universeof sizen such that it canbeencodedor decodedusingO(t) operations

on small integers. This goal is an improvement over Lemma 3, which requiresO(n)

such operations. We assumethat each of the n elements of the universe appears

equally likely as an element of the set S. This assumptionis not a debilitating one;

in fact, the sublists that we store in the previoussectionsusethe sameassumption.

As we described in Section2.4, we can think of a t-subsetas a succinct way to store

an implicit bitvector. We could encode this bitvector using arithmetic (or quasi-

arithmetic) coding using Lemma 1, but encoding/decoding would still require O(n)

operations.

Another approach is to encode the gapsbetweenthe items s1; s2; : : : ; st that ap-

pear in the set S. (The i th gap is formally si � si � 1, wheres0 = 1.) To encode the

items, we associate a probability distribution for the di�erent gapvalues,and encode

each gap accordingto its probability using any of a number of techniques(say, for

instance,the quasi-arithmetic coder from [HV94]). Using this method, the items are

decoded sequentially using O(t) operationson small integersof sizeO(lg n) bits.

The gapsareencodedsequentially . For this section,werede�ne t to bethe number

of items left to encodeout of a remaininguniverseof sizen. In other words, the values

of n and t will scaleas we sequentially encode gaps. (As described in [Vit84], this

scalingde�nition of n and t will not be a problem.) Let X be the random variable

that determinesthe length of the next gap value to be encoded. Note that the range

of X is the set of integersin the interval 1 � x � n � t. We will restrict gapsto a

length at most n=t and aggregatethe probabilities of larger gapsinto a singleescape

gap. If we needto encode an escape gap of length g > n=t, we reset n = n � g � 1

and continue processing.Hence,the rangefor X is 1 � x � n=t.

41

One approach is to encode the gap X using the exact discreteprobabilities f (x).

The probability distribution function (pdf) for f (x) is

f (x) =

8
<

:

� 1
t
n

(n� x� 1)t � 1

(n� 1)t � 1 if 1 � x < n=t;

� 2
(n� n=t � 2)t

n t if x = n=t,

where we usethe notation ab to denote the falling power a(a � 1) : : : (a � b+ 1) =

a!=(a� b)!. The constants � 1; � 2 are normalization factorssothat f (x) sumsup to 1.

The probability for x = n=t includes the sum of all probabilities for x > n=t. Both

the expected value and the standard deviation of X are roughly n=t, which is, as

expected, the averagegap length. We could usethis distribution to encode gapsin

the quasi-arithmeticcoder [HV94]; however, computing f (x) will require largeinteger

computations.

To avoid thesecomputations,we are willing to usea (continuous) approximation

of f (x) to encode the gaps,though they still are occur with probability f (x). Using

an approximate distribution will incur someadditional encoding overhead,which we

will analyzelater in this section. In particular, we will approximate f (x) with two

probability estimatesg1(x) and g2(x) from [Vit84] that are easyto compute using

built-in logarithm functions. In the rest of this section, we will assumethe use of

b-bit arithmetic, whereb is an appropriately largeconstant multiple of lg n, such that

exponential and logarithm functions are correct to b bits. Then, the absolute and

relative error of computing a constant number of such functions can be boundedby

O(1=nc) for someconstant c. Furthermore, the quasi-arithmetic coder we will use

requiresat most O(1=n) extra bits of storageper gap stored [HV94]. Thus, we focus

on the �nal sourceof error, the approximation itself.

Our technique will use a quasi-arithmetic coder that will encode each gap us-

ing g1(x) or g2(x) instead of f (x). To use these correctly, we need two further

properties from each approximation function:

42

� Given a gap x, we needto determinein O(1) time the endpoints of an interval

whoselength approximates f (x). To account for this goal, each of our approx-

imation functions will be continuous. Then, for a probability function g(x), we

can compute the endpoints G(x) and G(x � 1), where G(x) =
R

g(x) is the

cumulative distribution function.

� Each interval G(x) � G(x � 1) must be of length at least O(1=nc) for some

constant c, so that we can represent it using clg n bits.

The �rst property will be obvious for our choicesfor g(x); we will prove the second

property for each case.

Our two approximation functions areg1(x) and g2(x). Wewill useg1(x) to encode

gapswhen t �
p

n, and g2(x) to encode gapswhen t >
p

n. If t > n=2, we reverse

the role of 0s and 1s (i.e., encode gapsof 1s), set t = n � t, and proceedas above.

(Obviously, if t = 0, wedo not generateany moregaps.) Wewill usetheseprobability

estimatesin the quasi-arithmetic coder to encode the gaps,alternating betweeng1

and g2 and maintaining t as necessaryto operate within the above constraints. We

do not have to remember which estimate was usedto encode each item or when we

complemented the set S (which could take a lot of spaceto encode), sinceit can be

easily determinedduring the encoding or decoding process.

Finally, we must analyzehow many extra bits we will take to encode the gap X

using g1(x) or g2(x) rather than f (x). We de�ne g1(x) as

g1(x) =

8
<

:

� 1
t
n

�
1 � x

n

� t � 1
if 1 � x < n=t;

� 2e� 1 if x = n=t,

where � 1 and � 2 are normalization factors so that g1(x) sumsup to 1. The random

variable X 1 with probability density g1(x) has the beta distribution, scaledto the

universe[1::n] with parametersa = 1 and b = t. Notice that X 1 can be generated

43

quickly with only oneuniform or exponential random variable [Vit84]. We similarly

de�ne g2(x) as

g2(x) =

8
<

:

� 3

�
1 � t � 1

n� 1

� x
ln

�
1 � t � 1

n� 1

�
if 1 � x < n=t;

� 4e� 1 if x = n=t,

where � 3 and � 4 are normalization factors so that g2(x) sumsup to 1. The random

variable X 2 with probability density g2(x) has the exponential distribution. Here,

X 2 can be generatedquickly with only one uniform or exponential random vari-

able [Vit84].

We now show that the probability of any event is at least
(1 =nc), for some

constant c. This will allow us to use a quasi-arithmetic coder that makes use of a

word sizeof roughly clg n bits.

Lemma 7. The approximation functions g1(x) and g2(x) are at least
(1 =nc) for

any given gapx.

Proof. We show the result for g1(x) �rst; it su�ces to show the result for the case

when g1(x) is minimized, namely when x = n=t. We write

g1(n=t) =
t

(n � n=t)

�
1 �

1
t

� t

:

As t ! 1 , this becomes(1=(n � n=t))(1=e) = O(1=nc), which can be represented

using clg n bits of space.For smaller t, g1(n=t) is strictly larger than the limit, since

(1 � 1=t) < 1. (In the degeneratecasewheret = 1, we handle the caseseparately.)

A similar analysisapplies for g2(x) as well. It again su�ces to show the result

when g(x) is minimized; this happenswhen x = n=t. We write

g2(n=t) =
(1 � (t � 1)=(n � 1))n=t

ln(1 � (t � 1)=(n � 1))n=t
:

Since(n � 1)=(t � 1) � n=t, we can easilyseethat this caseis similar to the previous

case,thus proving the lemma.

44

Using a g1(x) and g2(x) that can be represented using only clg n bits, we can

encode and decode the set S using O(t) operations on small integers. To quickly

arrive at the endpoints within the unit interval corresponding to a particular gap x,

we can usethe cumulative distribution function for thesepdfs.

However, we still have the problem that we may spend additional bits to encode

each gap, sinceour probabilities are only estimatesfor the pdf f (x). We addressthis

point in the following lemma, and show that the worst-casedi�erence between the

encodings is quite small.

Lemma 8. Supposeeach of the t items of subsetS is drawn from [1::n]. The extra

bits needed to encode all gapsusing the probability estimatesg1 whent �
p

n and g2

whent >
p

n instead of f , is at most O(1) bits using an arithmetic coder.

Proof. We look at the worst casewherewe encode a gapX = x usingthe probability

estimateg1(x) or g2(x) rather than f (x). First, we look at the scenariofor g1(x). The

extra bits neededto encode any gapusingg1(x) is j lg(f (x)) � lg(G1(x) � G1(x � 1))j.

Sinceg1(x) is a decreasingfunction, we can upper-bound the secondlg-term with

g1(x � 1) and lower bound it by g1(x). We will now show both bounds, thus giving

us the result we want. For the upper bound, we write

lg(f (x)=g1(x � 1)) � lg
�

n � x � 1
(n � 1)(1 � (x � 1)=n)

� t � 1

= lg
�

1 +
1 � n � x

n2 � xn + x � 1

� t � 1

:

Let y = (1 � n � x)=(n2 � xn + x � 1). Since0 � y < 1, we can seethat the extra

bits we require are lg(f (x)=g1(x)) < (t � 1)(lg e)[y � y2=2], sinceln(1 + y) < y � y2=2

for all jyj < 1. The worst-caseratio of f (x)=g1(x) occurswhenx = n=t. Substituting

and using simple algebra, we seethat we needan additional O(t=n) bits per item,

or O(t2=n) bits for all t items. (For the special casewheret = 1, we encode it using

45

O(1) extra bits, but this happens only once.) We use g1(x) when t �
p

n, so this

contributes at most O(1) bits for all t gaps.

Now we lower bound the extra bits neededto encode any gap using g1(x). We

write

lg(f (x)=g1(x)) � lg
�

n � x � t + 1
(n � t + 1)(1 � x=n)

� t � 1

= lg
�

1 +
x(t � 1)

n2 + n � nx � nt + x � tx

� t � 1

:

The worst-caseratio of f (x)=g2(x) occurs when x = n=t. Substituting and using

simple algebra,we require at most O(t=n) extra bits per item. We only useg1 when

t �
p

n, so this contributes at most O(1) bits for all t gaps.

A similar separation and analysis also applies to the overhead for g2(x), thus

proving the lemma.

Putting theseresultstogether,wearriveat the following theorem,which describes

our subset-encoding scheme.

Theorem 3 (Subset Enco ding With Small In tegers). Suppose each of the t

items of subsetS is drawn from the universe [1::n], where we already know t and

n (and do not need to encode them). Then, there exists an encoding of subsetS

that requires lg
� n

t

�
+ O(1) bits of space and can be encoded or decoded using O(t)

operations on small integers.

2.5 Enco ding the Empirical Statistical Mo del

In this section, we will provide an analysisof the encoding length of the empirical

statistical model, thus �nishing the proof of Theorem2. Our schemewasdivided into

two components: the encoding of a seriesof small disjoint subtexts (or sublists), one

for each context x, and the encoding of the length of each subtext, together with the

46

statistics of each subtext. We did not analyzethe cost requiredto storethis empirical

statistical information. We briey recapnow:

� For each context x, the storagefor step 2 usesfewer than lg
� nx

nx; 1 ;n x; 2;:::;n x;�

�
+ tx

bits by Lemma 1 and 6. We useEquation (2.9) and Theorem 1 to bound the

above term by nH 0
h + jP �

h j� for all contexts x 2 P �
h in the worst case. Since

jP �
h j � � h, we bound the spacerequired to store the bwt by nH h + � h+1 bits.

� To decode the succinct dictionaries in step 2, we need to know the number

of symbols of each type stored in each subtext (sublist) for context x. Col-

lectively, this information maintains the empirical statistical model that al-

low us to achieve hth order entropy with our scheme. We call its encoding

length M (T; � ; h) (in bits), and we are interestedin discovering just how suc-

cinctly this information canbestored. Thus, the storagefor step1 is M (T; � ; h)

bits.8

Our storageof the bwt requiresnH h + � h+1 + M (T; � ; h) bits, and bounding the

quantit y M (T; � ; h) may help in understandingthe compressiblenature of the bwt .

We will devote the rest of this section to developing two bounds for the storageof

empirical statistical model. Onebene�t of pursuing boundsin this framework is that

it simpli�es the burden of analysis: namely, it translates the overheadcostsof the

bwt into the cost for encoding the integer lengths nx;y .

2.5.1 De�nitions and a Simple Bound

In this section, we describe a simple encoding for the empirical statistical model,

which takesM (T; � ; h) bits to encode. Recall from De�nition 1 in Section2.2.1that

the empirical statistical model encodes two items: the partition of � h induced by

the optimal pre�x cover P �
h , and the sequenceof lengths nx;y of the sublists. The

8In this section, we will show that M (T; � ; h) � � h+1 .

47

partition is easily stored using a bitvector of length � h (or a subsetencoding of the

partition using
�
lg

� � h

jP �
h j

��
� � h bits). To storethe sequenceof lengthsnx;y , we simply

store the concatenationthe gammacodesfor each length nx;y and bound its length.

We briey reviewElias' gammaand delta codes[Eli75] beforedetailing the proof.

The gamma code for a positive integer ` represents ` in two parts: the �rst en-

codes 1 + blg `c in unary, followed by the value of ` � 2blg `c encoded in binary, for

a total of 1 + 2blg `c bits. For example, the gamma codes for ` = 1; 2; 3; 4; 5; : : :

are 1; 01 0; 01 1; 001 00; 001 01; : : :, respectively. The delta code requiresfewer bits

asymptotically by encoding 1+ blg `c via the gammacode rather than in unary. For

example,the delta codesfor ` = 1; 2; 3; 4; 5; : : : are1; 010 0; 010 1; 011 00; 011 01; : : :,

and require 1 + blg `c + 2blg lg 2`c bits. Now, we describe a simple upper bound on

encoding the empirical statistical model.

Lemma 9. The empirical statistical model for a text T drawn from an alphabet � can

be encoded using at most M (T; � ; h) = O
�
� h+1 lg(1 + n=� h+1)

�
bits of space, where

h is the context length.

Proof. In this encoding, we represent the lengths using the gamma code. We ob-

tain a bitvector Z by concatenating the gamma codes for nx;1; nx;2; : : : ; nx;� for

x = 1; 2; : : : ; jP �
h j. The bitvector Z contains O(

P
x2 P �

h ;y2 � lg nx;y) bits; this space

is maximized when all lengths nx;y are equal to �(n=(jP �
h j � �) + 1) by Jensen'sin-

equality [CT91]. SincejP �
h j � � h, we bound the total spaceby O

�
(jP �

h j � �) lg
�
1 +

n=(jP �
h j � �)

��
= O

�
� h+1 lg(1 + n=� h+1)

�
bits. We do not needto encode n as it can

be recovered from the sum of the sublists lengths.

The result of Lemma9 is interesting, but it carriesa dependenceon n, unlike the

bounds in related work, which are related only to � and h [FGMS05]. In the next

section, we show an alternate analysis that remediesthis problem and relates the

encoding coststo the modi�ed entropy nH �
h , as de�ned in Section2.2.1.

48

2.5.2 Nearly Tigh t Upp er Bound on M (T; � ; h)

In this section, we describe a nearly tight upper bound for encoding the empirical

statistical model. As we described in Section2.5.1,we can easily store the partition

of � h induced by the optimal pre�x cover P �
h using at most � h bits. We provide a

new analysisfor storing the sequenceof lengths nx;y in Theorem4.

Theorem 4. The empirical statistical model for a text T drawn from an alphabet �

requires at most M (T; � ; h) � nH �
h + lg n + O

�
� h+1 lg � h+1

�
bits of space.

The resultsof Theorem4 highlight a remarkableproperty of the Burrows-Wheeler

Transform, namely that maintaining the statistics of the text requiresmore space

than the actual encoding of the information.

To prove Theorem 4, we have to encode the sublist lengths nx;1; nx;2; : : : ; nx;� ,

where x = 1; 2; : : : ; jP �
h j and

P
x2 P �

h ;y2 � nx;y = n. We use the following encoding

schemefor each context x:

� If context x contains a single nonempty sublist y, we use � bits to mark the

yth sublist asnonempty. Then, we store the length nx;y = nx .

� If context x contains two or more nonempty sublists, we again use � bits to

mark the nonempty sublists. To describe the rest of the method, let n0
1 = nx

and n0
j = nx �

P j � 1
i =1 nx;i be a scaleduniversewhere j � 2. We use� bits for

context x, onebit per sublist. The bit for sublist y is 1 if and only if nx;y > n0
y=2;

in this case,we set ty = n0
y � nx;y . Otherwise,we set the bit for sublist y to 0

and set ty = nx;y . Notice that ty � n0
y=2 in both cases.Now, we encode t using

its delta code. Given n0
y and ty, we can recover the value of nx;y as expected.

Lemma 10. We can encode the sublist lengthsnx;1; nx;2; : : : ; nx;� for any context x

with two or more nonempty sublists using at most nxH �
0 (wx) + O(�) bits, where

0 < < 1=2 is a constant.

49

Proof. Our schemerequires2� bits to storeauxiliary information. Now we bound the

total sizeof encoding the valuest1; t2; : : : ; t � using the delta code for each nonempty

sublist. Our approach is to amortize the cost of writing the delta code of ty with the

encoding of its associated sublist y. We introduce someterminology to clarify the

proof. For any arbitrarily �xed constant with 0 < < 1=2, let t > 0 be constants

such that for any integer t > t , lg t + 2lg lg(2t) + 1 < (2t � lg t � 1).

Then, for nonempty sublists y with ty � t , the delta code for ty will take

O(lg t) = O(1) bits of space. Summing thesecosts for all such sublists, we would

require at most O(� lg t) = O(�) bits for context x.

For nonempty sublists y with ty > t , we use at most (2ty � lg ty � 1) bits to

write the delta code of ty using the observation above.

Now, we will usethe fact that ty � n0
y=2 for each sublist y in our schemeto bound

the encoding length of sublist y, and then amortize accordingly. In general,for any

1 < t < n=2, lg
� n

t

�
� lg

� 2t
t

�
� lg(22t=2t) = 2t � lg t � 1. Sinceeach sublist y with

ty > t satis�es this condition by the construction of our scheme,we can bound the

delta code of ty by lg
� n0

y
ty

�
bits. Summing over all such sublists for context x, we

would requireat most lg
� nx

nx; 1 ;n x; 2;:::;n x;�

�
+ � = nxH �

0 (wx) + � bits usingthe analysis

from Section2.4.2, thus proving the lemma.

The above scheme requires us to store the length nx of each context x, since

the sum of the ty valueswe store may be lessthan nx . (For the casewith a single

nonempty context, nx is the sizeof the only sublist.) For example,supposefor some

context x, nx = 20, nx;1 = 11, nx;2 = 3, nx;3 = 5, nx;4 = 1. According to our scheme,

we would store the ty values9, 3, 1, and 1, which sum up to 14 < 20. To determine

the value of nx;1, we must therefore compute nx � t; thus, we must know the value

of nx .

The storageof nx is a subtle but important point, and it is a key component in

50

understanding the lower bound on encoding length for the bwt , which we discuss

more in Section2.6. In Lemma 11, we describe a technique to store the sequenceof

lengths nx for x = 1; 2; : : : ; jP �
h j succinctly.

Lemma 11. The sequence of lengthsnx for x = 1; 2; : : : ; jP �
h j can be stored using

X

x2 P �
h

lg nx + lg n + O(� h+1 lg � h+1)

bits of space.

Proof. For each context x with nx entries, we encode its length nx in binary using

b(x) = blg nxc+ 1 bits. Theseb(x) bits do not permit a decoding of nx by themselves,

sincethey are not pre�x codes. We describe how to �x this problem. We permute

the contexts x so that they are sorted by their b(x) values. Now, contexts requiring

the samenumber of bits b(x) to store their lengths are contiguous. In other words,

we know that for any two consecutive contexts x and x0 in the sorted order, either

b(x) = b(x0) or b(x) < b(x0). What remains is the storageof the positions where

b(x) < b(x0). We store this information using jP �
h j bits.

To remember which lengths b(x) actually occur, we observe that the number of

distinct lengths is at most lg n + 1, since1 � b(x) � lg n + 1. We store a bitvector of

length lg n+ 1 bits to keeptrack of this information. Finally, westorethe permutation

to restorethe original order of the contexts using O(lg jP �
h j!) = O(� h+1 lg � h+1) bits,

thus proving the lemma.

The above lemma allows us to store the length of each context x in lg nx bits,

plus somesmall additional costs. We can bound the spaceof our encoding scheme

with the following lemma.

Lemma 12. The empirical statistical model for a text T drawn from alphabet �

requires at most (1 +)nH �
h + lg n + O(� h+1 lg � h+1) for all contexts x, where 0 <

 < 1=2 is a constant.

51

Proof. Usingthe de�nition of modi�ed hth-order empirical entropy in Equation (2.7),

we bound the �rst term in Lemma 11 by
P

x2 P �
h

lg nx � nH �
h . According to our

scheme,storing the length nx along with � bits is su�cien t to encode any context x

with a singlenonempty sublist. For the remaining contexts, we apply Lemma 10 to

achieve the desiredresult.

We canfurther improve our bound by amortizing the costof storing the length nx

for context x with the encoding of its sublists. The technique is reminiscent of the

onewe usedin Lemma 10. We changeour encoding schemeas follows.

� If context x contains a single nonempty sublist y, we use � bits to mark the

yth sublist asnonempty. Then, we store the length nx;y = nx .

� If context x contains two or more nonempty sublists, we usethe schemebelow.

� Let t be de�ned as in Lemma 10. For any arbitrarily �xed constant with

0 < < 1=2, let n > 0 be a constant such that for any integer n > n and

t > t with t � n=2,
� n

t

�
� n(n� 1):::(n�d 1= e)

(d1= e+1)! > nd1= e.

� Instead of encoding nx;1 as the �rst sublist length for context x, we use� bits

to indicate that we encode nx;y b �rst, wheretb = minf nx;y b; nx � nx;y bg satis�es

the condition
� nx

tb

�
> (nx) � 1

. If no such yb exists,encode nx;1 as before.

Lemma 13. We can encode the sublist lengthsnx;1; nx;2; : : : ; nx;� alongwith the con-

text length nx for any context x with two or more nonempty sublistsusing at most

nxH �
0 (wx) + O(�) bits.

Proof. The cost for encoding the sublist lengths is analyzedusing Lemma 10. We

focus on bounding the cost for lg nx . If any sublist yb satis�es the constraint in our

scheme,weknow that lg nx < lg
� nx

tb

�
, which is the sameupper boundon the number

of bits required to encode tb. Thus, encoding both nx;y b and nx will take 2 lg
� nx

tb

�
+

O(�) bits of space. The encoding sizefor the rest of the new sequenceremains the

52

sameas we observed in Section2.4.2, thus we require at most 2 nxH �
0 (wx) + O(�)

bits. Since < 1=2, this shows the bound for contexts x that satisfy the constraint.

If no sublist satis�ed the constraint, then we know that each t i � t (1 � i � �)

so the delta code for each t i takes O(lg t) = O(1) bits, which take at most O(�)

bits overall. Then, the lg nx bits for encoding nx can be boundedby nxH �
0 (wx) as in

Lemma 12, sincenxH �
0 (wx) � lg nx . This casewill contribute at most nxH �

0 (wx) +

O(�) bits to the bound, thus proving the bound.

Combining Lemma 13 with our scheme for encoding the singleton context, we

prove Theorem4.

2.6 Nearly Tigh t Lower Bounds for the BWT

Manzini conjecturesthat the bwt cannot be compressedto just nH �
h + lg n + gh bits

of space,wheregh = O(� h+1 lg �). However, in Section2.5.2,we provide an analysis

that givesan upper bound of n(Hh + H �
h) + lg n+ g00

h bits, whereg00
h = O(� h+1 lg � h+1).

Sincethere are an in�nite number of texts wherenH h = 0 but nH �
h 6= 0, our bound

is nH h + M (T; � ; h) � nH �
h + lg n+ g00

h in thesecases,matching Manzini's conjectured

lower bound (but not for all texts).

The bwt has beenanalyzedextensively since its original introduction in 1994,

especially in the information-theory community [Ris84, WMF94, EVKV02]. These

results apply to a wide rangeof statistical models for generatinga text T, including

high-order Markov sources,tree sources,and �nite-state machine (FSM) sources.In

a text indexing setting, recent theoretical results [Man01, FGMS05, KLV06] have

shedlight on the successof the bwt and present somelimits on its compressibility.

Within the text indexing framework, we will exploreother classesof texts that help

establisha non-trivial lower bound on the compressibility of the bwt . Surprisingly,

53

the encoding of the bwt requiresan amount of spacevery closeto our encoding length

for the upper bound. In particular, we will prove the following theorem,which shows

that our upper bound analysisis nearly tight.

Theorem 5. For any chosenpositive constant � � 1 and �xed positive integer k =

O(polylg(n)) > d1=�e, there existsan in�nite family of textssuchthat for any textsof

lengthn in the family, its bound in Formula (1.1) satis�es the following two relations:

nH �
h +

�
k � 1

k

�
� nH h � O(poly(kd)) � nH h + M (T; � ; h) (2.18)

and

nH h + M (T; � ; h) � nH �
h + � nH h + lg n + g00

h : (2.19)

When � > 1, we use Formula (2.1) as the upper bound for (2.19). To prove

Inequality (2.19), wegivea tighter analysisof the space-intensive part of the encoding

schemefrom Section2.5. To capturethe primary challengefrom Section2.5,wede�ne

a � -resilient text. Let bwt (T) denotethe result of applying the bwt to the text T.

For any given constant � such that 0 < � � 1, the text T is � -resilient if the optimal

partition induced by P �
h for bwt (T) satis�es maxy2 � f nx;y g � nx � d1=�e for every

context x 2 P �
h . In other words, no partition x of bwt (T) induced by P �

h contains

more than nx � d1=�e identical symbols. We de�ne d = d1=�e. Now, we apply

Theorem4 to � -resilient texts and achieve the following lemma.

Lemma 14. For any constant � with 0 < � � 1 and any � -resilient text T of n

symbols over � , we havenH h + M (T; � ; h) � n(� Hh + H �
h) + lg n + g00

h .

Proof. Let � = 2 , where is chosenas in Section2.5.2. In the proof of Theorem4,

all casescontribute at most � nH �
h bits to the bound, except for the last casein

Lemma 13. In this case,for context x, ty � t = O(1) for all sublists y. SinceT

is � -resilient, the largest sublist y0 in context x contains nx;y 0
� nx � d1=�e entries,

54

while the other O(1) sublists consistof d1=�e �
P

y6= y0 nx;y � t � = O(1) entries. The

sublist encoding for context x requireslg
� nx

nx; 1 ;n x; 2 ;:::;n x;�

�
� d1=�elg nx + O(1) bits. To

encode the empirical statistical model, we write the value of nx in lg nx bits using

Lemma 11 and the valuesof nx;y for y 6= y0 in O(1) bits overall (just like we did in

Theorem 4). Hence,the contribution of encoding this information for M (T; � ; h) is

lg nx + O(1) � � lg
� nx

nx; 1 ;n x; 2 ;:::;n x;�

�
+ O(1) bits. SinceH �

h � Hh (Section 2.2) and the

rest of the proof is identical to the proof of Theorem4, our lemma is proved.

To prove our lower bound Inequality (2.18) from Theorem5, we take the following

steps.

� We describe a construction schemethat takesuser-de�nedparametersand cre-

atesa � -resilient text T of length n.

� We count the total number of � -resilient texts that our construction scheme

generates,and use a combinatorial argument to bound the spacerequired to

distinguish betweenthesetexts.

� To achieve an entropy bound, we take an arbitrary � -resilient text T and show

that Inequality (2.18) holds.

2.6.1 Constructing � -resilien t Texts

In this section, we describe how to construct � -resilient texts using a generalized

construction scheme;then, we will usethe resulting classof texts to prove Inequal-

it y (2.18) of Theorem5. First, we de�ne someterminology that will help clarify the

discussion. Let d = d1=�e, where 0 < � � 1 is a constant. Let Ts be a support

text composedof an alphabet � = f a1; a2; : : : ; ak ; b; c1; c2; : : : ; ck ; #g of length ns,

where k = O(polylg(n)) > d is a �xed positive integer. Without lossof generality,

55

we assumethat ai < ai +1 < b < cj < cj +1 < # for all i and j . We de�ne Ts as

Ts = (a1c1)`1

| {z }
r 1

(a2c2)`2

| {z }
r 2

: : : (akck)`k

| {z }
r k

;

where each ` i � d. We de�ne a run r i as the sequenceof ` i substrings of the

form ai b� ci . In Ts, b never appears. The length of the support text Ts is ns =

2
P k

i=1 ` i . Consider the support text Ts = a1c1a1c1a2c2a2c2a2c2a3c3a3c3a3c3a3c3.

Here,k = 3, `1 = 2, `2 = 3, and `3 = 4. We now prove the following lemma.

Lemma 15. The Burrows-Wheeler transform of the support text Ts is bwt (Ts) is

bwt (Ts) =

B 1z }| {
ck(c1)`1 � 1

| {z }
P1

c1(c2)`2 � 1

| {z }
P2

: : : ck� 1(ck)`k � 1

| {z }
Pk

B 2z }| {
(a1)`1

| {z }
Q1

(a2)`2

| {z }
Q2

: : : (ak)`k

| {z }
Qk

;

where B1 = P1P2 : : : Pk is the �rst block of the bwt transform, and B2 = Q1Q2 : : : Qk

is the second block. Here, Pi refers to the positions of the bwt corresponding to

strings that start with symbol ai , and Qi refersto positions of the bwt corresponding

to strings that start with symbol ci .

Proof. Consider the strings in the bwt matrix M , sorted in lexicographicalorder.

According to the rank of symbols in alphabet �, all strings beginning with ai will

precedestrings beforeai +1 . Similarly, strings beginning with ci will precedestrings

beginningwith ci +1 . Finally, all strings beginningwith ai will precedestrings begin-

ning with c1. Also, there are exactly ` i strings that begin with ai and ci . We now

focuson the strings that begin with ci .

Each string beginning with ci has the symbol ai precedingit (or equivalently, at

the endof the string) in all cases.Thus, the part of the bwt corresponding to strings

beginningwith ci is (ai)` i . Collectively, we call this block B2.

Each string beginningwith ai hasthe symbol ci precedingit (or at the end of the

string, sinceit's cyclic), exceptthe string corresponding to the �rst ai in run r i . This

56

string is lexicographically the �rst string amongall of the strings beginning with ai

and is precededby ci � 1 or ck if i = 1. Thus, the part of the bwt corresponding to

stringsbeginningwith ai is ci � 1(ci)` i � 1. If i = 1, ci � 1 is replacedwith ck . Collectively,

we call this block B1.

Thus, the lemma is proved.

For our example support string Ts = a1c1a1c1a2c2a2c2a2c2a3c3a3c3a3c3a3c3, the

resulting bwt is bwt (Ts) =
B 1z }| {

c3c1| {z }
P1

c1c2c2| {z }
P2

c2c3c3c3| {z }
P3

B 2z }| {
a1a1| {z }

Q1

a2a2a2| {z }
Q2

a3a3a3a3| {z }
Q3

.

Now, we introduce d = d1=�e partition vectors vi = hvi [1]; vi [2]; : : : vi [k]i that

will generatea � -resilient property for B2; B1 remainsunchanged,but will implicitly

encode the length of the corresponding portions of B2. In particular, we augment Ts

as follows: for each entry of vi for all i , we replace the vi [j]th occurrenceof the

string aj cj with aj bcj . We will make d such replacements in each of the k partitions.

We call this augmented text T 0
s, of length n0

s = ns + dk.

Lemma 16. The Burrows-Wheeler transform of the augmented text T 0
s is bwt (T0

s)

is

bwt (T0
s) =

B 1z }| {
P0

1P
0
2 : : : P0

k

Az }| {
(a1)d(a2)d : : : (ak)d

B 2z }| {
Q0

1Q
0
2 : : : Q0

k ;

where P0
i is composed of symbols preceding strings that start with ai , A is composed of

symbols preceding strings that start with b, and Q0
i is composed of symbols preceding

strings that start with ci .

Proof. This proof is similar to Lemma 15, where each string in Pi precedesstrings

in Pi +1 . Here, all strings in P 0
i precedestrings in P 0

i+1 , strings in Q0
i precedestrings

in Q0
i+1 , and strings in P0

i precedestrings beginning with b (called A) and strings

in A precedestrings in Q0
1.

Then, P0
i is a string of length ` i similar to Pi , but the singleoccurrenceof ci � 1 (or

ck if i = 1) could be in any of the ` i positions. Also, Q0
i is a string of length ` i where

57

d positions contain the symbol b, and all others are ai . Block A consistsof exactly

d occurrencesof each ai sorted in lexicographicalorder, sinceall d strings beginning

with bci precedeall strings beginning with bci +1 , thus �nishing the proof.

Considerthe augmented string T 0
s = a1bc1a1bc1a2c2a2bc2a2bc2a3bc3a3c3a3bc3a3c3,

whered = 2. Then, bwt (T 0
s) =

B 1z }| {
c3c1| {z }

P 0
1

c2c2c1| {z }
P 0

2

c3c2c3c3| {z }
P 0

3

A
z }| {
a1a1a2a2a3a3

B 2z }| {
bb|{z}
Q0

1

a2bb| {z }
Q0

2

a3a3bb| {z }
Q0

3

.

A simpleveri�cation will show that blocks A and B2 are � -resilient portions of T0
s.

Furthermore, block A is deterministic oncethe parametersd and k have beenchosen;

block B1 encodesthe length of each Q0
i . To have a fully � -resilient text, wewant B1 to

have the sameproperty, so we generatethe string T = T 0
s(Ts)d� 1#. This will include

d� 1 occurrencesof a di�erent symbol insideeach P 0
1. Note that jTj = n = dns+ dk+ 1.

Lemma 17. Let T = T0
s(Ts)d� 1#, where Ts is the support text and T 0

s is the augmented

text. Then, the bwt (T) is

bwt (T) =

B 1z }| {
P00

1 P00
2 : : : P00

k A

B 2z }| {
Q00

1Q00
2 : : : Q00

k ck ;

where P00
i is composed of symbols preceding strings that start with ai , A is composed of

symbols preceding strings that start with b, and Q00
i is composed of symbols preceding

strings that start with ci .

Proof. The stringsP 00
i andQ00

i areof length d`i . Similar to the arguments in Lemma16,

P00
1 consistsof the symbol c1 in all but d`1 � d positions;onepositionscontains # and

the other d � 1 positions contain ck . P00
i consistsof the symbol ci in all but d`i � d

positions; the other d positionscontain ci � 1. Each Q00
i is similar to the previouscase,

except its length is now d`i . Q00
i still contains only d occurrencesof b.

Finally, the last ck is the symbol preceding# in the text, which is lexicographically

the largestsymbol, and thereforethe last string represented in the bwt , thus�nishing

the proof.

58

For our example,let

T = T0
sTs# = a1bc1a1bc1a2c2a2bc2a2bc2a3bc3a3c3a3bc3a3c3

a1c1a1c1a2c2a2c2a2c2a3c3a3c3a3c3a3c3#:

Then, the bwt (T0
s) is

bwt (T0
s) =

B 1z }| {
#c1c3c1| {z }

P 00
1

c2c2c1c1c2c2| {z }
P 00

2

c3c2c3c3c2c3c3c3| {z }
P 00

3

A
z }| {
a1a1a2a2a3a3

B 2z }| {
ba1ba1| {z }

Q00
1

a2ba2a2ba2| {z }
Q00

2

a3a3bba3a3a3a3| {z }
Q00

3

c3:

Now we analyzethe cost of encoding a � -resilient text.

2.6.2 Enco ding a � -resilien t Text

In this section, we analyze the spacerequired to store a � -resilient text. SinceB1

and A are deterministic onced and k are chosen,we focusonly on the encoding cost

of B2. First, we prove the following lemma.

Lemma 18. For any set of p objects, at least half of them wil l take at least lg p � 1

bits to encode so that the objects can be distinguished from one another.

Proof. Sinceone can distinguish at most 2j objects from one another using j bits,

the most succinctencoding would greedily store two objects using onebit each, four

objects using two bits each, and so on. Thus, we needto make sure that
P j

i 2i � p.

Thus, j + 1 � lg p, and the lemma follows.

Let � be the set of all possiblechoices� of length parameters`1; `2; : : : ; `k usedto

generate� -resilient texts in Section2.6.1. By construction, j� j =
� ns =2� dk+ k� 1

k� 1

�
. For

59

a given choice � of parameters,we choosed positions in each partition Q00
i that will

contain a b. However, we are only choosingfrom the �rst ` i positions for each run r i

(i.e., the positions that correspond to the entries in T 0
s). Once these positions are

chosen,we perform the stepsdescribed in our construction scheme. Sincethe bwt

is a reversible transform, we have
� ` i

d

�
possiblepartitions Q00

i and our construction

schemegeneratesoneof

X =
X

� 2 �

�
`1

d

��
`2

d

�
: : :

�
`k

d

�

di�erent texts. We let an adversaryencode the X texts in any way he wishes.Then,

we useLemma 18 to consideronly half of thesetexts, namely the onesthat take at

least lg X � 1 bits to encode. Now we analyzethe quantit y lg X � 1.

To help analyzelg X � 1, we divide � into two setsY and Z of equalcardinality,

such that for any texts y 2 Y and z 2 Z , the product p(y) � p(z), where p(T) =
Q k

1

� ` i
d

�
. In words, Y contains the texts T where p(T) is smaller, and Z contains

the oneswhere p(T) is larger. We take a single arbitrary text S from set Y and

determine which choice � � of length parameters` i were used. We separatethe k

terms corresponding to � � from lg X � 1 and analyze their cost separately. The

terms are
P k

1 lg
� ` i

d

�
= nH 0

1(S), by our de�nition of �nite set empirical entropy. Since

nH 0
h(S) � nH 0

1(S), the contribution of this part of lg X � 1 is at least nH 0
h(S) bits.

We translate this into a bound in terms of nH �
h using the following lemma.

Lemma 19. For a � -resilient text, nH �
h � �(k lg d) � nH 0

h.

Proof. It su�ces to show that nH �
0 � �(lg d) � nH 0

0 for each partition Q00
i in a � -

resilient text, sincethere are at most 2k + 1 partitions. We apply Stirling's double

inequality to the expressionlg
� ` i

d

�
and �nd that

lg
�

l i
d

�
> ` i H0 +

1
2

lg
` i

d(` i � d)
� O(1)

> ` i H0 +
1
2

lg
1
d

� O(1);

60

thus proving the lemma.

Thus, the total contribution of the part of lg X � 1 corresponding to the text S is

at least nH �
h (S) � �(k lg d) bits. Now we bound the term X to �gure out the entire

cost of encoding the string S. We will lower bound X by the sum for just the set Z

and obtain

X �
X

z2 Z

kY

1

�
` i

d

�

�
X

z2 Z

p(S)

=
1
2

�
ns=2 � dk + k � 1

k � 1

�
p(S):

Taking logs,we require nH �
h (S) + lg

� ns =2� dk+ k� 1
k� 1

�
� 1 bits of space.

To �nish the proof, we analyzethe contribution of the term lg
� ns =2� dk+ k� 1

k� 1

�
. For

easeof notation, let g = ns=2� dk+ k� 1. Wewant to show that (k� 1) lg(g=(k� 1)) �

lg
� g

k� 1

�
. The claim is true by inspection wheng � 4 or k � 1 is 0; 1; or g� 1. For the

remainder of the cases,we apply Stirling's inequality as in Theorem 1 to verify the

claim. Now, (k � 1) lg(g=(k � 1)) � (k � 1) lg(ns=2) � (k � 1) lg(dk) � (k � 1) lg k.

Thus, the contribution of this part of lg X � 1 is at least (k � 1) lg n � �(k lg(dk))

bits, proving Inequality (2.18) and Theorem5 for any arbitrary � -resilient text S.

2.7 Random Access to the

Compressed Represen tation of LF and �

In Section 2.3, we have described the importance of the LF mapping and the �

function for compressingthe bwt . As weshall see,thesefunctionsarealsoessential to

performing compressedtext indexing. However, we needmore functionality sincewe

needrandom accessto their compressedvalueswith a small cost for decoding. With

61

the techniquesdiscussedso far, computing the i th value of LF or �, for 1 � i � n,

has two major drawbacks:

� We needto decompressall the information, even if we needa single value of

LF or �.

� The decompressionis sequentially performed even though the required access

is random.

We circumvent the two drawbacks above by using succinctdictionaries and com-

presseddirectories for speeding up the accessand avoiding to decompressall the

data while keepingthe spaceoccupancyentropy-bound. The main contribution of

this sectionis to show how to store LF and � in compressedformat sothat each call

decompressesjust a small portion of their format:

� Each call takesO(lg �) time using further O(n lg lg n=lg� n) = o(n lg �) bits of

spacefor storing the compressedauxiliary data structures.

� Each call takesO(1) time using further O(n) bits for the compressedauxiliary

data structures (i.e. o(n lg �) bits when � is not a constant).

We proceedin the rest of the sectionasfollows. In Section2.7.1,we describe how

to extend the functionalities of the wavelet trees to succinct dictionaries. We then

show how to usewavelet treesand someauxiliary data structures to get the random

accessto the compressedrepresentation of � in Section2.7.2 and to that of LF in

Section2.7.3.

2.7.1 Wavelet Trees as Succinct Dictionaries

Our compresseddirectories hinge on constant-time rank and select data structures

[Jac89b,Mun96, Pag01,RRR02]. For a bitvector B of sizen, the function rank1(B ; i)

returns the number of 1s in B up to (and including) position i . The function

select1(B ; i) returns the position of the i th 1 in B. We can also de�ne rank0 and

62

select0 in terms of the 0s in B. As previously mentioned in Section 2.4.2, subset

encoding can implicitly represent B as a subsetof the elements from 1: : : n, asso-

ciating each 1, say in position j in B , with element j in the subset.9 Letting t be

the number of elements thus implicitly represented (the number of 1s in the bitvec-

tor), we can replace bitvector B supporting rank1 and select1 with the constant-

time indexabledictionaries developed by Raman, Raman, and Rao [RRR02], re-

quiring
�
lg

� n
t

��
+ O(t lg lg t= lg t) + O(lg lg n) bits. As can be seen, the bound of

subset encoding,
�
lg

� n
t

��
, has an additional term for the fast-accessdirectories,

O(t lg lg t= lg t) + O(lg lg n). Moreover, rank1(B ; i) = � 1 if B [i] 6= 1 in indexable

dictionaries. If we wish to support the full functionalities of rank1, select1, rank0,

and select0, we needto use the fully-indexableversion of their structure, called an

fid .

Theorem 6 (Raman, Raman, and Rao [RRR02]). An fid storing t items out

of a universeof n items, requires
�

lg
�

n
t

��
+ O

�
n lg lg n

lg n

�

bits of space. Each call to rank1, select1, rank0, and select0 takesO(1) time.

Note that the additional term of O(n lg lg n=lg n) in Theorem 6 is related to

the universe size n, instead of the subset size t. Analogously to what done with

subsetencoding, sincelg
� n

t

�
� n, we will usefid s as space-e�cient replacements of

bitvectors of length n with t 1s (alternatively, with n � t 0s) supporting rank and

select on both 0s and 1s.10 In this way, we can successfullyreusepart of the analysis

given in Section2.3.

9Note that ranking/unranking a subsetrefersto the lexicographic generationof subsetsmentioned

in Section 2.4.2, not to be confusedwith the rank function de�ned here.

10In this chapter, we write rank(i) or select (i) to denote the appropriate function on 1s when there

is no confusion.

63

Let us now considerthe wavelet treesasde�ned in Section2.4.3. What we obtain

by replacing the subsetencodings in the nodeswith fid s, is a generalizationof rank

and select operationsfrom binary to � -ary vectors. Weadopt the notation introduced

in Section2.4.3, where sy denotesthe hx; yi sublist of nx;y entries and 1 � y � tx .

(Recall that tx � � is the number of nonempty sublists for context x, and, without

loss of generality, the symbols from � for thesesublists are renumbered from 1 to

tx .) Each contiguous portion of symbols of the bwt corresponding to context x is

stored by a separatewavelet tree; we denote this portion by wx = wx [1: : : nx]. To

make the discussiona bit more general,we de�ne two primitiv es,where1 � y � tx

and 1 � i � nx :

� For each symbol y, function rank0
y(wx ; i) returns the number of occurrencesof y

in wx up to (and including) position i .

� For each symbol y, function select0
y(wx ; i) returns the position of the i th occur-

renceof y in wx .

When wx = B and y 2 f 0; 1g, we obtain the classic rank and select operations

on bitvectors B. Next, we show how wavelet trees can support rank0 and select0

e�cien tly using fid s.

Lemma 20. Using a wavelet tree for context x, we can encode the tx nonempty

sublistsfor that context in fewer than

lg
�

nx

nx;1; nx;2; : : : ; nx;�

�
+ O

�
tx + nx lg lg nx

lgtx nx

�

bits, so that rank0 and select0 take O(lg tx) time.

To begin with, we augment our wavelet tree by replacing the t-subset encod-

ing of [Knu05, Rus05] with the fid structure from [RRR02]. To resolve query

select0
y(wx ; i) on our new wavelet tree for wx , we follow thesesteps.

. select0
y(wx ; i):

64

1. Set s = sy.

2. If s is the left child, search for the i th 0 in s's parent dictionary: set i =

select0(i).

3. If s is the right child, search for the i th 1 in s's parent dictionary: set i =

select1(i).

4. Set s = parent(s).

5. Recurseto step 2, unlesss = root.

6. Return i as the answer to the query select 0 in sublist sy .

This query trivially requiresO(lg tx) time sinceselect takes constant time and the

depth of the wavelet tree is O(lg tx) as shown in Lemma 6. The other query can be

performedanalogously.

. rank0
y(wx ; i):

1. Set s = root.

2. If sy is a descendant of the left child, set i = rank0(i) in s's dictionary.

3. If sy is a descendant of the right child, set i = rank1(i) in s's dictionary.

4. Set s = the child of s that is an ancestorof leaf sy.

5. Recurseto step 2, unlesss = sy .

6. Return i as the answer to the query rank0 in sublist sy .

This query also requiresO(lg tx) time. The spaceanalysisof the new wavelet tree is

similar to that of the unaugmented wavelet tree in Lemma6, exceptthat wemust sum

the costsof the lower-order terms for the fid s. Speci�cally, there are O(lg t x) levels

in the wavelet tree and, for each such level, there are universesizesu1; u2; : : : ; ur ,

such that r < tx and
P r

j =1 uj � nx . Each fid givesan extra contribution of at most

cuj lg lg uj =lg uj bits to the analysis in Lemma 6, for a constant c > 0. For a given

65

level in the wavelet tree, we claim that the additional number of bits is

rX

j =1

cuj lg lg uj =lg uj = O(nx lg lg nx=lg nx): (2.20)

Hence,we get a total of O(nx lg lg nx=lgtx nx) bits of spacefor all the levels. In order

to prove our claim (2.20), �rst note that there existsa constant � 0 > 1 such that the

function f (�) = � lg lg �= lg � is concave for any � > � 0. We then split the sum in

Equation (2.20) in two parts. The �rst part involves the terms such that uj � � 0,

giving a total contribution of O(r), since� 0 is constant with respect to nx and r , the

number of nonempty sublists in the given level of the wavelet tree. The secondpart

involves only the terms such that uj > � 0, for which the concavit y of f (�) holds.

Multiplying by r=r and applying Jensen'sinequality [CT91], we obtain

r
r

�
rX

j =1

c
uj lg lg uj

lg uj
= O

r �
(
P r

j =1 uj =r) lg lg(
P r

j =1 uj =r)

lg(
P r

j =1 uj =r)

!

= O
�

nx lg lg(nx=r)
lg(nx=r)

�
:

Note the sum over the r values on all levels of the wavelet tree is tx � 1 (i.e. the

number of internal nodes), so that the total is O(tx + nx lg lg nx =lgtx nx) additional

bits, thus completing the proof of Lemma 20. This term seemsdi�cult to improve

due to strong evidencefrom Miltersen [Mil05]. In the following, when we invoke the

rank and select operations,we specify the dictionary they refer to unlessthis is clear

from the context.

2.7.2 Random Access to the

Compressed Represen tation of �

We now describe how to store, in compressedformat, the � function described in

Section 2.3.1, so as we can quickly compute any value �(i), for 1 � i � n, by

decompressinga small portion of the format. We employ the conceptual table T

described in Section2.3.2,and adopt T 's encoding for the bwt given at the end of

66

Section2.3.2,exceptthat the wavelet treesarenow augmented with fid s asdiscussed

in Section2.7.1(cf. Theorem6). Recall that in order to support a query for �(i), we

needto decompressthe i th nonempty entry in the concatenationin column major

order of the sublists in T . (We refer to Table 2.5 for an example.) We need the

following basic information: the list y containing entry �(i); the context x such that

the hx; yi sublist contains �(i); the element z stored explicitly in the normalized

hx; yi sublist (seeTable 2.5); the number of elements # x in all contexts prior to x.

In the example for �(2) = 10, we have y = i , x = s, # x = 7, and z = 3. The

value for �(i) is then # x + z becauseof the normalization of the sublists described

in Section2.3.2. We execute�v e main stepsto answer a query.

. Query �(i):

1. Consult a directory G to determine�(i)'s list y and the number of elements in

all prior lists, # y. (We now know that �(i) is the (i � # y)th element in list y.)

In the exampleabove, we consult G to �nd y = i and # y = 0.

2. Consult a list L y to determinethe context x of the (i � # y)th element in list y.

For example,we consult L i to determinex = s. We identify the hx; yi sublist

and # p, the number of entries in previoussublists hx; y0i with y0 < y.

3. Look up the appropriate entry in hx; yi to �nd z. This entry occupiesposition

i � # y � # p insidehx; yi ; hence,z = select0
y(i � # y � # p) for context x. In the

example,we look for the �rst entry in the hs; i i sublist and determinez = 3.

4. Consult a directory F to determine # x, the number of elements in all prior

contexts. In the example,after looking at F , we determine# x = 7.

5. Return # x + z as the solution to �(i). The examplewould then return �(i) =

x + z = 7 + 3 = 10.

We now detail someof the steps given above, describing the set of auxiliary data

structures.

67

Directories G and F

We describe the details of the directory G (and the analogousstructure F), which

determines�(i)'s list y and the number of elements in all prior lists # y. We can

think of G conceptuallyasa bitvector of length n. For each nonempty list y (consid-

ered in lexicographicalorder) containing ny =
P

x2 P �
h

nx;y elements (where P �
h is the

optimal pre�x cover de�ned in Section 2.2), we write a 1, followed by (ny � 1) 0s.

Intuitiv ely, each 1 represents the �rst element of a list. Sincethere are as many 1s

in G as nonempty lists, G cannot have more than l = � 1s. To retrieve the desired

information in constant time, we computey = rank(G; i) and # y = select(G; y) � 1.

The F directory is similar, whereeach 1 denotesthe start of a context x (considered

in lexicographicalorder), rather than the start of a list, followed by (nx � 1) 0s. Since

there are at most c = jP �
h j � � h possiblecontexts, we have at most that many 1s.

We usefid s to store thesedirectories.

Lemma 21. We can store G using
�

lg
�

n
l

��
+ O

�
n lg lg n

lg n

�
= O

�
� lg

�
1 +

n
�

�
+

n lg lg n
lg n

�

bits of space, and F using space (in bits) of
�

lg
�

n
c

� �
+ O

�
n lg lg n

lg n

�
= O

�
jP �

h j lg
�

1 +
n

jP �
h j

�
+

n lg lg n
lg n

�
:

List-Sp eci�c Directory L y

Once we know which list y our query �(i) is in, we must �nd its context x. We

createa directory L y for each list y, exploiting the fact that the entries are grouped

into hx; yi sublists as follows. We can think of L y conceptually as a bitvector of

length ny , the number of items indexed in list y. For each nonempty hx; yi sublist

(in lexicographicalorder by x) containing nx;y elements, we write a 1, followed by

(nx;y � 1) 0s. Intuitiv ely, each 1 represents the �rst element of a sublist. Sincethere

68

are asmany 1s in L y asnonempty sublists in list y, that directory cannot have more

than minfj P �
h j; nyg 1s. Directory L y is madeup of two distinct components:

The �rst component is a fid that producesa nonempty context number p > 0. In

the example,the samecontext x = p hasp = 1 in list i while hasp = 2 in list p. It also

producesthe number # p of items in all prior sublists. In the example,context x = p

has # p = 0 in list i , and # p = 1 in list p. To retrieve the desired information in

constant time, we computep = rank(L y ; i � # y) and # p = select(L y ; p) � 1.

In order to save space,we actually store a single directory sharedby all lists y.

For each list y, we can retrieve the list's p and # p values. Conceptually, we represent

this global directory L as a simple concatenation(in lexicographicalorder by y) of

the list-speci�c bitvectorsdescribed above. The only additional information we need

is the starting position of each of the above bitvectors, which is easily obtained by

computing start = # y. We compute p = rank(i) � rank(start) and # p = select(p +

rank(start)) � start � 1 = select(r ank(i)) � start � 1. We implement L by a single

fid storing s entries in a universeof size n, where s =
P

x2 P �
h

tx is the number of

nonempty sublists.

Lemma 22. We can compute the local nonemptycontext number p and # p in con-

stant time, and the space used (in bits) is

�
lg

�
n
s

��
+ O

�
n lg lg n

lg n

�
= O

�
s lg

�
1 +

n
s

�
+

n lg lg n
lg n

�
:

The secondcomponent mapsp, the local context number for list y, into the global

onex. Sincethere are at most jP �
h j di�erent contexts x for nonempty sublists hx; yi

and at most � nonempty lists y, we usethe concatenationof � bitvectorsof jP �
h j bits

each, wherebitvector by correspondsto list y and its 1s correspond to the nonempty

sublists of list y. We represent the concatenationof bitvectorsby (in lexicographical

order by y) using a single fid . Mapping a value p to a context x for a particular

69

list y is equivalent to identifying the position of the pth 1 in by . This can be doneby

a constant number of rank and select queries.

Lemma 23. We can map the local nonemptycontext number p to x in constant time,

and the space used (in bits) is
�

lg
�

jP �
h j�
s

��
+ O

�
(jP �

h j�) lg lg(jP �
h j�)

lg(jP �
h j�)

�
= o

�
� h+1

�
:

Time and Space Complexit y

Theorem 7. The neighbor function � can be represented in a compressed format for

a text of n symbols over the alphabet � usingnH h + O(n lg lg n=lg� n)+ g0
h lg(1+ n=g0

h)

bits of space, where g0
h = O(� h+1), so that each call to � takesO(lg �) time.

Proof. The spaceoccupancyis that indicated by Theorem 2, except that Lemma 6

should be replacedby Lemma 20 plus the additional terms indicated in Lemma 21,

Lemma 22 and Lemma 23, wheres =
P

x2 P �
h

tx is boundedby g0
h. The time cost is

constant except for the wavelet tree, asstated in Lemma 20, wheretx � � .

Theorem 8. The neighbor function � can be represented in a compressed format

using nH h + O(n) + g0
h lg(1 + n=g0

h) bits of space, so that each call to � takesO(1)

time.

Proof. The proof is analogousto that of Theorem7, except that for each context x,

the wavelet tree is replacedby a setof tx indexabledictionaries [RRR02] representing

sublists hx; yi for 1 � y � tx with dlg
� nx

nx;y

�
e+ O(nx;y lg lg nx;y =lg nx;y) bits (sincewe

only needselect operationson them, there is no needto usean fid). When we need

to perform select0
y for context x, we just run the select operation on the indexable

dictionary for hx; yi . By Lemma 4, using indexable dictionaries adds a term that

sumsup to O(n) in the bound of Theorem 7, but we only perform O(1) constant-

time queriesto a singledictionary, in total, O(1) time. This schememay pay when �

70

is not a constant, since it requiresadditional O(n) = o(n lg �) bits of spacefor the

auxiliary data structures.

2.7.3 Random Access to the

Compressed Represen tation of LF

The machinery for the compressedrepresentation of � can be reusedalsofor the LF

mapping. In [FM05], it is shown that LF (i) = C[L[i]]+ Occ(i; L[i]) for any 1 � i � n.

Here, for any y 2 �, vector C[y] counts the number of occurrencesof symbols y0 < y

appearing in the text T, and Occ(i; y) is the number of occurrencesof y appearing in

the �rst i positionsof the bwt (hereit is identi�ed with L). It turns out that, given i ,

we can compute the context x and the list y = L[i] as described for Query �(i) in

Section2.7.2. Then, we can obtain Occ(i; y) asthe valueof rank0
y(i � # y � # p) + # y

for context x. The following are corollariesof Theorems7 and 8.

Corollary 1. The LF mappingcan be represented in a compressed format for a text

of n symbols over the alphabet � using nH h + O(n lg lg n=lg� n) + g0
h lg(1 + n=g0

h) bits

of space, where g0
h = O(� h+1), so that each call to LF takesO(lg �) time.

In particular, we note that in Corollary 2, we can usethe indexabledictionaries

sincewe invoke rank(i) for a suitable sublist hx; yi , such that y = L[i], the i th symbol

in the bwt . This corresponds to the weak form of rank supported by indexable

dictionaries.

Corollary 2. The LF mapping can be represented in a compressed format using

nH h + O(n) + g0
h lg(1 + n=g0

h) bits of space, so that each call to LF takesO(1) time.

71

2.8 Using the Framew ork for Compressed Su�x

Arra ys

In this section, we use the machinery developed so far to achieve text indexing,

showcasingthe insights we obtained in our prior investigation. In the remainder of

this chapter, we will detail the results of our csa, though analogousmethods hold

for the fm -index implemented with the wavelet tree. In fact, there are a whole host

of methods now that use� or the LF mapping (seethe survey in [NM06a]).

2.8.1 Compressed Su�x Arra ys (CSAs)

To recap,a standard su�x array [GBS92, MM93] is an array containing the position

of each of the n su�xes of text T in lexicographicalorder. In particular, SA[i] is the

starting position in T of the i th su�x in lexicographicalorder, T
�
SA[i]; n

�
. The size

of a su�x array is �(n lg n) bits, aseach of the positionsstoreduseslg n bits. A su�x

array allows constant time lookup to SA[i] for any i . In order to achieve self-indexing,

we alsousethe notion of the inverse su�x array SA� 1, such that SA� 1[j] = i if and

only if SA[i] = j . In other words, SA� 1[j] gives the rank in the lexicographicorder

of su�x T[j; n] amongthe su�xes of T.

The csa contains the sameinformation asa standard(inverse)su�x array, though

it operatesonly on a compressedformat. For the rest of the chapter, we assumethat

the csa supports the following set of operationsas given in [GV05, Sad03, Sad02b].

De�nition 2. Given a text T of length n, a compressed su�x array (csa) for T sup-

ports the following operationswithout requiring explicit storageof T or its (inverse)

su�x arrays, SA and SA� 1:

� compress(T) producesa compressedrepresentation, Z , that encodes(i) text T,

(ii) its su�x array SA, and (iii) its inversesu�x array SA� 1;

72

� lookupZ (i) returns the value of SA[i], the position of the i th su�x in lexico-

graphical order, for 1 � i � n;

� lookup� 1
Z (j) returns the value of SA� 1[j], the rank of the j th su�x in T, for

1 � j � n;

� substringZ (i; c) decompressesthe �rst c symbol pre�x of the su�x T
�
SA[i]; n

�
,

for 1 � i � n and 1 � c � n � SA[i] + 1.

We drop someof the parametersfrom the operations listed in De�nition 2 when-

ever their usageis clear from the context. For example,if we wish to decompressthe

c = 6 symbols belongingto the text substring T[18; 25], we indicate the correspond-

ing operationsasfollows. First we �nd the lexicographicposition, lookup� 1(18) = 16,

of its corresponding su�x and then we executesubstring(16; c).

The structure of a csa is recursive in nature, whereeach of the ` = lg lg� n levels

indexeshalf the elements of the previouslevel. Hence,the kth level indexesnk = n=2k

elements. We review and usethis recursive decomposition given below:11

1. Start with SA0 = SA, the su�x array for text T.

2. For each 0 � k < `, transform SAk into a moresuccinctrepresentation through

the useof a bitvector Bk , function rank(Bk ; i), neighbor function � k , and SAk+1

(representing the recursion).

3. The �nal level, ` = lg lg� n is written explicitly.

SAk is not explicitly stored (except at the last level `), but we refer to it for the

sake of explanation. Bk is a bitvector such that Bk [i] = 1 if and only if SAk [i] is

even. Even-positioned su�xes are represented in SAk+1 with their positions divided

by 2. To retrieve odd-positionedsu�xes, we employ the neighbor function � k , which

mapsa position i in SAk containing the valuep into the position j in SAk containing

11We use the neighbor function � k to emphasizeits importance to our methods; for the full level

approach, Grossi and Vitter use the partial function 	 k in their exposition.

73

the value p + 1. In words, � k is the � function from Section 2.3.1 applied to SAk

insteadof SA. Hence,we can equivalently describe � k by the following formula (also

handling the casewhen SAk [i] = n):

� k(i) =
n

j such that SAk [j] = (SAk [i] mod n) + 1
o

:

A lookup for SAk [i] can be answered in the following way:

SAk [i] =

8
<

:

2 � SAk+1
�
rank(Bk ; i)

�
if Bk [i] = 1

SAk

�
� k (i)

�
� 1 if Bk [i] = 0.

An exampleof the recursionfor a text T is given below, wherea < b < # and #

is a special end-of-text symbol. (The text T is borrowed from [GV05], but note that

the � k function is usedinstead.) No further levels are needed,sincethe four su�x

array pointers at level 3 are stored explicitly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T: a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 13 17 19 10 7 4 1 21 28 24 31 14 12 18 9 6 3 20 27 23 30 11 8 5 2 26 22 29 25 32

B0: 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1

rank(B0; i): 0 1 1 1 1 2 2 3 3 3 4 5 5 6 7 8 8 9 9 10 10 10 11 11 12 12 13 14 15 15 15 16

� 0: 2 4 14 16 20 24 25 26 27 29 30 31 32 1 3 5 6 7 8 10 11 12 13 15 17 18 19 21 22 23 28 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SA1: 8 5 2 14 12 7 6 9 3 10 15 4 1 13 11 16

B1: 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1

rank(B1; i): 1 1 2 3 4 4 5 5 5 6 6 7 7 7 7 8

� 1: 8 7 9 11 14 1 6 10 12 15 16 2 3 4 5 13

1 2 3 4 5 6 7 8

SA2: 4 1 7 6 3 5 2 8

B2: 1 0 0 1 0 0 1 1

rank(B2; i): 1 1 1 2 2 2 3 4

� 2: 6 7 8 3 1 4 5 2

1 2 3 4

SA3: 2 3 1 4

74

Here,� 0(4) = 16, sinceSA0[4] = 17 and SA0[16]= 17+ 1 = 18. For this example,

supposewe already know SA1. To retrieve SA0[16], sinceB0[16] = 1, we compute

2� SA1[rank(B0; 16)] = 2� SA1[8] = 2� 9 = 18. To retrieve SA0[4], sinceB0[4] = 0, we

computeSA0[� 0(4)] � 1 = SA0[16]� 1 = 18� 1 = 17.

The csa hastwo incarnationsthat show someinherent space/timetradeo�s. The

�rst (time-e�cien t) version reducesthe spacerequirement to O(n lg � lg lg� n) bits,

while lookup takes only O(lg lg� n) time. This version explicitly usesthe recursive

structure explained above. The second(space-e�cient) version skips all but a con-

stant fraction � of theselevels,for some0 < � � 1, relying on a succinctdictionary D k

to perform the task of Bk , but instead mapping elements several levels away. This

scheme reducesthe spacerequirement to O(� � 1n lg �), however lookup now takes

O(lg�
� n) time. In practice, the secondscheme is much better, as the slowdown in

searching is reasonable.We remark that Sadakane[Sad03]hasshown that the space

complexity can be restated in terms of the order-0 entropy H 0 � lg � , giving as a

result O(� � 1H0 n) bits.

In order to compressSA� 1 alongwith SA, it su�ces to keepSA� 1
` in the last level `,

asthe restof the machinery for compressingSA andSA� 1 is identical [Sad03,Sad02b].

Hencethe costof lookup� 1 is the sameasthat for lookup, and it su�ces to discussthe

latter only. Moreover, it is not di�cult to extend the substring operation using � k

for any value of k, such that each application of � k decompresses�(2 k) symbols at

a time, for a total cost of O(c=2k) time plus the cost of a lookup. We usethe inverse

su�x array and this extendedversionof substring in Section2.9.

2.8.2 High-Order Entrop y-Compressed Su�x Arra ys

We considerthe task of attaining entropy boundsfor the usageof spacein the csa by

usingour uni�ed algorithmic framework for � k at each level k, which contributes the

75

bulk of the spacethat the csa uses.In the rest of this section,we prove the tradeo�s

shown in Table 2.1 for the spaceand time complexity of a csa and its supported

operations asgiven in De�nition 2.

Theorem 9 (Time-E�cien t Entrop y-Compressed Su�x Arra ys). Implement-

ing a csa usesnH h lg lg� n + O
�
n

�
lg lg lg� n=lg lg� n + lg lg n=lg� n + lg � =lg� n

�
+

� h(n� + �)
�

bits and O
�
n lg � + � h(n� + �)

�
preprocessingtime for compress, for

any arbitrarily small constant 0 < � < 1. (The space increasesto O(n) = o(n lg �)

when� is non-constant.) Each lookup takesO(lg lg� n) time and each substring call

for c symbols takesthe cost of lookup plus O(c=lg� n) time.

It is worth noting that the spacebound in Theorem9 is nH h lg lg� n+ o(n lg �) bits

when h + 1 � � lg� n for any arbitrary positive constant � < 1. (We �x � such that

� + � < 1.) 12 When lg � = �(lg n), the spacebound reducesto O(nH h) + o(n lg �)

bits and lookup time is O(1). A better spaceusagecanbeobtainedwith the following

tradeo�.

Theorem 10 (Space-E�cien t Entrop y-Compressed Su�x Arra ys). Imple-

menting a csa uses� � 1nH h + O
�
n lg lg n=lg�

� n + � h(n� + �)
�

bits and O
�
n lg � +

� h(n� + �)
�

preprocessing time for compress, for any arbitrarily small constants

0 < � < 1 and 0 < � � 1=2. Each lookup takes O
�
(lg� n)�=1� � lg �

�
time and

each substring call for c symbols takesthe cost of lookup plus O(c=lg� n) time.

For an alphabet of non-constant size,we can usethe following corollary of Theo-

rem 10:

Corollary 3 (Space-E�cien t Entrop y-Compressed Su�x Arra ys). Imple-

menting a csa uses� � 1nH h + O(n + � h(n� + �)
�

bits and O
�
n lg � + � h(n� + �)

�

12The assumption on h + 1 � � lg� n is reasonablesinceLuczak and Szpankowski [LS97] show that

the averagephraselength of the Lempel-Ziv encoding for ergodic sourcesis O(lg n) bits.

76

preprocessingtime for compress, for any arbitrarily small constants 0 < � < 1 and

0 < � � 1=2. Each lookup takesO
�
(lg� n)�=1� �

�
time and each substring call for c

symbols takesthe cost of lookup plus O(c=lg� n) time.

The spacebound in Theorem 10 and Corollary 3 is � � 1nH h + o(n lg �) when

h + 1 � � lg� n for � = ! (1) and any arbitrary positive constant � < 1 (we �x � such

that � + � < 1). A special casegivesthe best spacebound in this chapter:

Theorem 11 (Nearly Space-Optimal Entrop y-Compressed Su�x Arra ys).

Implementinga csa usesnH h + O
�
n lg lg n=lg� n + � h(n� + �)

�
bits and O(n lg � +

� h(n� + �)) preprocessingtime for compress, for any arbitrarily small constant 0 <

� < 1. Each lookup takesO(lg2 n=lg lg n) time and each substring call for c symbols

takesthe cost of lookup plus O(clg �) time.

The csa in Theorem 11 is a nearly space-optimalself-index in that it usesthe

samespaceas the compressed text| nH h bits|plus the lower-order terms for the

text indexing directories. For example, we get nH h + O(n lg lg n=lg n) bits when

� = O(1) and h + 1 � � lg� n for any arbitrary constant � < 1 (we �x � such that

� + � < 1). All spaceboundsmentioned above include implicitly the costM (T; � ; h)

of the statistical model, which is dominated by the other lower-order terms.

Compressed Represen tation of the Neigh bor Function � k

We now show how to obtain entropy boundsfor implementing � k at each level k of a

csa. Wereferto the machinery discussedfor the implementation of � in Section2.7.2.

Since� = � 0 and n = n0, we can useeither of Theorems7 and 8 for level k = 0.

Hencewe restrict our focus on level k > 0, for which we are interestedin extending

the boundsof Theorem8. We introducesomeusefulnotation to this end. We denote

the number of elements at level k by nk = n=2k , and the number of elements at level k

that arein context x by nx
k . Similarly, wede�ne ny

k asthe number of elements at level k

77

in list y; and nx;y
k asthe number of elements at level k that are in both context x and

list y, that is, the sizeof sublist hx; yi . Note that nk =
P

x nx
k =

P
y ny

k =
P

x;y nx;y
k .

Lemma 24. For any level k, the � k function can be represented in a compressed

format using nH h + O(nk + � 2k + h) bits of space, so that each call to � k takesO(1)

time.

Proof. Weconceptuallypartition the symbolsof the text T into n=2k non-overlapping

segments of 2k symbols each, assumingwithout lossof generality that n is a multiple

of 2k . We refer to each segment as a \meta-symbol" and we can regard the text T

asa new text Tk consistingof n=2k meta-symbols over the alphabet � 0 = � k . (These

meta-symbols are precisely those corresponding to the � 0 lists at level k. We still

draw contexts of length h from the original text T.) Note that SAk is the su�x

array for Tk and � k is the corresponding � function at level k. Consequently, we can

implement � k alongthe linesdescribedin Section2.7.2. However, a direct application

of Theorem8 to Tk for the analysisof the spaceusagerequiressomeobservations to

obtain the claimed bounds.

First, we need to re�ne the analysis by reviewing the spacecomplexity of the

auxiliary data structures in Section 2.7.2, indexing them by k to denote their use

at level k. Directories Gk and Fk require O(nk) bits of spaceby Lemma 21 (where

l = lk ; n = nk), using the fact that lg
� a

b

�
� a. DirectoriesL y

k , for all lists y at level k,

occupy a total of O(nk + � 2k + h) bits by Lemma22 and Lemma23 (wheren = nk and

s � nk is an upper bound on the number of sublists at level k).

Second,we needto relate the high-order entropy of Tk with Hh in our analysis.

The current Tk is built on all of the even text positions of Tk� 1. Similarly, there is

alsotext built on odd positions. Let T e
k = Tk and To

k denotethe two di�erent ways of

mergingevery two symbolsof Tk� 1. When reected to T, note that T o
k and Te

k overlap

in T exceptfor O(2k) initial or �nal symbols in T. Hence,they essentially encode the

78

sameinformation. We bound the entropy of T o
k and Te

k together, showing that their

total entropy is no more than nH 0
h + nH 0

h+1 bits, which can be boundedby 2nH h by

Theorem 1. Hence,representing any of the two requiresat most nH h + O(2k lg �)

bits, proving the lemma (since we needthat bound for T e
k). For the sake of clarity,

let nx;y z
o denote the number of occurrencesin T o

k of the concatenatedsequenceyzx,

wherey; z 2 � 2k
and x 2 P �

h . We set nx;y z
o = 0 when x is not aligned to a position

of To
k reected in T. We similarly de�ne nx;y z

e for Te
k . Then, their entropy is

nH 0
h(To

k) + nH 0
h(Te

k) =

X

x2 P �
h

lg
�

nx
o

nx;11
o ; nx;12

o ; : : : ; nx;� 2k � 2k

o

�
+

X

x2 P �
h

lg
�

nx
e

nx;11
e ; nx;12

e ; : : : ; nx;� 2k � 2k

e

�

(2.21)

Using Equation (2.14), we separatethe terms in (2.21) fully into a product of

binomial coe�cien ts with � 2k +1
total terms. Then, since

� a
b

�� c
d

�
�

� a+ c
b+ d

�
for all positive

a � b;c � d, we simplify by combining the respective terms in (2.21) to get

X

x2 P �
h

lg
�

nx

nx;11; nx;12; : : : ; nx;� 2k � 2k

�
=

X

x2 P �
h

lg

nx !

Q
y;z2 � 2k nx;y z!

!

=
X

x2 P �
h

lg

nx !

Q
y;z2 � 2k nx;y z!

! � Q
z2 � 2k nx;z !

Q
z2 � 2k nx;z !

�

=
X

x2 P �
h

lg
�

nx !
Q

z2 � 2k nx;z !

� Q
z2 � 2k nzx !

Q
y;z2 � 2k nzx;y !

!

= nH 0
h + nH 0

h+1

by the de�nition of high-order empirical entropy H 0
h from equation (2.9) and multi-

nomial coe�cien ts. Thus, oneof the two texts at level k requiresat most nH h bits to

encode (sincenH 0
h � nH h and nH 0

h+1 � nH 0
h). We build level k on this text, storing

one bit to indicate whether we are storing even or odd text positions at each level,

thus proving the lemma.

79

Bounds for the Entrop y-Compressed Su�x Arra y

We have almost all of the pieceswe needto prove Theorems9{11 for csa. We begin

with the proof of Theorem 9. We de�ne ` = lg lg� n to be the last level in the csa,

as given in Section 2.8.1. We introduce a special level `0 = ` � O(1), such that

� 2` 0

= O(n�) for any arbitrary constant 0 < � < 1. Our choice of `0 implies that

2`0
= �(lg � n) and 2` � `0

= O(1).

Instead of storing all levels as discussedin Section2.8.1,we only store the levels

k = 0; lg `0; lg `0+ 1; lg `0+ 2; : : : ; `0 � 1, `0 of the recursionin the csa. (Notice the gap

between0 and lg `0, and the gap between`0 and `.) For each of theselevels up to `0,

we store a bitvector Bk and a neighbor function � k as described in Section 2.8.1,

with their spacedetailed in the points below:

1. Bitv ectorB0 storesnlg `0 entries out of a universeof sizen, implemented asan in-

dexabledictionary [RRR02] usingO(nlg `0 lg(n=nlg `0)) = O(n lg lg lg� n=lg lg� n)

bits. For lg `0 � k � `0� 1, bitvector Bk storesnk=2 entries out of a universeof

sizenk , implemented as an indexabledictionary requiring O(nk) bits. Hence,

the total contribution is O(n lg lg lg� n=lg lg� n) bits.

2. Neighbor function � k is implemented as described in Section2.8.2. The space

boundsarestated in Theorems7{8 whenk = 0, either nH h+ O(n lg lg n=lg� n)+

g0
h lg(1+ n=g0

h) or nH h + O(n)+ g0
h lg(1+ n=g0

h) bits of space,whereg0
h = O(� h+1).

For k > 0, we use Lemma 24, which gives
P `0

k=lg `0(nH h + O(nk + � 2k + h)) <

nH h(lg lg� n� 1)+ O(nlg `0+ � 2` 0
+ h) bits, wherethe secondterm canbe bounded

as O(nlg `0 + � 2` 0
+ h) = O(n=lg lg� n + � hn�).

3. Level k = ` should explicitly store the su�x array SA` and the inverted su�x

array SA� 1
` , accordingto what we described in Section2.8.1. To signi�cantly

reducethe spaceusage,we now store the arrays at level ` + lg t(n) where we

�x t(n) = lg lg� n. Hencewe store SA`+lg t(n) , SA� 1
`+lg t(n) , along with an array

80

LCP `+lg t(n) for the longest common pre�x information [MM93] to allow fast

searching in SA`+lg t(n) , with a total spacecontribution of O(n lg � =lg lg� n)

bits for level ` + lg t(n).

Summingup the boundsin points 1{3, we obtain a �nal bound of nH h lg lg� n +

O
�
n

�
lg lg lg� n=lg lg� n+ lg lg n=lg� n+ lg � =lg� n

�
+ � h(n� + �)

�
bits of spacerequired

for the csa, for any arbitrarily small constant 0 < � < 1. Note that the latter

bound is nH h lg lg� n + o(n lg �) + O(� h(n� + �)). The spacehasan additional term

O(n) = o(n lg �) when � is non-constant, sincewe useTheorem8 for level k = 0.

Building the abovedata structures is a variation of what wasdonein [GV05]; thus

it takesO
�
n lg � + � h(n� + �)

�
time to compress(asgiven in De�nition 2). The lookup

operation requiresO(2lg `0
+ `0+ 2`+lg t(n)� `0

) = O(lg lg� n) time becauseaccessingany

of the data structures in any level requiresconstant time. (Note that, for level k = 0,

we use Theorem 7 if � = O(1) or Theorem 8 otherwise). A substring query for

c symbols requiresO(c=lg� n + lg lg� n) time since� `0 decompresses2`0
= �(lg � n)

symbols at a time, as we remarked in Section 2.8.1. This completesthe proof of

Theorem9.

We now discussthe complexity of csa that leads to Theorem 10. We keep a

constant number 1=� of the levelsas in [GV05], where0 < � � 1=2. In particular, we

store level 0, level `0, and then onelevel every other �` 0 levels; in sum, 1+ 1=� = 1=�

levels,where� = �=(1� �) with 0 < � < 1. Each such level k � `0 storesthe following

data structures:

� A directory Dk (in place of Bk in point 1 above) storing the nk+ �` 0 (or n`

when k = `0) entries of the next sampledlevel. Note that D0, which storesn�` 0

entries out of a universeof sizen, requiresjust O(n�` 0`0) = O(n lg lg� n=lg�
� n)

bits by using an indexabledictionary [RRR02]. Each of the other D k 's add a

geometricallydecreasingcontribution upper boundedby the cost of D 0.

81

� A neighbor function � k implemented as given in point 2 above. For all levels

k = �` 0; 2�` 0; : : :, neighbor function � k contributes a (geometricallydecreasing)

total of O(n�` 0) = O(n=lg�
� n) bits, in addition to the term of O(� 2` 0

+ h) =

O(� hn�) as before. Note that the analysisfor � 0 is as given in point 2 above.

The total required spaceis therefore(where � > �)

� � 1nH h + O
�

n lg lg� n

lg�
� n

+
n lg lg n

lg� n
+ � hn�

�
= � � 1nH h + O

�
n lg lg n

lg�
� n

+ � hn�

�
:

(2.22)

� The arrays mentioned in point 3 above, exceptthat we now �x t(n) = lg�
� n lg � .

Thus, we obtain a total spacecontribution of O(n lg � =t(n)) = O(n=lg�
� n) bits.

In sum, we obtain a total spacecomplexity that is boundedby Equation (2.22).

Thus, we are able to save spaceat a small cost to lookup, namely, O(2�` 0
lg � +

(1=� � 1)2�` 0
+ 2`+lg t(n)� `0

) time, where the lg � factor in the �rst term is due to

the implementation of � 0 with the bounds of Theorem 7. Simplifying, we obtain

O(lg�
� n lg � + t(n)) = O(lg�

� n lg �) = O((lg � n)�=1� � lg �). The substring operation

for c symbols requiresan additional O(c=lg� n) time. We can drop the lg � factor to

O(1) in Corollary 3 by using Theorem 8 for the analysisof � 0. Building the above

data structures is again a variation of what was done for Theorem 9, so compress

requiresO(n lg � + � hn�) time, thus proving Theorem10.

Finally, we prove Theorem 11, which is an interesting special caseby a simple

modi�cation of the schemedescribed above. Herewe just keeplevels0 and ` + lg t(n)

wheret(n) = lg n=lg lg n. We store the following data structures:

� Dictionary D0 storesn`+lg t(n) entries over a universeof sizen in O(n`+lg t(n) (` +

lg t(n))) = O(n(lg lg� n + lg t(n))=(t(n) lg� n)) bits using an indexable dictio-

nary [RRR02].

� The neighbor function � 0 from point 2 above, with the boundsof Theorem7.

� The three arrays as given in point 3 above, using O(n lg � =t(n)) bits.

82

Thus, the total spaceis nH h + O(n(lg lg� n + lg t(n))=(t(n) lg� n) + n lg lg n=lg� n +

n lg � =t(n)) = nH h + O(n lg lg n=lg� n) bits. We also have to add O
�
� h+1 lg(1 +

n=� h+1)
�

bits for the statistical model. The lookupcostis boundedby O(2`+lg t(n) lg �) =

O(t(n) lg� n lg �) = O(lg2 n=lg lg n), where the lg � factor comesfrom the cost of a

call to � 0 (with the boundsof Theorem7). Similarly, decompressingeach symbol in

substring hasa O(lg �) cost.

2.9 Applications to Text Indexing

We usethe csa asan integral component of an e�cien t text indexing structure that

attains the hth-order entropy for a text T of n symbols over alphabet �. Throughout

this section, we assumethat h + 1 � � lg� n for any arbitrary constant � < 1 to

guarantee that the encoding of the empirical statistical model requireso(n) bits.13 Our

high-order entropy-compressedtext indexessupport fast searching of a pattern P

of length m in O(m + polylg(n)) time with only nH h + o(n) bits, where nH h is

the information-theoretic upper bound on the number of bits required to encode

the text T of length n (cf. Section 2.2). We also describe a text index that takes

o(m) search time and useso(n) bits on highly compressibletexts with a small-sized

alphabet �. The full list of tradeo�s for the spaceand time complexity of compressed

text indexing is shown in Table 2.2.

2.9.1 High-Order Entrop y-Compressed Text Indexing

We now present our search of a pattern P of length m in the csa for T. We needthe

following pattern matching tool to search for P in a sequenceof contiguous su�xes

13This condition is not satis�ed if keeping the su�x array uncompressed for the text T requires

nearly the same spaceas encoding the hth-order empirical statistics of T . Hence T is not a

low-entropy text.

83

stored in the csa, in compressedform, where the proof of Lemma 25 is given in

Section2.9.2.

Lemma 25 (P attern Matc hing Tool). Given a sequence of r consecutive su�xes

stored in the csa, we can search for the leftmost and the rightmost of thesesu�xes

having a pattern P of length m as a pre�x, in O(m + r) symbol comparisons plus

O(r) lookup and substring operations.

We show how to search P using the csa and the tool in Lemma 25. We �rst

perform a binary search of P in SA`+lg t(n) , which is stored explicitly along with

LCP `+lg t(n) , the longestcommonpre�x information requiredin [MM93]. (The term t(n)

dependson the implementation of the csa asdescribed in Section2.8.2.) Becausewe

have the longest commonpre�x information, the binary search requiresonly O(m)

symbol comparisonsplus O(lg n) lookup and substring operations. At that point, we

locate r = 2`+lg t(n) = O(t(n) lg� n) contiguous su�xes stored, in compressedform,

in the csa. We run the pattern matching tool in Lemma 25 on theser su�xes, at

the cost of O(m + t(n) lg� n) symbol comparisonsand O(t(n) lg� n) calls to lookup

and substring, which is also the asymptotic cost of the whole search. The following

resultsshow several tradeo�s that we obtain with the simplesearch schemedescribed

so far.

Theorem 12. Given a text T of n symbols over an alphabet � , we can replace T by

a csa occupying � � 1nH h + O(n lg lg n=lg�
� n) bits, so that searching for a pattern of

lengthm takesO(m=lg� n + (lg n)(1+ �)=(1� �) (lg �)(1� 3�)=(1� �)) time, for any �xed value

of 0 < � � 1=2. Reporting each occurrence of the pattern P wil l take no more than

O((lg n)(1+ �)=(1� �) (lg �)(1� 3�)=(1� �)) time.

Proof. Using Theorem10, we have t(n) = lg�
� n lg � , where� = �=(1� �). The O(m +

t(n) lg� n) symbol comparisonsgive a contribution of O((m + lg1+ �
� n lg �)=lg� n) =

84

O(m=lg� n + lg�
� n lg �), since we can decompressand compare �(lg � n) adjacent

symbols with O(1) RAM operations. The O(t(n) lg� n) = O(lg1+ �
� n lg �) calls to

lookup and substring (see Lemma 25) give a contribution of O(lg1+2 �
� n lg2 �) =

O((lg n)(1+ �)=(1� �) (lg �)(1� 3�)=(1� �)).

For example, �xing � = 1=2 in Theorem 12 when � = O(1), we obtain a search

time of O(m=lg n+ occ� lg3 n) with a self-indexoccupying 2nH h + O(n lg lg n=
p

lg n)

bits, where occ is the number of occurrencesreported. We can reduce the space

to nH h bits plus a lower-order term, obtaining the �rst nearly space-optimalself-

index with polylg(n) reporting time.

Theorem 13. Given a text of n symbols over an alphabet � , we can replace it by a

csa occupyingnearly optimal space, i.e., nH h + O(n lg lg n=lg� n) bits, so that search-

ing for a pattern of length m takesO(m lg � + lg4 n=(lg2 lg n lg �)) time. Reporting

each pattern occurrence takesO(m lg � + lg4 n=(lg2 lg n lg �)) time.

Proof. Using Theorem11, we have t(n) = lg n=lg lg n. The O(m + t(n) lg� n) symbol

comparisonscontribute O(m lg � + lg2 n=lg lg n) time in total, while the O(t(n) lg� n) =

O(lg2 n=(lg lg n lg �)) calls to lookup and substring contribute O(lg4 n=(lg2 lg n lg �)).

If we augment the csa to obtain the hybrid multi-level data structure in [GV05],

we can improve the lower-order terms in the search time of Theorem 12, where

t(n) = lg�
� n lg � and � = �=(1 � �) > � . We use a sparsesu�x tree storing ev-

ery other (t(n) lg n)th su�x using O(n=t(n)) = O(n=lg�
� n) bits to locate a portion

of the (compressed)su�x array storing O(t(n) lg n) su�xes. However, we do not

immediately run our pattern matching tool from Lemma 25; instead, we employ a

nestedsequenceof space-e�cient Patricia tries [MRS01a]of sizelg! � � n until we are

left with segments of r = lg�
� n adjacent su�xes in the csa, for any �xed value of

85

1 > ! � 2� > 0. This scheme adds O(n=r) = O(n=lg�
� n) bits to the self-index,

allowing us to restrict the search of pattern P to a segment of r consecutive su�xes

in the csa. At this point, we run our pattern matching tool from Lemma25 on these

r su�xes to identify the leftmost occurrenceof the pattern.

Theorem 14. Given a text of n symbols over an alphabet � , we can replace it by

a hybrid csa occupying � � 1nH h + O(n lg lg n=lg�
� n) bits, so that searching for a

pattern of length m takes O(m=lg� n + lg! n lg1� � �) time, for any �xed value of

1 > ! � 2�=(1 � �) > 0 and 0 < � � 1=3.

Proof. Searching in the sparsesu�x tree takesO(m=lg� n+lg �
� n lg �) time asin [GV05],

where the secondterm is our lookup cost in Theorem 10 with � = �=(1 � �). Then,

the search goes through a constant number of space-e�cient Patricia tries with

O(lg! � � n) calls to lookup and substring, each of O(lg �
� n lg �) time, requiring a total

of O(lg! n lg1� � �) time by Theorem10. Finally, the pattern matching tool is run on a

segment of r = O(lg�
� n) su�xes, in O(lg2�

� n lg �) = O(lg! n lg1� � �) time. The costof

comparing�(lg � n) symbols at a time and decompressingthem sumsto O(m=lg� n),

wherethe additional cost of substring is accounted for above.

For low-entropy texts, we provide the �rst self-indexwith small alphabets that is

sublinearboth in spaceand in search time.

Corollary 4. When Hh = o(1) for a text over an alphabet of size� = O(1), the self-

index in Theorem 14 occupiesjust o(n) bits and requireso(m) search time. Reporting

each occurrence takeso(lg n) time.

2.9.2 A Pattern Matc hing Tool

In this section,we prove Lemma25by describingthe implementation of the following

pattern matching tool. Given a list of r sequencesS1 � � � � � Sr in lexicographical

86

order, the pattern matching tool identi�es the least sequenceSi having P asa pre�x

in O(m + r) time. (Identifying the greatest such sequenceis analogous.) We �rst

assumethat these r su�xes are explicitly given. Next, we show how to adapt the

tool when thesesu�xes are stored, in compressedform, in the csa.

Our search tool is reminiscent of the Patricia search [Mor68], the Hirschberg's

sequential search [Hir78], and the Bit-T ree search [Fer92], as we only needone full

comparisonof P againsta su�x. Our tool examinesthe sequencesS1; : : : ; Sr in left-

to-right order. Westart out by comparingthe symbolsof P againstthe symbols of S1

consecutively until there is a mismatch. We then �nd the �rst match in S2 starting

with the symbol that causedthe mismatch with S1. We repeat this processstarting

at S2. We stop when we have examinedall the sequencesunsuccessfully(declaring

that there is no occurrenceof P), or we succeedin matching the symbols of P at

sequenceSi . The steps are detailed below, where we denote the kth symbol of a

sequenceS by S[k]:

1. Set i = 1 and k = 1.

2. Increment k until either k > m or Si [k] 6= P[k]. If k > m, go to step 4;

otherwise,�nd the smallest j > i such that Sj [k] = P[k].

3. If such j doesnot exist, declarethat P is not the pre�x of any sequenceand

quit with a failure. Otherwise,assignthe value of j to i .

4. If k � m, go to step2. Otherwise,check whetherSi hasP asa pre�x, returning

Si as the least sequencein caseof success;declarea failure otherwise.

Denoting the positions assignedto i in step 3 with i 1 < i2 < � � � < i k , we observe

that we do not accessthe �rst k � 1 symbols of Si k � 1+1 , . . . , Si k , which could be

potential mismatches. In general,we compareonly a total of O(i k + k) symbols of

Si 1 ; : : : ; Si k against those in P, where i k � r . Only when we have reached the end

of the pattern P (i.e. k > m) do we set i = i m and perform a full comparisonof P

87

against Si in order to determine if there is really a match. This results in a correct

method notwithstanding potential mismatches.

Lemma 26. Given a list of r sequencesS1; : : : ; Sr in lexicographical order, let Si be

the sequence identi�e d by our search tool. If the pattern P is a pre�x of Si , then Si is

the least sequence with this property. Otherwise,no sequence in S1; : : : ; Sr has P as

a pre�x. The cost of the search is O(m + r) time, where m is the length of P.

Proof. SupposeP is a pre�x of Si , where Si was identi�ed by our search tool. We

�rst show that P is not a pre�x of S1; : : : ; Si � 1. Supposeby contradiction that a

sequenceSf has P as a pre�x, where f < i . Supposethat we are matching the kth

symbol of P at the time we examineSf . SinceP is a pre�x of Sf , we have a match

and our search tool scansthe (k + 1)st symbol in P, the (k + 2)nd symbol in P and

soon, matching all of them with Sf . Hence,our search tool identi�es Sf with f 6= i ,

giving a contradiction. This logic provesthe �rst part of the lemma; namely that Si

is the least sequencehaving P as a pre�x, becausewe considerthe sequencesSi in

lexicographicalorder.

To prove the secondpart, we know that our search tool fails to match P. To see

why no sequencein S1; : : : ; Sr hasP asa pre�x, note that S1; : : : ; Si � 1 cannot have P

as a pre�x as shown in the previousparagraph. We also have to show this property

for the remaining sequencesSi ; : : : ; Sr . Supposeby contradiction that a sequenceSj ,

with j � i , has P as a pre�x. Let k be the position of the rightmost symbol in P

that we compareto Sj . Our method implies that the kth symbol in Sj is di�erent

from that of P. Hence,P cannot be a pre�x of Sj , giving the contradiction.

Finally, the time required is O(m + r), as each comparisonin our method con-

tributes to at most 2m matchesand at most r mismatches.

We now evaluate how the time complexity is a�ected if S1; : : : ; Sr are implicitly

stored in the csa, say, at consecutive positions q + 1; : : : ; q + r for a suitable value

88

of q. To useour search tool, we needto decompressstarting from the kth symbol of

a su�x Si by knowing its position q + i in the csa. (Recall that SA[q + i] contains

the starting position of Si in the text.) To this end, it su�ces to decompressthe

�rst symbols in the su�x at position SA� 1
�
SA[q+ i] + k � 1

�
in the csa, whereSA

and SA� 1 denote the su�x array and its inverse (as mentioned in De�nition 2).

Equivalently, the latter su�x Sj can be obtained by removing the �rst k � 1 symbols

from Si sincej = SA[q+ i] + k � 1. This schemeonly requiresa constant number of

lookup operations and a single substring operation, with a cost that is independent

of the value of k, thus proving Lemma 25.

2.10 Conclusions

We have presented a uni�ed algorithmic framework for analysisof compressionand

text indexing. We described two techniques|a context-sensitivepartitioning scheme

and the wavelet tree|to provide the �rst optimal spacebounds for the Burrows-

Wheeler transform asidefrom lower-order terms. We then usedthis critical frame-

work to develop a text indexing structure basedon a high-order entropy-compressed

su�x array that exhibit several tradeo�s between occupied space,search, and de-

compressiontime. We described how to implement them as a self-index requiring

nH h + O(n lg lg n=lg� n) bits of spaceand allowing searchesof patterns of length m

in O(m lg � + polylg(n)) time. Our schemeprovides the �rst self-indexthat asymp-

totically realizesthe high-order entropy Hh per symbol of the text. We also proved

how to achieve the �rst self-indexwith sublinearsizeo(n) in bits and sublinearquery

time o(m) for low-entropy texts over an alphabet of constant size.

The most immediategoal is to addresswhether a compressedfull-text index with

nH h + O(polylg(n)) bits and O(m + polylg(n)) query time exists. If not, it would

separateindexing from compressionfor very low-entropy strings. Beyond that, we

89

would like to achieve nH h + O(n lg lg n=lg� n) bits with an optimal O(m=lg� n + occ)

search time. A compelling problem is to improve the time for lookupsothat each call

takesconstant time. Another interesting challengewould be to support approximate

matches(those that match patterns with somethreshold of error).

90

Original Sorted Mappings Su�x Array

Q F L i LF (i) �(i) SA[i]

mississippi# i ppi# missis s 1 8 7 8 ippi#

#mississippi i ssippi# mis s 2 9 10 5 issippi#

i# mississipp i ssissippi# m 3 5 11 2 ississippi#

pi# mississip i #mississip p 4 6 12 11 i#

ppi# mississi m ississippi # 5 12 3 1 mississippi#

ippi# mississ p i#mississi p 6 7 4 10 pi#

sippi# missis p pi# mississ i 7 1 6 9 ppi#

ssippi# missi s ippi# missi s 8 10 1 7 sippi#

issippi# miss s issippi# mi s 9 11 2 4 sissippi#

sissippi# mis s sippi# miss i 10 2 8 6 ssippi#

ssissippi# mi s sissippi# m i 11 3 9 3 ssissippi#

ississippi# m # mississipp i 12 4 5 12 #

Table 2.3: Matrix Q for the bwt containing the cyclic shifts of text

T = mississippi# (column `Original'). Sorting of the rows of Q, in which the

�rst (F) and last (L) symbols in each row are separated(column `Sorted'). Func-

tions LF and � for each row of the sorted Q (column `Mappings'). Su�x array SA

for T (column `Su�x Array').

91

context x list i list m list p list s list #

i ; h3i h4i h1; 2i ;

m ; ; ; ; h5i

p h7i ; h6i ; ;

s h10; 11i ; ; h8; 9i ;

h12i ; ; ; ;

Table 2.4: An exampleof our conceptualtable T , whereeach sublist hx; yi contain

nx;y entries. The contexts x are associated with rows and the lists y are associated

with columns.

context x nx # x list i list m list p list s list #

i 4 0 ; h3i h4i h1; 2i ;

m 1 4 ; ; ; ; h1i

p 2 5 h2i ; h1i ; ;

s 4 7 h3; 4i ; ; h1; 2i ;

1 11 h1i ; ; ; ;

Table 2.5: The sublists of Table 2.4 in normalizedform. The value of nx is de�ned

as in Equation (2.9) and indicates the interval length in the row for context x. The

value # x shouldbe addedto the sublists' entries in row x to obtain the sameentries

in Table 2.4.

92

Chapter 3

When Indexing Equals Compression:
Exp erimen ts with Compressing Su�x
Arra ys and Applications

3.1 In tro duction

Su�x arrays and su�x trees are ubiquitous data structures at the heart of several text

and string algorithms. They are used in a wide variety of applications, including pattern

matching, text and information retrieval, Web searching, and sequenceanalysis in compu-

tational biology [Gus97b]. We consider the text as a sequenceT of n symbols, each drawn

from the alphabet � = f 0; 1; : : : ; � g. The raw text T occupiesn lg j� j bits of storage.

The su�x tree is a powerful text index (in the form of a compact trie) whoseleavesstore

each of the n su�xes contained in the text T. Su�x trees[MM93, McC76] allow fast, general

searching of patterns in T in O(m lg j� j) time, but require roughly 4n lg n bits of space|

16 times the size of the text itself, in addition to needing a copy of the text. The su�x

array is another well-known index structure. It maintains the permuted order of 1; 2; : : : ; n

that correspondsto the locations of the su�xes of the text in lexicographically sorted order.

Su�x arrays [GBS92, MM93] (that also store the length of the longest commonpre�x) are

nearly asgood at searching. Their search time is O(m + lg n) time, but they require a copy

of the text; the spacecost is only n lg n bits (which can be reduced about 40% in some

cases).

There are a number of other commonindexesthat give accessto the text, however, none

of thesecan operate without the text itself. Compressedsu�x arrays [GV05, Rao02, Sad03,

Sad02b]and opportunistic FM-indexes[FM05, FM01] represent modern trends in the design

of advancedindexesfor full-text searching of documents. They support the functionalities of

su�x arrays and su�x trees(which are more powerful than classicalinverted �les [GBS92]),

93

yet they overcomethe aforementioned spacelimitations by exploiting, in a novel way, the

notion of text compressibility and the techniques developed for succinct data structures

and bounded-universedictionaries [BM99, Pag01, RRR02].

A key idea in thesenew schemesis that of self-indexing. If the index is able to search

for and retrieve any portion of the text without accessingthe text itself, we no longer have

to maintain the text in raw form|whic h can translate into a huge spacesavings. Self-

indexescan thus replace the text as in standard text compression. However, self-indexes

support more functionalit y than standard text compression. In these cases,the indexing

schemeis itself a compressionmethod. We focus on thesescenarios,where indexing equals

compression.

Grossi and Vitter [GV05] developed the compressedsu�x array using 2n lg j� j bits in

the worst casewith o(m) searching time. Sadakane [Sad03, Sad02b] extended its func-

tionalit y to a self-index and related the spacebound to the order-0 empirical entropy H 0.

Ferraginaand Manzini devisedthe FM-index [FM05, FM01], which is basedon the Burrows-

Wheeler transform (bwt) and is the �rst to encode the index sizewith respect to the hth-

order empirical entropy H h of the text, encoding in (5 + �)nH h + o(n) bits. Grossi, Gupta,

and Vitter [GGV03] exploited the higher-order entropy H h of the text to represent a com-

pressedsu�x array in just nH h + o(n) bits. The index is optimal in space,apart from

lower-order terms, achieving asymptotically the empirical entropy of the text (with a mul-

tiplicativ e constant of 1). More results appearedsubsequently, and we refer the reader to

the survey in [NM06a] for the state of the art.

The above self-indexesare so powerful that the text is implicitly encoded in them

and is not neededexplicitly . Searching decompressesa negligible portion of the text and is

competitiv e with previoussolutions. In practical implementation, thesenew indexesoccupy

around 25{40% of the text sizeand do not needto keepthe text itself.

94

3.1.1 Our Results

In this chapter, we provide an experimental study of compressedsu�x arrays in order to

evaluate their practical impact. In doing so, we exploit the properties and intuition of our

earlier result [GGV03] and develop a new design that is driven by experimental analysis

for enhancedperformance. Briey , we mention the following new contributions. The work

in this chapter was a collaborative e�ort with Luca Foschini, Roberto Grossi, and Je�rey

Scott Vitter.

Sincecompressedsu�x arrays hingeon succinct dictionaries, we provide a new practical

implementation of succinct dictionaries that takeslessspacethan the predicted spacebased

on a worst-caseanalysis. We then usethesedictionaries (organizedin a wavelettree), along

with run-length encoding (RLE) and encoding, to achievea simpli�ed \encoding" for high-

order contexts. This construction shows that Move-to-Front (MTF) [BSTW86], arithmetic,

and Hu�man encoding are not strictly necessaryto achieve high-order compressionwith

the Burrows-WheelerTransform (bwt). Recent work of Ferragina et al. [FGMS05] shows

how to �nd an optimal partition of the bwt to attain the samegoal; we take a di�eren t

route and show that the wavelet tree implicitly leads to an optimal partition when using

RLE and integer encoding.

We then extend the wavelet tree so that its search can be sped up by fractional cas-

cading and an a-priori distribution on the queries. In addition, we describe an algorithm

to construct the wavelet tree in O(n + min(n; nH h) � lg j� j) time, intro ducing the novel

concept that indexing/compression time should be related to the compressibility of the

data. (Said in another way, highly compressibledata should not only be more compact

when compressed,but should also require lesstime to index and compress.)Recently Hon,

Sadakane, and Sung have shown how to build the compressedsu�x array and FM-index

in O(n lg lg j� j) time [Sad03]. One of our main results in this chapter is to give an analysis

of our practically-motiv ated structure and show that it still has competitiv e theoretical

guaranteeson spaceconsumption, namely, 2nH h + o(n) bits of space.

Wealsodetail a simpli�ed versionof our structure which servesasa powerful compressor

95

for the Burrows-WheelerTransform (bwt). In experiments, we obtain a compressionratio

comparableto that of bzip2 . In addition, we go on to obtain a compressedrepresentation

of fully equipped su�x trees (and their associated text) in a total spacethat is comparable

to that of the text alone compressedwith gzip .

In the rest of the chapter, we use `bps' to denote the averagenumber of bits needed

per text symbol or per dictionary entry . In order to get the compressionratio in terms of

a percentage, it su�ces to multiply bps by 100/8.

3.1.2 Outline of Chapter

The rest of the chapter is organized as follows. In the next section, we build the critical

framework in describingour practical dictionaries, providing both theoretical and practical

intuition on our choice. We then describe a simple schemefor fast accessto our dictionaries

in practice. In Section 3.3, we describe our wavelet tree structure, which forms the basis

for our compressionformat wzip. In Section 3.4, we describe a practical implementation

of compressedsu�x arrays [GV05, GGV03], grounded �rmly with theoretical analysis. In

Section 3.5, we discussa space-e�cient implementation of su�x trees. We conclude in

Section 3.6.

3.2 A Simple Yet Powerful Dictionary

As previously mentioned, compressedsu�x arrays make crucial useof succinct dictionaries.

Thus, we �rst focuson our implementation of them. We recall that succinct dictionaries are

constant-time rank and select data structures occupying tiny space. They store t entries

chosenfrom a boundeduniverse[0: : : n � 1] in
�
lg

� n
t

��
� n bits, plus additional bits for fast

accessto the entries. The bound comesfrom the information-theoretic observation that we

need
�
lg

� n
t

��
bits to enumerate each of the

� n
t

�
possiblesubsetsof [0: : : n � 1]. Equivalently,

this is the number of bitv ectors B of length n (the universesize) with exactly t 1s, such

that entry x is stored in the dictionary if and only if B [x] = 1. The dictionaries support

96

several operations. The function rank1(B ; i) returns the number of 1s in B up to (and

including) position i . The function select 1(B ; i) returns the position of the i th 1 in B .

Analogousde�nitions hold for 0s. The bit B [x] can be computed as B [x] = rank1(B ; x) �

rank1(B ; x � 1). In the following, we considerthe succinct dictionaries called ful ly indexable

dictionaries [RRR02], which support the full repertoire of rank and select for both 0s and

1s in
�
lg

� n
t

��
+ o(n) bits.

Let p(1) = t=n be the empirical probabilit y of �nding a 1 in bitv ector B , and p(0) =

1 � p(1). We de�ne the empirical entropy H 0 as

H0 = � p(0) lg p(0) � p(1) lg p(1):

As shown in [GGV03], the empirical entropy H 0 can be approximated by 1
n lg

� n
t

�
. Thus,

we can think of succinct dictionaries as 0th-order compressorsthat can also retrieve any

individual bit in constant time. Speci�cally , the data structuring framework in [GGV03]

usessu�x arrays to transform succinct dictionaries into a high-order entropy-compressed

text index. As a result, we stress the important consideration of dictionaries in practice,

sincethey contribute fast accessto data aswell assolid, e�ectiv e compression.In particular,

such dictionaries avoid a completesequential scanof the data when retrieving portions of it.

They also provide the basis for space-e�cient representation of trees and graphs [Jac89a,

MR99].

3.2.1 Practical Dictionaries

We now explore practical alternatives to dictionaries for use in compressedtext indexing

data structures. When implementing a dictionary D , there are two main spaceissuesto

consider:

� The second-orderspaceterm o(n), which is often incurred to improve accesstime to

the data, is non-negligible and can dominate the lg
� n

t

�
term.

� The lg
� n

t

�
term is not necessarilythe best possiblein practice. As with strings, we

can achieve \entropy" bounds that are better than lg
� n

t

�
� nH 0.

97

Before describing our practical variant of dictionaries, let's focuson a basic representa-

tion problem for the dictionary D seenas a bitv ector B D . Do we always needlg
� n

t

�
bits to

represent BD ? For instance, if D storesthe even numbers in a boundeduniverseof sizen,

a simple argument basedon the Kolmogorov complexity of B D implies that we can repre-

sent this information with O(lg n) bits. Similarly, if D storesn=2 elements of a contiguous

interval of the universe, we can again represent this information with O(lg n) bits. The

lg
� n

t

�
term treats these two casesthe samea random set of t = n=2 integers stored in D ;

thus, the worst-casebound is lg
� n

n=2

�
� n bits of space.That is, it is a worst-casemeasure

that does not account for the distribution of the 1s and 0s inside B D , which may allow

signi�cant compression(as in the previous examples). In other words, the lg
� n

t

�
bound

only exploits the sparsity of the data we wish to retain.

This observation sparks the realization that many of the bitv ectors in common useare

probably compressible,even if they represent a minorit y among all possiblebitv ectors. Is

there then somegeneralmethod by which we can exploit these patterns? The solution is

surprisingly simple and useselementary notions in data compression[WMB99]. We briey

describe those relevant notions.

Run-length encoding (RLE) represents each subsequenceof identical symbols (a run)

as the pair (`; s), where ` is the number of times that symbol s is repeated. For a binary

string, we do not need to encode s, since its value will alternate between 0 and 1. (We

explicitly store the �rst bit.)

The length ` is then encoded in somefashion. One such method is the code, which

represents the length ` in two parts: The �rst encodes 1 + blg `c in unary, followed by

the value of ` � 2blg `c encoded in binary, for a total of 1 + 2blg `c bits. For example, the

 codesfor ` = 1; 2; 3; 4; 5; : : : are 1; 01 0; 01 1; 001 00; 001 01; : : :, respectively. The � code

requiresasymptotically fewer bits by encoding 1+ blg `c via the code rather than in unary,

thus requiring 1 + blg `c + 2blg lg 2`c bits. For example, the � codes for ` = 1; 2; 3; 4; 5; : : :

are 1; 010 0; 010 1; 011 00; 011 01; : : :, respectively. Byte-aligned codesare another simple

encoding for positive integers. Let lb(`) = 1 + blg `c, the minimal number of bits required

98

to represent the positive integer `. A byte-aligned code splits the lb(`) bits into groupsof 7

bits each, prepending a \continuation" bit asmost signi�cant to indicate whether there are

more bits of ` in the next byte. We refer to [WMB99] for other encodings.

We can represent a conceptual bitv ector B D by a vector of nonnegative \gaps" G =

f g1; g2; : : : ; gt g, where BD = 0g1 10g2 1 : : : 0gt 1 and each gi � 0. We assumethat BD ends

with a 1; if not, we can usean extra bit to denote this caseand encode the �nal gap length

separately. We also assumethat t � n=2 or elsewe reversethe role of 0 and 1. Using gap

encoding we cannot require lessthan

E(G) =
tX

i =1

lb(gi + 1) (3.1)

to store the gaps corresponding to B D . We now show that E(G) is closely related to the

optimal worst-caseencoding of BD , which takes lg
� n

t

�
bits.

Fact 1. For a conceptual bitvector B D of known length n, such that BD endswith a 1, its

gap encoding G satis�es

E(G) < lg
�

n
t

�
+ 1=2lg(t(n � t)=n) + lg e[(1=(12t) + 1=(12(n � t)) � 1=(12n + 1)]+ lg

p
2� ;

where t � n=2 is the number of 1s in BD .

Proof. By convexity, the worst-caseoptimal cost occurs when the gapsare of equal length,

i.e. gi + 1 � n=t, giving E(G) =
P t

i =1 lb(gi + 1) � t lb(n=t) � t + t lg(n=t) � (n � t) lg(n=(n �

t)) + t lg(n=t), sincet � (n � t) lg(n=(n � t)) when t � n=2. By Stirling's inequality, lg
� n

t

�
>

t lg(n=t)+(n� t) lg(n=(n� t)) � 1=2lg(t(n� t)=n)� [(1=(12t) + 1=(12(n � t)) � 1=(12n + 1)] lg e�

lg
p

2� , thus proving the fact.

An approach that works better in practice, although not quite aswell in the worst case,

is to represent BD by the vector of positive run-length values L = f ` 1; `2; : : : ; ` j g (with

j � 2t and
P

i ` i = n) where either BD = 1`1 0`2 1`3 : : : or BD = 0`1 1`2 0`3 : : :. (We can

determine which caseby a single additional bit.) Using run-length encoding, we cannot

require lessthan

E(L) =
jX

i =1

lb(` i) (3.2)

99

bits. By a similar argument to Fact 1, we can prove the following:

Fact 2. For a conceptual bitvector B D of known length n, such that BD endswith a 1, its

run-length encoding L satis�es E(L) < E(G) + t, where t � n=2 is the number of 1s in B D .

Proof. We �rst consider the casewhere we encode each run of 1s in unary encoding, i.e.,

we encode each 1 using onebit. In total, the t 1s require t total bits. We encode each run `

of 0s in lb(`) bits; thus, the encoding of 0s is unchanged. (Note that this scheme is still

decodeablewhen the code is used instead of lb, since there are no zero-length runs and

 codesbegin with 0.) It is plain to seethat E(L) � E(G) + t. If we changeour encoding

of 1s to uselb instead of unary, encoding the runs of 1s will certainly take no more than t

bits, thus proving the fact.

We do not claim that E(G) or E(L) is the minimal number of bits required to store D .

For instance, storing the even numbers in B D implies that ` i = 1 (for all i), and thus

E(L) � lg
� n

t

�
� 2t = n. Using RLE twice to encode BD , we obtain O(lg n) required

bits, as indicated by Kolmogorov complexity. On the other hand, �nding the Kolmogorov

complexity of an arbitrary string is undecidable[LV97].

Despite its theoretical misgivings, we give experimental results on random data in Ta-

ble 3.1 showing that E(L) � lg
� n

t

�
. Data generatedare bitv ectors BD whosegap encod-

ing G is produced by choosing a maximum gap length and generating uniformly random

gapsin G between0 and that maximum length (reported on a logarithmic scalein the �rst

column). The secondcolumn, denoted RLE+ , reports the average number of bits per

gap (bpg) required to encode BD using RLE to generateL and the code to encode the

integers in L , as described before. The third column, denoted Gap+ , reports the average

number of bits per gap required to encode B D using the gaps in G represented with the

 code. The fourth column reports the value of lg
� n

t

�
, where n is the length of BD and t

is the number of 1s in it. Since t is also the number of gaps in G, the �gure is still the

averagenumber of bits per gap. In the last two columns, we report similar results for the

averagenumber of bits per gap in E(L) and E(G).

100

lg(gap) RLE+ Gap+ lg
� n

t

�
E (L) E(G)

1 1.634 2.001 1.378 1.315 1.500

2 2.900 3.000 2.427 2.199 2.000

3 4.477 4.000 3.439 3.111 2.500

4 6.256 5.625 4.442 3.998 3.313

5 8.142 7.374 5.445 5.000 4.187

6 10.091 9.193 6.440 5.995 5.097

7 12.067 11.116 7.443 6.993 6.058

8 14.075 13.073 8.444 7.989 7.037

9 16.056 15.030 9.444 8.990 8.015

10 18.124 17.029 10.449 10.004 9.014

Table 3.1: ComparisonbetweenRLE encoding (RLE+), gap encoding (Gap+),

and related measures(lg
� n

t

�
, E(L), and E(G)). Each bitvector BD is produced by

choosinga maximum gaplength and generatinguniformly randomgapsof 0sbetween

consecutive 1s. The gap column indicates the maximum gap length on a logarithmic

scale.The valuesin the table are the bits per gap (bpg) required by each method.

E(L) outperforms lg
� n

t

�
for real data sets, since the worst casefor RLE (all equally

spaced1s) hardly occurs. We also observe that RLE+ outperforms Gap+ for small gap

sizes(namely 4 or less). This behavior motivatesour choice for RLE to implement succinct

dictionaries (in the context of compressedtext indexing), sincemany gap sizesare small in

our distributions.

3.2.2 Empirical Distribution of RLE Values and Codes

To validate our choice of using RLE+ encoding, we generatedreal data sets for succinct

dictionaries and performedexperiments, comparing the spaceoccupancyof several di�eren t

encodings instead of the code. We took text �les from the Canterbury and Calgary

Corpora [Can], obtained their Burrows-Wheeler transform (bwt), performed the wavelet

101

tree construction on the bwt according to the text indexing structure of [GGV03], and

recorded the sets of integers that need to be stored succinctly. On these sets, we ran the

experiments summarizedin Table 3.2 and Table 3.3. We measuredthe total amount of bits

required by every encoding for each text �le and divided that amount by the length of each

�le; hence,the valuesin the tables are the bits per symbol (bps) required by each encoding

method.

For Table 3.2, each encoding scheme is used in conjunction with RLE to provide the

results in the table. (We also report Gap+ for comparison purposes.) Gol refers to the

Golomb code, and usesthe median value as its parameter b. Manis refersto the Maniscalco

code [Nel] that is tailored for usewith RLE in bwt. Ber is the skewed Bernoulli model with

the median value as its parameter b. MixBer usesjust one bit to encode gaps of length

1, and for other gap lengths, it usesone bit plus the Ber code. This experiment shows

that the underlying distribution of gapsin our data is Bernoulli. (When b = 1, the skewed

Bernoulli code is equal to .) Notice that, except for random.txt , codes are less than

1 bps from E(L). For random text, codes do not perform as well as expected. E(G)

and Gap+ outperform their respective counterparts on random.txt , which represents the

worst casefor RLE. Finally, we do not get improved results by using RLE and � codes

as shown in Table 3.2, namely just E(L) +
P j

i =1 blg lg(2` i)c bits by Fact 2. Although

coding requires 2E(L) � t bits, it outperforms � in practice, since is more e�cien t for

small run-lengths. Table 3.2 suggests as best encoding to couple with RLE.

A natural questionarisesasto the choiceof the simplistic encoding, sincetheoretically

speaking,a number of other pre�x codes(� , � , and skewedGolomb, for instance)outperform

 codes. However, encoding seemsextremely robust according to the experiments above.

We considerfurther comparisonswith fractional coding and Hu�man pre�x codes[WMB99]

in Table 3.3. In the table, the fourth column reports the bps required for the code in

which any run-length other than 1 is encoded using , whereasa sequenceof s 1s is encoded

with the code for 1 followed by the code for s; the �fth to Mo�at's arithmetic coder in

Section 3.2.3; the sixth column refers to the Hu�man code in which the cost of encoding

102

File E(L) E(G) RLE+ Gap+ RLE+ � Gol Manis Ber MixBer

book1 1.650 2.736 2.597 3.367 2.713 20.703 20.679 2.698 2.721

bible.txt 1.060 2.432 1.674 2.875 1.755 15.643 16.678 1.726 1.738

E.coli 1.552 1.591 2.226 2.190 2.520 2.562 2.265 2.448 2.238

random.txt 5.263 4.871 8.729 6.761 8.523 25.121 18.722 8.818 8.212

Table 3.2: Comparisonof variouscoding methodswhenusedwith run-length (RLE)

and gap encoding for each �le listed. Unless stated otherwise, the listed coding

method is usedwith RLE. The �les indicated are from the Canterbury Corpus[Can].

The valuesin the table are the bits per symbol (bps) required by each method.

the (large!) pre�x tree is not counted (which explains its sizebeing smaller than that of the

arithmetic code). The last two columnsrefer to the rangecoder mentioned in Section3.2.3,

where we employ either a �xed slack parameter a = 0:88 or choose the best value of a

adaptively. These results reinforce the observation that encoding is nearly the best.

In Section 3.2.3, we formalize this experimental �nding more clearly by curve-�tting the

distribution implied by onto the distribution of the run-lengths.

Improving upon to encode these RLE values requires a signi�cant amount of work

with more complicated methods. For the purposesof illustration, considerthe comparison

of encoding to that of an optimal Hu�man encoding, given in Table3.3. The code di�ers

from Hu�man encoding by at most 0.1 bps (except for random.txt , where the di�erence

is 0.8 bps), and as such, this means that the majorit y of RLE values are encoded into

codewords of roughly the samelength by both Hu�man and encoding. This newsis both

encouragingand discouraging. It seemsthat there is no real hope to improve upon using

pre�x codes,sinceHu�man codesare optimal pre�x codes[WMB99]. Further improvement

then, in somesense,necessitatesmore complicated techniques (such as arithmetic coding),

which have their own host of di�culties, most often a greatly increasedencoding/decoding

time.

103

File � +escape arithm. Hu�man a = 0:88 adaptive a

alice29.txt 2.3527 2.5816 2.5934 2.4964 2.3296 2.3247 2.3272

asyoulik.txt 2.6304 2.9104 2.9129 2.7324 2.5946 2.5875 2.5873

bible.txt 1.6109 1.7677 1.7839 1.8190 1.5963 1.5901 1.5903

cp.html 2.6949 2.9554 2.9310 2.7170 2.6487 2.6465 2.6543

fields.c 2.4387 2.6145 2.5894 2.4645 2.3228 2.4186 2.4186

grammar.lsp 2.8121 3.0636 2.9948 2.9282 2.6694 2.7648 2.7648

kennedy.xls 1.4269 1.6051 1.4718 1.6834 1.3521 1.3998 1.3968

lcet10.txt 2.0933 2.2902 2.3047 2.1727 2.0736 2.0650 2.0684

plrabn12.txt 2.4686 2.7469 2.7521 2.6591 2.4354 2.4277 2.4269

ptt5 0.7731 0.8600 0.8617 0.9983 0.7613 0.7582 0.7580

random.txt 6.7949 7.9430 7.7460 6.1273 6.0004 6.5210 6.4187

sum 2.9500 3.2324 3.1803 2.9184 2.8765 2.8792 2.8698

world192.txt 1.4699 1.5890 1.6095 1.5815 1.4555 1.4540 1.4550

xargs.1 3.3820 3.7303 3.6564 3.3763 3.3068 3.3404 3.3404

Table 3.3: Comparisonof variouscoding methodswhenusedwith run-length (RLE)

encoding. The �les indicated are from the Canterbury and Calgary Corpora [Can].

The valuesin the table are the bits per symbol (bps) required by each method.

3.2.3 Statistical Evidence Justifying Codes

We motivate our choice of encoding more formally, with statistical evidencesuggesting

that the underlying distribution of RLE values matches the distribution that the code

(or equivalently Bernoulli, with b = 1) encodes optimally. For instance, consider the em-

pirical cumulativ e distribution of the RLE valuesfor bible.txt , shown in Figure 3.1. This

distribution is �tted by the function

cdf (x) = e� a=x x 2 N + ; (3.3)

where parameter a 2 R + is a constant depending on the data �le. For instance, in the

Canterbury Corpus, we observe that a 2 [0:5; 1:8], depending on the �le (e.g., a = 0:9035

for bible.txt). We compute the derivative of cdf as if it were a continuous function and

104

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 RLE

cd
f(

R
LE

)

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 RLE

pd
f(

R
LE

)

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RLE

pd
f(

R
LE

)

Figure 3.1: The x axis shows the distinct RLE valuesfor bible.txt in increasing

order. Left: The empirical cumulative distribution together with our �tting function

cdf from (3.3). Center: The empirical probability density function together with our

�tting function pdf from (3.4). Right: The empirical probability density function

togetherwith the �tting function 6
� 2 �x2 , where 6

� 2 = 1P 1
i =1 1=i2 is the normalizing factor.

we obtain the probabilit y density function

pdf (x) =

ae� a=x

x2

!
.

1X

i =1

ae� a=i

i2

!

; i; x 2 N + ; a 2 R + (3.4)

where the term
P 1

i=1
ae� a=i

i 2 is the normalization factor. As one can seefrom Figure 3.1,

function (3.4) �ts the empirical probabilit y density of the RLE values for bible.txt ex-

tremely well, suggestingthat approximating the cdf by a continuous function incurs negli-

gible error.1

Sincepdf (x) � 1
x2 as x approaches in�nit y, we have

lim
x!1

e� a=x = 1)

ae� a=x

x2

!
.

1X

i =1

ae� a=i

i2

!

�
1
x2 :

Sincethe code is optimal for distributions proportional to 1=x2, we �nally have some

reasonablemotivation for the successof the code on an RLE stream. However, these

results only indicate the measureof successon pre�x codes; encodings which can assign

fractional bits may yet yield signi�cant improvement.

1We employed the matlab function called LSQCurvefit , which �nds the best �tting function in

terms of the least squareerror betweenthe function and the raw data to be approximated.

105

We performed various tests with Mo�at's implementation of an arithmetic coder,2 but

the results were not satisfying when compared with the code. To resolve this problem,

we use the statistical model of cdf to tailor an arithmetic coder to perform well on RLE

values. Recall that both pdf and cdf depend on the knowledge of the parameter a in

formula (3.3), which in turn dependson the �le being encoded. (We ran experiments with

a �xed a = 0:88, which also yielded good results on most �les that we tested.) To this end,

we take a fast (and free) arithmetic-style coder used in szip called range coder [Sch]. We

encode the RLE length ` by assigningit an interval of length cdf (` + 1) � cdf (`) = pdf (`).3

With this kind of compressor,we improve the compressionratio by 1{5% with respect

to encoding. (See Table 3.3 for the comparison.) We then transform our arithmetic

compressorso that the parameter a could be changedadaptively during execution, hoping

for a better compressionratio. We needa cue to infer a from the values already read, so

we usea maximum likelihood estimation (MLE) algorithm.

The main hurdle to simply using a maximum likelihood estimator (MLE) is its assump-

tion of independent trials. (In our terminology, this assumption would imply that each

run-length ` is independently drawn from its pdf.) We compute the (normalized) autoco-

variance of the RLE valuesto get an idea of \how independent" our RLE valuesare. This

method is widely adopted in signal theory [AUT] as a good indicator of independenceof

a sequenceof values, though it does not necessarilyimply independence. In our case,the

correlation betweenconsecutive RLE values is very low for the �les in Canterbury corpus,

which again, though it doesnot imply independencein the strict sense,is a strong indica-

tion nonetheless.With this observation in mind, we assumestatistical independenceof the

RLE valuesin order to de�ne the likelihood function

2The code (written in Java at <http://mg4j.dsi .un imi. it>) is inspired by the arithmetic coder

of J. Carpinelli, R. M. Neal, W. Salamonsen,and L. Stuiver, which is in turn basedon [MNW98].

3This encoding appears to be faster than using the cumulativ e counts of the frequency of values

already scanned,like other well-known arithmetic coders.

106

lx (a; x1; : : : ; xk) =
kY

i =1

pdf (x i) =

kY

i =1

ae� a=xi

x2
i

!
1X

i =1

ae� a=i

i2

! � k

:

We want to �nd the value of a where lx reachesits maximum. Equivalently, we can �nd

the maximum of lg lx (a; x1; : : : ; xk) = L x (a; x1; : : : ; xk). We di�eren tiate L x with respect

to a and get

�
@
@a

lg

1X

i =1

e� a=i

i2

!

=
1
k

kX

i =1

1
x i

= H (x) � 1;

where H (x) is the Harmonic mean of the sequencex. By denoting the left hand term

by f (a), we have a = f � 1
�
H (x) � 1

�
. Unfortunately, f (�) is not an analytical function

and is very di�cult to compute, even for �xed a. For instance, when a = 0, we have

f (a) = � (3)
� (2) = 0:7307629, where � (�) is the Riemann Z function. We apply numerical meth-

ods to approximate the function for a 2 [0:5; 1:8] (which is the range of interest for us).

Surprisingly, all this work leads to a small improvement with respect to the non-adaptive

version (where a = 0:88). Looking again at Table 3.3, the improvement is negligible, rang-

ing from 1{2% at best. The best caseis the �le random.txt (in the Calgary corpus), for

which the hypothesisof independenceof RLE valuesholds with high probabilit y by its very

construction.

3.2.4 Fast Access of Exp erimen tal-Analysis-Driv en Dictio-

naries

In this section, we focus on the practical implementation of our scheme that encodes the

conceptual bitv ector BD by RLE+ encoding and usesadditional directories on this en-

coding to support fast access.In particular, we proposea simpli�ed version that exploits

the speci�c distribution of run-lengths when dictionaries are employed for text indexing

purposes.Our dictionaries support rank and select primitiv es in O(lg t) time (with a very

small constant) to obtain low spaceoccupancyfor our dictionary D seenas a bitv ector B D

(with t 1s). We represent BD by the vector of run-length valuesL = f `1; `2; : : : ; ` j g (with

j � 2t and
P

i ` i = n) , where either BD = 1`1 0`2 1`3 : : : or BD = 0`1 1`2 0`3 : : :. (We usea

107

single extra bit to denote which caseoccurs.)

(1) Let (x) denote the code of the positive integer x. We store the stream (` 1) �

 (`2) � � � (` j) of encoded run-lengths. We store the stream in double word-aligned form.

Each portion of such an alignment is called a segment, is parametric, and contains the

maximum number of consecutive encoded run-lengths that �t in it. We pad each segment

with dummy 1s, so that they all have the samelength of O(1) words. (This padding addsa

total number of bits which is negligible.) Let S = S1 � S2 � � � Sk be the sequenceof segments

thus obtained from the stream.

(2) We build a two-level (and parametric) directory on S for fast decompression.

� The bottom level storesjSi j0 and jSi j1 for each segment Si , where jSi j0 (respectively,

jSi j1) denotesthe sum of run-lengths of 0s (respectively, 1s) relative to Si . We store

each value of the sequencejS1j0 ; jS1j1 ; jS2j0 ; jS2j1 ; : : : ; jSk j0 ; jSk j1 using byte-aligned

codes with a continuation bit. We then divide the resulting encoded sequenceinto

groups G1; G2; : : : ; Gm , each group containing several values of jSi j0 and jSi j1 for

consecutive valuesof i . The sizeof each group is O(1) words.

� The top level is composedof two arrays (A0 for 0s, and A1 for 1s) of word-aligned

integers. Let jGj j0 (respectively, jGj j1) denote the sum of run-lengths of 0s (respec-

tiv ely, 1s) relative to Gj . The i th entry of A0 storesthe pre�x sum
P i

j =1 jGj j0 . The

entries of A1 are similarly de�ned. We also keep an array of pointers, where the

i th pointer refers to the starting position of Gi in the byte-aligned encoding at the

bottom level (since the �rst two arrays can sharethe samepointer). To perform the

binary search in A0 or A1 , we require O(lg t) time. All other work (accessingthe

array of pointers and traversing the bottom level) is O(1) time.

The implementation of rank and select follows the same algorithmic structure. For

example, to compute select 1(x) we perform a binary search in A1 to �nd the position j

of the predecessorx0 = A1 [j] of x. (Interpolation search does not help in practice to

get O(lg lg t) expected time in this case.) Then, using the j th pointer, we accessthe byte-

aligned codesfor group Gj and scanGj sequentially with partial sumslooking at O(1) jSi j0

108

and jSi j1 values until we �nd the position of the predecessorx00for x � x0 inside Gj . At

that point, a simple o�set computation leadsto the correct segment Si (due to our padding

with dummy bits). We scan the O(1) words of Si to �nd the predecessorof x � x0 � x00

in Si . We accumulate the partial sum of bits that are to the left of this predecessor.This

sum is the value to be returned as select 1(x). In rank, we reverse the role of the partial

sumsin how they guide the search, but the search is largely the same.

As should be clear, the accessis constant-time except for the binary search in A 0

or A1 . In Section3.3, we will organizemany of thesedictionaries into a tree of dictionaries,

performing a seriesof select operations along an upward traversalof p nodes/dictionaries in

the tree. Sincewe needto perform a binary search in each of thesep dictionaries, we obtain

a cost of O(p lg t) time. This cost is prohibitiv e: we now describe a method to reduce the

time to O(p + lg t) using an idea similar to fractional cascading[CG86].

Supposedictionary D is the child of dictionary D 0 in the tree. Supposealso that we

have just performeda binary search in A0 of D . We can predict the position in A0 of D 0 to

continue searching. So instead of searching from scratch in A 0 of D 0, we retain a shortcut

link from D to indicate the next place to search in A 0 of D 0, with a constant number of

additional search steps. Thus, the binary search in p dictionaries along a path in the tree

will be costly only for the �rst node in the path (the root). This approach requires an

additional array of pointers for the shortcut links, though as we will show in Section 3.4.4,

the additional spacerequired can be made negligible in practice.

3.3 Review of Wavelet Trees

In this section, we review the wavelet tree from Section 2, which forms the basis for both

our indexing and compressionmethods. The wavelettree reducesthe redundancy inherent

in maintaining separatedictionaries for each symbol appearing in the text; each successive

dictionary only encodes those positions not already accounted for previously. Encoding

the dictionaries this way achieves the high-order entropy of the text. However, the lookup

109

 ipssm#pissii
0100010010011

 pss#pss
00001000

 imiii
001000

 psspss
0011011

p s

i m

p s

i m

 ipssm#pissii
1 1 3 1 2 1 2 2

 pss#pss
4 1 3

 imiii
2 1 3

 psspss
2 2 1 2

1 1 011 1 010 1 010 010 00100 1 011 010 1 011 010 010 1 010
1 1 3 1 2 1 2 2 4 1 3 2 1 3 2 2 1 2

Figure 3.2: Left: an examplewavelet tree. Right: an RLE encoding of the wavelet

tree. Bottom: actual encoding in memory of the right tree in heap layout with

encoding.

time for a particular item could be linear in the number of dictionaries, as a query must

backtrack through all the previous dictionaries to reconstruct the answer. The wavelettree

relatesa dictionary to an exponentially growing number of dictionaries, rather than simply

all prior encoded dictionaries. Consider the example wavelet tree in Figure 3.2 (which we

have augmented to explain somepractical considerationsas well), built on the bwt of the

text mississippi# , where # is an end-of-text symbol.

We implicitly associate each left branch with a 0 and each right branch with a 1. Each

internal node u is a dictionary with the elements in its left subtree stored as 0, and the

elements in its right subtree stored as 1. For instance, consider the leftmost internal node

in the left tree of Figure 3.2, whose leaves are p and s. The dictionary (aside from the

leading 0) indicates that a single p appears in the bwt string, followed by two s's, and so

on. We don't actually store the leaves of the wavelet tree; we have included them here for

clarity. The secondtree indicates an RLE encoding of the dictionaries, and the bottom

bitv ector indicates its actual storageon disk in heap layout with a encoding of the run-

lengths described previously. The leading 0 in each node of the wavelet tree creates a

unique association betweenthe sequenceof RLE valuesand the bitv ector.

110

Sincethere are at most j� j dictionaries (one per symbol), any symbol from the text can

be decoded in just O(lg j� j) time by using a balanced wavelet tree. This functionalit y is

alsosu�cien t to support multik ey rank and select , which we support for any symbol c 2 �.

See[GGV03] for further discussionof the wavelet tree.

We introduce two improvements for further speedingup the wavelet tree|use of frac-

tional cascadingand adoption of a Hu�man pre�x tree shape. First, we implement shortcut

links for fractional cascadingas described at the end of Section3.2.4. Second,we minimize

accesscost to the leaves by rearranging the wavelet tree. One can prove that theoreti-

cally, the spaceoccupancyof the wavelet tree is oblivious to its shape [GGV03]. (We defer

the details of the proof in the interest of brevity, though the reader may be satis�ed with

the observation that the linear method of evaluating dictionaries is nothing more than a

completely skewed wavelet tree.)

We performedexperiments to verify the truth of this theoretical observation in practice.

Briey , we generated10; 000 random wavelet trees and computed the spacerequired for

various data. Our experiments indicated that a Hu�man tree shape was never more than

0.006bps more than any of our random wavelet trees. Thosesavings were lessthan a 0.1%

improvement in the compressionratio with respect to the original data. Most generated

trees (over 90%) were actually worsethan our baselineHu�man arrangement, and did not

justify the additional computation time.

Sincethe shape doesnot seemto a�ect the spacerequired, we can organizethe wavelet

tree to minimize the accesscost (for instance), under the assumption that the distribution

of calls to the wavelet tree is known a priori. To describe the above more formally, let f (c)

be the estimated number of accessesto leaf c 2 � in the wavelet tree (which again is

not stored explicitly). We build an optimal Hu�man pre�x tree by using f (c) as the

probabilit y of occurrencefor each c. It is well-known that the depth of each leaf is at most

1+ lg
P

x f (x)=f (c), which is nearly the optimal averageaccesscost to c. Thus, on average,

we require 1 + lg
P

x f (x)=f (c) calls to rank or select involving leaf c.

Lemma 27. Given a distribution of accessesto the wavelet tree in terms of the estimated

111

Hu�man Cascading bible.txt book1

No No 1.344 1.249

No Yes 1.269 1.296

Yes No 1.071 0.972

Yes Yes 1.000 1.000

Table 3.4: E�ect on performanceof wavelet tree using fractional cascadingand/or

a Hu�man pre�x tree shape. The columns for Hu�man and Cascadingindicate

whether that technique was used in that row. The values in the table represent a

ratio of performancenormalizedwith the casein the last row. (Lower numbers are

better.)

number f (c) of accessesto each leaf c, we can shape it so that the average accesscost to

leaf c is at most 1 + lg
P

x f (x)=f (c). The worst-case space occupancy of the wavelet tree

does not changeas a result of this changeof shape.

In the experiments below, we make the empirical assumption that f (c) is the frequency

of c in the text (other metrics are equally suitable as seenin Lemma 27), reducing the

weighted averagedepth of the wavelet tree to H 0 � lg j� j. We performed experiments to

demonstrate the e�ectiv enessof fractional cascadingand the Hu�man-st yle tree shaping.

Someresults are summarizedin Table 3.4. Each row contains oneof the four possiblecases

indicating whether Hu�man (�rst column) and fractional cascading(secondcolumn) were

used. The last two columnsreport the corresponding timings for two text �les, obtained by

decompressingthe entire �le using repeated calls to the wavelet tree. This method is not

the most e�cien t way to decompressa �le, but it doesgive a good measureof the average

cost of a call to the wavelet tree. Timings are normalized with the casein the last row. As

can be seenfrom the data, fractional cascadingdoesnot always improve the performance,

while Hu�man shaping givesa respectable improvement.

The resulting wavelet tree is itself an index that achieves0-ordercompressionand allows

112

decoding of any symbol in O(H 0) expected time. In particular, it's possibleto decompress

any substring of the compressedtext using just the wavelet tree. This structure is a perfect

example where indexing is compression.We performed someexperiments to evaluate the

0-order compressionof wave, obtained by using the RLE+ encoding with the wavelet tree.

We do not add additional structures supporting fast accessin wave.

We obtained the �gures reported in Table 3.5 for sometext �les from the Canterbury

and Calgary Corpora [Can], and somenew �les available on TREC Tipster 3 [Tip]. Our

results for waveare in the secondcolumn. The arithmetic code [RL79] givesbetter results

than wavewhen run on the same�les, as reported in the third column arit . The next �v e

columnsreport the �gures for other compressorson the same�les. In thesecolumns,bzip2

version 1.0.2 is the Unix implementation of block sorting basedon the Burrows-Wheeler

transform; gzip is version 1.3.5; lha is version 1.14i [lha]; and vh1 is Karl Malbrain and

David Scott's implementation of Je�rey Scott Vitter's dynamic Hu�man codes; zip is

version 2.3. Note that a direct comparisonof the methods may not be meaningful in some

casesbecauseof di�eren t parameters; for example, bzip2 works on blocks of 900Kb and

book1 is the only �le within this size(768771bytes). The purposeof Table 3.5 is to show

that wave is not particular e�cien t as a 0-order compressorwhen applied directly to a

text �le. Surprisingly, when applied to the bwt stream obtained from that �le (denoted

wzip), its performanceimprovesa lot with respect to wave, as shown in the last column of

Table 3.5.

The lessonlearnedsofar suggeststhat the wavelet tree, coupledwith RLE and encod-

ing, is a simple but e�ectiv e meansfor compressingthe output of block-sorting transforms

such as bwt.

3.3.1 E�cien t Construction of the Wavelet Tree

In this section, we discusse�cien t methods of constructing our wavelet tree. In particular,

we detail an algorithm to create the wavelet tree in just O(n + min(n; nH h) � lg j� j) time.

Directories that enable fast accessto our wavelet tree can be created in the same time.

113

File wave arit bzip2 gzip lha vh1 zip wzip

book1 5.335 4.530 2.992 2.953 2.967 4.563 2.954 2.619

bible.txt 5.004 4.309 1.931 1.941 1.939 4.353 1.941 1.631

E.coli 2.248 2.008 2.189 2.337 2.240 2.246 2.337 2.181

world192.txt 5.572 3.043 1.736 1.748 1.743 5.031 1.749 1.519

ap90-64.txt 5.392 4.913 2.189 2.995 2.862 4.938 2.995 1.668

Table 3.5: Wavelet treewith RLE+ encoding asa plain 0-ordercompressor(column

wave) andapplied to the bwt stream(column wzip). Remainingcolumnsarefor other

compressors.The valuesin the table are in bits per symbol (bps).

We can add thesedirectories to our wzip format for fast access.We now describe wzip in

detail. The header for wzip contains three basic piecesof information: the text length n,

the block sizeb, and the alphabet size �. The body of the encoding is then dn=be blocks,

each block encoding b contiguous text symbols (except possibly the last block). Recall that

the nodesof the wavelet tree are stored in heapordering (example in Figure 3.2). We break

this stream into blocks and encode it. The format for a block is given below:

� A (possibly compressed)bitv ector of j� j bits that storesthe symbols actually occur-

ring in the block. Let � � j� j be the number of symbols present. (For large �, we

may store the bitv ector in the header,with smaller bitv ectors in the blocks that refer

only to the symbols stored in the bitv ector in the header).

� The dictionaries encoded with RLE+ , concatenated together according to heap

order. The wavelet tree has� implicit leavesand � � 1 internal nodeswith dictionaries.

(SeeFigure 3.2 for an example.)

We do not needto store the length of each encoding, as it is already implicitly encoded.

When processing,the encoding for the root node of the wavelet tree endswhen the sum of

the encoded RLEs equalsn. (Theserun-lengths may bespreadover several blocks.) At this

point, we know the total number of 0s and 1s, plus the (dummy) leading 0. The number

of 0s is the sum of the RLE valuesin the left child of the root, and the number of 1s is the

114

sum of the RLE values in the right child of the root. We can go on recursively this way,

down to the implicit leaves, from which we can infer the frequency of the occurrencesof

each symbol in the block.

3.3.2 Compression with bwt2wzip

In this section,wedescribeour compressionmethod bwt2wzip, which takesasinput the bwt

stream(the � function in [GGV03]) of the �le and compressesit e�cien tly usingour wavelet

tree techniques. Our approach introducesa novel method of creating the wavelet tree in

just O(n + min(n; nH h) � lg j� j) time, which is also faster in practice, as the entropy factor

can signi�cantly lower the time required. This behavior relates the speed of compression

to the compressibility of the input. Thus, we introducea new consideration into the notion

of compressibility|highly compressibledata should be easierto handle, both in terms of

spaceand time.

If we wereto build the wavelet tree naively from the bwt stream, we would run multiple

scanson the bwt to set up the bitv ector in each individual node of the wavelet tree. Then,

we would compressthe resulting dictionaries with RLE+ encoding. A single-scanmethod

is made possibleby placing one item at a time in each of the internal nodesfrom its root-

to-leaf path via an upward walk. Given any internal node in the tree, the set of values

stored there are producedin increasingorder, without explicitly creating the corresponding

bitv ector. Since processingeach symbol in the bwt could take up to O(lg j� j) time, it

requires O(n lg j� j) time in total. We describe a re�nement of this construction method

requiring O(n + min(n; nH h) � lg j� j) time. This method is faster in practice, since the

entropy factor can signi�cantly lower the time required for compressibletext.

Let c be the current symbol in the bwt stream, and let u be its corresponding leaf in

the wavelet tree. (Recall that the numbering of internal nodes follows the heap layout.)

While traversing the upward path in the wavelet tree to the root, we decide whether the

run of bits in the current node should be extendedor switched (from 0 to 1 or vice versa).

However, we do not perform this task individually for each symbol. Instead, we process

115

consecutive runs of equal symbols c, say r c in number, in the input simultaneously. We

then extend the runs in each internal node of the wavelet tree r c units at a time. Let nr

be the number of such runs that we processfor the entire bwt stream.

To make things more concrete,we use the following auxiliary information to compress

the input string bwt. Notice that the leavesof the wavelet tree arenot explicitly represented;

given a symbol c 2 �, it su�ces to know its leaf number leaf [c]. We also allocate enough

spacefor the dictionaries dict [u] of the internal nodes u. We keep a ag bit [u] for each

internal node u, which is 1 if and only if we are currently encoding a run of 1s in u. Below,

we describe and comment the main loop of the compression.We do not specify the task of

encoding the RLE valueswith codes, as it is a standard computation performed on the

dictionaries dict [u] of the internal nodesu.

1 while (bwt != end) {

2 for (c = *bwt, r_c = 1; bwt != end && c == *(++bwt); r_c++) ;

3 u = leaf[c];

4 while (u > 1) {

5 if ((u & 0x1) != bit[u >>= 1]) {

6 bit[u] = 1 - bit[u]; *(++dict[u]) = 0; }

7 *(dict[u]) += r_c;

8 }

9 }

We scan the input symbol c from the current position in the bwt to determine r c, the

length of the run of c (line 2). We determine the heap number of the (virtual) leaf u

associated with c (line 3) and start an upward traversal (lines 4{7). We closethe run in

the current node u and start a new run in the following two cases:

1. We arrive from the left child of u and the current run in u is made up of 1s; or

2. We arrive from the right child of u and the current run in u is made up of 0s.

We expressthis condition succinctly in line 5, where(u & 0x1) is 1 when u is a right child,

and u >>= 1 denotesu's parent whose ag bit indicates if the current run is of 1s. We

116

complement its value and prepare for the next entry in the current dictionary (line 6). We

then extend the current run-length by r c (line 7). We exit the loop at the root (when u = 1

in line 4).

The time required to perform these actions over the whole bwt input stream is O(n)

to scan the bwt stream, and O(n r � lg j� j), to perform the nr traversals of the wavelet

tree, taking O(lg j� j) time. It turns out that the number of runs n r processedby our

algorithm is nr = O(min(n; nH h)), proving our bound. Since n r � n trivially , we show

that nr = O(nH h), thus capturing preciselythe high-order entropy of the text. Note that n r

is asymptotically upper-boundedby the number of runs nd in all of the dictionaries of the

internal nodesin the wavelet tree. This bound holds, sinceeither the beginning or the end

of a run in the bwt stream must correspond to the beginning or the end (or vice versa)

of at least one distinct run in a dictionary. (Otherwise, we could extend the run in the

bwt stream, except possibly for the �rst or the last run). Thus, n r = O(nd). Since each

run length will require at least one bit to encode (i.e., lb(`) � 1 for any ` � 1), we can

simply bound the sum of the logarithm of their run-lengths. Theorem 16 proves that a

single wavelet tree encoded with RLE+ achievesO(nH h) bits of space,thus proving that

nr = O(nH h). The proof technique makesuseof the framework in [GGV03], and is proved

in Section 3.4.2.

3.3.3 Decompression with wzip2bwt

Decompressionis a fairly straightforward task once the encoding has been done, though

somecaremust be taken when decomposingsetsof runs. The decompressionalgorithm �rst

performsa downward traversal to identify the symbol c to decompress.It then performsan

upward traversal, analogousto that in bwt2wzip, except that it decrements the RLE values

by r c, producing in output r c instancesof c. However, the value of r c is not necessarily

the last RLE value examinedalong this path; rather it is the minimum among them. The

reasonstems from the fact that the runs in the dictionaries in the internal nodes (except

for the root) may correspond to a union of runs that were disjoint in the input string bwt.

117

Fortunately, the minimum value among those in an upward traversal from a leaf refers to

an individual run in the bwt stream, and it is the value r c.

To decompress,we use auxiliary information in bwt2wzip, a variable alphabetsize

and an array symbol. The former denotesthe actual number of symbols in the bwt stream;

the symbols are numbered from 0 to alphabetsize - 1. To recover the original value, we

remap them using array symbol. We now comment on our main loop for decoding. (Again,

we do not describe how to decode the RLE valueswith the code, as it is a standard task.)

1 while(r_c = *(dict[u=1])) {

2 while ((u = (u << 1) | bit[u]) < alphabetsize)

3 if (*(dict[u]) < r_c) r_c = *(dict[u]);

4 c = u - alphabetsize;

5 while (u > 1)

6 if (!(*(dict[u >>= 1]) -= r_c)) {

7 bit[u] = 1 - bit[u]; ++dict[u]; }

8 for(c = symbol[c]; r_c--; *(bwt++) = c) ;

9 }

We start with the RLE value in the dictionary of the root (u = 1 in line 1). We perform

the downward traversal (line 2), guided by the current run of 1s or 0s, looking at the ag

bit [u] to branch either to the left (bit [u] = 0) or the right (bit [u] = 1) in the heaplayout.

We also keep the minimum RLE value in r c (line 3), as previously mentioned. When we

reach a leaf, we �nd the rank of the symbol to decode (line 4). Note that lines 4 and 8

are the analogueof line 2 in bwt2wzip, except that we output symbol c after remapping

it, with symbol in the current position indicated by the bwt stream. The upward traversal

in lines 5{7 is similar to the downward traversal in lines 4{7 of bwt2wzip, except that we

decreasethe RLE values in the dictionaries. The time required for decompressionfollows

the sameargument as for compression.

118

3.3.4 Performance and Exp erimen ts for wzip

In this section, we discuss our experimental setup and detail our results for the speed

of accessof our compressionalgorithm. We usedseveral platforms to test our algorithms:

ATH = Athlon AMD 1GHz 512MB Linux, gccversion3.3.2(Debian); AXP = AMD Athlon

XP 1.8GHz512MB Linux, gccversion3.2.220030222(Red Hat Linux 3.2.2-5);PI I I = Intel

Pentium I I I 1GHz 512MB Windows XP, gcc version 3.2 (mingw special 20020817-1);PIV

= Pentium IV 2GHz 1GB Windows XP, gcc version 3.2 (mingw special 20020817-1);and

XEO = Intel Xeon 2GHz 2GB Linux, gcc version 3.3.1 20030626(Debian prerelease).We

drew our data from the Canterbury and Calgary corpora. The �rst three rows of Table 3.6

are �les from those corpora; the last two rows are the concatenation of all the �les in the

same.

We compare our performancewith a simple routine that copiesthe input bwt stream

into another array. We normalize the timings of our routines with respect to this simple

copy operation. We don't compare with the scan operation, as the compiler often cheats

and doesn't generatecode to scanfor an empty loop. In our experiments, bwt2wzip (com-

pression)is 2|6 times slower than a simple copy operation, and wzip2bwt (decompression)

is 3|7 times slower. The di�erence in performancedependsmainly on the architecture of

the processorrather than the input �le. (Consult Table 3.6 for proof of this fact, with bold

�gures for the minimum and the maximum.) The computation of RLE takes roughly 30%

of the total time in bwt2wzip and 40% in wzip2bwt.

With regard to �ne tuning performancein the code for bwt2wzip and wzip2bwt, each

time we accessan entry pointed to by dict [u], we may initiate a cache miss. Also, we

need to pre-allocate more spaceto accommodate all the dictionaries (whose �nal size is

known only at the end of the compression,which is too late). We alleviate this problem

by synchronizing the accessto the decoded RLE values. In particular, we can provide the

sameaccesspattern during the execution of bwt2wzip and wzip2bwt. Somecare must be

taken at initialization to maintain this information.

Consequently, the RLE values are scrambled among the dictionaries and follow the

119

bwt2wzip wzip2bwt

File ATH AXP PI I I PIV XEO ATH AXP PI I I PIV XEO

ap5.txt 4.811 2.822 2.244 4.878 5.250 6.736 4.200 3.438 6.232 6.500

bible.txt 4.093 2.688 2.162 3.473 4.370 5.302 3.656 2.910 4.746 5.037

world95.txt 3.077 2.375 1.946 2.705 3.800 3.744 3.167 2.698 3.750 4.450

calgary 4.465 3.481 2.566 4.162 5.565 6.256 5.148 3.939 5.643 6.826

canterbury 4.419 3.091 2.324 3.255 5.625 5.839 4.318 3.522 4.614 6.625

Table 3.6: Running times for bwt2wzip and wzip2bwt normalized with that of a

simple copy routine. File sizesin bytes are 5,000,000for ap5.txt , 4,047,392for

bible.txt , 2,899,483for world95.txt , 3,215,493for calgary , and 2,810,784for

canterbury .

accesspattern of wzip2bwt. To solve this problem, we no longer keepa pointer in dict [u];

instead, we temporarily store the current RLE value for u. As a result, except for dict [u],

bit [u], and symbol, accessto the other structures is sequential, which enablesus to exploit

the many levels of cache. Moreover, we do not needto allocate temporary storageto keep

the RLE valuesthat we will encode. Rather, we can produceeach RLE value and encode it

on the y . A drawback of this approach is that we losecompatibilit y with the text indexing

functionalities in Section 3.4.

It is worth noting that the total cost of compressionand decompressionis much larger

than what we discussedso far. We must alsoaccount for the cost of su�x sorting to obtain

the bwt stream from the input text �le (in addition to that of bwt2wzip) and the cost of

obtaining the text �le from the bwt stream (in addition to that of wzip2bwt).

3.4 Practical Su�x Arra ys:
Indexing Equals Compression

We explored dictionary methods which perform well in practice. Now, we apply these

dictionary methods to compressedsu�x arrays [GGV03, GV05, Sad03,Sad02b]and show

120

both experimental successaswell asa theoretical analysisof thesepractical methods. First,

we provide somebackground notions from [GV05, GGV03].

3.4.1 Compressed Su�x Arra ys (CSA)

To recap, a standard su�x array [GBS92, MM93] is an array containing the position of

each of the n su�xes of text T in lexicographical order. In particular, SA[i] is the starting

position in T of the i th su�x in lexicographical order, T
�
SA[i]; n

�
. The size of a su�x

array is �(n lg n) bits, as each of the positions stored useslg n bits. A su�x array allows

constant time lookup to SA[i] for any i . The compressedsu�x array [GV05] contains the

sameinformation as a standard su�x array.

De�nition 3. Given a text T of length n, a compressed su�x array [GV05, Sad03,Sad02b]

for T supports the following operations without requiring explicit storage of T or its (in-

verse)su�x array:

� compressproducesa compressedrepresentation that encodes(i) text T, (ii) its su�x

array SA, and (iii) its inversesu�x array SA� 1;

� lookup in SA returns the valueof SA[i], the position of the i th su�x in lexicographical

order, for 1 � i � n; lookup in SA� 1 returns the value of SA� 1[j], the rank of the j th

su�x in T;

� substring decompressesthe portion of T corresponding to the �rst c symbols (a pre�x)

of the su�x in SA[i], for 1 � i � n and 1 � c � n � SA[i] + 1.

The data structure is recursive in nature, where each of the ` = lg lg n levels indexes

half the elements of the previous level. Hence, the kth level indexesnk = n=2k elements.

The recursive decomposition is given below:

1. Start with SA0 = SA, the su�x array for text T.

2. For each 0 � k < lg lg n, transform SAk into a more succinct representation through

the useof a bitv ector B k , rank function rank(B k ; i), neighbor function � k , and SAk+1

(representing the recursion).

121

3. The �nal level, ` = lg lg n is written explicitly , using n bits.

SAk is not explicitly stored (except at the last level `), but we refer to it for the sake

of explanation. Bk is a bitv ector such that B k [i] = 1 if and only if SAk [i] is even. Even-

positioned su�xes are divided by 2 and represented in SAk+1 . In order to retrieve odd-

positioned su�xes, we employ the neighbor function � k , which maps a position i in SAk

containing the value p into the position j in SAk containing the value p + 1. We describe

it by the following formula (also handling the casewhen SAk [i] = n):

� k (i) =
n

j such that SAk [j] = (SAk [i] mod n) + 1
o

: (3.5)

A lookup for SAk [i] can be answered in the following way:

SAk [i] =

8
<

:

2 � SAk+1
�
rank(Bk ; i)

�
if Bk [i] = 1

SAk
�
� k(i)

�
� 1 if Bk [i] = 0.

The representation of B k and rank(Bk ; i) usesstandard techniquesand is easyto com-

press. The major hurdle for compressionremains in the representation of � k , which is at

the heart of compressedsu�x arrays and indexing in general. The key to the compression

of � k (which leadsto a bound in terms of nH h) is that we can partition the function � k into

a seriesof increasing subsequences(or sublists) that refer to positions in the text storing

the concatenatedstring yx, for each symbol y 2 � and context x 2 P �
h , the optimal pre�x

cover [FGMS05] for contexts of length at most h. These sublists hx; yi can be stored by

succinct dictionaries using lg
� nx

k
nx;y

k

�
bits, where nx

k is the number of su�xes of T pre�xed

by context x at level k and nx;y
k is the number of su�xes in T pre�xed by the concatenated

string yx at level k. Additionally , each sequenceof sublists related to yx 1; yx2; : : : ; yxc,

where c = jP �
h j and x i 2 P �

h is lexicographically before x i +1 , also forms an increasingsub-

sequence.We call these lists �-lists, one for each symbol y in the text. Each dictionary

is stored according to a much-reduced universe size using the wavelet tree; we refer the

reader to [GGV03] for further details on the consequencesof this observation with regard

to compression.

122

3.4.2 Practical Considerations for Compressed Su�x Arra ys

In this section, we apply our practical dictionaries to the CSA framework we described in

Section 3.4.1, achieving practical data structures that implicitly achieve at most twice the

high-order entropy of the text.

Theorem 15. We can encode the nk entries in all sublistsat levelk of the compressed su�x

array using at most 2nH h + o(n) bits, if we store each sublist as a succinct dictionary D

using RLE+ encoding.

Proof. Each of our dictionaries D takesat most E(L)+
P

lg(gi + 1) bits of space(sincethey

areRLE+gamma dictionaries). SinceE(L) � E(G)+ t by Fact 1 and E(G) =
P

lg(gi + 1)+ t

by Fact 2, we can bound the size of each dictionary by 2E(G). Thus, we can replaceour

dictionaries with the ones in the analysis in [GGV03], at most doubling the theoretical

worst-casebounds. The result follows automatically from the analysis in [GGV03].

This discovery brings up a remarkable point|our practical dictionary is blind to the

universe size that was so carefully constructed in [GGV03] to allow the use of the fully

indexable dictionaries from [RRR02] (whosespaceoccupancy is almost linearly dependent

on the universesize).

We proposeoperating implicitly on any partition Ph � � h (including a partition based

on the optimal pre�x cover P �
h [FGMS05]) for h � 0, where jPh j � n� , for some0 < � < 1.

(This reasonableassumption is also used in [GGV03].) We argue that due to the nature

of our directory, we are still able to achieve the higher-order entropy given in [GGV03].

Said more mathematically, we can split the cost in [GGV03] as nH h + M (h), where M (h)

refersto the overheadnecessaryto encode a statistical model for contexts of length up to h.

However, the term M (h) may becomelarge for su�cien tly large valuesof h, sincewe may

have nH h = 0 in this case.

Fact 3. There exists an h0 < n, such that for each h > h0, we havenH h = 0.

123

Proof. Build a su�x tree on the text terminated with n endmarkers that do not appear

elsewhere.Consider one of the internal nodes storing the longest string, say of length h0.

Then, for any context h > h0, prune the su�x tree, leaving only strings of length h + 1. We

can predict the (h + 1)st symbol with conditional probabilit y p = 1, sincewe are on an arc

leading to a terminal node. (There are no more branches.) At this depth, every symbol

can be predicted with perfect accuracy. The information content of such a distribution is 0,

requiring no bits (i.e., everything is encoded in M (h) bits in the model, which relates to

the pruned su�x tree). Hence,nH h = 0 for h > h0.

In similar cases(in our experiments when h > 4 and for more moderate casesthan

Fact 3), the contribution of M (h) may dominate the expression.This observation motivates

the need to acknowledge the model cost as a signi�cant factor in compression. Now we

prove our main theorem in this section, which describes how to encode the � function in

equation (3.5).

Theorem 16. We can encode the neighbor function � using 2nH h + o(n) bits with en-

coding, thus implicitly achieving high-order entropy.

Proof. For easeof exposition, we \n umber" the lexicographically ordered symbols y as

1 � y � j� j and similarly number the lexicographically ordered contexts x as 1 � x �

jPh j. Recall that each � list is an increasing subsequenceof positions. In [GGV03], we

conceptually break down the � lists that constitute the neighbor function � of compressed

su�x arrays into sublists for each context of order up to h (to scalethe universesizein the

dictionaries). We now encode all the sublists for the samesymbol in one shot using our

succinct dictionaries and the wavelet tree. The di�erence in encoding is that we save space

by not storing pointers to the beginning of each sublist (which can contribute signi�cantly

to the spaceM (h) for the statistical model). On the other hand, our gaps can be longer

when the gap we encode traversesa sublist. The idea of the proof is to show that the

savings more than make up for the loss. We de�ne the problem below formally.

Let gj be the j th gap in list y (composed of ny items) such that the j th item sj in

124

list y is in context x j 2 Ph and the (j + 1)st item sj +1 in list y is in context x j +1 , where

x j � x j +1 . Thus, sj is in sublist hx j ; yi and sj +1 is in sublist hx j +1 ; yi . We decomposethe

gap gj into three parts:

� g0
j , the length of the jump out of sublist hx j ; yi ;

� g00
j , the length of the jump over empty sublists inside of list y, namely a subsetof the

sublists hx j + 1; yi ; hx j + 2; yi ; : : : ; hx j + k; yi where x j + k + 1 = x j +1 ; and

� g000, the length of the jump within sublist hx j +1 ; yi .

By de�nition, gj = g0
j + g00

j + g000
j . The value g000

j is the only non-zero quantit y when sj

and sj +1 are in the samecontext x i.e., x j = x = x j +1 . Said di�eren tly, gj = g000
j in this

case,since we are not encoding a gap that jumps over other sublists. This is the same

cost incurred in [GGV03] when the sublists are treated separately(since they never encode

a gap that traversesa sublist). Since lg gj � lg(g0
j + g00

j) + lg g000
j , we can bound our total

overheadby
X

y2 �

ny � 1X

i =1

lg gj � lg g000
j �

X

y2 �

ny � 1X

i =1

lg(g0
j + g00

j) = o(n);

this is exactly the additional cost we incur by treating all of our sublists together. Sincewe

incur overheadfor each sublist exactly once,taking lg(g0
j + g00

j) = O(lg n) bits, we can bound

this cost by the number of sublists among the entire structure of [GGV03]. We now give

more details on bounding the above quantit y. Let the number of contexts c = jPh j = n� ,

where 0 < � < 1, the same restriction as [GGV03]. For list y, we can have at most

minf c;nyg items with non-zerovaluesfor g0
j and g00

j . Since
P

j (g
0
j + g0

j) � n, we can encode

thesegapsusing a dictionary, taking lg
� n

c

�
= o(n) bits per list. We can similarly apply the

bound for each � list, taking at most j� j times as much space,which is again o(n) bits.

Finally, sincewe are using encoding instead of a more e�cien t code, we at most double

the encoding cost of each dictionary as in Theorem 15, thus doubling the entropy term and

proving the claimed bound.

125

3.4.3 Su�x Arra y Compression

One major advantage of su�x sorting (block sorting) is that not only does it compress

accordingto high-order entropy, it alsoconciselyrepresents the underlying statistical model,

typically exploited using a Move-to-Front (MTF) encoder [BSTW86] (as it happens in

bzip2). We now describe how to use our succinct dictionaries (RLE+), the su�x array

(block sorting), and the wavelet tree (incremental representation of dictionaries) to achieve

a compressionratio comparable to that of methods such as bzip2 , without using MTF,

arithmetic, or multi-table Hu�man encoding. (Seealso [WM01].) Based on our analysis,

we concludethat our approach avoids explicit treatment of the order of context, but allows

for indirect context merging through the run-length encoding.

The outcomeof our experiments is summarizedin Table 3.7, where the rows represents

sometext �les from the Canterbury and Calgary corpora exceptthe last ones(ap90-64.txt ,

ap90-100.txt), which are somenews �les available on TREC Tipster 3 [Tip]. Each row

represents duplicated experiments performed as follows. (Figure 3.2 may help the reader.)

1. We obtain the bwt stream from the input text �le.

2. If (MTF = Yes), we transform the bwt stream using MTF.

3. We build the wavelet tree on the stream resulting from the previous two steps.

4. For each bitv ector BD found in the wavelet tree, we produce the corresponding se-

quenceL of (positive) integer run-lengths.

5. We encode the integers in the sequencesL thus obtained, using one of the following

encodings: code, � code, Gol code, Manis code, Ber code, or MixBer code.

6. We divide the total number of bits required by the encoding in the previous step by

the sizeof the input text �le to obtain the bits per symbol (bps).

Column E(L) reports the bpsquantit y usingformula (3.2) in Section3.2.1. WetakeE(L)

as an empirical lower bound to the �gures for the other codes. (Note that the integers in

L changewhen using MTF, as a consequenceof step 2.) The last six columns of Table 3.7

report the resulting bps �gures for the , � , Gol, Manis, Ber, and MixBer codes. Gol

refers to the Golomb code, and usesthe median value as its parameter b; Manis refers to

126

code [Nel]; Ber is the skewed Bernoulli model with the median value as its parameter b;

MixBer usesjust one bit to encode gapsof length 1, and for other gap lengths, it usesone

bit plus the Bernoulli code.

Table 3.7 shows that that Move-To-Front (MTF) and Hu�man/arithmetic coding are

not strictly necessaryto achieve high-order compressionin our case; seethe column for

the code for an example. Notice that Maniscalco and Golomb gain a huge savings from

using MTF: We do not have an explanation for the gap between Golomb and Bernoulli

without using MTF. (Golomb encodes a positive integer x using 1 + b(x � 1)=bc + blg bc

bits, whereb is the medianvalue in our case.) In almost all cases,the codeperformsbetter

than any other method for each �le, asidefrom E(L).4 In summary, we obtain high-order

compressionwith three simple ingredients: su�x arrays, wavelet trees, and dictionaries

basedon RLE and encoding.

3.4.4 Su�x Arra y Functionalities

We now have all the ingredients for implementing compressedsu�x arrays. We still needto

store SA ` and its inverse,aswell asa dictionary to mark the positions in the original su�x

array represented in SA ` . Here we face a similar problem to that of the directories in our

dictionary D where, if we follow the sametechniques,we sparsify thesearrays. In Table 3.8,

we show the number of bits per symbol neededfor compressedsu�x arrays on some�les

from the Canterbury corpusand TREC Tipster 3 [Tip]. We incur a minimal overheadcost

for adding su�x array functionalit y; moreover, our potentially costly fractional cascading

in our wavelet tree requires almost negligible space(0.006 bps).

4Note that values for the code from Table 3.5 are larger than their corresponding (non-MTF)

entries in the column, as the former must includes somepadding bits to allow fast access.

127

File MTF E(L) � Gol Manis Ber MixBer

book1 No 1.650 2.585 2.691 20.703 20.679 2.723 2.726

book1 Yes 1.835 2.742 3.022 3.070 2.874 2.840 2.921

bible.txt No 1.060 1.666 1.740 15.643 16.678 1.742 1.744

bible.txt Yes 1.181 1.753 1.940 2.040 1.926 1.826 1.844

E.coli No 1.552 2.226 2.520 2.562 2.265 2.448 2.238

E.coli Yes 1.584 2.251 2.566 2.445 2.232 2.398 2.261

world192.txt No 0.950 1.536 1.553 19.901 21.993 1.587 1.589

world192.txt Yes 1.035 1.570 1.707 2.001 1.899 1.630 1.643

ap90-64.txt No 1.103 1.745 1.814 24.071 25.995 1.815 1.830

ap90-64.txt Yes 1.235 1.840 2.031 2.148 2.023 1.915 1.935

ap90-100.txt No 1.077 1.703 1.772 24.594 26.191 1.772 1.787

ap90-100.txt Yes 1.207 1.797 1.985 2.104 1.982 1.870 1.890

Table 3.7: Measureof the e�ect of MTF on variouscoding methods whenusedwith

RLE. The MTF column indicateswhen it is used. The valuesin the table are in bits

per symbol (bps) and the lowest per row are shown in boldface.

3.5 Space-E�cien t Su�x Trees

In this section, we apply our ideason su�x arrays and compressionto the implementation

of a space-e�cient version of su�x trees [Kur99]. Su�x trees are at the heart of many

algorithms on strings and sequences,so their full functionalit y is needed[Gus97b]. Thus,

we support a suite of navigational, hierarchical, and search capability. From a theoretical

point of view, a su�x tree can be implemented in either O(n lg j� j) bits or jCSAj+ 6n+ o(n)

bits [Sad02a], which is signi�cantly larger than that of the compressedsu�x arrays discussed

before. The bottleneck comesfrom retaining the longestcommonpre�x (LCP) information,

which requires at least 6n bits [Sad02b]. As an alternative, the sameinformation can be

maintained in at least 4n bits to retain the tree shape of at most 2n � 1 nodes [MRS01a],

128

book1 bible.txt E.coli world192.txt ap90-64.txt ap90-100.txt

� overhead 0.166 0.050 0.050 0.067 0.032 0.032

� 2.785 1.681 2.231 1.586 1.700 1.659

CSA overhead 0.328 0.210 0.210 0.228 0.192 0.191

CSA 2.946 1.841 2.391 1.747 1.860 1.818

Table 3.8: Comparison of spacerequired by � and the compressedsu�x array

(CSA), given in bits per symbol (bps). Overheadrefers to all spaceother than the

RLE+ encoding for the data itself.

though there is someslowdown since LCP information is not stored explicitly .5 In either

case,a separate(compressed)su�x array is neededto encode the leavesof the su�x tree.

Since LCP information encodes the internal nodes of the su�x tree, the bound reduces

to lessthan 6n bits in practice. Despite our dictionaries, however, the spacerequired for

LCP information is not drastically diminished, sincewe are anyway encoding the internal

structure of the su�x tree.

To achieve less than 6n bits, we employ a simple heuristic based on an arbitrarily

chosenslowdown factor S = O(lg n). We implement part of the lowest common ancestor

simpli�cation introduced in [BFC04]. We use our dictionaries and sparsi�cation of the

entries, sped up with tricks to take advantage of parallelism in modern processors.Once

we have this structure, we use just O(1) additional words to get a representation of a

su�x tree. For example, we obtain 2.98 bps (book1), 2.21 bps (bible.txt), 2.54 bps

(E.coli), and 2.8 bps (world192.txt). These sizes are comparable to those obtained

by gzip , namely, 3.26 bps (book1), 2.35 bps (bible.txt), 2.31 bps (E.coli), and 2.34

bps (world192.txt).6 A point in favor of the compressedrepresentation of su�x trees is

that they �t in main memory for large text sizes,while regular su�x trees must resort to

5A recent manuscript by Jesper Jansson,Kunihik o Sadakane, and Wing-Kin Sung improvesover

thesebounds.

6The comparisonwith gzip is just to show that our implementation is spacee�cien t, not a reason

to replacegzip .

129

external memory techniques. A drawback is that accessingthe former requires more CPU

time. Nevertheless,we expect that their performanceis superior when comparedto regular

su�x trees in external memory. Several applications have such large su�x trees, e.g., a

su�x tree for the human genome.

We exploit a folklore relationship between su�x tree nodes and intervals in the su�x

array, which has beenused recently to devisee�cien t algorithms [AK O04, AASA01]. For

each node u, there are two integers 1 � ul � ur � n such that SA[ul : : : ur] contains all

the su�xes stored in the leavesdescendingfrom u. Thus, a node u � (u l ; ur ; `u) is a triple

of integers in our representation, where `u represents the LCP of the strings of the text

beginning at positions SA[ul] and SA[ur]. For each node u, we use this information to

support the following operations:

� reaching u's parent;

� branching to u's child v by reading symbol s;

� �nding the label of the edge(u; v) (with cost proportional to the length of the label);

� computing the skip value of u;

� determining the number of leaves descendedfrom u;

� checking whether u is an ancestorof v;

� computing the lowest common ancestorof u and v;

� following the su�x link from u to v, in the style of McCreight or Weiner [Gus97b].

We useKasai et al.'s linear-time method [KLA + 01] to compute LCP information. We

modify Sadakane's method [Sad02b]to store only LCP values larger than 2lg n; it works

and compresseswell. (We also explicitly store LCP values for a few constant-size LCP s

to speedup searching.) We also implement the doubling technique of Farach-Colton and

Bender [BFC04] to compute LCP information in constant time, though we can trade time

to reducethe spacerequired.

We baseour algorithms on the fact that we can useLCP information to go from node u

to node v by extending their intervals suitably and usethe sameinformation to navigate in

the compressedsu�x array. We defer the standard details for most operations and discuss

130

only how to follow the su�x link from u to v.

Let u � (ul ; ur ; `u) and v � (vl ; vr ; `v). We useour wavelet tree to �nd two valuesu0
l ; u0

r

such that vl � u0
l � u0

r � vr . To �nd vl and vr , we observe that lcp(SA[u0
l]; SA[u0

r]) � `v .

We perform two binary searches, one for u0
l going to the left subtree and the other for u0

r

going to the right subtree. To �nd v` , at each step of our binary search in position i , we

compute lcp(SA[i]; SA[u0
l]) and compare it with `v . Depending on the outcome, we can

decidewhich way to go. Sincevl is the leftmost position such that lcp(SA[vl]; SA[u0
l]) � `v ,

we can �nd vl in a logarithmic number of steps. Finding vr is similar.

We now discuss our experimental setup for the su�x tree and su�x array applica-

tions. Many experiments were run on the machines ATH and XEO that we described in

Section 3.3.4. The data setswere drawn mainly from the Canterbury corpus, TREC Tip-

ster 3 [Tip], and electronicbooksfrom the Gutenbergproject at <http://promo.net/pg/> .

Our source code is written in C in an object-oriented style. Our code is organized

as �v e distinct modules, which we now describe briey . Module dict implements our

crucial dictionaries (Section 3.2). Module phi implements the wavelet tree and its use

in compressedsu�x arrays (Section 3.3), while module csa implements the compressed

su�x array and related functionalit y (Section 3.4). Module lcp stores LCP information

and module st implements su�x tree functionalit y, though we avoid storing any nodes

explicitly (Section 3.5). The latter module requires fast decompressionof symbols, access

to the su�x array and its inverse,and fast computation of LCP information, all of which

are provided in the other modules.

3.6 Conclusions

In this chapter, we develop the simplenotions of run-length encoding (RLE) and encoding

to achieve competitiv e compressionratios and fast compressionand decompressiontime for

both indexing and compressionalgorithms. (Of course, we must add the dominant cost

of computing bwt by su�x sorting and that of inverting it.) Someindependent work has

also shown that compressedsu�x arrays are still competing in search time [HLS+ 04]. The

131

techniques we have developed are practically sound, but also grounded in solid theoretical

analysis and strong notions of encoding both the data and the underlying model. Our

method is tunable to the accesspattern of any �le, which is a property unknown in similar

work on compressedindexing. While we do not claim that our software is a ready-to-use

library, we intend to perform intensealgorithm engineeringto further tune the search time

of our indexing structures, though much hasalready beendone. We construct the index in

competitiv e time (roughly 1-2 minutes for 64 MB of data on our test system).

Our compressionalgorithm wzip does not require any additional parameters beyond

the text size,alphabet size,and block size,and is tailored to work for large alphabets, e.g.,

Unicode, UTF/16. Our method performs integer bit assignments and does not resort to

costly computation of fractional bits, asdoesan arithmetic coding technique. A simple copy

operation is only 2{6 times faster than our wzip compression,and only 3{7 times faster

than our decompression. As a matter of fact, our encoding algorithm is so fast that its

major bottleneck is the encoding and decoding of . However, the real bottleneck remains

the fast computation of the bwt, namely by su�x sorting.

Despite theseobservations, data in http://www.maximumcompression. comshows that

our method doesnot achieve the best compressionratio on the market. On the other hand,

our ideas are easyto implement, as they use introductory material on standard compres-

sion techniques. Our wavelet encoding is in somesenserelated to inversioncoding [Deo02],

though the analysis in [GGV03] is the �rst to truly understand its impact. More criti-

cally, however, the wavelet tree servesas a vast improvement in accesstime over inversion

coding ideas. Other pre�x codes (e.g., those in [Deo02, Fen96, Fen02, How97]) present

other re�nements with various tradeo�s. Theoretical exploration of the suite of algorithms

from [Deo02] could illuminate other approaches than the oneswe have taken.

Both our compressionand indexing methods depend directly upon the spaceboundsof

our dictionaries; any improvement there yields signi�cant savings on our method. The best

possiblecompressionachievable is that empirically establishedby E(L) in formula (3.2);

however, aswe saw in our experiments with Hu�man encoding, RLE+ encoding performs

132

quite competitiv ely with respect to Hu�man codes in practice (and we didn't even count

the spacerequired for the pre�x tree for Hu�man encoding). Our key to spacereduction

is to exploit the underlying entropy in the text using a transform and a solid method of

removing redundancy using the wavelet tree.

133

Chapter 4

Compressed Dictionaries and
Data-Aw are Measures

In this chapter, we proposemeasuresfor compresseddata structures, in which spaceusage

is measuredin a data-aware manner. In particular, we considerthe fundamental dictionary

problem on set data, where the task is to construct a data structure for representing a set S

of n items out of a universeU = f 0; : : : ; u � 1g and supporting various querieson S. We

use a well-known data-aware measurefor set data called gap to bound the spaceof our

data structures.

We describe a novel dictionary structure operating in near-optimal time that requires

gap + O(n lg(u=n)=lg n) + O(n lg lg(u=n)) bits. Under the RAM model, our dictionary

supports membership, rank, and predecessorqueriesin nearly optimal time, matching the

time bound of Anderssonand Thorup's predecessorstructure [AT00], while simultaneously

improving upon their spaceusage.We support selectquerieseven faster in O(lg lg n) time.

4.1 In tro duction

The proliferation of data is a problem that is su�o cating our abilities to manageinforma-

tion. Massive data sets from biological experiments, Internet routing information, sensor

data, and audio/video devicesrequire new methods for managing data. In many of these

cases,the information content is relatively small comparedto the sizeof the original data.

We want to exploit the huge potential to save spacein these cases. However, in many

applications, data also needsto be indexed for fast query processing. The new trend of

data structure designconsiderstime and spacee�ciency together: The ultimate goal is to

build structures that operate in the optimal (or nearly so) time bound, while requiring the

minimum amount of space,tuned for the particular input data.

134

Ideally, the spacerequired for a structure should be de�ned with respect to the Kol-

mogorov complexity of the data upon which the structure is built, as it is the spaceof the

smallest program that can generate the input data. Unfortunately, it is undecidable for

arbitrary input, making it an inconvenient measurefor practical use. Thus, other measures

of compressibility are used as a framework for data compression,like entropy for textual

data.

One fundamental type of data is set data, which consist of a subsetS of n items from a

universeU = f 0; : : : ; u � 1g. Somespeci�c examplesinclude IP addresses,UPC barcodes,

and ISBN numbers: set data also appear in inverted indexes for libraries and web pages,

as well as results from scienti�c experiments. In many natural examplesof set data, S is

not a random subset of U and can be compressed.(For instance, consider a set S with a

few tightly clustered items spreadthroughout U.)

In this chapter, we use the gap measure [BMNM + 93] (described formally in Sec-

tion 4.2.2), which hasbeenusedextensively asa reasonablespacemeasurein the context of

inverted indexes[WMB99]. The gap measurecounts the spacerequired to encode the dis-

tances between successive items and is usually much less than the information-theoretic

lower bound of dlg
� u

n

�
e � n lg(u=n) bits.1 (This bound is known as the information-

theoretic minimum becauseit is the minimum number of bits neededto di�eren tiate the
� u

n

�
possiblesubsetsof n items out of a universeof size u.) A gap-style encoding can be

potentially much smaller than dlg
� u

n

�
e bits for many of the data setsabove, sinceit exploits

short distancesbetweenitems.

We usethesenotions of compressibility to designcompressed data structures that index

the data in a succinct way and also allow fast access.In particular, we addressthe funda-

mental dictionary problem, where we designa data structure to represent a subsetS that

supports various querieson S. In this chapter, we present compressedrepresentations for

both fully indexabledictionaries (FID) and indexabledictionaries (ID), improving the space

required by previous results while maintaining near-optimal query time. In particular, un-

1Throughout the chapter, we assumethe baseof the logarithm is 2.

135

der the unit-cost RAM model, we develop a fully indexabledictionary (FID)|a data struc-

ture supporting rank and selectqueries|of sizegap + O(n lg(u=n)=lg n) + O(n lg lg(u=n))

bits, while supporting rank in time matching Andersson and Thorup's (nearly-optimal)

predecessorstructure [AT00] and selecteven faster in O(lg lg n) time. When n 2 o(u), our

fully indexable dictionary is asymptotically equal to gap space(with a constant of 1). This

is important because,for most real-life data, n � u and gap is signi�cantly lessthan the

worst-caseinformation-theoretic minimum dlg
� u

n

�
ebits. To our knowledge,this result is the

�rst of its kind. Even when consideredfrom a worst-caseperspective, our data structures

are the �rst to take O(n lg(u=n)) bits with near-optimal query time. We also develop an

indexable dictionary (ID)|a data structure supporting partial rank and selectqueries|in

the samenumber of bits that supports each query even faster in O(lg lg n) time. This result

is the �rst to operate with gap-style bounds in spacewith time sublogarithmic in terms of

the number of items stored. Moreover, our data structures are useful in practice; we also

have a practical implementation and we discussalgorithmic engineeringand experimental

results in near the end of this chapter. Our results show that gap is about 10 � 40% of

dlg
� u

n

�
e for many practical data sets.

The work in this chapter is a collaborative e�ort with Wing-Kai Hon, Rahul Shah, and

Je�rey Scott Vitter.

4.1.1 Comparisons to Previous Work

Previousresultsof Jacobson[Jac89b], Munro [Mun96], Brodnik et al. [BM99], Pagh[Pag99],

and Raman et al. [RRR02] develop dictionaries that support constant-time queries. The

best among these are the indexable dictionaries (ID) (supporting partial rank and select)

and the fully indexable dictionaries (FID) (supporting rank and select) by [RRR02], both

supporting constant-time queries. Their ID requires
�
lg

� u
n

� �
+ o(n) + O(lg lg u) bits, and

their FID requires
�
lg

� u
n

��
+ O(u lg lg u=lg u) + O(lg lg u) bits. These results seemquite

strong, as the constant factor associated with the information-theoretic minimum term

is 1; unfortunately, the spaceis not bounded in a data-aware manner.

136

Recent work by M•akinen and Navarro [MN06] and Sadakaneand Grossi [SG06] achieves

an FID with constant time queriestaking gap+ O(n lg lg(u=n)) + O(u lg lg u=lg u) bits of

space.2 Both of thesedata structures are meaningful as methods to achieve constant-time

queriesover a gap representation. Still, theseFID structures do not work well when n � u,

as the o(u) term will be much (even exponentially) larger than the information-theoretic

minimum term dlg
� u

n

�
e, dwar�ng any savings we want to achieve. For instance, consider

a typical example of maintaining a dictionary for IP lookup, storing say 217 IP addresses

out of a universeof size232. In this case,dlg
� u

n

�
e is roughly 345,661(about 218) bits while

their o(u) term is roughly 6:71 � 108 (about 229) bits|sev eral orders of magnitude larger

than the information-theoretic minimum dlg
� u

n

�
e bits.

Blandford and Blelloch [BB04] proposedan interesting scheme that allows easytrans-

formation of any FID implemented with O(n) pointers into another that requiresO(gap) +

O(u� lg u) bits for any 0 < � < 1.3 After the transformation, query time is slowed down

by a factor of 1=� comparedwith time required by the original dictionary. Blandford and

Blelloch's schemeallows us to have FIDs with spaceboundedin a data-aware manner. How-

ever, their analysis still has a potentially excessive u
(1) term. We note that their method

can be tuned by someof the techniques developed in this chapter to achieve (1 + �)gap

bits of space.However, this increasestheir search time by a multiplicativ e factor of 1=�. In

addition, they require either complexRAM operations or a decoding table that may require

more space.This is in part becausetheir space-savings approach is fundamentally di�eren t

from our own; it packs a variable number of items into a constant number of memory words

and fetches the information in a constant number of RAM operations or by useof a large

decoding table. In contrast, our data structure fetches one item at a time. We describe

this structure in more detail in Section 4.4.

A fundamental aspect of a dictionary's search capabilities is captured by the predecessor

2The middle term O(n lg lg(u=n)) comesfrom encoding the extra bits neededfor a pre�x code

(such as a � code).

3They only claim O(n lg((u + n)=n)) + O(u� lg u) bits in their paper.

137

problem, since dictionaries that (implicitly) solve the predecessorproblem require funda-

mentally more spaceand time than those that do not. Precisely, the predecessorquery

determinesthe largest item in S smaller than the query. Fredman and Willard [FW93] pro-

posedthe well-known fusion tree which supports predecessorqueriesin O(lg n= lg lg n) time.

The query time was later improved by Beameand Fich's key result [BF99]. In particular,

Beameand Fich describea data structure taking O(n2 lg u) bits of spacethat supports mem-

bershipand predecessorqueriesin B F (u; n) = O(minf (lg lg u)=(lg lg lg u);
p

(lg n)=(lg lg n)g)

time. They also show that this bound is tight as long as we have only O(nO(1) lg u) bits

available.4 P�atra�scu and Thorup [PT06] improved their spaceto O(n1+exp(� lg1� � lg u) lg u)

bits of space,but unfortunately this improvement doesnot help our data structure.

Andersson and Thorup [AT00] provide a transformation to Beame and Fich's data

structure, improving the spaceto O(n lg u) bits and making the data structure dynamic

using exponential search trees. However, the query time increasesto

AT (u; n) = O

min

(s
lg n

lg lg n
;

lg lg u
lg lg lg u

� lg lg n; lg lg n +
lg n

lg lg u

)!

:

Since rank and select can be used to answer predecessorqueries, we improve Anders-

son and Thorup's structure in terms of spacewithout sacri�cing query time. In the worst

case,our fully indexable dictionary comparesfavorably with both Raman et al. [RRR02]

and Blandford and Blelloch [BB04]. With respect to the former, though we cannot sup-

port O(1)-time queries, we have eliminated the problematic o(u) spaceterm. Our query

time|whic h is AT (u; n)|is already closeto the optimal B F (u; n). For our indexable dic-

tionary, when compared with Raman et al.'s ID structure [RRR02], we pay a small price

in the lookup time in exchange for achieving spacebounds in terms of gap, which may be

signi�cant in practice.

The table in Figure 4.1 lists the theoretical results with practical estimatesfor the space

required to represent the various compresseddictionaries we mentioned. In all reported

4It is this result that necessitatesRaman et al.'s FID [RRR02] o(u) spaceterm, sinceconstant-time

rank and selectqueriesimply constant-time predecessorqueriesas well.

138

bounds, we refer to ful ly-indexabledictionaries (FID). Note that B F (u; n) � AT (u; n) for

any u and n.

Figure 4.1: Time and spaceboundsof dictionaries for rank and select queries.

Theoretical Practicala

Paper Time Space(bits) Space(bits)

this chapter AT (u; n) gap+ o(lg
� u

n

�
) when n � u � 1; 830; 959

[BB04] AT (u; n) 2gap+ �(u�) � 1; 855; 116

[vEBKZ77]b O(lg lg u) �(n lg u) > 3; 200; 000

[AT00] AT (u; n) �(n lg u) > 3; 200; 000

[BF99] B F (u; n) �(n2 lg u) > 320; 000; 000; 000

[PT06] B F (u; n) �(n1+exp (� lg 1� � lg u) lg u) > 10; 000; 000

[Jac89b] O(1) u + �(u lg lg u=lg u) > 4; 429; 185; 024

[RRR02] O(1) lg
� u

n

�
+ �(u lg lg u=lg u) > 136; 217; 728

[MN06] O(1) gap+ O(n lg lg(u=n)) + �(u lg lg u=lg u) > 136; 017; 728

[SG06] O(1) gap+ O(n lg lg(u=n)) + �(u lg lg u=lg u) > 136; 017; 728

aThe practical spacebounds are for indexing our upc 32 �le, with n = 100,000and

u = 232. The values for [vEBKZ77, BF99, Jac89b, RRR02, MN06, SG06] are esti-

mated by their reported spacebounds. For thesemethods, we relaxed their query times

to O(lg lg u) to provide a fairer comparison in spaceusage.

bThe theoretical spacebound is from Willard's y-fast trie implementation [Wil84].

4.1.2 Outline of the Chapter

The organization of the chapter is as follows. In Section 4.2, we introduce three space

measuresfor set data and show the strong relationship among them. In Section 4.3, we

develop a binary searchable dictionary representation (BSD), which servesas an important

component in our main results. In Section 4.4, we describe our fully indexable dictionary

and analyze it for both gap-style bounds and worst-casebounds. We achieve a fully in-

dexable dictionary supporting rank in AT (u; n) time and select in O(lg lg n) time, taking

139

gap + o(n lg(u=n)) bits of space,or O(n lg(u=n)) bits in the worst case. Note that fully

indexable dictionaries that take O(nO(1) lg u) bits of spaceare subject to the lower bound

of [BF99]; hence, these times are near-optimal with respect to B F (u; n). In Section 4.5,

we present our indexable dictionary result, which cannot solve predecessorqueries, and

can thus improve upon the query times from [BF99]. Section 4.6 details our experimental

�ndings. We concludein Section 4.8.

4.2 Dictionaries and Data Aw are Measures

Let S = hs1; : : : ; sn i be an ordered set of n items from a universe U = f 0; 1; : : : ; u � 1g

of size u; that is, i < j implies si < sj . We want to represent S in a succinct form so

that we can perform basic dictionary querieson its compressedrepresentation. We de�ne

dictionaries more formally in Section4.2.1. The normal concernof a dictionary is how fast

onecan answer a query, but spaceusageis also an important consideration. We would like

the dictionary to use the minimum spacefor representing S, regardlessof how quickly it

can be searched. There are somecommon measuresto describe this minimum space.The

�rst measureis n lg u, which is the number of bits neededto store the items si explicitly in

an array. The secondmeasureis the information-theoretic minimum dlg
� u

n

�
e � n lg(u=n),

which is the worst-casenumber of bits required to di�eren tiate betweenany two distinct n-

item subsetsof universeU. In Section4.2.2we describe two more measuresfor representing

the set S, motivating these as reasonablemeasuresfor analyzing the spacerequired by a

dictionary. We show strong relationships between these measuresin Section 4.2.3, along

with someexperimental results that illustrate their relative performance.

4.2.1 The Dictionary Problem

The dictionary problem appears as a fundamental black box component in a number of

applications used to o�er fast access(for somequeries, even constant-time access)to the

data. Someexamplesinclude su�x arrays and IP lookup tries. Our interest is to exploit

140

the great potential for a functional but compresseddictionary data structure. In some

applications, dictionaries are the bottlenecks, both in terms of spaceand query time.

We describe somefundamental queries on set data. Here, a 2 U. The member(S;a)

function indicates whether a appears in the set S. The r ank(S;a) function returns the

number of items in S that are less than or equal to a. The select(S; i) function returns

the i th smallest item of S, for i ranging from 1 to n. The prank(S;a) function is a rank

function, but only for items of S. The pred(S;a) function returns the predecessorof a, the

largest item x in S such that x < a. We de�ne theseformally below.

r ank(S;a) =
�
�f si jsi � ag

�
�

select(S; i) = si

member(S;a) = 1 if a 2 S, 0 otherwise

prank(S;a) = r ank(S;a) if a 2 S, � 1 otherwise

pred(S;a) = maxf si jsi < ag if r ank(S;a � 1) > 0, � 1 otherwise

Jacobson[Jac89b] has discussedand motivated the power of r ank and select

functionsat somelength. In particular, heshowsthat the operation setf r ank; selectg

can perform more powerful queries than the operation set f member; predg. As a

result, much of the subsequent work hasconsideredrank and select as fundamental

operations on dictionary structures (such as [RRR02, Pag99, BB04]). To further

illustrate this point, note that the right-hand column can be de�ned solely in terms

of rank and select. For instance, member(S;a) = rank(S;a) � r ank(S;a � 1) and

pred(S;a) = select(S;r ank(S;a � 1)) if r ank(S;a � 1) > 0. We now de�ne some

convenient notation to describe di�erent kinds of dictionaries.

De�nition 4. An indexabledictionary (ID) represents a subsetS � U and supports

the queriesprank(S;a) and select(S; i). A fully indexabledictionary (FID) represents

a subsetS � U and supports the queriesrank(S;a) and select(S; i).

Fully indexabledictionariescansolvepredecessorqueries,andsothey immediately

�nd application in rich problem areasas IP lookup structures [CDG99], compressed

text indexing [GGV03], and su�x arrays [GV00].

141

Suppose that for the set S of n items, each item si is also associated with a

piece of satellite data di . To allow quick retrieval of the satellite data once the

item is given, we could consider a set S0 of tuples of the form hkey; datai , with

S0 = fhs1; d1i ; hs2; d2i ; : : : ; hsn ; dn ig , and build a dictionary on S0. In this context, we

de�ne lookup(S0; a) = dj when a = sj for somej and null otherwise.

De�nition 5. A lookup dictionary (LD) is a data structure representing a set S0

that supports the query lookup(S0; a).

Let A = d1d2 : : : dn bea bitvector of length jAj =
P

i jdi j with the data di concate-

nated together. If each pieceof satellite data di is of a �xed length r , a simple array

structure of n � r bits can be usedto store the satellite data. We can construct an

ID on S, sothat for any item si , the prank query returns the position in A whereits

satellite data is stored. Combining this with RRR's ID result, we obtain the following

lemma, which is usedextensively in our data structures in Sections4.4 and 4.5.

Lemma 28. There exists a lookup dictionary (LD) with m(q + r) bits supporting

lookup(S0; a) in constant time, where m = jS0j, q � lg u is the number of bits to

representeach key in S0, and r is the number of bits for each satellite data.

When the satellite data are variable-length,we still store them using
P

i jdi j bits.

However, weneedto know the starting position of each satellite data item. To do this,

we storean ID on m items, wherethe i th item denotesthe starting bit position of the

i th pieceof satellite data amongthe
P

i jdi j possiblepositions. We askselect queries

to determinethe location of the i th satellite data item. The result of Blandford and

Blelloch [BB05] on arrays of variable-lengthbitstrings alsoprovidesthis functionality.

4.2.2 The gap and trie Measures

Onewell-known method for representing the setS is gapencoding [BMNM + 93], which

is often usedin compressinginverted indexes. (We refer the reader to [WMB99] for

142

a detailed treatment of the various applications of this method, as well as a source

for further references.)Considerthe gapsbetweenconsecutive items in S, wherethe

i th gap gi is equal to si � si � 1. We can now represent the set S as the stream of

gapsG = g1; : : : ; gn , where g1 = s1, along with the value n. The stream G of gaps

can be stored using variable length encoding depending upon their size. Supposewe

could store each gi in dlg(gi + 1)e bits. Then, the total space,which we call the gap

measure, is

gap(S) =
nX

i =1

dlg(gi + 1)e

bits. Note that we cannot merely store each gi in dlg(gi + 1)e bits and decode the

stream uniquely; we also need to know the separation boundariesbetween succes-

sive items. One popular technique to \mark" theseseparationsis by using a pre�x

code such as the � code [Eli75]. In � coding, we represent each gi in dlg(gi + 1)e+

2dlg lg(gi + 1)e bits, where the �rst dlg lg(gi + 1)e bits store the unary encoding of

the number dlg lg(gi + 1)e, the next dlg lg(gi + 1)e bits are the binary representation

of the number dlg(gi + 1)e, and the �nal dlg(gi + 1)e bits are the binary representation

of gi . We can then represent the stream of gapsG = g1; g2; :::; gn by concatenating

the encoding of each gi such that G is uniquely decodable. We refer to these ex-

tra bits of overheadbeyond gap(S) as the decoding overheadZ(S). For � coding,

Z (S) = 2
P

i dlg lg(gi + 1)e bits. Our theoretical results in this chapter make useof

the � code.

Another exampleof a pre�x code is the nibble code proposedin [BB04]. In this

chapter, we will primarily use a variation of the nibble code called nibble4 in our

experiments. For this scheme,we write a \nibble" part of ddlg(gi + 1)e=4e in unary,

which is followed by 4 � bdlg(gi + 1) + 3e=4c bits to write the binary representation

of gi , padded out to multiples of four bits. (Later, we describe nibble4�xed, which

we use for 64-bit data. It encodes the �rst part in binary in four bits, since for a

143

universesizeof 264, we would needto write 64=4 = 16 di�erent lengths.)

By Jensen'sinequality,5 gap(S) is maximized when all gapsgi are the same. In

this case,gap(S) would requireroughly n lg(u=n) bits, sinceeach of the n gapswould

be of size u=n. Z (S) is also maximized in this casefor � coding. Hence,Z (S) is

roughly 2n lg lg(u=n) bits. Other pre�x codes,such as the code [Eli75] and some

combination of Hu�man and �xed-length coding, result in a somewhatdi�erent Z (S).

In this chapter, we usethe � encoding schemeand denotethe bit representation of S

using this encoding by GAP(S). The sizeof GAP(S) is jGAP(S)j = gap(S) + Z(S) bits.

Another method for compressionof S is the pre�x omissionmethod (POM) [KS02],

which is generallyusedto represent bitstrings of arbitrary length. Considerthe bit-

strings sorted lexicographically. We can represent each bitstring with respect to the

previous bitstring by omitting the common pre�x of the two. To compressS by

POM, we think of each item of S as its lg u-length bit representation. The POM

for S can also be seenas a subtree (of n leaves) of the complete binary tree on u

leaves(which is a trie). We denotethis subtreeby Tree(S). Each left edgeof Tree(S)

represents a 0, and each right edgerepresents a 1. Each root-to-leaf path in this trie

de�nes an item s in S.

For x; y 2 S, let x 	 y denotethe bitstring formedby omitting the commonpre�x

of x and y from the bit representation of x. More precisely, let jlcp(x; y)j denotethe

length of the longestcommonpre�x of x and y; then, x 	 y is the last lg u � jlcp(x; y)j

bits of x. To represent S by POM, we generatethe streamL = l1; l2; : : : ; ln , wherel1

is the bit representation of s1 in lg u bits and l i = si 	 si � 1. Let jl i j denotethe number

of bits in l i . Thus, the cost of this representation, which we call the trie measure, is

trie (S) =
nX

i =1

jl i j = js1j +
nX

i =2

jsi 	 si � 1j;

which equalsthe number of edgesin Tree(S). Similar to the gap measure,the above

5For a concave function f and x1 + x2 + � � � + xk = x,
P

i f (x i) is maximized when x i = x=k.

144

representation with trie (S) bits is not decodableaseach string l i is of variable length.

Hence,we needsomeextra bits Z 0(S) for decoding, which takes2
P

i dlg jl i je bits in

the caseof � encoding. We useTRIE(S) to denote the bit representation of S using

POM, which takesjTRIE(S)j = trie (S) + Z 0(S) bits of space.

Let S + a denote the set in which the positive integer a is added(modulo u) to

each item of S. Thus, the set S + a is f (s1 + a) mod u; (s2 + a) mod u; : : : ; (st + a)

mod ug. We de�ne the shifted trie measure strie(S) = minaf trie (S + a)g, which

corresponds to the number of bits neededto compressS by POM under the `best

shift'. We denote STRIE(S) to be the corresponding TRIE(S + a), and we de�ne

the spacerequirement jSTRIE(S)j similarly. Note that jSTRIE(S)j also includes the

additional overheadof lg u bits to storethe number a to retrieve the original S. Next,

we arguethat trie (S) could be somewhatlarger than gap(S), but strie(S) is closeto

gap(S).

Below, we summarizethe notation introducedin this section.
gap(S) =

P n
i=1 dlg(gi + 1)e

jGAP(s)j = gap(S) + Z(S)

trie (S) = js1j +
P n

i=2 jsi 	 si � 1j

jTRIE(s)j = trie (S) + Z 0(S)

strie(S) = minaf trie (S + a)g

jSTRIE(s)j = strie(S) + lg u

jx 	 yj = lg u � jlcp(x; y)j

Tree(S) is a trie that storesthe binary

representations of items of S

4.2.3 Relationship Bet ween gap, trie and strie

In this section, we show a strong relationship betweenthe gap, trie and strie mea-

sures. For any item si , dlg(gi + 1)e is always smaller than jl i j, but jl i j could be

much larger. For example, when si � 1 = 2k � 1 and si = 2k , jl i j = k even though

dlg(gi + 1)e = 1. We show that this casecannot occur too frequently and prove that

trie (S) � 2gap(S); furthermore, by applying a `random shift', such casesare almost

all eliminated. In the following lemma, we show that trie (S) can be more tightly

145

boundedusing this intuition.

Lemma 29. The trie measure on the set S+ a requirestrie (S+ a) � gap(S) + 2n � 2

bits on averageover all valuesof a 2 [1; u].

Proof. We proceedby showing that the sum
P

a trie (S + a) is at most u(gap(S) +

2n � 2) bits. Recall that for a gapgi , jl i j must be at leastdlg(gi + 1)e bits long. For an

arbitrary choiceof a, jl i j can rangefrom dlg(gi + 1)e to lg u bits in length. We count

how many times each jl i j contributes to the sum. For an arbitrarily chosengap gi ,

there are exactly gi valuesof a such that jl i j will branch from root(Tree(S)). Thus,

the total cost incurred is gi lg u bits. Similarly, there are 2gi valuesof a such that jl i j

would contribute lg u � 1 bits to the sum. In general,for j < lg u � dlg(gi + 1)e, there

are 2j gi valuesof a such that jl i j would contribute lg u � j bits to the sum. Finally,

the number of times jl i j = dlg(gj + 1)e is at most u(2dlg(gi +1) e � gi)=2dlg(gi +1) e. Thus,

jl i j contributes to the sum with

lg u�d lg(gi +1) e� 1X

j =0

2j gi (lg u � j) +
u

�
2dlg(gi +1) e � gi

�

2dlg(gi +1) e
dlg(gi + 1)e

= udlg(gi + 1)e� gi lg u +
2ugi

2dlg(gi +1) e
� 2gi :

We also incur an additional cost associated with shifts such that si + a > u, where

we chargejl i j with lg u bits, contributing an additional gi lg u bits. Summingup and

averagingover each of the u possibleshifts, we seethat the gapgi requiresan average

of lessthan dlg(gi + 1)e+ 2 bits. We then sum this over all possiblegaps,showing

that an averagetrie (S + a) is
P n

i=1 (dlg(gi + 1)e+ 2� 2gi =u) = gap(S) + 2n � 2 bits,

thus proving the lemma.

Sincethe minimum is lessthan the average,we obtain the following corollary.

Corollary 5. The shifted trie measure, strie(S), is at most gap(S) + 2n � 2.

146

Note that jl i j is boundedon averageby dlg(gi + 1)e+ 2 bits. Sincethe decoding

overheadis d2lg jl i je with the � code,we canbound the total overhead2
P

i dlg jl i je by

2n lg lg(u=n) bits using Jensen'sinequality. Thus, the spacerequirement jSTRIE(S)j

is at most strie(S) + 2n lg lg(u=n) + lg u bits.

We provide someexperimental results on real data setsin Figure 4.2, which bear

out the theoretical �ndings in this section. Here, the �les tested are described in

Section4.6.1,and the spaceis reported (in bits) along the y-axis. The �gure on the

left shows data �les with a universeof sizeu � 232, and the �gure on the right shows

data �les with u � 264. Notice that gap(S) is signi�cantly smaller than lg
� u

n

�
for

real data. In fact, nibble4 is a decodeablegap encoding that also outperforms the

information-theoretic minimum. Sincegap(S) is lessthan trie (S) for all of the �les,

we are free to usethe gap measurefor the remainderof our experimental results.

Data-Aware Measures (Space)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

ip1 ip2 upc_32 isbn

S
p

ac
e

(i
n

 b
it

s)

Info Min
trie(S)
gap(S)
Nibble4

Data-Aware Measures (Space)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

titles upc_48

S
p

ac
e

(i
n

 b
it

s)

Info Min
trie(S)
gap(S)
Nibble4

Figure 4.2: Comparisonof lg
� u

n

�
, trie (S), gap(S), and a gap stream encoded ac-

cording to the nibble4 code for the data �les in Section4.6.1.

4.3 Binary Searchable Dictionary Represen tation

Despite all the development on the POM model, the trie encoding of S does not

support time-e�cien t queriesas we would like. Klein and Shapira [KS02] use the

trie encoding to search in compresseddictionaries, but their searching algorithm

147

essentially consistsof a linear scanof the items in the dictionary and takesat least

(n) time. Most algorithms using gap encoding also need a linear scan. In this

section, we build a binary searchable data structure BSD, which resolves rank and

selectqueriesin O(lg n) time. We show that the spacerequired by this structure is

gap bits plus low-order terms. In fact, the main point of this section is in showing

that a binary-searchable representation requiresabout the samenumber of bits as

simplelinear encoding schemes.Also, BSDis our main building block and will beused

later in this chapter to support fast lookup in our FID and ID dictionary structures.

0

0

0 0

0 0

0

0

0

0

1

1

1

1 111

1

1513129841

9 4 1 8 13 12 15 1001 0100 001 0 101 0 11

9

12

4

151 8

13

Fig. A. The left hand side

shows a binary search tree

built on the items 1, 4, 8,

9, 12, 13, and 15. Beneath

that is its pre-order layout on

disk, where the arrows rep-

resent pointers to the righ t

subtree. The righ t hand side

shows the trie built on the

same items. Beneath that is

the corresponding layout on

disk, but each item s is en-

coded with respect to anc(s).

For instance, 8 is encoded in

the layout on the righ t as 0,

since anc(8) = 9 di�ers from

it by a single bit.

The BSDstructure encodesa pre-ordertraversalof a balancedbinary search tree T

built on the n items of S. In Figure A, the pre-ordertraversal for the set S is 9, 4, 1,

8, 13, 12, and 15. The key point is that instead of storing each item si explicitly in

lg u bits, we encode an item with respect to an ancestoranc(si), de�ned as follows.

Let A i be the set of all the ancestorsof si in the binary search tree T. Then,

148

anc(si) = x 2 A i such that lcp(si ; x) is maximized over all ancestorsin A i . We

represent si by si 	 anc(si) using lg u � jlcp(si ; anc(si)) j bits, reminiscent of our trie

encoding. Now we de�ne the BSD(S) encoding.

We usea recursive layout to describe the pre-order traversalof the binary search

tree of n items. Let the subsetsSL = hs1; s2; :::; sdn=2e� 1i and SR = hsdn=2e+1 ; :::; sn i

represent the left and right subtrees of the sdn=2eth item. Generally, let Si;j =

hsi ; si +1 ; :::; sj i . Let anc(sdn=2e) = 0. For BSD(S), let jBSD(S)j denote the number

of bits neededto encode BSD(S). Then, we de�ne the BSDencoding as

BSD(S) = hsdn=2e 	 anc(sdn=2e); jBSD(SL)j; BSD(SL); BSD(SR)i :

Note that sdn=2e 	 anc(sdn=2e) is a variable-length string, which is stored using �

coding. The term jBSD(SL)j constitutesadditional overheadbut is neededin order to

jump to the right half of the set while searching. (We will call this term the pointer

cost, and we will refer to it in our experimental section.) In fact, we could actually

store just minfj BSD(SL)j; jBSD(SR)jg bits (with an additional n bits to indicate our

choice),alongwith remembering whichever wassmallerof the left and right subtrees.6

Nevertheless,it turns out that BSDrequiresnearly the samespaceas doesthe TRIE

encoding. Next, we describe how rank and select functions can be supported in

O(lg n) time using BSD(S), and then we analyzethe spaceusageof BSD(S).

We useBSD(S) asa black box on O(lg n) items and achieve O(lg lg n) time; how-

ever, in order to do so, we must be able to decode a � -coded item (or bitstring) in

O(1) time in the RAM model. We assumethat the word sizeof the machine is at

least lg u bits, and that we are allowed to perform addition, subtraction, multiplica-

tion, and bitshift operations in O(1) time. We alsoassumethat we can calculatethe

position of the leftmost 1 of a subword x of lg lg u bits in O(1) time. (This task is

6Making this improvement would require the structure to be built from the bottom-up rather than

with our recursive formulation above; we defer those details in the interest of clarit y.

149

equivalent to calculating dlg(x + 1)e when the word x is seenasan integer.) We can

also easily encode and decode the 	 operator using bitshifts and additions. These

assumptionsare su�cien t to allow O(1) decoding time. If this model is not applica-

ble, we can simulate the decoding by explicitly storing the decoding result of every

possiblelg lg u-bit number in a table with lg u entries. Note that this table takes

O(lg u lg lg lg u) bits, which is negligibleoverhead.7

In order to support r ank and select, we just need to store the single value n

(in lg n bits) at the beginning of the BSDto indicate how many items are stored

within the structure. Since our structure is a well-de�ned balanced binary tree,

at any node x with nx items, we know that the size of our left subtree contains

dnx=2e � 1 items, and our right subtree contains nx � dnx=2e items. Hence, we

can compute rank and select basedupon this information. More precisely, given

BSD(S), r ank(S;a) and select(S; i) can be computed in O(lg n) time by calling the

recursive functions r rank(BSD(S); a;0; u; n) and rselect(BSD(S); i; 0; u; n) asdetailed

below. In the pseudocode, the function root(B) returns the �rst encoded string in B

(i.e., r oot(B) = si 	 anc(si)), and the function decode(x; `; r) returns the item si

that corresponds to the root of B . The latter function can be computed by �rst

determining anc(si), which is one of ` or r basedon the �rst bit of r oot(B). Then,

7We could reducethe sizeof this table even further to O(lg lg n lg lg lg lg n) bits by using a slightly

di�eren t encoding schemethan the � code.

150

si = (anc(si) div 2y) � 2y + root(B), wherey = jr oot(B)j.

function r rank(B ; a; `; r; n) f

if (n = 0) return 0;

x r oot(B);

z decode(x; `; r);

if (z = a) return dn=2e+ 1;

else if (z < a)

return dn=2e+

r rank(BSD(SR); a; z; r; n � dn=2e);

else return r rank(BSD(SL); a; `; z; dn=2e� 1);

g

function rselect(B ; i; `; r; n) f

x r oot(BSD(S));

z decode(x; `; r);

if (i = dn=2e) return z;

else if (i > dn=2e)

return

r select(BSD(SR); i � dn=2e; z; r; n � dn=2e);

else return

r select(BSD(SL); i; `; z; dn=2e� 1);

g

Wedenotethe rank(S;a) and select(S; i) that operateon BSD(S) by the functions

BSD rank(B ; a) and BSD select(B ; i), whereB is a pointer (of lg u bits) to BSD(S).

Lemma 30. The BSD(S) representation requires at most trie (S) + O(n lg lg(u=n))

bits and supports rank and select functions in O(lg n) time.

Proof. The spaceof BSD(S) can be divided into three parts: (i) the spacefor all

si 	 anc(si); (ii) their decoding overhead;and (iii) the spaceto encode all jBSD(SL)j,

usedto jump to the right half of the encoding. We now describe the spacerequired

for each of theseparts.

The spacefor (i) can be shown to be equal to the number of edgesin Tree(S),

which is exactly trie (S). To prove this, it su�ces to show that each edgein Tree(S) is

encoded only oncein its BSD(S) representation. Let item s be encountered according

to its pre-orderbinary search tree traversal. Let A be the set of all ancestors on the

root-to-leaf path leadingto s in the binary search tree. In the trie structure, the path

to s must lay betweentwo root-to-leaf paths in the trie: either the path leading to

its rightmost encoded ancestoron its left l or its leftmost encoded ancestoron its

right r . We encode s	 anc(s), which must either be l or r . (This could be the parent

151

of s.) Sinceno other edgein the trie that lies between the path to l and the path

to r hasbeenusedthusfar, each trie edgeis encoded only oncein any BSDstructure.

For (ii), the overheadis analogousto Z(S) and wecanbound it by O(n lg lg(u=n))

usingJensen'sinequality. In particular, we must encode the length of the newbranch

for s. Essentially , we are encoding n items out of a universeof trie bits to indicate

the starting bit position of each branch's encoding. By Jensen'sinequality, the worst

casefor this encoding occurswhen all n items encode the length trie =n, requiring at

most n lg(trie =n) � n lg((2
P

i lg gi)=n) = O(n lg lg(u=n)) bits. We must also know

anc(s), the ancestorwechoseto encodefrom. Weremember our choiceautomatically

accordingto the �rst bit of the encoded string|a leadingbit of 0 meanswe choser

and a leading bit of 1 meanswe chosel.

For (iii), we analyzethis by consideringthe contribution of jBSD(SL)j at each level

of the binary search tree of S. At level 1, i.e. the root level, jBSD(SL)j is at most

lg(n lg(u=n)) bits. At level i , this contribution is maximized(by Jensen'sinequality)

when all of the 2i � 1 contributing terms are equal. (In other words, all trees are the

samesize.) Thus, the spaceusageat level i is boundedby 2i � 1 lg((n=2i � 1) lg(u=n)).

Summingup, we have

lg nX

i =1

2i � 1 lg
� n

2i � 1
lg

u
n

�
= O

�
n lg lg

u
n

+ n
�

;

which is a path recursionsum [GK81].

The above lemmasuggeststhat BSD(S+ a) would requirefewer than than trie (S+

a) bits, plus O(n lg lg(u=n)) bits for any a. Thus by Corollary 5, minafj BSD(S + a)jg

is at most gap(S) + O(n lg lg(u=n)) bits. For the rest of the chapter, we assumethe

BSDrepresentation for S is basedon its best possibleshift. Thus, we obtain the

following theorem, which will be usedin further construction of our data structures

in Sections4.4 and 4.5.

152

Theorem 17 (BSD). The representation BSD(S) is a fully indexabledictionary

(FID) occupyinggap(S) + O(n lg lg(u=n)) bits, while supporting rank and select func-

tions in O(lg n) time.

Next, we describe BSGAP(S), a simple and implementable variant of the BSD(S)

representation that we usein our experimental results in Section4.6. The key idea

of BSGAP(S) is to directly encode the di�erence jsi � anc(si)j using gap encoding.

Precisely, we replacethe encoding si 	 anc(si) from BSD(S) by dlg(jsi � anc(si)j + 1)e.

Wealsostoreoneadditional bit to indicate which ancestorencodessi . Usinga similar

analysisto that in Lemma 30, we arrive at the following corollary.

Corollary 6. The representation BSGAP(S) is a fully indexabledictionary (FID)

occupyinggap(S) + O(n lg lg(u=n)) bits while supporting rank and select functions in

O(lg n) time.

Proof. It su�ces to show that for each item si , its encoding in BSGAPis no more

than in BSD. Let gi = jsi � anc(si)j be the gap we wish to encode, and let jl i j =

lg u � jlcp(si ; anc(si)) j be the length of its encoding in BSD. Recall that for any

gap gi , jl i j must be at least dlg(gi + 1)e bits long. Thus, under a random shift,

jl i j can range from dlg(gi + 1)e to lg u bits in length. Since BSGAPencodes si in

the minimum required, we automatically arrive at the �rst spaceterm gap(S). The

BSGAPrepresentation alsorequiresan additional n bits to indicate which ancestor(of

l or r) encodesthe current gap; this is accounted for in the secondspaceterm. The

rest of the BSGAPrepresentation follows from BSD.

Though the BSGAPdata structure seemsto do little more than avoid an arbi-

trary shift, its consequencesare far more interesting: BSGAPillustrates that a non-

consecutive gap structure can still achieve gap-style bounds. In a sense,BSGAP

presents a way to store each of the n nodes in a binary search tree for S in fewer

than lg u bits. Moreover, it's an extremely simple (and implementable) technique.

153

4.4 The Fully Indexable Dictionary Structure

In this section, we describe our �rst main result, Theorem 18. We build a simple

two-level hierarchical framework to obtain a fully indexable dictionary (FID) such

that rank takes AT (u; n) time and select takes O(lg lg n) time. The challenge in

designingsuch a data structure lies in only spending gap(S) + O(n lg(u=n)=lg n) +

O(n lg lg(u=n)) bits in the process.

We describe our structure in a bottom-up way. At the bottom level, we store

a BSDdictionary for every dlg2 ne items from set S, each of which can resolve a

rank or selectquery in O(lg lg n) time. We also store B:f ir st r ank along with each

BSDB, where B:f ir st r ank is the rank in S of its �rst item in B. We also keep

an array P[1::dn=lg2 ne], whereP[i] storesa pointer to the i th BSDstructure, which

storesthe items s(i � 1) lg2 n+1 ; : : : ; si lg2 n . This structure alone is su�cien t to support

select. In order to support r ank, let Ŝ = f si ji mod (lg2 n) = 1g bethe setof smallest

items from each BSD. We build an instanceof Anderssonand Thorup's predecessor

structure [AT00] on Ŝ, called R. To support r ank, we use a lookup dictionary L

from Lemma28 built on Ŝ askeyswith pointers to the corresponding BSDassatellite

data. We denote the processof looking up the satellite data associated with s 2 Ŝ

by L:l ookup(s). Then, rank and select can be solved as follows.

function r ank(S;a) f

s pred(R; a);

B L:l ookup(s);

return

B :f ir st r ank + BSD rank(B ; a);

g

function select(S; i) f

j di=(lg2 n)e;

B P[j];

return

BSD select (B ; i � B :f ir st r ank + 1);

g

Wearealmost readyto show the main theoremof this section,but �rst, werequire

the following lemma.

154

Lemma 31. Let S1; S2; :::; Sk be a partition of S, with each Si consisting of items of

consecutive ranks in S. Precisely, each Si consists of items sj ; sj +1 ; :::; s` for some

j � `. Then,
P k

i=1 jBSD(Si)j � gap(S) + O(k lg u) + O(n lg lg(u=n)).

Proof. Let ui = maxf s 2 Si g � minf s 2 Si g + 1 and ni = jSi j. By Theorem 17,

jBSD(Si)j � gap(Si)+ O(ni lg lg(ui =ni)). Thus, the lemmafollowssince
P k

i=1 gap(Si) �

gap(S)+ O(k lg u), and by Jensen'sinequality, weshow that
P k

i=1 O(ni lg lg(ui =ni)) �

O(n lg lg(u=n)).

Based on the above lemma, we obtain the main theorem below, along with a

worst-caseanalysis in Corollary 7, since gap and O(n lg lg(u=n)) are bounded by

O(n lg(u=n)).

Theorem 18. We implement a fully indexabledictionary (FID) using a total of

gap(S) + O(n lg(u=n)=lg n) + O(n lg lg(u=n)) bits so that r ank queriestake AT (u; n)

time and select queriestake O(lg lg n) time.

Proof. For select, we require O(lg lg n) time to traverse the i th BSDdictionary.

For rank, the time bound is dominated by the predecessorquery in R, taking

AT (u; n=lg2 n) = O(AT (u; n)) time. This shows our time bounds. For our space

bounds, the n=lg2 n BSDstructures require a total of gap(S) + O(n lg(u=n)=lg n) +

O(n lg lg(u=n)) bits. The array P and the �eld B:f ir st r ank takeat mostO(n=lg2 n)�

lg u = O(n lg(u=n)=lg n) bits in total, proving the theorem.

Corollary 7. We implement a fully indexabledictionary (FID) using no more than

O(n lg(u=n)) bits so that r ank queries take AT (u; n) time and select queries take

O(lg lg n) time.

Finally, we capture a technically interesting space-timetradeo� of our FID, ob-

tained by scalingthe sizeof the groupings. This observation implies that the second-

155

order spaceterm in our structure canbe madearbitrarily small, at the costof a slight

increasein the query times.

Corollary 8. For any � > 1, we can implement a fully indexabledictionary (FID)

in total space gap(S) + O(n lg(u=n)=lg� � 1 n) + O(n lg lg(u=n)) bits so that the func-

tion rank takes AT (u; n=lg� n) + O(� lg lg n) time and the function select takes

O(� lg lg n) time.

4.5 The Indexable Dictionary Structure

In this section,we build upon the approach of the last section. We partition S into

lower level BSDstructures, each of sizeat most lg3 n. We usea top level `distributor'

structure which enablesus to accessthe correct BSDwhile answering a query. In

contrast to the last section, if the query item is not present in S, our top level

distributor may not return any associated BSD. Hence,we cannot support rank or

predecessorqueries.

Our top level distributor takes O(lg lg n) time to return the correct BSD. This

is lessthan AT (u; n) time; the partitioning schemeis somewhatmore complexthan

that in our FID. As a result, wecansupport partial rank or selectqueriesin O(lg lg n)

time. To managethe spacerequired,we limit the number of partitions to be at most

O(n lg lg n=lg3 n), so that the overheadincurred by our top level distributor can be

boundedby the samesecond-orderterm as in our FID.

Next, we describe our top level distributor structure, which is analogousto the

van EmdeBoas(VEB) tree [vEBKZ77]. With this distributor structure, on any given

input x, we can report x is not in S, or obtain the BSDthat can contain x e�cien tly.

156

4.5.1 The Top Level Distributor Structure

Our distributor structure is a recursive structure analogousto a VEB tree. Instead

of having O(lg lg u) levels of recursionas in the casefor a VEB tree, our distributor

has only h = 3lg lg n levels. At the top level (Level 1), we have a singledistributor

(with parameterp = 0 to be explainedshortly) to distribute all items in S. For level

i = 1 to h � 1, a Level i distributor with parameterp connectsto someLevel i + 1

distributors, which are then usedto distribute the items recursively; the parameterp

indicates that all the input items share the same�rst p bits. At the bottom level

(Level h), a Level h distributor directs the items to their designatedBSDstructures.

More precisely, for i = 1 to h � 1, a Level i distributor with parameterp = pi works

as follows:

1. Partition the items into groupsaccordingto the �rst pi + (lg u)=2i bits.

2. For each group with more than lg3 n items (which we call a densegroup), the

items are passedto a Level i + 1 distributor with parameterp = pi + (lg u)=2i .

3. For all items not in a densegroup, they are grouped together.

(a) If the number of items is at most lg3 n, the items are passedto a Level h

distributor with parameterp = pi .

(b) Otherwise,the items arepassedto a Level i + 1 distributor with parameter

p = pi .

We can easily show the following by the recursive de�nition above: At a Level i

distributor with parameterp = pi , if we partition the items into groupsbasedon the

�rst pi + (2 lg u)=2i bits instead,the sizeof each group is at most lg3 n. Making useof

this fact, a Level h distributor with parameterp = ph partitions the nh input items

into groupsbasedon their �rst ph + (2 lg u)=2h bits, such that each group is of size

157

at most lg3 n. The nh items are then directed to the designatedBSDdata structures,

with each BSDcontaining at most O(lg3 n) items. With the above data structure D,

we can �nd the BSDthat can contain x by calling f ind BSD(D; x) as follows:

function f ind B SD(D ; x) f

D1 Level 1 distributor from D;

i 1, p1 0;

for i = 1 to h � 1

(D i +1 ; pi +1) distr ibute(D i ; i; pi ; x);

if (D i is a Level h distributor)

ph pi , break ;

return r etr ieve B SD(D h ; ph ; x);

g

function r etr ieve B SD(D ; p;x) f

L the LD stored in D ;

y x[p + 1::p + (2 lg u)=lg3 n];

return L:l ookup(y);

g

The function distr ibute(D i ; i; pi ; x) retrieves the Level i + 1 distributor with pa-

rameter p = pi in which x is distributed accordingto the �rst pi + (lg u)=2i bits. The

notation x[`::r] (` � r) denotesthe substring of the bitstring representation of x,

starting at the `th bit and ending at the r th bit. The function L:l ookup(y) returns

lookup(S(L); y) if y 2 S(L), whereS(L) denotesthe set of keysstored by L.

Oncewe obtain the BSDB that can contain x, determining whether x is in B can

be donein O(lg lg n) time. Thus, if f ind BSD(D; x) can be donein O(lg lg n) time,

the total time to answer member(S;x) is alsoO(lg lg n).

4.5.2 Distributor Details

In this part, we give details of the distributor that supports distr ibute(D i ; i; pi ; x) at

Level i (i 2 [1; h � 1]) and retr ieve BSD(Dh; ph; x) at Level h e�cien tly. We make

useof an LD of Lemma 28 to achieve this. Basedon this implementation, we show

that f ind BSD(D; x) can be donein O(lg lg n) time.

For i = 1 to h � 1, a Level i distributor with parameter p maintains an LD

158

of Lemma 28 that stores the p + (lg u)=2i bits corresponding to a densegroup as

keys,and storing the lg u-bit pointer to the corresponding Level i + 1 distributor as

satellite information. It also explicitly storesan `escape' pointer to the Level h or

the Level i + 1 distributor that corresponds to items not in densegroups.

For a Level h distributor with parameterp, we usea di�erent structure. Let nh be

the number of items managedby this distributor. We store the number k of distinct

BSDscontaining thesenh items and an array A[1::k] storing the pointers to theseBSDs.

Recall that all the nh items sharethe �rst p bits, and the distributor heredistributes

an item into a group accordingto the �rst p+ (2 lg u)=2h bits. Therefore,we maintain

an LD of Lemma 28 for the (2 lg u)=2h bits that corresponds to a non-empty group,

starting at the (p + 1)st position. For the satellite information, we store the array

entry of the corresponding BSD, which again takes(2 lg u)=2h bits.

A Minor Mo di�cation. If each BSDdata structure corresponds to items in con-

secutive ranks, we can bound the total spaceby gap+ O(n lg lg(u=n)) bits. Unfortu-

nately, in the current scheme,a BSDdata structure directed by a Level h distributor

may not correspond to items of consecutive ranks. For instance, let si and sj be

two items in the sameBSD; then at somelevel, an intermediate item si +1 may be

partitioned into a densegroup, while si and sj are items not in the densegroup.

Consequently, the intermediate item si +1 is not stored in the sameBSDas si and sj .

In order to bound the spaceas desired,we usea little �x: for each existing BSD

in the current scheme,we split the items into maximal groupsof consecutive ranks,

and store each group in a separateBSD. Essentially , we transform the existing BSD

into a list of BSDs so that each new BSDcorresponds to items of consecutive ranks.

Then, a Level h distributor now directs the item into one of the k lists of BSDs (as

opposedoneof the k BSDs before). We storean array A[1::k] for the pointers to the k

lists; for each list, we store the number k0 of BSDs it contains. (Note that k0 � lg3 n,

159

sincethe total number of items in a BSDis O(lg3 n).) We alsostore an array B[1::k0]

such that B [i] storesthe pointer to the BSDwhosesmallest item is the i th smallest

amongthat of the other BSDs. With the above implementation, distr ibute(D; i; p;x)

(Lines 3 and 6 in f ind BSD(D; x)) for each i = 1 to h � 1 can be donein O(1) time.

Then at Level h, we obtain the list of BSDs that can contain x in O(1) time. After

that, we usebinary search on x against the smallestitems of the BSDs to �nd the BSD

that cancontain x (Line 8). The time required is O(lg k0), which is at most O(lg lg n)

sincek0 � lg3 n. Then, f ind BSD(D; x) can be donein O(lg lg n) time.

4.5.3 Solving Partial Rank and Select Queries

The partial rank query can be readily supported by our data structure in O(lg lg n)

time, asshown in the pseudo-code below. To enablethe selectquery, we additionally

maintain an array F [1::n=lg3 n] such that F [i] stores a pointer to a list of BSDs

that can contain the items with rank in [(i � 1) lg3 n; i lg3 n]. For each list, we store

number k00of BSDs in the list, and an array G[1::k00] for pointers to the k00BSDs such

that G[1]:f ir st r ank < G[2]:f ir st r ank < G[3]:f ir st r ank < ::: < G[k00]:f ir st r ank.

160

Then, select(S; j) can be solved in the following pseudo-code.

function prank(S;x) f

B f ind B SD(D ; x);

if (B = null) return -1;

else

r B :f ir st r ank;

r 0 BSD rank(B ; x);

if (BSD select (r 0; B) = x)

return r + r 0� 1;

else return -1;

g

function select(S; j) f

G F [dj =lg3 ne];

k00 the number of BSDs in the list G;

i B inar ySearch(G; k00; j);

r i G[i]:f ir st r ank;

return BSD select (j � r i + 1; G[i]);

g

The function B inar ySearch(G; k00; j) returns i such that G[i]:f ir st r ank < j <

G[i + 1]:f ir st r ank using binary search, which takesO(lg k00) time. The total time

required for select is O(lg k00) + O(lg lg n) = O(lg lg n).

4.5.4 Space Analysis

To bound the total spaceusage,we will make useof the following lemma.

Lemma 32. We showthat

1. the total number of distributors,
P h

i=1 di , is at most O(n lg lg n=lg3 n), and

2. the total number of BSDdata structures is at most O(n lg lg n=lg3 n).

Proof. For all the distributors in our data structure, we useDist (r; p; i) to denotethe

Level i distributor such that all the items managedby it sharethe samepre�x r of

length p. We call a distributor denseif it managesmore than lg3 n items; otherwise,

it is called sparse. Note that sparsedistributors only occur at Level h.

161

For Level i , the number of densedistributors is at most n=lg3 n, becausethe items

they manageare disjoint. Thus, there are at most 3n lg lg n=lg3 n densedistributors

in total. For each sparsedistributor D ist (r; p;h), there must exist a densedistributor

D ist (r; p; i) for somei . We map Dist (r; p;h) to D ist (r; p; i) such that i is maximized.

Note that it is a bijection. Thus, the number of sparsedistributors is bounded by

the number of densedistributors, and the �rst claim follows.

If two consecutive rank items sj and sj +1 are stored in di�erent BSDs, we call

(sj ; sj +1) a cut. A cut can happen in oneof two ways: (1) if sj and sj +1 comefrom

two distributors, or (2) if sj and sj +1 comefrom the sameLevel h distributor which

is dense. Note that the number of cuts is equal to the number of BSDs. Now, we

count the number of cuts as follows.

For cuts of the �rst type, considerthe smallest level i such that the sj and sj +1

are in di�erent distributors, say D ` and D r . (This implies that they are at the same

Level i � 1 distributor.) Then, by the de�nition of a distributor, either D ` or D r must

be dense.We associate the cut with the densedistributor(s). Then, in this mapping,

a densedistributor can be associated with at most two cuts, namely when it takes

the roles of D ` and D r , respectively. Thus, the number of cuts of the �rst type is

boundedby the number of densedistributors, which is O(n lg lg n=lg3 n).

The number of cuts of the secondtype is, by de�nition, boundedby O(n=lg3 n).

Thus, the secondclaim follows.

Next, we notice that for a particular i , items managedby di�erent Level i dis-

tributors are disjoint. Let di denote the number of Level i distributors in our data

structure. Also, recall that the spacefor an LD is O(m(q+ r)) bits wherem is the num-

ber of items, q is the number of bits neededto represent each key (i.e., pi bits for the

LD in a Level i distributor, and 2lg u=lg3 n bits for the LD in a Level h distributor),

and r is the number of bits for each satellite data (i.e., lg u bits for the LD in a Level i

162

distributor, and 2lg u=lg3 n bits for the LD in a Level h distributor). Then, for any i

in [1; h � 1], the spaceoccupiedby all Level i distributors is equal to the spaceof LD

for densegroups+ spacefor escape pointers � O(n=lg3 n � lg u) + di lg u bits. On the

other hand, the spaceoccupiedby all Level h distributors is equal to spaceof LD for

non-empty groups+ spacefor k + spacefor arrays A[1::k] and k0 + spacefor arrays

B[1::k0] � O(n� 2 lg u=lg3 n)+ dh lg u+ O(n=lg3 n+ dh) � lg u+ O(n lg lg n=lg3 n)� lg u

bits, wherethe inequality follows from Lemma 32.

Next, the extra spaceneededby the partial rank and selectstructures is equal to

spacefor rank of the smallest item of each BSD+ spacefor F [1::n=lg3 n] and k00+

spacefor G[1::k00] � O(n lg lg n=lg3 n) � lg u+ O(n=lg3 n) � lg u+ O(n lg lg u=lg3 n) �

lg u bits. The total spacerequirement for all distributors is at most
P h

i=1 (O(n=lg3 n)+

di) lg u + O(n(lg lg n)(lg u)=lg3 n) which is O(n(lg lg n)(lg u)=lg3 n) +
P h

i=1 di lg u �

O(n(lg lg n)(lg u)=lg3 n) bits, wherethe last inequality is basedon Lemma 32.

Finally, since the above spaceterms can be bounded by O(n lg(u=n)=lg n) and

the spaceof all the BSDdata structures is bounded by gap+ O(n lg lg(u=n)) bits

(Lemma 31), we have the following theorem.

Theorem 19. Given a set S of n items from a universe [1; u], we implement an

indexabledictionary (ID) in gap(S) + O(n lg(u=n)=lg n) + O(n lg lg(u=n)) bits sup-

porting partial rank and select queriesin O(lg lg n) time.

4.6 Exp erimen tal Results

In this section,wepresent our experimental results,basedon the BSGAPstructure from

Corollary 6. Recall that the BSGAPstructure is organizedsimilarly to a BSD, but gap

encodesthe di�erence betweenan item s and its best ancestoranc(s). Section4.6.1

describesthe experimental setup that we usefor our results. In Section4.6.2,we dis-

cussvarious issueswith the spacerequirements of our BSGAPstructure and give some

163

intuition about how to encode the variousparts of the BSGAPstructure e�cien tly. In

Section4.6.3,we describe a further tweakable parameterfor our BSGAPstructure and

useit as a black box to succinctly encode blocks of data.

Apart from the � code, the nibble code [BB04], and the nibble4 code we have

mentioned in Section4.2.1, in this section,we alsorefer to a number of variations of

pre�x codesas follows:

� The delta squared code encodes the value dlg(gi + 1)e using � codes, followed

by the binary representation of gi . For instance,the delta squaredcode for 170

is 001 00 1000 10101010.

� The nibble4Gammaencodes the \nibble" part of the nibble4 code using the

 code instead of unary.8 For instance, the nibble4Gamma code for 170 is

01 0 10101010.

� In casethe universesizeof the data set is at most 232, we will also have the

�xed5 code which encodesthe value dlg(gi + 1)e in binary using �v e bits. For

instance,170 is encoded as 01000 10101010.

� For larger universesizes(such as our 264-sizedones), we use the nibble4�xed

code, a mix of the nibble4 code and the �xed5 code. Here, we encode the

\nibble" part of the nibble4 code using four bits.

For each of thesecodes,we createa small table of valuesso that we can decode

them quickly whenappropriate. As described in Section4.3, thesetablesadd negligi-

ble space,and we have accounted for this (and other) table spacein the experimental

results that we describe throughout the chapter.

8The \nibble" part will be an integer between 1 and 16. The code for an integer x is a unary

encoding of dlg xe followed by the binary encoding of x in dlg(x + 1)e bits.

164

4.6.1 Exp erimen tal Setup

Our source code is written in C++ in an object-oriented style. The experiments

were run on a Dell PowerEdge650 with 3 GB of RAM. The machine was running

Centos 4.1, with a gnu g++ 3.4.4 compiler. The data setsusedwere as follows:

� ip1 : List of IP addressesobtained from Duke University's Computer Science

Department. The list refersto 159,690IP addressesthat hit the Duke CSpages

in the month of January 2005.

� ip2 : Similar to ip1 , but this list consistsof 148,700IP addressesthat hit the

Duke CS pagesin February 2005.

� upc 32: List of 100,000UPC codesobtained from items sold by the Wal-Mart

supermarket that �t in a universeof size232.

� isbn : List of 390,000ISBNsof booksat the PurdueLibraries in a 32-bit format.

� upc 48: List of 432,223UPC codesin the original 48-bit format obtained from

items sold by the Wal-Mart supermarket.

� title : List of 256,391book titles from Purdue Libraries, converted into a

numeric value out of a universeof size264.

4.6.2 Code Comparisons for Enco dings and Poin ters

We performed experiments to compare the space/time tradeo�s of using di�erent

encodings in placeof nibble4. We summarizethose experiments in Figure 4.3. The

�gures in the top row show the time required to process10,000randomly generated

rank querieswith a BSGAPstructure using the codes listed, averagedover 10 trials.

The �gures in the bottom row show the space(in bits) required to encode the BSGAP

165

data structure using the listed pre�x codes. Each of the bottom two rows also has

the information-theoretic minimum and gap(S) listed for reference.

It is clear that both �xed5 and nibble4arevery good codesin the BSGAPstructure

for the 32-bit case;�xed5 is slightly faster than nibble4, and nibble4 is slightly more

space-e�cient. (For the isbn �le, nibble4 is signi�cantly more space-e�cient.) For

64-bit �les, nibble4 is the clear choice. Sinceour focus is on spacee�ciency , the rest

of the chapter will build BSGAPstructures with nibble4. (For our 64-bit data sets,we

will actually usenibble4�xed.)

Comparison of Prefix Codes (Time)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ip1 ip2 upc_32 isbn

T
im

e
(i

n
 s

ec
)

Gamma
Delta
Delta Squared
Fixed5
Nibble
Nibble4
Nibble4Gamma

Comparison of Prefix Codes (Time)

0

0.1

0.2

0.3

0.4

0.5

0.6

upc_48 title

T
im

e
(i

n
 s

ec
) Gamma

Delta
Delta Squared
Nibble
Nibble4
Nibble4Gamma

Comparison of Prefix Codes
on BSGAP stream (Space)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

ip1 ip2 �upc_32 �isbn

S
p

ac
e

(i
n

 b
it

s)

Gamma
Delta
Delta Squared
Fixed5
Nibble
Nibble4
Nibble4Gamma
Info Min
gap(S)

Comparison of Prefix Codes
on BSGAP stream (Space)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

upc_48 title

S
p

ac
e

(i
n

 b
it

s)

Gamma
Delta
Delta Squared
Nibble
Nibble4
Nibble4Gamma
Info Min
gap(S)

Figure 4.3: Comparisonof codesand measuresfor the data �les in Section4.6.1.

Next, we investigatethe cost of theseBSGAPpointers and seeif a di�erent choice

of code for just the pointers can improve its cost. We summarize the space/time

tradeo�s in Figure 4.5. The �gure shows the pointer costs (in bits) of each BSGAP

structure. As we can see,nibble4 and nibble are both space-e�cient for the pointer

166

Comparison of Prefix Codes
on Gap Stream (Space)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

ip1 ip2 �upc_32 �isbn

S
p

ac
e

(i
n

 b
it

s)
Gamma
Delta
Delta Squared
Fixed5
Nibble
Nibble4
Nibble4Gamma
Info Min
gap(S)

Comparison of Prefix Codes
on Gap Stream (Space)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

upc_48 title

S
p

ac
e

(i
n

 b
it

s)

Gamma
Delta
Delta Squared
Nibble
Nibble4
Nibble4Gamma
Info Min
gap(S)

Figure 4.4: Comparison of gap+codes, lg
� u

n

�
, and gap(S) for real-data �les, de-

scribed in Section4.6.1.

distribution. However, nibble4 is again the logical choice, sinceit is both the most

space-e�cient and very fast to decode. If we remove these pointer costs from the

total spacecost for the BSGAPstructure, we seethat this spaceis about the sameas

encoding the gap stream sequentially; as such, we can think of the pointer overhead

for BSGAPas a cost to support fast searching.

Comparison of Prefix Codes
for BSGAP Pointers (Space)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

ip1 ip2 �upc_32 �isbn

S
p

ac
e

(i
n

 b
it

s)

Gamma
Delta
Delta Squared
Fixed5
Nibble
Nibble4
Nibble4Gamma

Comparison of Prefix Codes
for BSGAP Pointers (Space)

0

500000

1000000

1500000

2000000

2500000

upc_48 title

S
p

ac
e

(i
n

 b
it

s)

Gamma
Delta
Delta Squared
Fixed5
Nibble
Nibble4
Nibble4Gamma

Figure 4.5: Comparison of pre�x codes for BSGAPpointers for the data �les in

Section4.6.1.

4.6.3 BSGAP: The Succinct Binary-Searc hable Blac k Box

In this section,we focuson the practical implementation of our fully-indexabledictio-

nary, modeledafter Corollary 6. To make our practical dictionary, we replace[AT00]

167

with a simple binary search tree, and introducea new parameterh = O(lg lg n) that

doesnot a�ect the theoretical time for BSGAPbut providesa noticeableimprovement

in practice. For each group of lg2 n items that is stored usingBSGAP, we further tune

our structure to resort to a simple sequential encoding scheme when there are at

most h items left to search, where h = O(lg lg n). Theoretically, the time required

to search in the BSGAPstructure is still O(lg lg n). We employ this technique when

sequential decoding is fast enough, to avoid writing bits to jump to the right half

of the tree. (We call this the pointer cost.) In our experiments, we actually let h

rangeup to lg2 n, to seethe point at which a sequential decoding of h items becomes

impractical. It turns out that thesefew adjustments to our theoretical work result

in a fast and succinct practical dictionary.

For the rest of the section, we de�ne a parameter b that governs the number

of items contained in each BSGAPstructure and a parameter h that controls the

degreeof sequential encoding within a BSGAPdata structure, asdescribed above. We

denote a particular con�guration of our dictionary structure by D(b;h). Let BB

refer to the data structure in [BB04]. In this framework, BB is a special caseof our

dictionary D(b;h) when h = b.

In Figure 4.6, we show a space/time tradeo� for BB and our dictionary. Each

graphplots spacevs. time, wherethe time is that requiredto process10,000randomly

generatedrank queries,averagedover �v e trials. Here,we tune BB to operateon the

samenumber of items in each block to avoid extra costsfor paddingand givethem the

samebene�ts asBSGAPreceives. For each graph in Figure 4.6, we let the blocksizeb

rangefrom [2; 256]and the hybrid value rangefrom [2; b]. We collect time and space

statistics for each D(b;h) data structure. The BB curve is generatedfrom the 256

points corresponding to D(b;b). For the BSGAPcurve, we partition the x-axis into

300 partitions and choosethe most time-e�cien t implementation of D(b;h) taking

that much space.Notice that our BSGAPstructure convergesto BB aswe allow more

168

spacefor the data structures, but we have someimprovement for extremely small

space.

SinceBB is a subcaseof our BSGAPstructure, onemight think that our space-time

curve shouldnever be higher than BB's. However, the curve is generatedwith actual

data structures D(b;h) taking a particular spaceand time. So, the existenceof a

point above the BB curve on our BSGAPcurve simply meansthat there exists one

con�guration of our data structure D(b;h) which has thoseparticular results.

The parameterh is crucial to achieving a good space/time tradeo�. Notice that

ash increases,the spaceof D(b;h) decreasesbecausewe store fewer pointers in each

BSGAPdata structure. One may think of transferring this saved spaceinto entries

in the top level binary search tree to speedup the query time. On the other hand,

the time required to search at the bottom of each BSGAPstructure increaseslinearly

with h. So, there must be somemoderate value of h that balancesthesecostsand

arrivesat the best space/time tradeo�. Hence,we collect all (b;h) pairs and evaluate

the best candidatesamongthem.

In Figure 4.7, we compareBB and our dictionary for 64-bit data. We plot space

vs. time, wherethe time is that required to process1,000randomly generatedrank

queries,averagedover �v e trials. We collect data for D(b;h) as before, where the

range for b and h for upc 48 is [2; 512] and title is [2; 2048]. Notice that our data

structure provides a clear advantage over BB as the universesizeincreases.

4.7 Applications of Succinct Dictionaries

In this section,we describe an application of our FID dictionaries to the caseof text

indexing. As we mentioned in Sections3.2.1 and 3.2.2, run-length encoding (RLE)

canbea better choicein someapplications,particularly whenthe input setS is dense

with respect to its universeU. As a slight deviation from the theme of this chapter,

169

Space vs. Time (ip1)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2250000 2750000 3250000 3750000

Space (in bits)

T
im

e
(i

n
 s

ec
)

BB04
BSGAP

Space vs. Time (ip2)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2000000 2500000 3000000 3500000

Space (in bits)

T
im

e
(i

n
 s

ec
)

BB04
BSGAP

Space vs. Time (upc32)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

1750000 2250000 2750000

Space (in bits)

T
im

e
(i

n
 s

ec
)

BB04
BSGAP

Space vs. Time (isbn)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

3500000 5500000 7500000 9500000

Space (in bits)

T
im

e
(i

n
 s

ec
)

BB04
BSGAP

Figure 4.6: Comparisonof BB and BSGAPon 32-bit data �les in Section4.6.1.

we considerencoding schemesto managethesedensedata sets.

We describe a new practically-motivated data structure called BSRLEthat is a

modi�cation of our BSGAPstructure, but it performswell on densesubsets.We then

apply it to text indexesand describe a seriesof experiments showcasingspace/time

tradeo�s. In Section 4.7.1, we describe our experimental setup. Section 4.7.2 de-

scribes the BSRLEdata structure; it improves upon the practical dictionary in Sec-

tion 3.2.4 in terms of space,basedon our discussionsin this chapter. Section4.7.3

presents someresults on an improved csa in comparisonwith the FM-index [FM05,

FM01].

170

Space vs. Time (upc_48)

0

0.002

0.004

0.006

0.008

0.01

9000000 11000000 13000000 15000000

Space (in bits)

T
im

e
(i

n
 s

ec
)

BB04
BSGAP

Space vs. Time (title)

0

0.0002

0.0004

5000000 8000000 11000000 14000000

Space (in bits)

T
im

e
(i

n
 s

ec
)

BB04
BSGAP

Figure 4.7: Comparisonof BB and BSGAPon 48-bit and 64-bit data �les in Sec-

tion 4.6.1.

4.7.1 Exp erimen tal Setup

Our sourcecode is written in C++in an object-oriented style. The experiments were

run on a Dell PowerEdge650with 3 GB of RAM. The machine was running Centos

4.1, with a gnu g++ 3.4.4 compiler. We chosedata sets that were large enough

to observe the space/time tradeo�s, since the minimum indexing overheadcan be

signi�cant with respect to the �le size. (For instance,we usetablesto quickly decode

our pre�x codes,such as nibble4 and the code. Thesetables, which are normally

negligible in sizefor larger �les, may be signi�cant for small �le sizes.)

� alice29.txt : An ASCII versionof the book \Alice in Wonderland" from the

Canterbury corpus,with an original �le sizeof 152,089bytes.

� E.coli : DNA sequencefor the virus E.coli. The original �le size is 4,638,690

bytes of space.

� dblp.50MB: XML �le that provides bibliographic information on major com-

puter sciencejournals and proceedingsobtained from dblp.uni-trier.de .

Downloadedon September 27, 2005and consistingof exactly 52,428,800bytes

of data.

171

� english.50MB: Concatenation of English text �les selectedfrom etext02 to

etext05 collections of the Gutenberg Project. The headersfrom the project

were removed, to leave the actual text. Downloaded on May 4, 2005, and

consistingof exactly 52,428,800bytes of data.

4.7.2 Binary Searchable Run-Length Enco ding

Before describingour BSRLEdata structure, we briey review run-length encoding.

We can represent a set S (with n items) out of a universeU of sizeu using a bitvec-

tor B of length u, where each 1 represents an item in set S. Run-length encoding

represents each subsequenceof identical bits (a run) in B as the pair (`; b), where`

is the number of times that bit b is repeated. We can avoid encoding b by explicitly

storing the �rst bit, sinceb will alternate between0 and 1. Suppose(without lossof

generality) the bitvector B corresponding to the set S is

B = 0`1 1`20`3 : : : 1`2n 1 ;

wheren1 is the number of runs of 1s in B. We de�ne the RLE measure as

rle(S) =
2n1X

i =1

dlg(` i + 1)e:

In the rest of Section 4.7, we will use the code to store the length `, since it is

useful in the text indexing setting, as shown in Section3.2.2.

Now we describe how to build the BSRLEdata structure. We build a modi�ed

subsetS0 of sizen1 corresponding to B. For each run of 1s, we add a singlecandidate

item to S0. A candidateitem r i is either the �rst or last 1 in run i . (Wedescribewhich

one to choosewhen we build BSRLE.) We then write the representation BSRLE(S),

which is a modi�ed versionof the encoding of BSGAP(S0) for the set S0. We reusethe

notation for SL and SR from BSDand BSGAP, whereSL contains the subsetof items

172

from S from runs 1 to dn1=2e� 1, and SR contains the items from runs dn1=2e+ 1

to n1.

The BSRLEencoding is de�ned as

BSRLE(S) = hr dn1 =2e	 anc(r dn1 =2e); `dn1 =2e� 1;pdn1 =2e; jBSRLE(SL)j; BSRLE(SL); BSRLE(SR)i ;

where the candidate element r dn1 =2e is stored using the code, `dn1 =2e � 1 indicates

the number of 1s in the dn1=2eth run (not counting the candidate), stored using

the code, and pdn1 =2e indicates the number of 1s in S in the left subtree SL of

the dn1=2eth run, not counting other candidate items. (In other words, it storesthe

number of RLE-encoded items that are in SL .) We store pdn1 =2e using the nibble4

code.

Now we explain how to choosethe candidateelement r i . If anc(r i) > r i , r i is the

last 1 in run i ; otherwise, it is the �rst 1 in run i . Computing r i in this way saves

spacein the encoding, but for easeof exposition, we assumethat r i is the �rst 1 in

run r i , sincethe �rst 1 can easilybe determinedusing the candidateelement and ` i .

We compute anc(r i) by building the ancestorset A i as we did for BSD. However, at

each ancestornode r j (corresponding to the j th run) for r i , we insert both the values

corresponding to the �rst 1 in run r j and the last 1 in run r j into the ancestorset A i .

Given BSRLE(S), r ank(S;a) and select(S; i) can be computed in O(lg n1) time

by calling the functions r rank(BSRLE(S); a;0; u; n1), r select1(BSRLE(S); i; 0; u; n1)

and rselect0(BSRLE(S); i; 0; u; n1) detailed below. (As usual, r ank0(S;a) = a �

r ank1(S;a).) In the pseudocode, the function decodenode(B) returns the values

r i , ` i , and pi for the i th node. (The techniquesusedto decode this information are

similar to BSD.) The variables la and ra refer to the left and right ancestorsof the

current run, respectively.

173

function r rank(B ; a; la; r a;n) f

if (n = 0) return 0;

r; `; p decodenode(B);

if (a < r)

return r rank(BSRLE(SL); a; la; r; dn=2e� 1);

else if (a < r + `) return dn=2e+ p + (a � r);

else return dn=2e+ p+

r rank(BSRLE(SR); a; r + ` � 1; r a;n � dn=2e);

g
function r select1(B ; i; la; r a;n) f

r; `; p decodenode(B);

c dn=2e+ p;

if (i < c)

return r select1(BSRLE(SL); i; la; r; dn=2e� 1);

else if (i < c + `) return r + (i � c);

else return

r select1(BSRLE(SR); i � c � `; r + ` � 1; r a;n � dn=2e);

g

174

function r select0(B ; i; la; r a;n) f

r; `; p decodenode(B);

c r � (dn=2e+ p);

if (n = 0)

if (i > c)

return r + (i � c);

if (i < c)

return la + i ;

if (i < c)

return r select0(BSRLE(SL); i; la; r; dn=2e� 1);

else if (i > c) return

r select0(BSRLE(SR); i � c;r + ` � 1; r a;n � dn=2e);

g

Comparedto the practical dictionaries from Section3.2.4,the BSRLE(S) encoding

usesthe same spaceto encode the run-length values for 0 and 1. However, the

practical dictionariesstorepre�x sumsfor both 0 and 1, whereaswe only store them

for 1s. Moreover, sinceour pre�x sumsare localized, we save even more space. In

addition, we have a clearspace/timetradeo�: our data structure operatesin O(lg n1)

time (which is lessthan BSGAP's O(lg n) time if n1 is small enough),however, we may

spend more time on each step since we decode more codes. We summarize its

achievements in the following lemma.

Lemma 33 (BSRLE). The representation BSRLE(S) is a fully indexabledictio-

nary (FID) occupying rle(S) + O(n lg lg(u=n)) bits while supporting rank and select

functions in O(lg n1) time, where n1 is the number of runs of 1s in the bitvector

representationof S.

Proof. This proof follows from the proof of Lemma 30 and Theorem 17. Our BSRLE

175

encoding achieves rle(S) spaceby construction, sincethe run-lengths for the 1s are

storedexplicitly, and the run-lengths for the 0s are stored implicitly by the encoding

of BSGAP(S0). The only additional cost we have is to store pi , which is roughly the

number of 1s in SL (the left subtreeof r i); the encoding of pi over all nodescan be

boundedby the pointer cost (to jump to the right subtree),and takesat most O(n)

bits of space.

4.7.3 Exp erimen tal Results

In this section,we apply our BSRLEdata structure to the text indexing problem. In

particular, we improve upon the implementation of compressedsu�x arrays from

Chapter 3 and compare it to the FM-index[FM05, FM01], a state-of-the-art data

structure with good theoretical results and practical performance. We make useof

the hybrid valueh and block length b in tweakingthe BSRLEstructure, just aswe did

with BSGAP. Throughout our experiments with BSRLE, we usenibble4 to represent

pointers and auxiliary information, and codesto represent the actual RLE lengths.

For both codes,we maintain a small table of valuesto facilitate fast decoding; these

tables contribute negligible space,and our experimental results account for these

costs.

Our goal is to index the text T of length u. We replace each of the practical

dictionaries from the earlier csa implementation (that wereusedin the wavelet tree)

with our new BSRLEdictionaries. This application was the main motivation for

developing BSRLEdictionaries. We also rede�ned the fractional cascadingthat links

theseBSRLEdictionaries together to improve the sequential searches in the wavelet

tree.

We also drastically speed up the decoding of LCP values that are neededby

the csa. To review,store the LCP s usingSadakane'smethod [Sad02b].However, we

176

cannot a�ord to store all 2u bits required. Instead, we store only LCP valueslarger

than 2lg u. To reducequery time, we alsostore a few dictionaries that keeptrack of

small LCP values. In particular, we maintain a dictionary D i drawn from a universe

of sizeu, such that its entries correspond to the positionswith an LCP valueof i . We

store a seriesof thesedictionaries D1; D2; : : : ; D l , where l is a tweakable parameter

that presents space/time tradeo�s.

The LCP lookup proceedsby �nding out how many 1 bits appear in D i within

the rangecorresponding to the two strings in the LCP query. If there are none,we

proceedwith the search in the next dictionary D i +1 . Oncewe run out of dictionaries

to search, we preform an inversesu�x array query (SA � 1) to get the location of the

two su�xes that start at the lth position in the original query su�xes. Then we reuse

our original seriesof l dictionaries. This processavoids the (relatively) slow lookup

time for �(i), at a cost of someadditional storage.

We can organizethis seriesof dictionaries D i in terms of an LCP wavelettree,

providing, in theory, many of the bene�ts we have described earlier for wavelet trees.

The main advantage here is in improving the time bound|it's not clear whether an

entropy bound makes sensefor the storageof LCP values. In practice, short LCP

valuesare much more commonand needto be retrieved in O(1) time, rather than

the O(lg l) time for this wavelet tree.

The FM-index usesthreeparametersin optimization: a two-phasebucketing stage

that is similar to our BSRLEstructure (but lacking the tuned top level with gap

encodings), and a frequency percentage f . Suppose f is 2% (the default for the

FM-index implementation). The index inserts a special unique symbol at regular

intervals in text T such that the total number of symbols is 2% of the text length.

This puts a maximum on the number of symbols that the FM-index has to decode,

and it addressesthe sameproblemthat we weretrying to addressearlier by explicitly

storing LCP values. As f increases,the fewer symbol decodingsareneeded;however,

177

this method requiresadditional (tuneable) space.We alsousethis idea when tuning

our data structure.

In Figure 4.8, we show a space/time tradeo� for our improved csa and the FM-

index. Each graph plots spacevs. time for either count or locate queries. Each

row of graphsshows the results for the �les alice29.txt , E.coli , dblp.50MB, and

english.50MB, respectively. (Each �le is described in Section4.7.1.) We performed

count and locateon 1; 000randomly generatedpatterns P, averagedover �v e trials.

The time reported for count is the number of milliseconds(msec)requiredper symbol

of the input pattern P, and the time for locateis the number of millisecondsrequired

per occurrenceof P in text T.

To generateeach curve in the graphs, we generateall possibledata structures

using the variousparametersfor each implementation. Then, we partition the x-axis

and chosethe most time-e�cien t implementation of csa and FM-index taking that

much space. Notice that our csa data structure is competitiv e with the FM-index

for nearly all ranges,although it is slightly slower as we increasethe spaceallowed.

However, what is most interesting is its behavior when we allow a minimum of extra

bits of space. For this case,our data structure presents the fastest implementation

for extremely succinct space.

4.8 Conclusions

In this chapter, we have formalized and developed measuresfor analyzing the space

neededto storesetdata. Thesemeasurescanprovide a framework for further investi-

gation of compresseddata structuring techniques. Wehave achieveda fully indexable

dictionary that operatesin near-optimal time (AT (u; n)) to support rank, select,and

predecessorqueries,while just taking gap+ O(n lg(u=n)=lg n) + O(n lg lg(u=n)) bits

of storage. This result improves a number of compresseddata structures [RRR02,

178

AT00, BB04] by reducingspaceusage,while maintaining nearly-optimal time bounds.

Our gap term has a constant of 1, which is extremely important when considering

matters of spacee�ciency . Equally important are the properties of the other space

terms|if n = o(u), they amount to o
�
lg

� u
n

��
bits. Also, our dictionary is the �rst

that achieves O(n lg(u=n)) bits of space,without signi�cantly sacri�cing the query

times. (Recall that we take AT (u; n) � BF (u; n) time.) We also provide an in-

dexabledictionary which operatesin gap+ O(n lg(u=n)=lg n) + O(n lg lg(u=n)) bits

and supports queriesin O(lg lg n) time. We conjecturethat if the spacefor an ID is

measuredin terms of gap, O(1) query time may not be possibleto achieve. Sincethe

gap measureinherently exploits the encoding of items with respect to other items,

O(1) decoding time of an item (and thus searching) is not straightforward.

In addition, we have shown evidencethat data-awaremeasures(such asgap) tend

to be smaller than combinatorial measureson real-life data. Employing techniques

that exploit the redundancy of the data can lead to more succinct data structures

and a better understanding of the underlying information. As such, we encourage

researchers to develop theoretical results with a data-aware analysis. In particular,

our BSGAPdata structure, alongwith BB (proposedin [BB04]) areextremelysuccinct

in practice for sparsedata sets. In addition, we provide someevidencethat BSGAP

is lesssensitive than [BB04] to an increasein the size of the universe. Finally, we

provide someuseful information on the relative performanceof pre�x codes with

respect to compressionspaceand decompressiontime.

There are two open problems. Is it possibleto give an indexabledictionary with

query times further reduced, and with spacemeasuredin a data-aware manner?

Another problem is whether we can extend our data structures to support dynamic

operations.

179

Space vs. Time for Count (alice29.txt)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

80000 130000 180000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Space vs. Time for Locate (alice29.txt)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

80000 130000 180000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Space vs. Time for Count (E.coli)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

2000000 3000000 4000000 5000000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Space vs. Time for Locate (E.coli)

0.00

0.50

1.00

1.50

2.00

2000000 3000000 4000000 5000000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Space vs. Time for Count (dblp.50MB)

0.05

0.07

0.09

0.11

0.13

0.15

15000000 30000000 45000000 60000000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Space vs. Time for Locate (dblp.50MB)

0.05

0.10

0.15

0.20

0.25

15000000 30000000 45000000 60000000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Space vs. Time for Count (english.50MB)

0.03

0.04

0.05

0.06

0.07

0.08

25000000 40000000 55000000 70000000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Space vs. Time for Locate (english.50MB)

0.10

0.20

0.30

0.40

25000000 40000000 55000000 70000000

Space (in bytes)

T
im

e
(i

n
 m

se
c)

CSA
FM-Index

Figure 4.8: Comparisonof csa and FM-index on count and locate.

180

Chapter 5

Dynamizing Succinct Data Structures

5.1 In tro duction

The new trend in indexing data structures is to compressand index data in one shot.

The ultimate goal of these compressedindexes is to retain near-optimal query times (as

if not compressed),yet still take near-optimal space(as if not an index). A few pioneer

results are [GV00, GGV03, FM05, RRR02, GMR06, FLMM05]; there are many others. For

compressedtext indexing, seeNavarro and M•akinen's excellent survey [NM06a].

Progressin compressedindexing has also expandedto more combinatorial structures,

such as trees and subsets. For these succinct data structures, the emphasis is to store

them in terms of the information-theoretic (combinatorial) minimum required spacewith

fast query times [RRR02, Jac89b, HMP01]. Compressedtext indexing makesheavy useof

succinct data structures for set data, or dictionaries.

The vast majorit y of succinct data structuring work is concernedlargely with static

data. Although the spacesavings is large, the main deterrent to a more ubiquitous use

of succinct data structures is their notable lack of support for dynamic operations. Many

settings require indexing and query functionalit y on dynamic data: XML documents, web

pages,CVS projects, electronic document archives, etc. For this type of data, it can be

prohibitiv ely expensive to rebuild a static index from scratch each time an update occurs.

The goal is then to answer queriese�cien tly, perform updates in a reasonableamount of

time, and stil l maintain a compressedversion of the dynamically-changing data.

In that vein, there have been someresults on dynamic succinct bitv ectors (dictionar-

ies) [RRR01, HSS03,NM06b]. However, these data structures either perform queries in

far from optimal time (in query-intensive environments), or allow only a limited range of

dynamic operations (\ip" operations only). Here, we consider the more general update

181

operations consisting of arbitrary insertion and deletion of bits, which is a central chal-

lenge in dynamizing succinct data structures for a variety of applications. We de�ne the

dynamic text dictionary problem: Given a dynamic text T of n symbols drawn from an

alphabet �, construct a data structure (index) that allows the following operations for any

symbol s 2 �:

� ranks(i) tells the number of s symbols up to the i th position in T;

� select s(i) gives the position in T of the i th s;

� char(i) returns the symbol in the i th position of T;

� insert s(i) inserts s before the position i in T;

� delete(i) deletesthe i th symbol from T.

When j� j = 2, the above problem is called the dynamic bit dictionary problem. For the

static case,[RRR02] solves the bit dictionary problem using nH 0 + o(n) bits of spaceand

answers rank and selectqueriesin O(1) time, where H 0 is the 0th order empirical entropy

of the text T. The best known time boundsfor the dynamic problem are given by [NM06b],

achieving O(lg n) for all operations.1

The text dictionary problem is a key tool in text indexing data structures. For the static

case,Grossiet al. [GGV03] present a wavelet tree structure that answersqueriesin O(lg j� j)

time and takesnH 0 + o(n lg j� j) bits of space.Golynski et al. [GMR06] improve the query

bounds to O(lg lg j� j) time, although they take more space,namely, n lg j� j + o(n lg j� j)

bits of space. Nevertheless, their data structure presents the best query bounds for this

problem.

Developinga dynamic text dictionary basedon the wavelet structure canbedonereadily

usingdynamic bit dictionaries (as is donein [NM06b]) sinceupdatesto a particular symbol s

only a�ect the data structures for O(lg j� j) groupsof symbols according to the hierarchical

decomposition of the alphabet �. The solution to this problem is given by M•akinen and

Navarro [NM06b], with an update/query bound of O(lg n lg j� j). Theseboundsare far from

optimal, especially in query-intensive settings. On the other hand, the best known query

1There is another data structure proposedin [HSS03], requiring non-succinct space.

182

bounds for static text dictionaries are given by [GMR06], which treats each symbol in �

individually; an update to symbol s could potentially a�ect � di�eren t data structures, and

thus may be hard to dynamize.

We list the following contributions of this chapter:

� We develop a general framework to dynamize many succinct data structures like

ordinal trees, labeled trees, dictionaries, and text collections. Our framework can

transform any static succinct data structure D for a text T into a dynamic succinct

data structure. Precisely, if D supports ranks, select s, and char queries in O(t(n))

time and takes s(n) bits of space, the dynamic data structure supports queries in

O(t(n) + lg lg n) time and updatesin amortized O(n �) time and takesjust s(n) + o(n)

bits of space.

� Our results represent near-optimal tradeo�s for update/query times for the dynamic

text (and bit) dictionary problem. (For lower bound, see[PD06].)

� We provide the �rst succinct data structure for the dynamic bit dictionary problem.

Our data structure takes nH 0 + o(n) bits of spaceand requires O(lg lg n) time to

support ranks, select s, and char querieswhile supporting updates to the text T in

amortized O(n �) time.

� We provide the �rst near-optimal result for the dynamic text dictionary problem on

a dynamic text T. Our data structure requiresn lg j� j + o(n lg j� j) bits of spaceand

supports queriesin O(lg lg n) time and updatesin O(n �) time. When j� j = polylg(n),

we can improve our query time to O(1).

� Our framework can dynamize succinct data structures for labeled trees, text collec-

tions, and XML documents.

The work donein this chapter is a collaborative e�ort with Wing-Kai Hon, Rahul Shah,

and Je�rey Scott Vitter.

183

5.1.1 Outline

In Section5.2,wesummarizesomeexisting results including the RRR data structure [RRR02],

somestatic text dictionaries [GGV03, GMR06], and somebrief construction bounds. Sec-

tion 5.3.1 describes our BitIndel data structure, which solves the dynamic bit dictionary

problem. Section 5.3.3 describesthe �rst part of our dynamic text dictionary; we describe

inX , which keepstrack of where the original text T has beenupdated. In Section5.3.4, we

then describe onlyX, which actually storesthe updates themselves. The onlyX structure is

a non-succinct data structure of independent interest that solves the dynamic text dictio-

nary problem. In Section 5.5, we apply our dynamic bit and text dictionaries to dynamize

ordinal trees, labeled trees, and the XBW transform [FLMM05].

5.2 Preliminaries

We summarizeseveral important static structures that we will usein achieving the dynamic

results. The proofs of their construction are omitted due to spaceconstraints. In the rest

of this chapter, we refer to a static bit or text dictionary D , that requires s(n) bits and

answers queriesin t(n) time.

Lemma 34 ([RRR02]). For a bitvector (i.e., j� j = 2) of length n, there exists a static

data structure D called RRR solving the bit dictionary problem supporting rank, select ,

and char queries in t(n) = O(1) time using s(n) = nH 0 + O(n lg lg n= lg n) bits of space,

while taking only O(n) time to construct.

Lemma 35 (Section 2.4.3). For a text T of lengthn drawn from alphabet � , there existsa

static data structure D called the wavelet tree solvingthe text dictionary problemsupporting

ranks, select s, and char queriesin t(n) = O(lg j� j) time using s(n) = nH 0 + o(n lg j� j) bits

of space, while taking O(nH 0) time to construct. When j� j = polylg(n), we can support

queries in t(n) = O(1) time.

Lemma 36 ([GMR06]). For a text T of length n drawn from alphabet � , there exists

a static data structure D called GMR that solvesthe text dictionary problem supporting

184

select s queriesin t1(n) = O(1) time and rank and char queriesin t2(n) = O(lg lg j� j) time

using s(n) = n lg j� j + o(n lg j� j) bits of space, while taking O(n lg n) time to construct.

We alsousethe following static data structure calledpre�x-sum (PS) asa building block

for achieving our dynamic result. Supposewe are given a non-negative integer array A[1::t]

such that
P

i A[i] � n. We de�ne the partial sums P[i] =
P i

j =1 A[i]. Note that P is a

sorted array, such that 0 � P[i] � P [j] � n for all i < j . A pre�x-sum (PS) structure on A

is a data structure that supports the following operations:

� sum(j) returns the partial sum P[j];

� �ndsum (i) returns the index j such that sum(j) � i < sum(j + 1).

To support sum, we simply store array P explicitly , requiring O(t lg n) bits of space.

To support �ndsum , we take the t pre�x sumsand cluster them into consecutive groups of

sizeO(lg2 n). Within a group, we usea balancedbinary search tree to support �ndsum in

O(lg lg n) time in the standard way. Now we must determine which group to search for a

given query. From each of the O(t= lg2 n) groups, we store the largest pre�x sum using a

hashing implementation of a van Emde Boas (VEB) data structure. For the hashing, we

use [HMP01] (Theorem 1.1), so that we can construct the hash table deterministically in

O(t) time and taking O(t) bits of space. Along with each entry in the hash table, we also

store a pointer to its associated group to search further. To answer �ndsum (i), we search

the VEB structure to �nd the right group in O(lg lg n) time. We then follow the pointer to

the binary search tree and spend an additional O(lg lg n) time.

Using [HSS03],we can support �ndsum (i) in O(1) time in the special casewhere each

array entry A[j] is between x and cx; c is a positive constant integer and x is a positive

integer. We briey sketch the idea now. To support �ndsum , we partition the universen

into n=x blocks of length x. Since each A[j] ranges from x to cx, the partial sums P[j]

are within c blocks of one another. Thus, n=x = ct. For the j th block, we explicitly

store B [j] = �ndsum (xj) using O(lg t) bits. To answer �ndsum (i), we �rst navigate to the

di=xeth block and retrieve the explicit solution r = B [di=xe] contained there. If P[r + 1] � i ,

we return r + 1. Otherwise, we know that we are within x of the correct pre�x sum and we

185

return r (becauseP[r + 1] � P[r] � x). We will require O(ct lg t) bits of spaceto store the

array B . Thus, we can write the following lemma.

Lemma 37. Let A[1: : : t] be a non-negative integer array such that
P

i A[i] � n. There

exists a data structure PS on A that supports sum and �ndsum in O(lg lg n) time using

O(t lg n) bits of space and can be constructed in O(t) time. In the particular case where

x � A[i] � cx for all i , where x is a positive integer and c � 1 is a positive constant integer,

sum and �ndsum can be answered in O(1) time.

Proof. The proof follows from the above discussion,where we explicitly store the array P

and the array B for each of the ct blocks.

We also make use of a data structure called the Weight Balanced B-tree (WBB tree),

which was usedin [RRR01, HSS03].We usethis structure with Lemma 37 to achieve O(1)

time. A WBB tree is a B-tree de�ned with a weight-balance condition. A weight-balance

condition meansthat for any nodev at level i , the number of leavesin v's subtreeis between

0:5bi + 1 and 2bi � 1, where b is the fanout factor. Insertions and deletions on the WBB

tree can be performed in amortized O(lgb n) time while maintaining the weight-balance

condition.

We usethe WBB tree sinceit ensuresthat x � A[i] � cx where c is a positive constant

integer, thus allowing constant-time search at each node. However, a simple B-tree would

require O(lg lg n) time in this situation. Also, WBB trees are a crucial component of the

onlyX structure, described in Section 5.3.4. WBB trees are also used in Section 5.3.1

(although B-trees could be usedhere).

We de�ne a weight balancedB-tree asfollows: all leavesof the WBB tree are considered

to be at level 0. A level-i node is connectedto its parent node at level i + 1. We de�ne

a weight-balance condition, such that for any node v at level i , the number of leaves in v's

subtree is between0:5bi + 1 and 2bi � 1, whereb is the fanout factor. Thus, the degreeof an

internal node is �(b) (from b to 4b), such that the height of the tree is �(lg b n0), where n0

is the number of leaves in the current tree.

186

After a leaf is inserted into the tree, the weight-balancecondition of somelevel-i ancestor

of the leaf, say v, may be violated. Precisely, this casehappenswhen the number of leaves

in v's subtree is 2bi . In this case,v will be split into two new nodesat the samelevel (called

a split operation), each of them becoming the root of a perfect subtree with bi leaves.

(This split could causea restructuring of the entire subtree that was split, but this follows

standard techniques.)

On the other hand, in casea leaf is deleted, the weight-balance condition of v at level i

may be violated; that is, the number of leaves in v's subtree becomes0:5bi . In this case,v

is mergedwith one of its neighboring siblings, and there will be two cases:

(i) if the total number of leaves after merging is less than 1:5bi , the update �nishes

(called a merge operation);

(ii) otherwise,the mergednode is further split into two nodes,each of them becomingthe

root of a subtreewith half the number of leaves(called a merge-then-split operation).

Basedon the above updating process,we have the following lemma and corollary.

Lemma 38. Except the root, whena node v at level i violates the weight-balance condition,

at least �(bi) leavesare inserted or deleted in v's subtree since the creation of v.

Proof. A node is created when there is either a split, merge,or merge-then-split event. As

a result, node v contains at least 0:75bi leaves(by merge-then-split) and at most 1:5bi leaves

at its creation. Thus, at least 0:25bi leaves are deleted or at least 0:5bi leaves are inserted

beforev can violate the weight-balance condition.

Corollary 9. Suppose that ci is the maximum cost of a split, a merge, or a merge-then-

split operation when a level-i node violates the weight-balance condition. The amortized

cost for supporting the above operations due to an insertion or deletion of a leaf is at most

�(
P h

i=1 ci =bi), where h denotesthe current height of the tree.

Proof. We prove this result by a simple accounting method. A node is created with zero

tokens; when a leaf is inserted or deleted, it gives each of its level-i ancestors �(ci =bi)

187

tokens(precisely, 4ci =bi tokensfor deletion and 2ci =bi tokensfor insertion). Thus, the total

number of tokensgiven is �(
P h

i=1 ci =bi) during an insertion or deletion operation. It is easy

to verify that there are at least ci tokenswhen a node at level i violates the weight-balance

condition. In other words, an amortized cost of �(
P h

i=1 ci =bi) for leaf insertion or deletion

is enoughto support split, merge,or merge-then-split operations.

5.3 Data Structures

There are several data structures that support ranks and select s queries. They are broadly

basedon two di�eren t approaches: logarithmic, which createsa binary search tree with a

height of lg j� j with each symbol's occurencesstored in the leaves; and log-logarithmic,

which is based on predecessorsearch and VEB. Despite the faster accessof the log-

logarithmic approach, it is di�cult to update sinceeach symbol s 2 � is treated separately

and updating one symbol will a�ect the data structure for all other symbols. In contrast

logarithmic approachesneedonly manageupdates in a particular root-to-leaf path of their

binary search tree, so that only O(lg j� j) internal nodesare a�ected for each update.

Our solution is built with three main data structures:

� BitIndel : bitv ector supporting insertion and deletion, described in Section 5.3.1;

� StaticRankSelect : static text dictionary structure supporting ranks, select s, and char

on a text T;

� onlyX : non-succinct dynamic text dictionary, described in Section 5.3.4.

We use StaticRankSelect to maintain the original text T; we can use any existing

structure such as GGV or GMR mentioned in Section 5.2. For easeof exposition, unless

otherwise stated, we shall use GMR [GMR06] in this section. We keep track of newly in-

sertedsymbols N in onlyX such that after every O(n1� � lg n) update operations performed,

updatesare mergedwith the StaticRankSelectstructure. Thus, onlyX never contains more

than O(n1� � lg n) symbols. We maintain onlyX using O(n1� � lg2 n) = o(n) bits of space.

Finally, sincemerging N with T requires O(n lg n) time, we arrive at an amortized O(n �)

188

time for updating thesedata structures. BitIndel is usedto translate positions pt from the

old text T to the new positions pt̂ from the current text T̂ . (We maintain T̂ implicitly

through the useof BitIndel structures, StaticRankSelect,and onlyX.)

5.3.1 Bitv ector Dictionary with Indels: BitIndel

In this section,we describe a data structure (BitIndel) for a bitv ector B of original length n

that can handle insertions and deletions of bits anywhere in B while still supporting rank

and select on the updated bitv ector B 0 of length n0. The spaceof the data structure is

n0H0 + o(n0). When n0 = O(n), our structure supports these updates in O(n �) time and

rank and select queriesin O(lg lg n) time. (In [HSS03],Hon et al. proposea non-succinct

BitIndel structure taking n0+ o(n0) bits of space.)

Formally, we de�ne the following update operations that we support on the current

bitv ector B 0 of length n0:

� insert b(i) inserts the bit b in the i th position;

� delete(i) deletesthe bit located in the i th position;

� ip (i) ips the bit in the i th position.

For bitv ector B 0, we construct a B-tree T with fanout between [n � ; 2n�], for a �xed

� > 0. The leavesof T maintain contiguous chunks of B 0 ranging from [n � ; 2n�] in size,such

that the `th (leftmost) leaf corresponds to the `th chunk of B 0. Each leaf ` maintains an

RRR [RRR02] data structure `:R that answers rank and select querieson its O(n �)-sized

chunks in O(1) time. Each internal node v of T maintains three arrays: count 0 , count1 ,

and size. Let cj denote the j th child node of v. The entry count 0 [j] is the number of 0s in

the part of the bitv ector in the subtree of cj . The entry count1 [j] is the number of 1s in

the part of the bitv ector in the subtree of cj . The entry size[j] is the total number of bits

in the subtree of cj . To have fast accessto this information at each node, we build a PS

structure on this information. (We don't actually store count 0 , count1 , and size explicitly;

rather, we store a PS structure for each array.)

The height of this tree is O(lgn n0). To traversedown to a leaf for any operation, we

189

usethe PS structure at a node (using O(lg lg n) time) to determine the next node to visit

on the root-to-leaf path. Then, we query our RRR [RRR02] data structure `:R at leaf `

and return the answer. Now we describe our operations in more detail.

function v:ranks(i) f

if (leaf (v)) return v:R:ranks(i);

j v:size:�ndsum (i);

return v:counts:sum(j)+

cj +1 :ranks(i � v:size:sum(j));

g

function v:select s(i) f

if (leaf (v)) return v:R:select s(i);

j v:counts:�ndsum (i);

return v:size:sum(j)+

cj +1 :select s(i � v:counts:sum(j));

g
Let r be the root node of T . Then, ranks(i) is answered by invoking r:ranks(i), and

select s(j) is answered by invoking r:select s(j).

Time Bounds. Each of the ranks and select s queriesrequires O(lg lg n) time per node

traversedin the B-tree T . Sincethere are at most O(lgn n0) such nodesbeforeencountering

a leaf, the total time is O((lg n n0) lg lg n).

Up dates. The ip (i) operation can be supported by performing a constant number of

insert , delete, and rank operations. So, for updates,we consideronly insert and delete. At

every update operation, we traversethe B-tree as before. The pre�x-sum data structures

in each internal node along the path are rebuilt in O(n �) time per node. At the leaf, R

is rebuilt. If the leaf node managesmore than 2n � symbols or lessthan n � , we invoke the

standard B-tree merge/split routines, propagating them up the tree as appropriate. In the

worst case,updates take O(n � lgn n0).

Space. There are at most O(n0=n2�) internal nodes (recall that each leaf in the tree

corresponds to a chunk of O(n �) bits), each taking O(n � lg n0) bits. Thus, the total space

for the internal nodes is O((n0=n�) lg n0). Let n1 be the number of 1s in B 0. The spacefor

the bottom-level R structures can beboundedby dlg
� n0

n1

�
e+ o(n0) bits. As seenin [GGV03],

we can write the contribution as n0H0 + o(n0) bits.

190

Lemma 39. Given a bitvector B 0 with length n0 and original length n, we can create a

data structure that takesn0H0 + o(n0) bits and supports rank and select in O((lg n n0) lg lg n)

time, and indel in O(n � lgn n0) time. When n0 = O(n), our time bounds become O(lg lg n)

and O(n�) respectively.

The pre�x sum data structure used inside the B-tree is the main bottleneck to query

times, allowing us only O(lg lg n) time access.However, if we store three WBB-trees, then

separately in each of them the special condition from Lemma 37 can be met allowing us

O(1) querieson pre�x sum structures. We describe this result in the following section.

5.3.2 Constan t-Time BitIndel

In this section,we describe a constant-time query BitIndel data structure for bitv ector B of

original length n that can handle insertions and deletions of bits anywhere in B while still

supporting rank and select on the updated bitv ector B 0 of length n0. When n0 = O(n), our

structure supports theseupdates in O(n �) time and rank and select queriesin O(1) time.

We modify BitIndel to perform O(lgn n0) query time by taking three times as much

space,i.e., 3nH 0 + o(n) bits. We briey overview the schemeand the results and then give

the details. Instead of a single B-tree, we store three WBB trees, weight balancedby size,

count0, and count1. With this new design, both sum and �ndsum querieswithin a node

can be performed in O(1) time as each array entry A[i] of the corresponding size, count 0,

and count1 arrays is betweenx and 2x for somenon-negative integer x [HSS03].The rank

querieswill be answered using the WBB for size, while select s will be answered with the

WBB for counts.

For bitv ector B 0, we construct three WBB TreesU;V; W whoseleavesmaintain contigu-

ous chunks of B 0, such that the `th (leftmost) leaf corresponds to the `th chunk of B 0. For

the moment, assumethat each leaf ` maintains its associated chunk of B 0 explicitly . The

internal leavesof U;V; W each maintain the three arrays, count 0 , count1 , and size. (De�ni-

tions are similar to above.) However, U is weight-balanced on count 0 , V is weight-balanced

on count1, and W is weight-balanced on size. To summarize,we have the following trees:

191

� WBB tree U, where the internal node v is weight-balanced on the array count 0 ;

� WBB tree V , where the internal node v is weight-balanced on the array count 1; and

� WBB tree W , where the internal node v is weight-balanced on the array size.

Queries. Queriesare performed as usual, where W answers ranks queriesby traversing

according to the array size and returning ranks information by performing sum on the

counts array in internal nodes,plus the rank information from the explicitly-stored chunk

of B 0 at the leaf. For select s, we consult the WBB tree storing count s and return select s

information by performing sum on the size array in internal nodes, plus the select infor-

mation from the explicitly-stored chunk of B 0 at the leaf. The queriesat each level can be

done in constant time using Lemma 37.

Up dates. Here, we have to update all three trees. Without loss of generality, suppose

we delete a 1.

� TraverseW by size to the appropriate leaf node and compute rank0 and rank1 . Then

traverseupwards, decrementing the valuesof count 1 and size appropriately.

� TraverseU by count0 usingthe rank0 computedin the previousstepto arriveat a leaf.

Then traverseupwards, decrementing the valuesof size and count 1 appropriately.

� TraverseV by count1 usingthe rank1 computedin the previousstep to arriveat a leaf.

Then traverseupwards, decrementing the valuesof size and count 1 appropriately.

Apart from these updates at non-leaf levels, we need to reconstruct the RRR data

structures stored at leaf-level of the WBB tree also. This can be doneeasily for W in O(n �)

time. However, for the structures U (and V) which is weight balanced by count0 (resp.

count1) the leaf level bitv ector stored using RRR can bea lot longer than n � bits although it

is guaranteed to have only O(n �) 0s. In such a case,reconstructing RRR structure can take

conceivably a lot more time. We proposea following �x for this situation. Whenever the

length of the bitv ector stored is more than O(n � lg2 n) bits we explicitly write the positions

of 0s in an array rather than storing RRR structures. Since the structure U (and V) is

select only, the query can be easily answered by constant time array lookup. Since bit

192

vector of length greater than n � lg2 n is encoded using n � lg n bits, the total spacefor such

explicit encodings throughout the structure can be captured by o(n0) term. Now updates

of RRR structures can be done in O(n � polylg(n)). This can be adjusted by using slightly

smaller � .

Space. Since,we store three structures here (instead of one) the spaceis 3n0H0 + o(n0)

bits. The rest of the analysis is exactly the sameas in the previous subsectionand also the

spacefor explicit array encodings (instead of RRR) can be captures by o(n0) term.

Lemma 40. Given a bitvector B 0 with length n0 and original length n, we can create a

data structure that takes3n0H0 + o(n0) bits and supports rank and select in O(lgn n0) time,

and indel in O(n � lgn n0) amortized time. When n0 = O(n), our time bounds become O(1)

and O(n�) respectively.

If we change our BitIndel structure such that the bottom-level RRR [RRR02] data

structures are built on [lg2 n; 2lg2 n] bits each and set the B-tree fanout factor b = 2, we

can obtain O(lg n) update time with O(lg n) query time. In this sense,our BitIndel data

structure is a generalization of [NM06b].

5.3.3 Insert-X-Delete-an y: inX

Let x be a symbol other than those in alphabet �. In this section, we describe a data

structure on a text T of length n supporting ranks and select s that can handle delete(i)

and insert x(i). That is, only x can be inserted to T, while any characters can be deleted

from T. Notice that insertions and deletionswill a�ect the answers returned for symbols in

the alphabet �. For example, T may be abcaab, where � = f a; b; cg. Here, r anka(4) = 2

and selecta(3) = 5. Let T̂ be the current text after somenumber of insertions and deletions

of symbol x. Initially , T̂ = T. After someinsertions, the current T̂ may be axxxbcaxabx.

Notice that r anka(4) = 1 and selecta(3) = 9. We represent T̂ by the text T 0, such that

when the symbols of the original text T are deleted, each deleted symbol is replaced by

a special symbol d (whereas if x is deleted, it is just deleted from T 0). Continuing the

193

example, after somedeletions of symbols from T, T 0 may be axxxddaxabx. Notice that

r anka(4) = 1 and selecta(3) = 7.

We de�ne an insert vector I such that I [i] = 1 if and only if T 0[i] = x. Similarly, we

de�ne a deletevector D such that D [i] = 1 if and only if T 0[i] = d. We also de�ne a delete

vector Ds for each symbol s such that D s[i] = 1 if and only if the i th s in the original text T

was deleted. The text T 0 is merely a conceptual text: we refer to it for easeof exposition

but we actually maintain T̂ instead.

To store T̂ , we store T using the StaticRankSelectdata structure and store all of the I ,

D , Ds bitv ectorsusing the constant time BitIndel structure. Now, we describe T̂ :insert x(i),

T̂ :delete(i), T̂ :ranks(i), and T̂:select s(i):

T̂ :insert x(i). First, we convert position i in T̂ to its corresponding position i 0 in T0

by computing i 0 = D:select0(i). Then we must update our various vectors. We perform

I :insert 1(i0) on our insert vector, and D:insert 0(i0) on our delete vector.

T̂ :delete (i). First, we convert position i in T̂ to its corresponding position i 0 in T0

by computing i 0 = D:select0(i). If i 0 is newly-inserted (i.e., I [i 0] = 1), then we perform

I :delete(i 0) and D:delete(i 0) to reversethe insertion processfrom above. Otherwise, we �rst

convert position i 0 in T0 to its corresponding position i 00in T by computing i 00= I :rank0(i0).

Let s = T:char(i 00). Finally, to delete the symbol, we perform D:ip (i 0) and Ds:ip (j),

where j = T:ranks(i00).

T̂ :rank s(i). First, we convert position i in T̂ to its corresponding position i 0 in T0 by

computing i 0 = D:select0(i). If s = x, return I :rank1(i0). Otherwise, we �rst convert

position i 0 in T0 to its corresponding position i 00 in T by computing i 00 = I :rank0(i0).

Finally, we return D s:rank0(j), where j = T:ranks(i00).

T̂ :select s(i). If s = x, compute j = I :select 1(i) and return D :rank0(j). Otherwise, we

compute k = D s:select 0(i) to determine i 's position among the s symbols from T. We

194

then compute k0 = T:select s(k) to determine its original position in T. Now the position k0

from T needsto be mapped to its appropriate location in T̂ . Similar to the �rst case,we

perform k00= I :select0(k0) and return D :rank0(k00), which correspondsto the right position

of T̂ .

T̂ :char (i). First, we convert position i in T̂ to its corresponding position i 0 in T0 by

computing i 0 = D:select0(i). If I [i 0] = 1, return x. Otherwise, we convert position i 0 in T0

to its corresponding position i 00in T by computing i 00= I :rank0(i0) and return T:char(i 00).

Space and Time. As can be seen, each of the rank and select operations requires

a constant number of accessesto BitIndel and StaticRankSelect structures, thus taking

O(1) time to perform. The indel operations require O(n �) update time, owing to the

BitIndel data structure. The spacerequired for the above data structures comesfrom the

StaticRankSelectstructure, which requiress(n) = O(n lg j� j + o(n lg j� j)) bits of space,and

the many BitIndel structures, whosespacecan be boundedby 3lg
� n0

n

�
+ 6lg

� n0

n00

�
+ o(n0) +

O((n0=n�) lg n0) bits where n00is number of deletes. If n00and n0 � n are bounded by n1� � ,

then this expressionis o(n) bits.

Theorem 20. Let T be a dynamic text of original length n and current length n0, with

characters drawn from an alphabet � . Let n00be the number of deletions. If the number of

updatesis O(n1� �), wecan create a data structure using GMR that takesn lg j� j+ o(n lg j� j)

bits of space and supports ranks(i) and select s(i) in O(1) time and insert x(i) and deletes(i)

in O(n�) time.

5.3.4 onlyX-structure

Let T be the dynamic text that we want to maintain, where symbols of T are drawn from

alphabet �. Let n0 be the current length of T, and we assumethat n0 = O(n). In this

section, we describe a data structure for maintaining a dynamic array of symbols that

supports ranks and select s queries in O((lg n n0)(t(n) + lg lg n)) time, for any �xed � with

195

0 < � < 1; here, we assumethat the maximum number of symbols in the array is O(n).

Our data structure takes O(n0lg n) bits; for each update (i.e., insertion or deletion of a

symbol), it can be done in amortized O(n �) time.

We describe how to apply the WBB tree to maintain T while supporting ranks and

select s e�cien tly, for any s 2 �. 2 In particular, we choose � < 1 and store the symbols

of T in a WBB W with fanout factor b = n � where � = �=2 such that the i th (leftmost)

leaf of W stores T[i]. Each node at level 1 will correspond to a substring of T with O(b)

symbols, and we will maintain a static text dictionary for that substring so that ranks and

select s are computed for that substring in t(n) = O(lg lg j� j) time. In each level-̀ node v`

with ` � 2, we store an array size such that size[i] stores the number of symbols in the

subtree of its i th (leftmost) child. To have fast accessto this information at each node, we

build a PS structure to store size. Also, for each symbol s that appearsin the subtreeof v` ,

v` is associated with an s-structure, which consistsof three arrays: poss, num s, and ptr s.

The entry poss[i] stores the index of v` 's i th leftmost child whosesubtree contains s. The

entry num s[i] stores the number of s in v` 's i th leftmost child whosesubtree contains s.

The entry ptr s[i] storesa pointer to the s-structure of v` 's i th leftmost child whosesubtree

contains s.

The arrays in each s-structure (sizes, poss, and num s) are stored using a PS data

structure sothat we can support O(lg lg n)-time sum and �ndsum queriesin sizes or num s,

and O(lg lg n)-time rank and select queriesin poss. (These rank and select operations are

analogousto sum and �ndsum queries,but we refer to them as rank and select for easeof

exposition.) The list ptr s is stored in a simple array.

We alsomaintain another B-tree B with fanout n � such that each leaf `s correspondsto

a symbol s that is currently present in the text T. Each leaf storesthe number of (nonzero)

2One may think of using a B-tree instead of a WBB-tree. However, in our design, a particular

node in the WBB tree will needto store auxiliary information about every symbol in the subtree

under that node. In the worst case,this auxiliary information will be as big as the size of the

subtree. If we usea B-tree, the cost of updating a particular node cannot boundedby O(n �) time

in the amortized case.

196

occurrencesof s in T, along with a pointer to its corresponding s-structure in the root

of W . The height of B is O(lgn � j� j) = O(1), sincewe assumej� j � n.

Answ ering char (i). We can answer this query in O(lg lg n) time by maintaining a

B-tree with fanout b = n � over the text. We call this tree the text B-tr ee.

Answ ering rank s(p). Recall that ranks(p) recordsthe number of occurrencesof sym-

bol s in T[1::p]. We �rst query B to determine if s occurs in T. If not, return 0. Otherwise,

we follow the pointer from B to its s-structure. We then perform r:sizes:�ndsum (p) to

determine the child ci of root r from W that contains T[p]. Supposethat T[p] is in the

subtree rooted at the i th child ci of r . Then, ranks consistsof two parts: the number of

occurrencesm1 = r:num s:sum(j) (with j = r:poss:rank(i � 1)) in the �rst i � 1 children

of r , and m2, the number of occurrencesof s in ci . If r:poss:rank(i) 6= j + 1 (ci contains no s

symbols), return m1. Otherwise, we retrieve the s-structure of ci by its pointer r:ptr [j + 1]

and continue counting the remaining occurrencesof s beforeT[p] in the WBB tree W . We

will eventually return m1 + m2.

The above processeither (i) stops at someancestorof the leaf of T[p] whosesubtree

does not contain s, in which casewe can report the desired rank, or (ii) it stops at the

level-1 node containing T[p], in which casethe number of remaining occurrencescan be

determined by a ranks query in the static text dictionary in t(n) = O(lg lg j� j) time. Since

it takesO(lg lg n) time to check the B-tree B at the beginning, and it takesO(lg lg n) time

to descendeach of the O(1) levels in the WBB-tree to count the remaining occurrences,

the total time is O(lg lg n).

Answ ering select s(j). Recall that select s(j) tells the number of symbols (inclusive)

before the j th occurrenceof s in T. We follow a similar procedureto the above procedure

for ranks. We �rst query B to determine if s occurs at least j times in T. If not, we

return � 1. Otherwise, we discover the i th child ci of root r from W that contains the j th

s symbol. We compute i = r:poss:select (r:num s:�ndsum (j)) to �nd out ci .

197

Then, select s consistsof two parts: the number of symbols m1 = r:size:sum(i) in the

�rst i � 1 children of r , and m2, the number of symbols in ci beforethe j th s. We retrieve

the s-structure of ci by its pointer r:ptr [r:num s:�ndsum (j)] and continue counting the

remaining symbolson or beforethe j th occurrenceof s in T. We will eventually return m1+

m2. The above processwill stop at the level-1 node containing the j th occurrenceof s in T,

in which casethe number of symbols on or before it maintained by this level-1 node can

be determined by a select s query in the static text dictionary in t(n) = O(lg lg j� j) time.

With similar time analysisas in ranks, the total time is O(lg lg n).

Up dates. We can update the text B-tree in O(n �) time. We use a naive approach to

handle updatesdue to the insertion or deletion of symbols in T: For each list in the WBB-

tree and for each static text dictionary that is a�ected, we rebuild it from scratch. In

the casethat no split, merge, or merge-then-split operation occurs in the WBB-tree, an

insertion or deletion of s at T[p] will a�ect the static text dictionary containing T[p], and

two structures in each ancestornode of the leaf containing T[p]: the size array and the s-

structure corresponding to the inserted (deleted) symbol. The update cost is O(n � lg n) =

O(n�) for the static text dictionary and for each ancestor,so in total it takesO(n �) time.

If a split, merge, or merge-then-split operation occurs at some level-̀ node v` in the

WBB-tree, we needto rebuild the size array and s-structures for all newly created nodes,

along with updating the size array and s-structures of the parent of v` . In the worst case,

it requiresO(n(`+1) � lg n) time. By the property of WBB trees, the amortized update takes

O(n�) time.

In summary, each update due to an insertion or deletion of symbols in T can be done

in amortized O(n �) time.

Space complexit y. The spacefor the text B-tree is O(n lg j� j + n1� � lg n) bits. The

total spaceof all O(n1� �) static text dictionaries can be boundedby s(n) = O(n lg j� j) bits.

For the spaceof the s-structures, it seemslike it is O(j� jn1� � lg n) bits at the �rst

glance,sincethere are O(n1� �) nodesin W . This spacehowever is not desirable,since j� j

198

can be as large as n. In fact, a closer look of our designreveals that each node in W only

maintains s-structures for those s that appearsin its subtree. In total, each character of T

contributes to at most O(1) s-structures, thus incurring only O(lg n) bits. The total space

for s structures is thus bounded by O(n lg n) bits.

The spacefor the B-tree B (maintaining distinct symbols in T) is O(j� j lg n) bits, which

is at most O(n lg n) bits. In summary, the total spaceof the above dynamic rank-select

structure is O(n lg n) bits.

Summarizing the above discussions,we arrive at the following theorem.

Theorem 21. For a dynamic text T of length at most O(n), we can maintain a data

structure on T using GMR to support ranks, select s, and char O(t(n) + lg lg n) = O(lg lg n)

time, and insertion/deletion of a symbol in amortized O(n �) time. The space of the data

structure is O(n lg n) bits.

5.4 Constan t-time onlyX-structure

For the casewhen j� j = O(polylg(n)), we can modify the onlyX structure so as to achieve

O(1) queries. This modi�cation is similar to the one we made for our O(1) BitIndel struc-

ture.

Precisely, let T be the dynamic text we want to maintain, n0 be the length of T (which

is never more than 2n), and � = �=2 be a �xed constant. We maintain a WBB tree B for T

to answer the ranks and char query, and a WBB tree Vs for each s 2 j� j to answer the

corresponding select s query. For the WBB tree B , the fanout is b = n � , so that each level-1

node corresponds to a block of �(b) characters of T. These characters are maintained by

the StaticRankSelect structure of [NFMM06]. For each level-̀ internal node v in the tree

with ` � 2, we de�ne an array size such that size[i] stores the number of characters in the

subtree of its i th child, which is maintained by a PS structure of [HSS03]. We also store

an array counts such that counts[i] stores the number of character s in the subtree of the

i th child.

199

With the WBB tree B , ranks(i) can be answered by counting the number of s on or

before the T[i]. This is done by (i) traversing B from root to the level-1 node v contain-

ing T[i] basedon the PS structures, and summing up the corresponding count s along the

way, and then (ii) querying the StaticRankSelect structure of v for the remaining counts.

The height of the tree is O(1) and each level can be traversed in O(1) time, ranks(i) is

answered in O(1) time. Similarly, we can useB to answer char(i) query in O(1) time.

For the WBB tree Vs for answer select s query, we usea similar approach as we de�ne

the Constant Time BitIndel structure. The weight is now balancedon count s (the number

of s in the subtree), instead of size (the number of characters in the subtree). Each level-1

node will correspond to �(b) s, and depending on the sparsity of these characters, they

will either be stored explicitly (if the position of the last s is at least blg n characters away

from the position of the �rst s), or will be consideredas a bitv ector and stored by a RRR

structure. For the level-̀ nodeswith ` � 2, we de�ne the array count s such that counts[i]

storesthe number of s in the subtreeof its i th child, which is maintained by a PS structure

of [HSS03]. We also store an array size such that size stores the number of characters in

the subtreeof the i th child. With the WBB tree Vs, select s(i) can be answeredby counting

the number of characters before the i th s. This is done by (i) traversing Vs from root to

the level-1 node v containing the i th s basedon the PS structures, and summing up the

corresponding size along the way, and then (ii) querying the explicit array or the RRR

structure of v to count the remaining characters before the i th s. The height of the tree is

O(1) and each level can be traversedin O(1) time, select s(i) is answered in O(1) time.

The total spaceof the data structure is boundedby O(j� jn lg n) bits. For updating due

to insertion or deletion of a character, it is again performed by a naive approach|rebuild

the a�ected nodes from scratch. The amortized update time can be easily bounded by

O(bj� j lg2 n) = O(n�). And for the working spaceto perform the updates, observe that

we can �x each node of each WBB tree one by one. Thus, the working space is only

O(blg n) = O(n �) bits.

Summarizing, we have the following theorem.

200

Theorem 22. Supposethat j� j = polylg(n). For a dynamic text T of length at most O(n),

we can maintain a data structure on T using the wavelettree to support ranks, select s, and

char in O(t(n)) = O(1) time, and insertion/deletion of a symbol in amortized O(n �) time.

The space of the data structure is O(j� jn lg n) bits, and the working space to perform the

updatesat any time is O(n �) bits.

5.4.1 The Final Data Structure

Herewe describe our �nal structure, which supports insertions and deletionsof any symbol.

To do this, we maintain two structures: our inX structure on T̂ and the onlyX structure,

whereall of the new symbolsare actually inserted and maintained. After every O(n1� � lg n)

update operations, the onlyX structure is merged into the original text T and a new T is

generated. All associated data structures are also rebuilt. Since this construction process

could take at most O(n lg n) time, this cost can be amortized to O(n �) per update. The

StaticRankSelect structure on T takess(n) = n lg j� j + o(n lg j� j) bits of space.With this

frequent rebuilding, all of the other supporting structures take only o(n) bits of space.

We augment the above two structures with a few additional BitIndel structures. In

particular, for each symbol s, we maintain a bitv ector I s such that I s[i] = 1 if and only

if the i th occurrenceof s is stored in the onlyX structure. With the above structures, we

quickly describe how to support ranks(i) and select s(i).

For ranks(i), we �rst �nd j = inX :ranks(i). We then �nd k = inX :rankx(i) and

return j + onlyX :ranks(k). For select s(i), we �rst �nd whether the i th occurrence of c

belongs to the inX structure or the onlyX structure. If I s[i] = 0, this means that the

i th item is one of the original symbols from T; we query inX :select s(j) in this case,where

j = I s:rank0(i). Otherwise, wecompute j = I s:rank1(i) to translate i into its corresponding

position among new symbols. Then, we compute j 0 = onlyX :select s(j), its location in T̂

and return inX :selectx (j 0).

Finally, we show how to maintain I s during updates. For delete(i), compute T̂ [i] = s.

We then perform I s:delete(inX :ranks(i)). For insert s(i), after inserting s in T̂ , we insert it

201

into I s by performing I s:insert 1(inX :ranks(i)). Let nx be the number of symbols stored in

the onlyX structure. We can bound the spacefor thesenew BitIndel data structures using

RRR [RRR02] and Jensen'sinequality by dlg
� n0

nx

�
e+ o(n0) = O(n1� � lg2 n) + o(n) = o(n)

bits of space.Thus, we arrive at the following theorem.

Theorem 23. Given a text T of length n drawn from an alphabet � , we create a data

structure using GMR that takess(n) = n lg j� j + o(n lg j� j) + o(n) bits of space and supports

ranks(i), select s(i), and char(i) in O(lg lg n+ t(n)) = O(lg lg n+ lg lg j� j) time and insert (i)

and delete(i) updates in O(n �) time.

For the special casewhen j� j = polylg(n), we may now use [NFMM06] as the Stati-

cRankSelectstructure, and the Constant Time BitIndel as the BitIndel structure. For the

onlyX structure, we usethe one described in Section 5.4, whosespaceis o(n) if merging is

performed every O(n1� �) update operations. Then, we achieve the following theorem.

Theorem 24. Given a text T of length n drawn from an alphabet � , with j� j = polylg(n),

we create a data structure using the wavelettree that takess(n) + o(n) = nH 0 + o(n lg j� j) +

o(n) bits of space and supports ranks(i), select s(i), and char(i) in O(t(n)) = O(1) time

and insert (i) and delete(i) updates in O(n �) time.

We skip the details about the memory allocation issuesfor our dynamic structures and

rebuilding spaceissues. However, the overhead for these issuescan be shown to be o(n)

bits of additional space.

5.5 Dynamizing Ordinal Trees, Lab eled Trees, and

the XBW Transform

In this section, we describe applications of our BitIndel data structure and our dynamic

multi-symbol rank/select data structure to dynamizing ordinal trees, labeledtrees,and the

XBW transform [FLMM05].

202

Ordinal Trees. An ordinal tree is a rooted tree where the children are ordered and

speci�ed by their rank. An ordinal tree can be represented by the Jacobson'sLOUDS

representation [BDM + 05] using just rank and select . Thus, we can use our BitIndel data

structure to represent any ordinal tree with the following operations:

� v:parent(), returns the parent node of v in T;

� v:child(i), returns the i th child node of v;

� v:insert (k), inserts the kth child of node v;

� v:delete(k), removes the kth child of node v;

Lemma 41. For any ordinal tree T with n nodes, there exists a dynamic representation of

it that takesat most 2n + O(n lg lg n= lg n) bits of space and supports updates in amortized

O(n�) time and navigational queries in O(lg lg n) time. Alternatively, we can take 6n +

O(n lg lg n= lg n) bits of space and support navigational queries in just O(1) time.

Lab eled Trees, Text Collections, and XBW. A labeled tree T is a tree where

each of the n nodes is associated with a label from alphabet �. To easeour notation, we

will also number our symbols from [0; j� j � 1] such that the sth symbol is also the sth

lexicographically-orderedone. We'll call this symbol s. We are interested in constructing

a data structure that supports the following operations in T:

� insert (P), inserts the path P into T;

� v:delete(), removesthe root-to-v path for a leaf v;

� subpath(P), �nds all occurrencesof the path P;

� v:parent(), returns the parent node of v in T;

� v:child(i), returns the i th child node of v; and

� v:child(s), returns any child node of v labeled s.

Ferragina et al. [FLMM05] proposean elegant way to solve the static version of this

problem by performing an XBW transform on the tree T, which producesan XBW text S.

They show that storing S is su�cien t to support the desired operations on T e�cien tly,

namely navigational queriesin O(lg j� j) time and subpath(P) queriesin O(jP j lg j� j) time.

203

In the dynamic casewhen we want to support insert or delete of a path of length m, we

observe that either operation correspondsto an update of this XBW text S at m positions.

Using our dynamic framework, wecanmaintain a dynamic versionof this text S and achieve

similar results for the dynamic case.

Before explaining our data structure, we �rst give a brief description of the XBW

transform [FLMM05]. For a node v in T, let `[v] = 1 if and only if v is the rightmost

child of its parent in T. Let � [v] be the label of v, and � [v] be the string obtained by

concatenating the labels on the upward path from v:parent() to the root of T. We further

assumethat the node labels can be separatedinto two disjoint sets � i and � l of labels for

internal nodes and leaves (respectively). We also let n i be the number of internal nodes

of T and n` be the number of leaves of T. We then construct a set S of n triplets, one for

each tree node:

� Visit T in pre-order. For each visited node v add the triplet s[v] = h̀ [v]; � [v]; � [v]i

into S;

� Stable-sort S according to the � component of each triple.

The (output of the) XBW transform consistsof the arrays S` and S� , where theserefer

to the �rst and secondcomponents of each triplet (respectively) after the stable sort has

beenperformed. Ferragina, et al show in [NFMM06] that the tree T canbereconstructedby

storing thesearrays. The above transform is reminiscent of the Burrows-WheelerTransform

(BWT) for text documents. Their structure supports navigational queries(parent, child)

operations, as well as a subpath(P) search, which �nds the nodesv such that the reversed

path r ev(P) is a pre�x of the concatenatedstring � [v]� [v]. In summary, they achieve the

following theorem for the static ordered trees T:

Theorem 25 (Static XBW [FLMM05]). For any ordered tree T with node labels drawn

from an alphabet � , there exists a static succinct representation of it using the XBW

transform that takes at most nH 0(S�) + 2n + o(n) bits of space, while supporting navi-

gational queries in O(lg j� j) time. The representation can also answera subpath(P) query

in O(m lg j� j) time, where m is the length of path P.

204

The full details of the result can be found in [FLMM05]. Here, we briey recap the

data structures used in their solution. For our result, we will show that replacing these

structures with their dynamic counterpart is su�cien t to achieve a powerful facilit y to

update ordered trees (such as XML trees). For S` , [FLMM05] usean RRR [RRR02] data

structure to maintain the bitv ector of length n containing n i 1s in lg
� n

n i

�
+ o(n) bits of

space.For S� , [FLMM05] keeptwo data structures: F and S� . The data structure F keeps

track of the number of occurencesof each symbol s in �. F is (conceptually) a bitv ector of

length n + j� j storing j� j 1s such that select 1(i) � select 1(i � 1) � 1 indicates the number

of occurrencesof the i th label s in T. Finally, S� is stored using a wavelet tree [GGV03].

For our dynamic XBW data structure, we replace the static implementations of S`

and F with our BitIndel data structure, supporting rank and select in O(lg lg n) time and

updates in O(lgn n0+ n�) amortized time. Then, we replacethe S� data structure with our

\�nal structure" that allows ranks and select s in O(lg lg n) time and supports insertions

and deletions in O(n �) time. We use the samealgorithms for parent and child operations

as [FLMM05]. Since these algorithms require a constant number of queries to the above

data structures, we can now support these operations in O(lg lg n) time. For subpath(P),

we again usethe samealgorithm, taking O(m lg lg n) time, where m is the length of P.

For insert (P) and delete(), these operations will be de�ned on the original tree T

for some node u where we want to begin inserting or deleting. We describe a method

to translate any node u into a corresponding position v such that the triplet S[v] in the

XBW transform [FLMM05] corresponds to node u in T. For a path from root r to a

node u in T, say P = (u0; u1; u2; � � � ; uh� 1; uh) with u0 = r and uh = u, we describe a

sequenceof child indicesCu = c1c2 : : : ch , whereci indicates that ui is the ci th child of ui � 1.

To translate u into the corresponding position v in the XBW transform [FLMM05], we

perform the following convert operation.

205

function convert(Cu) f

v 1; // v is the root

for (i = 1; i � h; i++)

v v:child(ci);

return v;

g

The above operation takes O(h lg lg n) time to perform with our dynamic data struc-

tures, where h + 1 is the depth of the node to be modi�ed. Our later operations will take

this much additional time. We state the following lemma.

Lemma 42. For any node u at depth h + 1 in tree T, we can �nd its corresponding

position in the XBW transform [FLMM05] in O(h � t(n)) time, where t(n) is the amount

of time to perform a child(i) navigational operation by a data structure storing the XBW

transform.

We now describe how to support insert (P) and v:delete() for node v in the XBW

transform [FLMM05]. For convenience,we rewrite P = p1p2 � � � pm as the concatenation

of its m symbols. Furthermore, we assumethat node v refers to its position in the XBW

transform (easily done with convert(cv)). For insert (P), we traverse the path P in the

XBW transform until we encounter a leaf v. We �nd v's last child. We then insert the

next symbol in P after this child, making the appropriate changesto S` and S� . We also

update F so that it maintains the correct count of alphabet symbols. For v:delete(), note

that it's su�cien t to simply know the leaf node l = v of the path we wish to delete. To

executea deletion, we remove this leaf l and propagateto l 's parent, making the appropriate

changesto F , S` , and S� . We terminate if l 's parent has more than one child. We show

the pseudo-code below. (We assumewe can accessthe value of any entry stored in the data

206

structures by our previous discussion.)

function v:insert (p1p2 � � � pm) f

if (S� [v] 2 � l) return � 1;

s S� [v];

y F:select 1(s);

k S� :ranks(v);

z S` :rank1(y � 1);

v0 S` :select1(z + k);

S` :ip (v0);

S` :insert 1(v0+ 1);

S� :insert p1 (v0+ 1);

F:insert 1(F:select 1(p1) + 1);

(v0+ 1):insert (p2 � � � pm);

g

function v:delete() f // v has no children

s S� [v];

y F:select 1(s);

k S` :rank1(v � 1) � S` :rank1(y � 1);

p S� :select s(k + 1);

F:delete(F:select 1(s) + 1);

S� :delete(v);

if (S` [v] = 0)

S` :delete(v);

exit ;

else if (S` [v � 1] = 0)

S` :ip (v � 1);

S` :delete(v);

exit ;

if (p < v)

p:delete();

else

(p � 1):delete();

g
The above processcan be expandedto also include routines for subtree insertion and

deletion (tinsert , tdelete). Notice that the above algorithms require O(m) queries to our

dynamic data structures to insert or delete a path of length m. Thus, we arrive at the

following theorem using GMR.

Theorem 26 (Dynamic XBW). For any ordered tree T, there exists a dynamic suc-

cinct representation of it using the XBW transform [FLMM05] that takes at most s(n) +

2n = n lg j� j + o(n lg j� j) + 2n bits of space, while supporting navigational queries in

O(t(n) + lg lg n) = O(lg lg n) time. The representation can also answera subpath(P) query

in O(m(t(n) + lg lg n)) = O(m lg lg n) time, where m is the length of path P. The update

207

operations insert (P) and delete() at node u for this structure take O(n � + m(t(n) + lg lg n))

amortized time, where m is the length of the path P being inserted or deleted.

208

Chapter 6

Conclusions and Future Directions

In this thesis, we have explored the notion of compressingdata while retaining its acces-

sibilit y for important queries in competitiv e time bounds. From general text indexing to

various instancesof dictionary problems,succinct data structures can serve asreplacements

for their corresponding non-succinct versionswithout a signi�cant tradeo� in query per-

formance. In theory, a more ubiquitous use of these data structures seemslike a natural

progression. In a practical setting, we have discovered time and again that thesesuccinct

data structures really can make a di�erence in storing the data. Real-life data rarely ex-

hibits worst-caseor random behavior, so our measuresand techniques truly do reducethe

data stored.

Our work is just the tip of othe iceberg. By itself, compressioncan lead to insights in un-

derstanding the underlying structure or information in a largeamount of data, possiblyeven

a data set that contains a lot of \noise"; it can reducenetwork load [AAG+ 95, GKKV95],

I/O overhead [Vit01], or save battery power on mobile devices. Compressiontechniques

can also be used as a tool to predict future trends and behavior [CKV93, KV98]. Paired

with fast query access,we can apply thesegoalsto a wide variety of problems and expand

the power of queriesthat we consider. To this end, we encourageresearchersto develop the-

oretically and practically succinct data structures using a data-aware analysis. We briey

mention a few possibledirections where thesethemescan be expandedand explored.

IP Lo okup Problem. Computer networks are expected to exhibit very high perfor-

mancein delivering data, owing to the explosive growth of Internet nodes. Routers forward

many packets from input to output interfaces, based on the destination addressof the

packet. Briey , forwarding a packet requires an IP addresslookup in a routing table to

select the next hop appropriate for the packet. Becauseof the bottleneck on computation

209

time available to the router, this simple IP lookup is practically prohibitiv e. With such a

realization, early assumptionsof the easeof IP lookups have vanished,replacedby the re-

ality that it is inconceivable to store all existing IP addressesexplicitly , sincerouting tables

would contain millions of entries. In terms of our dictionary structures, given a query IP

address(as a string), our task would be to �nd the item in our dictionary (composedof a

subsetof all possibleIP addresses)having the longestpre�x match with the query address.

The challenge is to develop a sound theoretical structure that is simple enoughto provide

blazingly fast practical results, while still retaining spacee�ciency .

Text Indexing. A basicopen problem remainsin how to make compressedsu�x arrays

(and in general, text indexes) dynamic; another question is whether it is possiblefor the

csa to be I/O e�cien t [Vit01]. Many applications appear in Gus�eld's book [Gus97a] that

usesu�x arrays, su�x trees, and their variants. For instance, we highlight a few examples

(many relevant to applications in computational biology), such asthe space-e�cient longest

commonsubstring problem, �nding all maximal palindromesin linear time, exact matching

with wildcards, the k-mismatch problem, among others.

Multidimensional Matc hing. An interesting extension of our text indexing work,

with practical applications related to image matching, is to develop a data structure that

achieves similar spacebounds as the 1-D caseand the sametime bounds as known multi-

dimensional data structures. Multidimensional data present a new challenge when trying

to capture entropy, as now the critical notion of spatial information also enters into play.

(In a strict sense,this information was always present, but we can anticipate more depen-

denceupon spatially linked data.) Stronger notions of compressionare applicable, yet the

searchesare more complicated. Achieving both, is again, a challenge.

Appro ximate Matc hing. Another major series of extensions to our text indexing

work deals with improving the quality of the search functionalit y provided. The two

major a vors of search functionalit y are fault-tolerant (approximate) matches and wild-

210

card matches. Wild-card matches are a subset of (and thus easier than) approximate

matches. Generally speaking, approximate matching is of a great deal of interest to a

number of communities. Computational biologists want to �nd \related objects" in their

searches [Gus97a], without being constrained to the strict notion of exactness.Inspecting

audio, video, or image clips for patterns rarely demand exact matches.

There hasbeena lot of work on approximate matching, especially in the computational

biology communit y. A comprehensive survey by Navarro [Nav01] provides insights on the

issuesinvolved. While edit distance (LCS measure) is one of the most popular approxi-

mation criteria, many others (lik e hamming distance, metric distance, etc.[MS00, MS02])

have been consideredas well. In spite of considerableprogress in approximate pattern

matching, there has beenvery little positive development on indexed searching for approx-

imate matches. The known index structures for approximate matching tend to take a huge

amount of space,many times the text size. Indexed approximate searching is a di�cult

problem and the area is quite new and active. There have been some recent results by

Navarro et al. [MNZBY98, NBY00, NBYST01].

211

Bibliograph y

[AAG+ 95] B. Awerbuch, Y. Azar, E. F. Grove, M. Y. Kao, P. Krishnan, and J. S. Vitter.
Load balancing in the lp norm. In Proceedings of the IEEE Symposium on
Foundations of Computer Science, volume 36, pages383{391, October 1995.

[Aar05] Scott Aaronson. NP-complete problemsand physical reality. SIGACT News,
36(1):30, 2005.

[AASA01] Hiroki Arim ura, Hiroki Asaka, Hiroshi Sakamoto, and SetsuoArik awa. E�-
cient discovery of proximit y patterns with su�x arrays (extended abstract).
In CPM: 12th Symposium on Combinatorial Pattern Matching, 2001.

[AK O04] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replac-
ing su�x trees with enhancedsu�x arrays. Journal of Discrete Algorithms,
2(1):53{86, 2004.

[AT00] Arne Anderssonand Mikk el Thorup. Tight(er) worst-caseboundson dynamic
searching and priorit y queues.In ACM Symposium on Theory of Computing
(STOC) , 2000.

[AUT] http://ccrma-www.stanford. edu/~jo s/mdft/ Autocorr ela tion .htm l .

[AV88] Alok Aggarwal and Je�rey Scott Vitter. The Input/Output complexity of
sorting and related problems. Communications of the ACM, 31(9):1116{1127,
1988.

[Bau04] Eric Baum. What is Thought? MIT Press,2004.

[BB04] Daniel K. Blandford and Guy E. Blelloch. Compact representations of or-
dered sets. In Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, January 2004.

[BB05] Daniel K. Blandford and Guy E. Blelloch. Dictionaries using variable-length
keys and data, with applications. In Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms, January 2005.

[BBK03] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. Compact represen-
tations of separablegraphs. pages679{688, 2003.

[BDFC05] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-
oblivious B-trees. SIAM J. Comput., 2005. (Also in IEEE FOCS 2000.).

[BDM + 05] David Benoit, Erik D. Demaine,J. Ian Munro, Rajeev Raman, VenkateshRa-
man, and SrinivasaRao. Representing trees of higher degree. Algorithmica,
43(4):275{292,2005.

[BF99] Paul Beame and Faith Fich. Optimal bounds for the predecessorproblem.
In ACM Symposium on Theory of Computing (STOC) , pages295{304,1999.

212

[BFC04] Michael A. Bender and Martin Farach-Colton. The level ancestor problem
simpli�ed. Theoretical Computer Science, 321(1):5{12, 2004.

[BM99] Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-
minimum space. SIAM Journal on Computing, 28(5):1627{1640, October
1999.

[BMNM + 93] Timoth y C. Bell, Alistair Mo�at, Craig G. Nevill-Manning, Ian H. Witten,
and Justin Zobel. Data compressionin full-text retrieval systems.Journal of
the American Society for Information Science, 44(9):508{531,1993.

[BSTW86] Jon Bentley, Daniel Sleator, Robert Tarjan, and Victor Wei. A locally adap-
tiv e data compressionscheme. Communications of the ACM, pages320{330,
1986.

[BW94] M. Burrows and D.J. Wheeler. A block sorting data compressionalgorithm.
Technical report, Digital SystemsResearch Center, 1994.

[Can] The Canterbury Corpus, http://corpus.canterbur y.ac .nz .

[CDG99] Pierluigi Crescenzi,Leandro Dardini, and Roberto Grossi. Ip addresslookup
made fast and simple. In European Symposium on Algorithms (ESA) , pages
65{76, 1999.

[CG86] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data
structuring technique. Algorithmica, 1(2):133{162, 1986.

[Cha04] Bernard Chazelle. Who says you have to look at the input? The brave
new world of sublinear computing, 2004. Plenary talk at at the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2004).

[CKV93] K. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data
compression.In Proceedings of the ACM SIGMOD International Conference
on Managementof Data, pages257{266, May 1993.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley-In terscience,New York, 1991.

[Deo02] Sebastian Deorowicz. Secondstep algorithms in the burrows-wheelercom-
pressionalgorithm. In Software{Practice and Experience, volume 32, pages
99{111, 2002.

[DLO03] Erik D. Demaineand Alejandro L�opez-Ortiz. A linear lower bound on index
size for text retrieval. J. Algorithms, 48(1):2{15, 2003.

[Eli75] Peter Elias. Universal codeword sets and representations of the integers.
IEEE Transactions on Information Theory, IT-21:194{203, 1975.

[EVKV02] Michelle E�ros, Karthik Visweswariah, Sanjeev R. Kulk arni, and Sergio
Verdu. Universal losslesssourcecoding with the burrows-wheelertransform.
IEEE Transactions on Information Theory, 48(5):1061{1081, 2002.

213

[Fel68] William Feller. An Intr oduction to Probability Theory and its Applications,
volume 1. John Wiley & Sons,New York, 3rd edition, 1968.

[Fen96] Peter Fenwick. Punctured elias codes for variable-length coding of the inte-
gers. 1996. The University of Auckland, NZ. TR 137. ISSN 1173-3500.

[Fen02] Peter Fenwick. Burrows-Wheeler compressionwith variable-length integer
codes. In Software{Practice and Experience, volume 32, pages1307{1316,
2002.

[Fer92] David E. Ferguson. Bit-T ree: a data structure for fast �le processing.Com-
munications of the ACM, 35(6):114{120,June 1992.

[FGGV04] Luca Foschini, Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. Fast
compressionwith a static model in high-order entropy. In Proceedings of the
IEEE Data Compression Conference, Snowbird, UT, March 2004.

[FGMS05] Paolo Ferragina, Ra�aele Giancarlo, Giovanni Manzini, and Gabriella
Sciortino. Boosting textual compressionin optimal linear time. Journal
of the ACM, 52(4):688{713, 2005. (Also in CPM 2003, ACM-SIAM SODA
2004.).

[FLMM05] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muth ukrishnan.
Structuring labeledtreesfor optimal succinctness,and beyond. In Proceedings
of the IEEE Symposium on Foundationsof Computer Science, pages184{196,
2005.

[FM01] Paolo Ferragina and Giovanni Manzini. An experimental study of an oppor-
tunistic index. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages269{278. ACM/SIAM, 2001.

[FM05] Paolo Ferragina and Giovanni Manzini. On compressingand indexing data.
Journal of the ACM, 52(4):552{581,2005. (Also in IEEE FOCS 2000.).

[FMMN04] PaoloFerragina,Giovanni Manzini, Veli M•akinen, and GonzaloNavarro. Suc-
cinct representation of sequences.Technical Report DCC-2004-5, Departa-
mento de Ciencias de la Computaci�on, Universidad de Chile, August 2004.
(Also in SPIRE 2004.).

[FTL03] Peter Fenwick, Mark Titc hener, and Michelle Lorenz. Burrows Wheeler {
alternatives to move to front. Data Compression Conference (DCC) , 2003.

[FW93] Michael L. Fredman and Dan E. Willard. Surpassingthe information the-
oretic bound with fusion trees. Journal of Computer and System Sciences,
47(3):424{436,1993.

[GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indicesfor
text: PAT trees and PAT arrays. In Information Retrieval: Data Structures
And Algorithms, chapter 5, pages66{82. Prentice-Hall, 1992.

214

[GGV03] Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. High-order entropy-
compressedtext indexes. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, January 2003.

[GGV04] Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. When indexing
equals compression: Experiments with compressingsu�x arrays and appli-
cations. January 2004.

[GK81] Daniel H. Greene and Donald E. Knuth. Mathematics for the Analysis of
Algorithms. Birkh•auser,Boston, 1981.

[GKKV95] E. F. Grove, M. Y. Kao, P. Krishnan, and J. S. Vitter. Online perfect match-
ing and mobile computing. In Proceedings of the Workshop on Algorithms
and Data Structures, volume 955, pages194{205, 1995.

[GM03] Anna G�al and Peter Bro Miltersen. The cell probe complexity of succinct
data structures. In Automata, Languagesand Programming, 30th Interna-
tional Colloquium (ICALP 2003), volume 2719of Lecture Notes in Computer
Science, pages332{344. Springer-Verlag, 2003.

[GMR06] Alexander Golynski, J. Ian Munro, and Srinivasa Rao. Rank/select opera-
tions on large alphabets: a tool for text indexing. In SODA, pages368{373,
2006.

[GRR04] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal
trees with level-ancestorqueries. In SODA '04: Proceedings of the �fte enth
annual ACM-SIAM symposium on Discrete algorithms, pages1{10. Society
for Industrial and Applied Mathematics, 2004.

[Gus97a] Dan Gus�eld. Algorithms on Strings, Trees, and Sequences. Cambridge Uni-
versity Press,Cambridge, UK, 1997.

[Gus97b] Dan Gus�eld. Algorithms on Strings, Treesand Sequences: Computer Science
and Computational Biology. Cambridge University Press,1997.

[GV00] Roberto Grossi and Je�rey Scott Vitter. Compressedsu�x arrays and su�x
trees with applications to text indexing and string matching. In Proceedings
of the ACM Symposium on Theory of Computing, volume 32, May 2000.

[GV05] Roberto Grossi and Je�rey Scott Vitter. Compressedsu�x arrays and su�x
trees with applications to text indexing and string matching. SIAM Journal
on Computing, 35(2):378{407,2005.

[Hir78] Daniel S. Hirschberg. A lower worst-casecomplexity for searching a dictio-
nary. In Proc. 16th Annual Allerton Conference on Communication, Control,
and Computing, pages50{53, 1978.

[HLS+ 04] Wing-Kai Hon, Tak Wah Lam, Wing-Kin Sun, Wai-Leuk Tse, Chi-Kwong
Wong, and Siu-Ming Yiu. Practical aspects of compressedsu�x arrays and
fm-index in searching dna sequences.In 6th Workshop on Algorithm Engi-
neering and Experiments (ALENEX) , 2004.

215

[HMP01] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dic-
tionaries. 41(1):353{363,2001.

[How97] Paul G. Howard. Interleaving entropy codes. In Sequences, 1997.

[HSS03] Wing-Kai Hon, Kunihik o Sadakane,and Wing-Kin Sung. Succinctdata struc-
tures for searchable partial sums. In ISAAC, pages505{516, 2003.

[HV94] Paul G. Howard and Je�rey Scott Vitter. Arithmetic coding for data com-
pression. Proceedings of the IEEE , 82(6), June 1994.

[Jac89a] Guy Jacobson. Space-e�cient static trees and graphs. In Proceedings of the
30th Annual IEEE Symposium on Foundations of Computer Science, pages
549{554, 1989.

[Jac89b] Guy Jacobson. Succinct static data structures. Technical Report CMU-
CS-89-112,Dept. of Computer Science,Carnegie-MellonUniversity, January
1989.

[KLA + 01] Toru Kasai, Gunho Lee,Hiroki Arim ura, SetsuoArik awa1, and Kunsoo Park.
Linear-time longest-common-pre�x computation in su�x arrays and its ap-
plications. In Combinatorial Pattern Matching (CPM) , pages181{192,2001.

[KLV06] Haim Kaplan, Shir Landau, and Elad Verbin. A simpler analysisof burrows-
wheelerbasedcompression.pages282{293, 2006.

[KM99] S. Rao Kosaraju and Giovanni Manzini. Compressionof low entropy strings
with lempel-ziv algorithms. SIAM J. Comput., 29(3):893{911,1999.

[Knu05] Donald E. Knuth. Combinatorial Algorithms, volume 4 of The Art of Com-
puter Programming. Addison-Wesley, Reading, MA, USA, 2005. In prepara-
tion.

[KS02] Shmuel T. Klein and Dana Shapira. Searching in compresseddictionaries. In
Data Compression Conference (DCC) , 2002.

[Kur99] Stefan Kurtz. Reducing the SpaceRequirement of Su�x Trees. Software {
Practice and Experience, 29(13):1149{1171, 1999.

[KV98] P. Krishnan and Je�rey Scott Vitter. Optimal prediction for prefetching in
the worst case. SIAM Journal on Computing, 27(6):1617{1636,December
1998.

[lha] http://www.infor.kanazawa- it. ac.j p/ ishii/lhaunix/ .

[LS97] TomaszLuczak and Wojciech Szpankowski. A suboptimal lossy data com-
pressionbasedin approximate pattern matching. IEEE Trans. Information
Theory, 43:1439{1451,1997.

[LV97] Ming Li and Paul Vitan yi. An Intr oduction to Kolmogorov Complexity and
Its Applications. Springer Verlag, 1997.

216

[Man01] Giovanni Manzini. An analysisof the Burrows | Wheelertransform. Journal
of the ACM, 48(3):407{430,May 2001.

[McC76] Edward M. McCreight. A space-economicalsu�x tree construction algo-
rithm. Journal of the ACM, 23(2):262{272,1976.

[Mil05] Peter Bro Miltersen. Lower bounds on the size of selection and rank in-
dexes. In Proc. the Sixteenth ACM-SIAM symposium on Discrete Algorithms
(SODA05), pages11{12, Philadelphia, PA, USA, 2005.

[MM93] Udi Manber and GeneMyers. Su�x arrays: a new method for on-line string
searches. SIAM Journal on Computing, 22(5):935{948,1993.

[MN06] Veli M•akinen and Gonzalo Navarro. Rank and selectrevisited and extended.
Theoretical Computer Science, 2006.

[MNW98] Alistair Mo�at, Radford M. Neal, and Ian H. Witten. Arithmetic coding
revisited. ACM Transactions on Information Systems(TOIS) , 16(3):256{
294, 1998.

[MNZBY98] Edleno Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo Baeza-Yates.
Fast searching on compressedtext allowing errors. In B. Croft, A. Mo�at,
C. Rijsbergen, R. Wilkinson, and J. Zobel, editors, Proceedings of the 21th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR'98) , pages298{306. York Press,1998.

[Mor68] Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Informa-
tion Coded In Alphanumeric. Journal of the ACM, 15(4):514{534, October
1968.

[MR99] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced
parentheses,static trees, and planar graphs. SIAM Journal on Computing,
31:762{776,1999.

[MR02] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced
parenthesesand static trees. SIAM Journal on Computing, 31(3):762{776,
June 2002.

[MR04] J. Ian Munro and S. SrinivasaRao. Succinct representations of functions. In
Annual International Colloquium on Automata, Languagesand Programming
(CALP) , volume 3142 of Lecture Notes in Computer Science, pages1006{
1015.Springer-Verlag, 2004.

[MRRR03] J. Ian Munro, Rajeev Raman, VenkateshRaman, and S. SrinivasaRao. Suc-
cinct representations of permutations. In Annual International Colloquium
on Automata, Languagesand Programming (CALP) , volume 2719of Lecture
Notes in Computer Science, pages345{356. Springer-Verlag, 2003.

[MRS01a] J. Ian Munro, Venkatesh Raman, and S. SrinivasaRao. Spacee�cien t su�x
trees. Journal of Algorithms, 39:205{222,2001.

217

[MRS01b] J. Ian Munro, VenkateshRaman, and Adam J. Storm. Representing dynamic
binary trees succinctly. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-01), pages529{536, New York,
January 7{9 2001.ACM Press.

[MS00] S. Muth ukrishnan and SuleymanCenk Sahinalp. Approximate nearestneigh-
bors and sequencecomparison with block operations. In ACM Symposium
on Theory of Computing (STOC) , pages416{424, 2000.

[MS02] S. Muth ukrishnan and Suleyman Cenk Sahinalp. Simple and practical se-
quencenearest neighbors with block operations. In Combinatorial Patteren
Matching (CPM) , pages262{278, 2002.

[Mun96] J. Ian Munro. Tables. FSTTCS: Foundations of Software Technology and
Theoretical Computer Science, 16:37{42, 1996.

[Mut03] S. Muth ukrishnan. Data streams: Algorithms and applications, 2003. Ple-
nary talk at the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2003).

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31{88, 2001.

[NBY00] GonzaloNavarro and Ricardo Baeza-Yates. A hybrid indexing method for ap-
proximate string matching. Journal of Discrete Algorithms (JDA) , 1(1):205{
239, 2000. Special issueon Matching Patterns.

[NBYST01] Gonzalo Navarro, Ricardo Baeza-Yates, Erikki Sutinen, and JoseTarhio. In-
dexing methods for approximate string matching. IEEE Data Engineering
Bul letin, 24(4):19{27, 2001. Special issueon Managing Text Natively and in
DBMSs. Invited paper.

[Nel] Mark Nelson. Run length encoding/RLE.
http://www.datacompression .in fo/R LE.shtml .

[NFMM06] GonzaloNavarro, PaoloFerragina, Giovanni Manzini, and Veli M•akinen. Suc-
cinct representation of sequencesand full-text indexes. TALG , 2006. To
appear.

[NM06a] Gonzalo Navarro and Veli M•akinen. Compressedfull-text indexes. Technical
Report TR/DCC-2006-6, University of Chile, 2006.

[NM06b] Gonzalo Navarro and Veli M•akinen. Dynamic entropy-compressedsequences
and full-text indexes. In CPM, pages306{317, 2006.

[Pag99] Rasmus Pagh. Low redundancy in static dictionaries with O(1) worst case
lookup time. In Proceedings of the International Colloquium on Automata,
Languages,and Programming, volume 1644 of Lecture Notes in Computer
Science, pages595{604. Springer-Verlag, 1999.

218

[Pag01] Rasmus Pagh. Low redundancy in static dictionaries with constant query
time. SIAM Journal on Computing, 31:353{363,2001.

[PD06] Mihai Patrascu and Erik Demaine. Logarithmic lower bounds in the cell-
probe model. SIAM Journal on Computing, 35(4):932{963,2006.

[PT06] Mihai P�atra�scu and Mikk el Thorup. Time-space trade-o�s for predecessor
search. In Proceedings of the ACM Symposium on Theory of Computing,
pages232{240, 2006.

[Rao02] S. Srinivasa Rao. Time-space trade-o�s for compressedsu�x arrays. IPL ,
82(6):307{311,2002.

[RC93] John H. Reif and ShenfengChen. Using di�cult y of prediction to decrease
computation: Fast sort, priorit y queueand convex hull on entropy bounded
inputs. In Proceedings of the IEEE Symposium on Foundations of Computer
Science, volume 34, Palo Alto, 1993.

[Ris84] Jorma Rissanen. Universal coding, information, prediction, and estimation.
IEEE Transactions on Information Theory, IT-30:629{636, 1984.

[RL79] Jorma Rissanenand Glen G. Langdon. Arithmetic coding. IBM J. Research
and Development, 23(2):149{162,March 1979.

[RR03] RajeevRamanand S.SrinivasaRao. Succinctdynamic dictionaries and trees.
In Annual International Colloquium on Automata, Languagesand Program-
ming (CALP) , volume 2719 of Lecture Notes in Computer Science, pages
357{368. Springer-Verlag, 2003.

[RRR01] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao. Succinct dynamic
data structures. In WADS, pages426{437, 2001.

[RRR02] Rajeev Raman, Venkatesh Raman, and S. SrinivasaRao. Succinct indexable
dictionaries with applications to encoding k-ary treesand multisets. In ACM-
SIAM Symposium on Discrete Algorithms, pages233{242, 2002.

[Rus05] Frank Ruskey. Combinatorial Generation. 2005. In preparation.

[Sad02a] Kunihik o Sadakane, 2002. PersonalCommunication.

[Sad02b] Kunihik o Sadakane. Succinct representations of lcp information and improve-
ments in the compressedsu�x arrays. In Proceedings of the Thirteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms. ACM/SIAM, 2002.

[Sad03] Kunihik o Sadakane. New text indexing functionalities of the compressed
su�x arrays. J. Algorithms, 48(2):294{313,2003. (Also in ISAAC 2000.).

[Sch] Michael Schindler. http://www.compresscons ult. com/rangecoder .

[SG06] Kunihik o Sadakane and Roberto Grossi. Squeezingsuccinct data structures
into entropy bounds. In ACM-SIAM Symposium on Discrete Algorithms
(SODA) , pages1230{1239,2006.

219

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379{423,July 1948.

[Tip] TREC Tipster 3. http://trec.nist.gov/da ta/d ocs eng.html .

[Ukk95] Esko Ukkonen. On-line construction of su�x trees. Algorithmica, 14(3):249{
260, September 1995.

[vEBKZ77] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an e�cien t priorit y queue. Math. SystemsTheory, 10:99{127,1977.

[Vit84] Je�rey Scott Vitter. Faster methods for random sampling. Communications
of the ACM, 27(7):703{718,July 1984.

[Vit01] J. S. Vitter. External memory algorithms and data structures: Deal-
ing with MASSIVE DATA. ACM Computing Surveys, 33(2):209{271,
June 2001. Revised version from August 2007 is also available at
http://www.cs.duke.edu/ jsv/Papers/catalog/node3 9.h tml .

[VK96] Je�rey Scott Vitter and P. Krishnan. Optimal prefetching via data compres-
sion. Journal of the ACM, 43(5), September 1996.

[Wei73] Peter Weiner. Linear pattern matching algorithm. Proc. 14th Annual IEEE
Symposium on Switching and Automata Theory, pages1{11, 1973.

[Wil84] Dan E. Willard. New trie data structures which support very fast search
operations. Journal of Computer and SystemSciences, 28(3):379{394,1984.

[WM01] Anthony Ian Wirth and Alistair Mo�at. Can we do without ranks in burrows
wheeler transform compression? In Data Compression Conference, pages
419{428, 2001.

[WMB99] Ian H. Witten, Alistair Mo�at, and Timoth y C. Bell. Managing Gigabytes:
Compressingand Indexing Documents and Images. Morgan Kaufmann Pub-
lishers, Los Altos, CA 94022,USA, secondedition, 1999.

[WMF94] Marcelo J. Weinberger, Neri Merhav, and Meir Feder. Optimal sequential
probabilit y assignment for individual sequences.IEEE Transactions on In-
formation Theory, 40:384{396,1994.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337{343,
1977.

220

Biograph y

Personal

Born in Kitc hener-Waterloo, Ontario, Canada, 18 July 1978.

Colleges and Univ ersities

Duk e Univ ersit y Durham, NC
Ph.D. in Computer Science,August 2007.

Univ ersit y of Texas at Dallas Richardson, TX
M.S. in Computer Science,May 2000.
B.S. in Computer Science,Summa Cum Laude, May 2000.
B.S. in Mathematics, Summa Cum Laude, May 2000.

Honors and Aw ards

National Scienceand EngineeringResearch Council of Canada(NSERC) Scholarship
Winner, 2000-2001.

Excellencein Teaching Assistantship in 1998-1999and 1999-2000.

CollegeMaster's Award for Excellencein Computer Science.

Publications

Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and Srinivasa
Rao. On the Size of Succinct Indices . To appear in Proceedings of European
Symposium on Algorithms (ESA) , Eilat, Israel, October, 2007.

Ankur Gupta, Wing-Kai Hon, Rahul Shah,and Je�rey Scott Vitter. A Framew ork
for Dynamizing Succinct Data Structures . To appear in Proceedings of Interna-
tional Colloquium on Automata, Languages,and Programming (ICALP) , Wroclaw,
Poland, July 2007.

Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Je�rey Scott Vitter. Compressed
Data Structures: Dictionaries and Data-Aw are Measures . To appear in
Proceedings of Theoretical Computer Science (TCS) , January 2007.

Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. When Indexing Equals
Compression: Exp erimen ts With Compressing Su�x Arra ys and Appli-
cations . To appear in Proceedings of the ACM Transactionson Algorithms (TALG) ,
January 2007.

221

Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Je�rey Scott Vitter. Compressed
Dictionaries: Space Measures, Data Sets, and Exp erimen ts . In Proceedings
of the Workshop on Experimental and E�cient Algorithms (WEA) , Menorca, Spain,
May 2006.

Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Je�rey Scott Vitter. Fully Index-
able Data-Aw are Dictionaries . In Proceedings of the IEEE Data Compression
Conference (DCC) , Snowbird, UT, March 2006.

Luca Foschini, Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. Fast Com-
pression With a Static Mo del in High-Order En trop y. In Proceedings of the
IEEE Data Compression Conference (DCC) , Snowbird, UT, March 2004.

Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. When Indexing Equals
Compression: Exp erimen ts With Compressing Su�x Arra ys and Ap-
plications . In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA) , New Orleans, LA, January 2004.

Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. High-Order En trop y-
Compressed Text Indexes . In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA) , Baltimore, MD, January 2003.

222

