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1 Introduction

Often signals and system parameters are most conveniently represented as complex-valued vec-
tors. This occurs, for example, in array processing [1], as well as in communication systems [7]
when processing narrowband signals using the equivalent complex baseband representation [2].
Furthermore, in many important applications one attempts to optimize a scalar real-valued mea-
sure of performance over the complex parameters defining the signal or system of interest. This
is the case, for example, in LMS adaptive filtering where complex filter coefficients are adapted
on line. To effect this adaption one attempts to optimize a real-valued performance measure by
adjustments of the coefficients along its gradient direction [16, 23].

However, an often confusing aspect of complex LMS adaptive filtering, and other similar
gradient-based optimization procedures, is that the partial derivative or gradient used in the adapta-
tion of complex parameters is not based on the standard complex derivative taught in the standard
mathematics and engineering complex variables courses [3]-[6], which exists if and only if a func-
tion of a complex variable z is analytic in z. This is because a nonconstant real-valued function
of a complex variable is not analytic and therefore is not differentiable in the standard textbook
complex-variables sense.

Nonetheless, the same real-valued function alternatively viewed as a function of the real-valued
real and imaginary components of the complex variable can have a (real) gradient when partial
derivatives are taken with respect to those two (real) components. In this way we can shift from
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viewing the real-valued function as a non-differentiable mapping between C and R to treating it
as a differentiable mapping between R2 and R. Indeed, the modern graduate-level textbook on
complex variables theory by Remmert [12] continually and easily shifts back and forth between
the real function R2 → R (or R2) perspective and the complex function C → C perspective of a
complex or real scalar-valued function,

f(z) = f(r) = f(x, y),

of a complex variable z = x + j y,

z ∈ C⇔ r =

(
x
y

)
∈ R2.

In particular, when optimizing a real-valued function of a complex variable z = x + j y one can
work with the equivalent real gradient of the function viewed as a mapping from R2 to R in lieu
of a nonexistent complex derivative [14]. However, because the real gradient perspective arises
within a complex variables framework, a direct reformulation of the problem to the real domain
is awkward. Instead, it greatly simplifies derivations if one can represent the real gradient as a
redefined, new complex gradient operator. As we shall see below, the complex gradient is an
extension of the standard complex derivative to nonanalytic functions.

Confusing the issue is the fact that there is no one unique way to consistently define a “complex
gradient” which applies to nonanalytic real-valued functions of a complex variable, and authors do
not uniformly adhere to the same definition. Thus it is often difficult to resolve questions about the
nature or derivation of the complex gradient by comparing authors. Given the additional fact that
typographical errors seem to be rampant these days, it is therefore reasonable to be skeptical of the
algorithms provided in many textbooks–especially if one is a novice in these matters.

An additional source of confusion arises from the fact that the derivative of a function with
respect to a vector can be alternatively represented as a row vector or as a column vector when
a space is Cartesian,1 and both representations can be found in the literature. As done for the
development of the real gradient given in [25], in this note we continue to carefully distinguish
between the complex cogradient operator, which is a row vector operator, and the associated com-
plex gradient operator which is a vector operator which gives the direction of steepest ascent of a
real scalar-valued function.

Because of the constant back-and-forth shift between a real function (“R-calculus”) perspective
and a complex function (“C-calculus”) perspective which a careful analysis of nonanalytic complex
functions requires [12], we refer to the mathematics framework underlying the derivatives given in
this note as a “CR-calculus.” In the following, we start by reviewing some of the properties of stan-
dard univariate analytic functions, describe the CR-calculus for univariate nonanalytic functions,
and then develop a multivariate CR-calculus appropriate for optimization scalar real-valued cost
functions of a complex parameter vector. We end the note with some application examples.

1I.e., is Euclidean with identity metric tensor.
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2 The Derivative of a Holomorphic Function

Let z = x + jy, for x, y real, denote a complex number and let

f(z) = u(x, y) + j v(x, y)

be a general complex-valued function of the complex number z.2 In standard complex variables
courses it is emphasized that for the complex derivative,

f ′(z) = lim
Δz→0

f(z + Δz)− f(z)

Δz
,

to exist in a meaningful way it must be independent of the direction with which Δz approaches
zero in the complex plane. This is a very strong condition to be placed on the function f(z). As
noted in an introductory comment from the textbook by Flanigan [6]:

You will learn to appreciate the difference between a complex analytic function (roughly
a complex-valued function f(z) having a complex derivative f′(z)) and the real functions
y = f(x) which you differentiated in calculus. Don’t be deceived by the similarity of the
notations f(z), f(x). The complex analytic function f(z) turns out to be much more special,
enjoying many beautiful properties not shared by the run-of-the-mill function from ordinary
real calculus. The reason [ · · · ] is that f(x) is merely f(x) whereas the complex analytic
function f(z) can be written as

f(z) = u(x, y) + iv(x, y),

where z = x + iy and u(x, y), v(x, y) are each real-valued harmonic functions related to each
other in a very strong way: the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y

∂v

∂x
= −∂u

∂y
. (1)

In summary, the deceptively simple hypothesis that

f ′(z) exists

forces a great deal of structure on f(z); moreover, this structure mirrors the structure of the
harmonic u(x, y) and v(x, y), functions of two real variables.3

In particular the following conditions are equivalent statements about a complex function f(z)
on an open set containing z in the complex plane [6]:

2Later, in Section 3, we will interchangeably alternate between this notation and the more informative notation
f(z, z̄). Other useful representations are f(u, v) and f(x, y). In this section we look for the (strong) conditions for
which f : z �→ f(z) ∈ C is differentiable as a mapping C → C (in which case we say that f is C-differentiable),
but in subsequent sections we will admit the weaker condition that f : (x, y) �→ (u, v) be differentiable as a mapping
R2 → R2 (in which case we say that f is R-differentiable); see Remmert [12] for a discussion of these different types
of differentiability.

3Quoted from page 2 of reference [6]. Note that in the quote i =
√−1 whereas in this note we take j =

√−1
following standard electrical engineering practice.



K. Kreutz-Delgado — Copyright c© 2003-2007, All Rights Reserved – Version ECE275CG-F05v1.3d 4

• The derivative f ′(z) exists and is continuous.

• The function f(z) is holomorphic (i.e, analytic in z).4

• The function f(z) satisfies the Cauchy-Riemann conditions (1).

• All derivatives of the function f(z) exist and f(z) has a convergent power series.

Furthermore, it is a simple consequence of the Cauchy-Riemann conditions that

f(z) = u(x, y) + j v(x, y)

is holomorphic only if the functions u(x, y) and v(x, y) both satisfy Laplace’s equation

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 and

∂2v(x, y)

∂x2
+

∂2v(x, y)

∂y2
= 0.

Such functions are known as harmonic functions. Thus if either u(x, y) or v(x, y) fail to be har-
monic, the function f(z) is not differentiable.5

Although many important complex functions are holomorphic, including the functions z n, ez,
ln(z), sin(z), and cos(z), and hence differentiable in the standard complex variables sense, there
are commonly encountered useful functions which are not:

• The function f(z) = z̄, where ‘z̄’ denotes complex conjugation, fails to satisfy the Cauchy-
Riemann conditions.

• The functions f(z) = Re(z) = z+z̄
2

= x and g(z) = Im(z) = z−z̄
2j

= y fail the Cauchy-
Riemann conditions.

• The function f(z) = |z|2 = z̄z = x2 + y2 is not harmonic.

• Any nonconstant purely real-valued function f(z) (for which it must be the case that v(z, y) ≡
0) fails the Cauchy-Riemann condition. In particular the real function f(z) = |z| = √z̄z =√

x2 + y2 is not differentiable.6

4A function is analytic on some domain if it can be expanded in a convergent power series on that domain. Al-
though this condition implies that the function has derivatives of all orders, analyticity is a stronger condition than
infinite differentiability as there exist functions which have derivatives of all orders but which cannot be expressed as
a power series. For a complex-valued function of a complex variable, the term analytic has been replaced in modern
mathematics by the entirely synonymous term holomorphic. Thus real-valued power-series-representable functions of
a real-variable are analytic (real analytic), while complex-valued power-series-representable functions of a complex-
variable are holomorphic (complex analytic).

5Because a harmonic function on R2 satisfies the partial differential equation known as Laplace’s equation, by
existence and uniqueness of the solution to this partial differential equation its value is completely determined at
a point in the interior of any simply connected region which contains that point once the values on the boundary
(boundary conditions) of that region are specified. This is the reason that contour integration of an analytic complex
function works and that we have the freedom to select that contour to make the integration as easy as possible. On the
other hand, there is, in general, no equivalent to contour integration for an arbitrary function on R 2. See the excellent
discussion in Flanigan [6].

6Thus we have the classic result that the only holomorphic real-valued functions are the constant real-valued
functions.
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Note in particular, the implication of the above for the problem of minimizing the real-valued
squared-error loss functional

�(a) = E
{|ηk − āξk|2

}
= E
{

(ηk − āξk)(ηk − āξk)
}

� E {ēkek} (2)

for finite second-order moments stationary scalar complex random variables ξk and ηk, and un-
known complex constant a = ax + jay. Using the theory of optimization in Hilbert spaces, the
minimization can be done by invoking the projection theorem (which is equivalent to the orthogo-
nality principle)[24]. Alternatively, the minimization can be performed by completing the square.
Either procedure will result in the Wiener-Hopf equations, which can then be solved for the optimal
complex coefficient variable a.

However, if a gradient procedure for determining the optimum is desired, we are immediately
stymied by the fact that the purely real nonconstant function �(a) is not analytic and therefore its
derivative with respect to a does not exist in the conventional sense of a complex derivative [3]-[6],
which applies only to holomorphic functions of a. A way to break this impasse will be discussed
in the next section. Meanwhile note that all of the real-valued nonholomorphic functions shown
above can be viewed as functions of both z and its complex conjugate z̄, as this fact will be of
significance in the following discussion.

3 Extensions of the Complex Derivative – The CR-Calculus

In this section we continue to focus on functions of a single complex variable z. The primary
references for the material developed here are Nehari [11], Remmert [12], and Brandwood [14].

3.1 A Possible Extension of the Complex Derivative.

As we have seen, in order for the complex derivative of a function of z = x + j y,

f(z) = u(x, y) + j v(x, y),

to exist in the standard holomorphic sense, the real partial derivatives of u(x, y) and v(x, y) must
not only exist, they must also satisfy the Cauchy-Riemann conditions (1). As noted by Flanigan
[6]: “This is much stronger than the mere existence of the partial derivatives.” However, the
“mere existence” of the (real) partial derivatives is necessary and sufficient for a stationary point
of a (necessarily nonholomorphic) non-constant real-valued functional f(z) to exist when f(z) is
viewed as a differentiable function of the real and imaginary parts of z, i.e., as a function over R2,

f(z) = f(x, y) : R2 → R . (3)

Thus the trick is to exploit the real R2 vector space structure which underlies C when performing
gradient-based optimization. In essence, the remainder of this note is concerned with a thorough
discussion of this “trick.”
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Towards this end, it is convenient to define a generalization or extension of the standard partial
derivative to nonholomorphic functions of z = x + j y that are nonetheless differentiable with
respect to x and y and which incorporates the real gradient information directly within the complex
variables framework. After Remmert [12], we will call this the real-derivative, or R-derivative,
of a possibly nonholomorphic function in order to avoid confusion with the standard complex-
derivative, or C-derivative, of a holomorphic function which was presented and discussed in the
previous section. Furthermore, we would like the real-derivative to reduce to the standard complex
derivative when applied to holomorphic functions.

Note that if one rewrites the real-valued loss function (2) in terms of purely real quantities, one
obtains (temporarily suppressing the time dependence, k)

�(a) = �(ax, ay) = E
{
e2

x + e2
y

}
= E
{
(ηx − axξx − ayξy)

2 + (ηy + ayξx − axξy)
2} . (4)

¿From this we can easily determine that

∂�(ax, ay)

∂ax

= −2 E {exξx + eyξy} ,

and
∂�(ax, ay)

∂ay

= −2 E {exξy − eyξx} .

Together these can be written as(
∂

∂ax
+ j

∂

∂ay

)
�(a) =

∂�(ax, ay)

∂ax
+ j

∂�(ax, ay)

∂ay
= −2 E {ξkēk} (5)

which looks very similar to the standard result for the real case.

Indeed, equation (5) is the definition of the generalized complex partial derivative often given in
engineering textbooks, including references [7]-[9]. However, this is not the definition used in this
note, which instead follows the formulation presented in [10]-[20]. We do not use the definition
(5) because it does not reduce to the standard C-derivative for the case when a function f(a) is a
holomorphic function of the complex variable a. For example, take the simplest case of f(a) = a,
for which the standard derivative yields d

da
f(a) = 1. In this case, the definition (5) applied to

f(a) unfortunately results in the value 0. Thus we will not view the definition (5) as an admissible
generalization of the standard complex partial derivative, although it does allow the determination
of the stationary points of �(a).7

3.2 The R-Derivative and Conjugate R-Derivative.

There are a variety of ways to develop the formalism discussed below (see [11]-[14]). Here, we
roughly follow the development given in Remmert [12] with additional material drawn from Brand-
wood [14] and Nehari [11].

7In fact, it is a scaled version of the conjugate R-derivative discussed in the next subsection.
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Note that the nonholomorphic (nonanalytic in z)8 functions given as examples in the previous
section can all be written in the form f(z, z̄), where they are holomorphic in z = x + j y for fixed
z̄ and holomorphic in z̄ = x − j y for fixed z.9 It can be shown that this fact is true in general for
any complex- or real-valued function

f(z) = f(z, z̄) = f(x, y) = u(x, y) + j v(x, y) (6)

of a complex variable for which the real-valued functions u and v are differentiable as functions
of the real variables x and y. This fact underlies the development of the so-called Wirtinger cal-
culus [12] (or, as we shall refer to it later, the CR-calculus.) In essence, the so-called conjugate
coordinates,

Conjugate Coordinates: c � (z, z̄)T ∈ C× C , z = x + j y and z̄ = x− j y (7)

can serve as a formal substitute for the real r = (x, y)T representation of the point z = x+ j y ∈ C

[12].10 According to Remmert [12], the calculus of complex variables utilizing this perspective was
initiated by Henri Poincaré (over 100 years ago!) and further developed by Wilhelm Wirtinger in
the 1920’s [10]. Although this methodology has been fruitfully exploited by the German-speaking
engineering community (see, e.g., references [13] or [33]), it has not generally been appreciated
by the English speaking engineering community until relatively recently.11

For a general complex- or real-valued function function f(c) = f(z, z̄) consider the pair of
partial derivatives of f(c) formally12 defined by

R-Derivative of f(c) � ∂f(z, z̄)
∂z

∣∣∣∣
z̄= const.

and Conjugate R-Derivative of f(c) � ∂f(z, z̄)
∂z̄

∣∣∣∣
z= const.

(8)

8Perhaps now we can better appreciate the merit of distinguishing between holomorphic and analytic functions. A
function can be nonholomorphic (i.e. nonanalytic) in the complex variable z = x + j y yet still be analytic in the real
variables x and y.

9That is, if we make the substitution w = z̄, they are analytic in w for fixed z, and analytic in z for fixed w. This
simple insight underlies the development given in Brandwood [14] and Remmert [12].

10Warning! The interchangeable use of the various notational forms of f implicit in the statement f(z) = f(z, z̄)
can lead to confusion. To minimize this possibility we define the term “f(z) (z-only)” to mean that f(z) is independent
of z̄ (and hence is holomorphic) and the term “f(z̄) (z̄ only)” to mean that f(z) is a function of z̄ only. Otherwise
there are no restrictions on f(z) = f(z, z̄).

11An important exception is Brandwood [14] and the work that it has recently influenced such as [1, 15, 16].
However, these latter references do not seem to fully appreciate the clarity and ease of computation that the Wirtinger
calculus (CR-calculus) can provide to the problem of differentiating nonholomorphic function and optimizing real-
valued functions of complex variables. Perhaps this is do to the fact that [14] did not reference the Wirtinger calculus
as such, nor cite the rich body of work which had already existed in the mathematics community ([11, 18, 12]).

12These statements are formal because one cannot truly vary z = x + j y while keeping z̄ = x − j y constant, and
vice versa.
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where the formal partial derivatives are taken to be standard complex partial derivatives (C-derivatives)
taken with respect to z in the first case and with respect to z̄ in the second.13 For example, with
f(z, z̄) = z2z̄ we have

∂f

∂z
= 2zz̄ and

∂f

∂z̄
= z2 .

As denoted in (8), we call the first expression the R-derivative (the real-derivative) and the second
expression the conjugate R-derivative (or R-derivative).

It is proved in [11, 14, 12] that the R-derivative and R-derivative formally defined by (8) can
be equivalently written as14

∂f

∂z
=

1

2

(
∂f

∂x
− j

∂f

∂y

)
and

∂f

∂z̄
=

1

2

(
∂f

∂x
+ j

∂f

∂y

)
(9)

where the partial derivatives with respect to x and y are true (i.e., non-formal) partial derivatives of
the function f(z) = f(x, y), which is always assumed in this note to be differentiable with respect
to x and y (i.e., to be R-differentiable). Thus it is the right-hand-sides of the expressions given in
(9) which make rigorous the formal definitions of (8).

Note that from equation (9) that we immediately have the properties

∂z

∂z
=

∂z̄

∂z̄
= 1 and

∂z

∂z̄
=

∂z̄

∂z
= 0 . (10)

Comments:

1. The condition ∂f
∂z̄

= 0 is true for an R-differentiable function f if and only the Cauchy-
Riemann conditions are satisfied (see [11, 14, 12]). Thus a function f is holomorphic (ana-
lytic in z) if and only if it does not depend on the complex conjugated variable z̄, f(z) = f(z)
(z only).15

2. The R-derivative, ∂f
∂z

, of an R-differentiable function f is equal to the standard C-derivative,
f ′(z), when f(z, z̄) is independent of z̄, i.e., when f(z) = f(z) (z only).

3. An R-differentiable function f is holomorphic in z̄ (analytic in z̄) if and only if it does not
depend on the variable z, f(z, z̄) = f(z̄) (z̄ only), which is true if and only if ∂f

∂z
= 0.

13A careful and rigorous analysis of these formal partial derivatives can be found in Remmert [12]. In [12], a
differentiable complex function f is called C-differentiable while if f is differentiable as a mapping from R 2 → R2,
it is said to be real-differentiable (R-differentiable) (See footnote 2). It is shown in [12] that the partial derivatives (8)
exist if and only if f is R-differentiable. As discussed further below, throughout this note we assume that all functions
are globally real analytic (R-analytic), which is a sufficient condition for a function to be globally R-differentiable.

14Recall the representation f = f(x, y) = u(x, y) + j v(x, y). Note that the relationships (9) make it clear why the
partial derivatives (8) exist if and only if f is R-differentiable. (See footnotes 2 and 13).

15This obviously provides a simple and powerful characterization of holomorphic and nonholomorphic functions
and shows the elegance of the Wirtinger calculus formulation based on the use of conjugate coordinates (z, z̄). Note
that the two Cauchy-Riemann conditions are replaced by the single condition ∂f

∂z̄ = 0. The reader should reexamine
the nonholomorphic (nonanalytic in z) functions discussed in the previous section in the light of this condition.
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To summarize, an R-differentiable function f is holomorphic (analytic in z) if and only if f(z) =
f(z) (z only), which is true if and only if ∂f

∂z̄
= 0, in which case the R-derivative coincides with

the standard C-derivative, ∂f
∂z

= f ′(z). We call the single condition ∂f
∂z̄

= 0 the Cauchy-Riemann
condition for f to be holomorphic:

Cauchy Riemann Condition:
∂f

∂z̄
= 0 (11)

Real Analytic Complex Functions. Throughout the discussion given above we have been mak-
ing the assumption that a complex function f is real differentiable (R-differentiable). We hence-
forth make the stronger assumption that complex functions over C are globally real analytic (R-
analytic) over R2. As discussed above, and rigorously proven in Remmert [12], R-analytic func-
tions are R-differentiable and R-differentiable.

A function f(z) has a power series expansion in the complex variable z,

f(z) = f(z0) + f ′(z0)(z − z0) +
1

2
f ′′(z0)(z − z0)

2 + · · ·+ 1

n!
f (n)(z0)(z − z0)

n + · · ·

where the complex coefficient f (n)(z0) denotes an n-times C-derivative of f(z) evaluated at the
point z0, if and only if it is holomorphic. If the function f(z) is not holomorphic over C, so that
the above expansion does not exist, but is nonetheless still R-analytic as a mapping from R2 to R2,
then the real and imaginary parts of f(z) = u(x, y) + j v(x, y), z = x + j y, can be expanded in
terms of the real variables r = (x, y)T ,

u(r) = u(r0) +
∂u(r0)

∂r
(r − r0)

T + (r − r0)
T ∂

∂r

(
∂u(r0)

∂r

)T

(r − r0) + · · ·

v(r) = v(r0) +
∂v(r0)

∂r
(r − r0)

T + (r − r0)
T ∂

∂r

(
∂v(r0)

∂r

)T

(r − r0) + · · ·

Note that if the R-analytic function is purely real, then f(z) = u(x, y) and we have

f(r) = f(r0) +
∂f(r0)

∂r
(r − r0)

T + (r − r0)
T ∂

∂r

(
∂f(r0)

∂r

)T

(r − r0) + · · ·
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Properties of the R- and R-Derivatives. The R-derivative and R-derivative are both linear oper-
ators which obey the product rule of differentiation. The following important and useful properties
also hold (see references [11, 12]).16

Complex Derivative Identities:

∂f̄

∂z̄
=

(
∂f

∂z

)
(12)

∂f̄

∂z
=

(
∂f

∂z̄

)
(13)

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄ Differential Rule (14)

∂h(g)

∂z
=

∂h

∂g

∂g

∂z
+

∂h

∂ḡ

∂ḡ

∂z
Chain Rule (15)

∂h(g)

∂z̄
=

∂h

∂g

∂g

∂z̄
+

∂h

∂ḡ

∂ḡ

∂z̄
Chain Rule (16)

As a simple consequence of the above, note that if f(z) is real-valued then f̄(z) = f(z) so that we
have the additional very important identity that

f(z) ∈ R ⇒
(

∂f

∂z

)
=

∂f

∂z̄
(17)

As a simple first application of the above, note that the R-derivative of �(a) can be easily
computed from the definition (2) and the above properties to be

∂�(a)

∂ā
=

∂

∂ā
E {ēkek} = E

{
∂ēk

∂ā
ek + ēk

∂ek

∂ā

}
= E {0 · ek − ēk ξk} = −E {ξk ēk} . (18)

which is the same result obtained from the “brute force” method based on deriving expanding the
loss function in terms of the real and imaginary parts of a, followed by computing (5) and then
using the result (9). Similarly, it can be easily shown that the R-derivative of �(a) is given by

∂�(a)

∂a
= −E
{
ξ̄kek

}
. (19)

Note that the results (18) and (19) are the complex conjugates of each other, which is consistent
with the identity (17).

We view the pair of formal partial derivatives for a possibly nonholomorphic function defined
by (8) as the natural generalization of the single complex derivative (C-derivative) of a holomorphic

16In the following for z = x + j y we define dz = dx + j dy and dz̄ = dx− j dy, while h(g) = h ◦ g denotes the
composition of the two function h and g.
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function. The fact that there are two derivatives under general consideration does not need to be
developed in elementary standard complex analysis courses where it is usually assumed that f is
always holomorphic (analytic in z). In the case when f is holomorphic then f is independent of z̄
and the conjugate partial derivative is zero, while the extended derivative reduces to the standard
complex derivative.

First-Order Optimality Conditions. As mentioned in the introduction, we are often interested
in optimizing a scalar function with respect to the real and imaginary parts r = (x, y)T of a
complex number z = x + j y. It is a standard result from elementary calculus that a first-order
necessary condition for a point r0 = (x0, y0)

T to be an optimum is that this point be a stationary
point of the loss function. Assuming differentiability, stationarity is equivalent to the condition
that the partial derivatives of the loss function with respect the parameters r = (x, y)T vanish at
the point r = (x0, y0)

T . The following fact is an easy consequence of the definitions (8) and is
discussed in [14]:

• A necessary and sufficient condition for a real-valued function, f(z) = f(x, y), z = x + j y,
to have a stationary point with respect to the real parameters r = (x, y)T ∈ R2 is that its R-
derivative vanishes. Equivalently, a necessary and sufficient condition for f(z) = f(x, y)
to have a stationary point with respect to r = (x, y)T ∈ R2 is that its R-derivative vanishes.

For example, setting either of the derivatives (18) or (19) to zero results in the so-called Wiener-
Hopf equations for the optimal MMSE estimate of a. This result can be readily extended to the
multivariate case, as will be discussed later in this note.

The Univariate CR-Calculus. As noted in [12], the approach we have been describing is known
as the Wirtinger calculus in the German speaking countries, after the pioneering work of Wilhelm
Wirtinger in the 1920’s [10]. Because this approach is based on being able to apply the calculus
of real variables to make statements about functions of complex variables, in this note we use the
term “CR-calculus” interchangeable with “Wirtinger calculus.”

Despite the important insights and ease of computation that it can provide, it is the case that
the use of conjugate coordinates z and z̄ (which underlies the CR-calculus) is not needed when
developing the classical univariate theory of holomorphic (analytic in z) functions.17 It is only in
the multivariate and/or nonholomorphic case that the tools of the CR-calculus begin to be indis-
pensible. Therefore it is not developed in the standard courses taught to undergraduate engineering
and science students in this country [3]-[6] which have changed little in mode of presentation from
the earliest textbooks.18

17“The differential calculus of these operations ... [is] ... largely irrelevant for classical function theory ...” —
R. Remmert [12], page 66.

18For instance, the widely used textbook by Churchill [3] adheres closely to the format and topics of its first edition
which was published in 1948. The latest edition (the 7th at the time of this writing) does appear to have one brief
homework problem on the extended and conjugate derivatives.
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Ironically, the elementary textbook by Nehari [11] was an attempt made in 1961 (over 40
years ago!) to integrate at least some aspects of the CR-calculus into the elementary treatment of
functions of a single complex variable.19 However, because the vast majority of textbooks treat the
univariate case, as long as the mathematics community, and most of the engineering community,
was able to avoid dealing with nonholomorphic functions, there was no real need to bring the ideas
of the CR-calculus into the mainstream univariate textbooks.

Fortunately, an excellent sophisticated and extensive introduction to univariate complex vari-
ables theory and the CR-calculus is available in the textbook by Remmert [12], which is a transla-
tion from the 1989 German edition. This book also details the historical development of complex
analysis. The highly recommended Remmert and Nehari texts have been used as primary refer-
ences for this note (in addition to the papers by Brandwood [14] and Van den Bos [27]).

The Multivariate CR-Calculus. Although one can forgo the tools of the CR-calculus in the case
of univariate holomorphic functions, this is not the situation in the multivariate holomorphic case
where researchers have long utilized these tools [17]-[20].20 Unfortunately, multivariate complex
analysis is highly specialized and technically abstruse, and therefore virtually all of the standard
textbooks are accessible only to the specialist or to the aspiring specialist. It is commonly assumed
in these textbooks that the reader has great facility with differential geometry, topology, calculus
on manifolds, and differential forms, in addition to a good grasp of advanced univariate complex
variables theory. However, because the focus of the theory of multivariate complex functions is
on holomorphic functions, whereas our concern is the essentially ignored (in this literature) case
of nonholomorphic real-valued functionals, it appears to be true that only a very small part of the
material presented in these references is useful, primarily for creating a rigorous and self-consistent
multivariate CR-calculus framework base on the results given in the papers by Brandwood [14] and
Van den Bos [27].

The clear presentation by Brandwood [14] provides a highly accessible aspect of the multi-
variate CR-calculus as applied to the problem of optimizing real-valued functionals of complex
variables.21 As this is the primary interest of many engineers, this pithy paper is a very useful
presentation of just those very few theoretical and practical issues which are needed to get a clear
grasp of the problem. Unfortunately, even twenty years after its publication, this paper still is
not as widely known as it should be. However, the recent utilization of the Brandwood results in
[1, 13, 15, 16] seems to indicate a standardization of the Brandwood presentation of the complex
gradient into the mainstream textbooks. The results given in the Brandwood paper [14] are partic-
ulary useful when coupled with the significant extension of Brandwood’s results to the problem of
computing complex Hessians which has been provided by Van den Bos’s paper [27].

19This is still an excellent textbook that is highly recommended for an accessible introduction to the use of deriva-
tives based on the conjugate coordinates z and z̄.

20“[The CR-calculus] is quite indispensable in the function theory of several variables.” — R. Remmert [12], page
67.

21Although, as mentioned in an earlier footnote, Brandwood for some reason did not cite or mention any prior work
relating to the use of conjugate coordinates or the Wirtinger calculus.
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At this still relatively early stage in the development of a widely accepted framework for dealing
with real-valued (nonholomorphic) functions of several complex variables, presumably even the
increasingly widely used formalism of Brandwood [14] and Van den Bos [27] potentially has some
room for improvement and/or clarification (though this is admittedly a matter of taste). In this
spirit, and mindful of the increasing acceptance of the approach in [14] and [27], in the remainder
of this note we develop a multivariate CR-calculus framework that is only slightly different than that
of [14] and [27], incorporating insights available from the literature on the calculus of multivariate
complex functions and complex differential manifolds [17]-[20].22

4 Multivariate CR-Calculus

The remaining sections of this note will provide an expanded discussion and generalized presen-
tation of the multivariate CR-calculus as presented in Brandwood [14] and Van den Bos [27], and
it is assumed that the reader has read these papers, as well as reference [25]. The discussion given
below utilizes insights gained from references [17, 18, 19, 20, 21, 22] and adapts notation and
concepts presented for the real case in [25].

4.1 The Space Z = Cn.

We define the n-dimensional column vector z by

z =
(
z1 · · · zn

)T ∈ Z = Cn

where zi = xi + j yi, i = 1, · · · , n, or, equivalently,

z = x + j y

with x = (x1 · · ·xn)T and y = (y1 · · · yn)T . The space Z = Cn is a vector space over the field
of complex numbers with the standard component-wise definitions of vector addition and scalar
multiplication. Noting the one-to-one correspondence

z ∈ Cn ⇔ r =

(
x
y

)
∈ R � R2n = Rn × Rn

it is evident that there exists a natural isomorphism between Z = Cn andR = R2n.

The conjugate coordinates of z ∈ Cn are defined by

z̄ =
(
z̄1 · · · z̄n

)T ∈ Z = Cn

22Realistically, one must admit that many, and likely most, engineers will be unlikely to make the move from the
perspective and tools provided by [14] and [27] (which already enable the engineer to solve most problems of practical
interest) to that developed in this note, primarily because of the requirement of some familiarity of (or willingness to
learn) concepts of differential geometry at the level presented in [25] (which is at the level of the earlier chapters of
[21] and [22]).
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We denote the pair of conjugate coordinate vectors (z, z̄) by

c �
(
z
z̄

)
∈ C2n = Cn × Cn

Noting that c, (z, z̄), z, (x,y), and r are alternative ways to denote the same point z = x + j y
in Z = Cn, for a function

f : Cn → Cm

throughout this note we will use the convenient (albeit abusive) notation

f(c) = f(z, z̄) = f(z) = f(x,y) = f(r) ∈ Cm

where z = x + j y ∈ Z = Cn. We will have more to say about the relationships between these
representations later on in Section 6 below.

We further assume that Z = Cn is a Riemannian manifold with a hermitian, positive-definite
n × n metric tensor Ωz = ΩH

z > 0. This assumption makes every tangent space23 TzZ = Cn
z a

Hilbert space with inner product

〈v1,v2〉 = vH
1 Ωzv2 v1,v2 ∈ Cn

z .

4.2 The Cogradient Operator and the Jacobian Matrix

The Cogradient and Conjugate Cogradient. Define the cogradient and conjugate cogradient
operators respectively as the row operators24

Cogradient Operator:
∂

∂z
�
(

∂
∂z1

· · · ∂
∂zn

)
(20)

Conjugate cogradient Operator:
∂

∂z̄
�
(

∂
∂z̄1

· · · ∂
∂z̄n

)
(21)

where (zi, z̄i), i = 1, · · · , n are conjugate coordinates as discussed earlier and the component
operators are R-derivatives and R-derivatives defined according to equations (8) and (9),

∂

∂zi

=
1

2

(
∂

∂xi

− j
∂

∂yi

)
and

∂

∂z̄i

=
1

2

(
∂

∂xi

+ j
∂

∂yi

)
, (22)

for i = 1, · · · , n.25 Equivalently, we have

∂

∂z
=

1

2

(
∂

∂x
− j

∂

∂y

)
and

∂

∂z̄
=

1

2

(
∂

∂x
+ j

∂

∂y

)
, (23)

23A tangent space at the point z is the space of all differential displacements, dz, at the point z or, alternatively,
the space of all velocity vectors v = dz

dt at the point z. These are equivalent statements because dz and v are scaled
version of each other, dz = vdt. The tangent space TzZ = Cn

z is a linear variety in the space Z = Cn. Specifically it
is a copy of Cn affinely translated to the point z, Cn

z = {z}+ Cn.
24The rationale behind the terminology “cogradient” is explained in [25].
25As before the left-hand-sides of (23) are formal partial derivatives, while the right-hand-sides are actual partial

derivatives.
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When applying the cogradient operator ∂
∂z

, z̄ is formally treated as a constant, and when apply-
ing the conjugate cogradient operator ∂

∂z̄
, z is formally treated as a constant. For example, consider

the scalar-valued function
f(c) = f(z, z̄) = z1z̄2 + z̄1z2 .

For this function we can readily determine by partial differentiation on the zi and z̄i components
that

∂f(c)

∂z
=
(
z̄2 z̄1

)
and

∂f(c)

∂z̄
=
(
z2 z1

)
.

The Jacobian Matrix. Let f(c) = f(z, z̄) ∈ Cm be a mapping26

f : Z = Cn → Cm.

The generalization of the identity (14) yields the vector form of the differential rule,27

df(c) =
∂f(c)

∂c
dc =

∂f(c)

∂z
dz +

∂f(c)

∂z̄
dz̄ , Differential Rule (24)

where the m × n matrix ∂f
∂z

is called the Jacobian, or Jacobian matrix, of the mapping f , and the
m × n matrix ∂f

∂z̄
the conjugate Jacobian of f . Only The Jacobian of f is often denoted by Jf is

computed by applying the cogradient operator component-wise to f ,

Jf (c) =
∂f(c)

∂z
=

⎛⎜⎝
∂f1(c)

∂z
...

∂fm(c)
∂z

⎞⎟⎠ =

⎛⎜⎝
∂f1(c)

∂z1
· · · ∂f1(c)

∂zn
...

. . .
...

∂fm(c)
∂z1

· · · ∂fm(c)
∂zn

⎞⎟⎠ ∈ Cm×n, (25)

and similarly the conjugate Jacobian, denoted by J c
f is computing by applying the conjugate cogra-

dient operator component-wise to f ,

Jc
f (c) =

∂f(c)

∂z̄
=

⎛⎜⎝
∂f1(c)

∂z̄
...

∂fm(c)
∂z̄

⎞⎟⎠ =

⎛⎜⎝
∂f1(c)

∂z̄1
· · · ∂f1(c)

∂z̄n
...

. . .
...

∂fm(c)
∂z̄1

· · · ∂fm(c)
∂z̄n

⎞⎟⎠ ∈ Cm×n. (26)

With this notation we can write the differential rule as

df(c) = Jf(c) dz + Jc
f (c) dz̄ . Differential Rule (27)

26It will always be assumed that the components of vector-valued functions are R-differentiable as discussed in
footnotes (2) and (13).

27At this point in our development, the expression ∂f(c)
∂c dc only has meaning as a shorthand expression for ∂f(c)

∂z dz+
∂f(c)

∂z̄ dz̄, each term of which must be interpreted formally as z and z̄ cannot be varied independently of each other.
(Later, we will examine the very special sense in which the derivative with respect to c itself can make sense.) Also
note that, unlike the real case discussed in [25], the mapping dz �→ df(c) is not linear in dz. Even when interpreted
formally, the mapping is affine in dz, not linear.
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Applying properties (12) and (13) component-wise yields the identities

∂f̄(c)

∂z̄
=

(
∂f(c)

∂z

)
= J̄f (c) and

∂f̄(c)

∂z
=

(
∂f(c)

∂z̄

)
= J̄c

f (c) . (28)

Note from (28) that,

J̄f (c) =

(
∂f(c)

∂z

)
=

∂f̄(c)

∂z̄
= Jc

f (c) =
∂f(c)

∂z̄
. (29)

However, in the important special case that f(c) is real-valued, in which case f̄(c) = f(c), we
have

f(c) ∈ Rm ⇒ J̄f (c) =
∂f(c)

∂z
=

∂f(c)

∂z̄
= Jc

f (c). (30)

With (27) this yields the following important fact which holds for real-valued functions f(c),28

f(c) ∈ Rm ⇒ df(c) = Jf (c) dz + Jf (c) dz = 2 Re {Jf (c) dz} . (31)

Consider the composition of two mappings h : Cm → Cr and g : Cn → Cm,

h ◦ g = h(g) : Cn → Cr .

The vector extensions of the chain rule identities (15) and (16) to h ◦ g are

∂h(g)

∂z
=

∂h

∂g

∂g

∂z
+

∂h

∂ḡ

∂ḡ

∂z
Chain Rule (32)

∂h(g)

∂z̄
=

∂h

∂g

∂g

∂z̄
+

∂h

∂ḡ

∂ḡ

∂z̄
Chain Rule (33)

which can be written as

Jh◦g = Jh Jg + Jc
h J̄c

g (34)

Jc
h◦g = Jh Jc

g + Jc
h J̄g (35)

Holomorphic Vector-valued Functions. By definition the vector-valued function f(z) is holo-
morphic (analytic in the complex vector z) if and only if each of its components

fi(c) = fi(z, z̄) = fi(z1, · · · , zn, z̄1, · · · , z̄n) i = 1, · · · , m
is holomorphic separately with respect to each of the components zj , j = 1, · · · , n. In the refer-
ences [17, 18, 19, 20] it is shown that f(z) is holomorphic on a domain if and only if it satisfies a
matrix Cauchy Riemann condition everywhere on the domain:

Cauchy Riemann Condition: Jc
f =

∂f

∂z̄
= 0 (36)

This shows that a vector-valued function which is holomorphic on Cn must be a function of z only,
f(c) = f(z, z̄) = f(z) (z only).

28The real part of a vector (or matrix) is the vector (or matrix) of the real parts. Note that the mapping dz �→ df(c)
is not linear.
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Stationary Points of Real-Valued Functionals. Suppose that f is a scalar real-valued function
from Cn to R,29

f : Cn → R ; z �→ f(z) .

As discussed in [14], the first-order differential condition for a real-valued functional f to be
optimized with respect to the real and imaginary parts of z at the point z0 is

Condition I for a Stationary Point:
∂f(z0, z̄0)

∂z
= 0 (37)

That this fact is true is straightforward to ascertain from equations (20) and (23). An equivalent
first-order condition for a real-valued functional f to be stationary at the point z0 is given by

Condition II for a Stationary Point:
∂f(z0, z̄0)

∂z̄
= 0 (38)

The equivalence of the two conditions (37) and (38) is a direct consequence of (28) and the fact
that f is real-valued.

Differentiation of Conjugate Coordinates? Note that the use of the notation f(c) as shorthand
for f(z, z̄) appears to suggest that it is permissible to take the complex cogradient of f(c) with
respect to the conjugate coordinates vector c by treating the complex vector c itself as the variable
of differentiation. This is not correct. Only complex differentiation with respect to the complex
vectors z and z̄ is well-defined. Thus, from the definition c � col(z, z̄) ∈ C2n, for c viewed as a
complex 2n-dimensional vector, the correct interpretation of ∂

∂c
f(c) is given by

∂

∂c
f(c) =

[
∂

∂z
f(z, z̄) ,

∂

∂z̄
f(z, z̄)

]
Thus, for example, we have that

∂

∂c
cHΩc �= cHΩ

which would be true if it were permissible to take the complex cogradient with respect to the
complex vector c (which it isn’t).

Remarkably, however, below we will show that the 2n-dimensional complex vector c is an
element of an n-dimensional real vector space and that, as a consequence, it is permissible to take
the real cogradient with respect to the real vector c!

Comments. With the machinery developed up to this point, one can solve optimization problems
which have closed-form solutions to the first-order stationarity conditions. However, to solve
general nonlinear problems one must often resort to gradient-based iterative methods. Furthermore,
to verify that the solutions are optimal, one needs to check second order conditions which require
the construction of the hessian matrix. Therefore, the remainder of this note is primarily concerned
with the development of the machinery required to construct the gradient and hessian of a scalar-
valued functional of complex parameters.

29The function f is unbolded to indicate its scalar-value status.
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4.3 Biholomorphic Mappings and Change of Coordinates.

Holomorphic and Biholomorphic Mappings. A vector-valued function f is holomorphic (ana-
lytic) if its components are holomorphic. In this case the function does not depend on the conjugate
coordinate z̄, f(c) = f(z), and satisfies the Cauchy-Riemann Condition,

Jc
f =

∂f

∂z̄
= 0 .

As a consequence (see (27)),

f(z) holomorphic ⇒ df(z) = Jf(z) dz =
∂f(z)

∂z
dz . (39)

Note that when f is holomorphic, the mapping dz �→ df(z) is linear, exactly as in the real case.

Consider the composition of two mappings h : Cm → Cr and g : Cn → Cm,

h ◦ g = h(g) : Cn → Cr ,

which are both holomorphic. In this case, as a consequence of the Cauchy-Riemann condition
(36), the second chain rule condition (35) vanishes, J c

h◦g = 0, and the first chain rule condition
(34) simplifies to

f and g holomorphic ⇒ Jh◦g = Jh Jg . (40)

Now consider the holomorphic mapping ξ = f(z),

dξ = df(z) = Jf (z) dz (41)

and assume that it is invertible,
z = g(ξ) = f−1(ξ) . (42)

If the invertible function f and its inverse g = f−1 are both holomorphic, then f (equivalently, g)
is said to be biholomorphic. In this case, we have that

dz =
∂g(ξ)

∂ξ
dξ = Jg(ξ) dξ = J−1

f (z) dξ , ξ = f(z) , (43)

showing that
Jg(ξ) = J−1

f (z) , ξ = f(z) . (44)

Coordinate Transformations. Admissible coordinates on a space defined over a space of com-
plex numbers are related via biholomorphic transformations [17, 18, 19, 20]. Thus if z and ξ are
admissible coordinates on Z = Cn, there must exist a biholomorphic mapping relating the two
coordinates, ξ = f(z). This relationship is often denoted in the following (potentially confusing)
manner,

ξ = ξ(z) , dξ =
∂ξ(z)

∂z
dz = Jξ(z) dz ,

∂ξ(z)

∂z
= Jξ(z) = J−1

z (ξ) =

(
∂z(ξ)

∂ξ

)−1

(45)
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z = z(ξ) , dz =
∂z(ξ)

∂ξ
dξ = Jz(ξ) dξ ,

∂z(ξ)

∂ξ
= Jz(ξ) = J−1

ξ (z) =

(
∂ξ(z)

∂z

)−1

, (46)

These equations tell us how vectors (elements of any particular tangent space Cn
z ) properly trans-

form under a change of coordinates.

In particular under the change of coordinates ξ = ξ(z), a vector v ∈ Cn
z must transform to its

new representation w ∈ Cn
ξ(z) according to the

Vector Transformation Law: w =
∂ξ

∂z
v = Jξ v (47)

For the composite coordinate transformation η(ξ(z)), the chain rule yields

Transformation Chain Rule:
∂η

∂z
=

∂η

∂ξ

∂ξ

∂z
or Jη◦ξ = Jη Jξ (48)

Finally, applying the chain rule to the cogradient, ∂f
∂z , of a an arbitrary holomorphic function f

we obtain
∂f

∂ξ
=

∂f

∂z

∂z

∂ξ
for ξ = ξ(z) .

This shows that the cogradient, as an operator on holomorphic functions, transforms like

Cogradient Transformation Law:
∂( · )
∂ξ

=
∂( · )
∂z

∂z

∂ξ
=

∂( · )
∂z

Jz =
∂( · )
∂z

J−1
ξ (49)

Note that generally the cogradient transforms quite differently than does a vector.

Finally the transformation law for the metric tensor under a change of coordinates can be deter-
mined from the requirement that the inner product must be invariant under a change of coordinates.
For arbitrary vectors v1,v2 ∈ Cn

z transformed as

wi = Jξ vi ∈ Cn
ξ(z) i = 1, 2 ,

we have

〈w1,w2〉 = wH
1 Ωξ w2 = vH

1 JH
ξ Ωξ Jξ v2 = vH

1 J−H
z Ωξ Jz v2 = vH

1 Ωz v2 = 〈v1,v2〉 .

This results in the

Metric Tensor Transformation Law: Ωξ = J−H
ξ Ωz J−1

ξ = JH
z Ωz Jz (50)
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5 The Gradient Operator ∇z

1st-Order Approximation of a Real-Valued Function. Let f(c) be a real-valued30 functional
to be optimized with respect to the real and imaginary parts of the vector z ∈ Z = Cn,

f : Cn → R .

As a real-valued function, f(c) does not satisfy the Cauchy-Riemann condition (36) and is there-
fore not holomorphic.

From (31) we have (with f(z) = f(z, z̄) = f(c)) that

df(z) = 2 Re {Jf (z) dz} = 2 Re

{
∂f(z)

∂z
dz

}
. (51)

This yields the first order relationship

f(z + dz) = f(z) + 2 Re

{
∂f(z)

∂z
dz

}
(52)

and the corresponding first-order power series approximation

f(z + Δz) ≈ f(z) + 2 Re

{
∂f(z)

∂z
Δz

}
(53)

which will be rederived by other means in Section 6 below.

The Complex Gradient of a Real-Valued Function. The relationship (51) defines a nonlinear
functional, dfc(·), on the tangent space Cn

z ,31

dfc(v) = 2 Re

{
∂f(c)

∂z
v

}
, v ∈ Cn

z , c = (z, z̄) . (54)

Assuming the existence of a metric tensor Ωz we can write

∂f

∂z
v =

[
Ω−1

z

(
∂f

∂z

)H
]H

Ωz v = (∇zf)H Ωz v = 〈∇zf, v〉 , (55)

where ∇zf is the gradient of f , defined as

Gradient of f : ∇zf � Ω−1
z

(
∂f

∂z

)H

(56)

30And therefore unbolded.
31Because this operator is nonlinear in dz, unlike the real vector-space case (see the discussion of the real-vector

space case given in [25]), we will avoid calling it a “differential operator.”.
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Consistent with this definition, the gradient operator is defined as

Gradient Operator: ∇z( · ) � Ω−1
z

(
∂( · )
∂z

)H

(57)

One can show from the coordinate transformation laws for cogradients and metric tensors that the
gradient∇zf transforms like a vector and therefore is a vector,

∇zf ∈ Cn
z .

Equations (54) and (55) yield,

dfc(v) = 2 Re {〈∇zf, v〉} .

Keeping ‖v‖ = 1 we want to find the directions v of steepest increase in the value of |dfc(v)|. We
have as a consequence of the Cauchy-Schwarz inequality that for all unit vectors v ∈ Cn

z ,

|dfc(v)| = 2 |Re {〈∇zf, v〉}| ≤ 2 |〈∇zf, v〉| ≤ 2 ‖∇zf‖ ‖v‖ = 2 ‖∇zf‖ .

This upper bound is attained if and only if v ∝ ∇zf , showing that the gradient gives the directions
of steepest increase, with +∇zf giving the direction of steepest ascent and −∇zf giving the
direction of steepest descent. The result (57) is derived in [14] for the special case that the metric
is Euclidean Ωz = I .32

Note that the first-order necessary conditions for a stationary point to exist is given by∇zf = 0,
but that it is much easier to apply the simpler condition ∂f

∂z
= 0 which does not require knowledge

of the metric tensor. Of course this distinction vanishes when Ωz = I as is the case in [14].

Comments on Applying the Multivariate CR-Calculus. Because the components of the cogra-
dient and conjugate cogradient operators (20) and (21) formally behave like partial derivatives
of functions over real vectors, to use them does not require the development of additional vec-
tor partial-derivative identities over and above those that already exist for the real vector space
case. The real vector space identities and procedures for vector partial-differentiation (as devel-
oped, e.g., in [25]) carry over without change, provided one first carefully distinguishes between
those variables which are to be treated like constants and those variables which are to be formally
differentiated.

Thus, although a variety of complex derivative identities are given in various references [14,
15, 16], there is actually no need to memorize or look up additional “complex derivative identities”
if one already knows the real derivative identities. In particular, the derivation of the complex

32Therefore one must be careful to ascertain when a result derived in [14] holds in the general case. Also note the
notational difference between this note and [14]. We have ∇ z denoting the gradient operator while [14] denotes the
gradient operator as ∇z̄ for Ωz = I . This difference is purely notational.
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derivative identities given in references [14, 15, 16] is trivial if one already knows the standard
real-vector derivative identities. For example, it is obviously the case the

∂

∂z̄

(
aHz
)

= aH ∂z

∂z̄
= 0

as z is to be treated as a constant when taking partial derivatives with respect to z̄, so the fact that
∂
∂z̄

aHz = 0 does not have to be memorized as a special complex derivative identity. To reiterate,
if one already knows the standard gradient identities for real-valued functions of real variables,
there is no need to memorize additional complex derivative identities.33 Instead, one can merely
use the regular real derivative identities while keeping track of which complex variables are to be
treated as constants.34 This is the approach used to easily derive the complex LMS algorithm in
the applications section at the end of this note.

To implement a true gradient descent algorithm, one needs to know the metric tensor. The cor-
rect gradient, which depends on the metric tensor, is called the “natural gradient” in [26] where it
is argued that superior performance of gradient descent algorithms in certain statistical parameter
estimation problems occurs when the natural gradient is used in lieu of of the standard “naive” gra-
dient usually used in such algorithms (see also the discussion in [25]). However, the determination
of the metric tensor for a specific application can be highly nontrivial and the resulting algorithms
significantly more complex, as discussed in [26], although there are cases where the application of
the natural gradient methodology is surprisingly straightforward.

To close this section, we mention that interesting and useful applications of the CR-calculus as
developed in [14] and [27] can be found in references [13], [28]-[35], and [38], in addition to the
plentiful material to be found in the textbooks [1], [15], [16], and [23].

6 2nd-Order Expansions of a Real-Valued Function on Cn

It is common to numerically optimize cost functionals using iterative gradient descent-like tech-
niques [25]. Determination of the gradient of a real-valued loss function via equation (56) allows
the use of elementary gradient descent optimization, while the linear approximation of a biholo-
morphic mapping g(ξ) via (43) enables optimization of the nonlinear least-squares problem using
the Gauss-Newton algorithm.35

Another commonly used iterative algorithm is the Newton method, which is based on the re-
peated computation and optimization of the quadratic approximation to the loss function as given

33This extra emphasis is made because virtually all of the textbooks (even the exemplary text [15]) provide such
extended derivative identities and use them to derive results. This sends the message that unless such identities are
at hand, one cannot solve problems. Also, it places one at the mercy of typographical errors which may occur when
identities are printed in the textbooks.

34Thus, in the real case, x is the variable to be differentiated in xT x and we have ∂
∂xxT x = 2xT , while in the

complex case, if we take z̄ to be treated as constant and z to be the differentiated variable, we have ∂
∂zz

Hz =
zH ∂

∂zz = zH . Note that in both cases we use the differentiation rules for vector differentiation which are developed
initially for the purely real case once we have decided which variables are to be treated as constant.

35Recall that the Gauss-Newton algorithm is based on iterative re-linearization of a nonlinear model z ≈ g(ξ).
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by a power series expansion to second order [25]. Although the first order approximation to the
loss function given by (53) was relatively straight-forward to derive, it is is somewhat more work
to determine the second order approximation, which is the focus of this section and which will
be attacked using the elegant approach of Van den Bos [27].36 Along the way we will rederive
the first order approximation (53) and the Hessian matrix of second partial derivatives of a real
scalar-valued function which is needed to verify the optimality of a solution solving the first order
necessary conditions.

6.1 Alternative Coordinate Representations of Z = Cn.

Conjugate Coordinate Vectors c ∈ C Form a Real Vector Space. The complex space, Cn,
of dimension n naturally has the structure of a real space, R2n, of dimension 2n, Cn ≈ R2n, as a
consequence of the equivalence

z = x + j y ∈ Z = Cn ⇔ r =

(
x
y

)
∈ R � R2n.

Furthermore, as noted earlier, an alternative representation is given by the set of conjugate
coordinate vectors

c =

(
z
z̄

)
∈ C ⊂ C2n ≈ R4n ,

where C is defined to be the collection of all such vectors c. Note that the set C is obviously a
subset (and not a vector subspace)37 of the complex vector space C2n. Remarkably, it is also a 2n
dimensional vector space over the field of real numbers!

This is straightforward to show. First, in the obvious manner, one can define vector addition
of any two elements of C. To show closure under scalar multiplication by a real number α is also
straight forward,

c =

(
z
z̄

)
∈ C ⇒ α c =

(
α z
α z

)
∈ C .

Note that this homogeneity property obviously fails when α is complex.

To demonstrate that C is 2n dimensional, we will construct below the one-to-one transforma-
tion, J, which maps C onto R, and vice versa, thereby showing that C and R are isomorphic,
C � R. In this manner C and R are shown to be alternative, but entirely equivalent (including
their dimensions), real coordinate representations for Z = Cn. The coordinate transformation J is
a linear mapping, and therefore also corresponds to the Jacobian of the transformation between the
coordinate systemR and the coordinate system C.

36A detailed exposition of the second order case is given by Abatzoglou, Mendel, & Harada in [38]. See also
[34]. The references [38], [27] and [34] all develop the complex Newton algorithm, although with somewhat different
notation.

37It is, in fact, a 2n dimensional submanifold of the space C2n ≈ R4n.
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In summary, we have available three vector space coordinate representations for representing
complex vectors z = x + j y. The first is the canonical n-dimensional vector space of complex
vectors z ∈ Z = Cn itself. The second is the canonical 2n-dimensional real vector space of vectors
r = col(x,y) ∈ V = R2n, which arises from the natural correspondence Cn ≈ R2n. The third is
the 2n-dimensional real vector space of vectors c ∈ C ⊂ C2n, C ≈ R2n.

Because C can be alternatively viewed as a complex subset of C2n or as a real vector space iso-
morphic to R2n, we actually have a fourth “representation”; namely the non-vector space complex-
vector perspective of elements of C as elements of the space C2n, c = col(z, z̄).38 This perspective
is just the (z, z̄) perspective used above to analyze general, possibly nonholomorphic, functions
f(z) = f(z, z̄).

In order to avoid confusion, we will refer to these two alternative interpretations of c ∈ C ⊂
C2n as the c-real case (respectively, the C-real case) for when we consider the vector c ∈ C ≈ R2n

(respectively, the real vector space C ≈ R2n), and the c-complex case (respectively, the C-complex
case) when we consider a vector c ∈ C ⊂ C2n (respectively, the complex subset C ⊂ C2n).39 These
two different perspectives of C are used throughout the remainder of this note.

Coordinate Transformations and Jacobians. From the fact that

z = x + j y and z̄ = x− j y

it is easily shown that (
z
z̄

)
=

(
I j I
I −j I

)(
x
y

)
where I is the n× n identity matrix. Defining40

J �
(

I j I
I −j I

)
(58)

then results in the mapping
c = c(r) = J r . (59)

It is easily determined that

J−1 =
1

2
JH (60)

38Since when viewed as a subset of C2n the set C is not a subspace, this view of C does not result in a true coordinate
representation.

39In the latter case c = col(z, z̄) is understood in terms of the behavior and properties of its components, especially
for differentiation purposes because, as mentioned earlier, in the complex case the derivative ∂

∂c is not well-defined in
itself, but is defined in terms of the formal derivatives with respect to z and z̄. As we shall discover below, in the c-real
case, the derivative ∂

∂c is a true real derivative which is well understood in terms of the behavior of the derivative ∂
∂r .

40Except for a trivial reordering of the elements of r = (xT yT )T , this is the transformation proposed and utilized
by Van den Bos [27], who claims in [31] to have been inspired to do so by Remmert. (See, e.g., the discussion on page
87 of [12].)
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so that we have the inverse mapping

r = r(c) = J−1c =
1

2
JHc . (61)

Because the mapping betweenR and C is linear, one-to-one, and onto, both of these spaces are
obviously isomorphic real vector spaces of dimension 2n. The mappings (59) and (61) therefore
correspond to an admissible coordinate transformation between the c and r representations of
z ∈ Z . Consistent with this fact, we henceforth assume that the vector calculus (including all of
the vector derivative identities) developed in [25] apply to functions over C.

Note that for the coordinate transformation c = c(r) = Jr we have the Jacobian

Jc � ∂

∂r
c(r) =

∂

∂r
Jr = J (62)

showing that J is also the Jacobian of the coordinate transformation from R to C.41 The Jacobian
of the inverse transformation r = r(c) is given by

Jr = J−1
c = J−1 =

1

2
JH . (63)

Of course, then, we have the differential relationships

dc =
∂c

∂r
dr = Jc dr = Jdr and dr =

∂r

∂c
dc = Jr dc =

1

2
JHdc (64)

which correspond to the first-order relationships42

1st-Order Relationships: Δc = Jc Δr = JΔr and Δr = Jr Δc =
1

2
JHΔc (65)

where the Jacobian J is given by (60) and

Δc =

(
Δz
Δz̄

)
and Δr =

(
Δx
Δy

)
(66)

The Cogradient with respect to the Real Conjugate Coordinates Vector c. The reader might
well wonder why we didn’t just point out that (64) and (65) are merely simple consequences of
the linear nature of the coordinate transformations (59) and (61), and thereby skip the intermediate
steps given above. The point is, as discussed in [25],43 that once we identified the Jacobian of a
coordinate transformation over a real manifold, we can readily transform between different coordi-
nate representations of all vector-like (contravariant) objects, such as the gradient of a functional,

41We have just proved, of course, the general property of linear operators that they are their own Jacobians.
42For a general, nonlinear, coordinate transformation this first-order relationships would be approximate. However,

because the coordinate transformation considered here happens to be linear, the relationships are exact.
43See the discussion surrounding equations (8) and (11) of [25].
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and between all covector-like (covariant) objects, such as the cogradient of a functional, over that
manifold. Indeed, as a consequence of this fact we immediately have the important cogradient
operator transformations

Cogradient Transf’s:
∂(·)
∂c

=
∂(·)
∂r

Jr =
1

2

∂(·)
∂r

JH and
∂(·)
∂r

=
∂(·)
∂c

Jc =
∂(·)
∂c

J (67)

with the Jacobian J given by (58) and Jr = J−1
c .

Equation (67) is very important as it allows us to easily, yet rigorously, define the cogradient
taken with respect to c as a true (nonformal) differential operator provided that we view c as an
element of the real coordinate representation space C. The cogradient ∂(·)

∂c
is well-defined in terms

of the cogradient ∂(·)
∂r

and the “pullback” transformation

∂(·)
∂c

=
1

2

∂(·)
∂r

JH .

This shows that ∂(·)
∂c

, which was originally defined in terms of the cogradient and conjugate cogra-

dients taken with respect to z (the c-complex interpretation of ∂(·)
∂c

), can be treated as a real differ-

ential operator with respect to the “real” vector c (the c-real interpretation of ∂(·)
∂c

).44

Complex Conjugation. It is easily determined that the operation of complex conjugation, z →
z̄, is a nonlinear mapping on Z = Cn. Consider an element ζ ∈ C2n written as

ζ =

(
ζ top

ζbottom

)
∈ C2n = Cn × Cn with ζ top ∈ Cn and ζbottom ∈ Cn .

Of course the operation of complex conjugation on C2n, ζ → ζ̄, is, in general, a nonlinear mapping.

Now consider the linear operation of swapping the top and bottom elements of ζ, ζ → ζ̃,
defined as

ζ =

(
ζ top

ζbottom

)
→ ζ̄ =

(
ζbottom

ζ top

)
=

(
0 I
I 0

)(
ζ top

ζbottom

)
= Sζ

where

S �
(

0 I
I 0

)
is the swap operator on C2n which obeys the properties

S = ST = S−1 ,

44Thus we can directly differentiate an expression like cT Ωc with respect to c using the standard identities of real
vector calculus. (The fact that these identities hold for the r calculus and be used to prove their validity for the c-real
calculus.) More problematic is an expression like cHΩc. It is not appropriate to take the complex derivative of this
expression with respect to the complex vector c because c, as an element of C n is subject to constraints amongst its
components. Instead one can use the identity c̄ = c̃ = Sc to obtain cHΩc = cT SΩc which can then be differentiated
with respect to c. Of course, this latter approach can fail if SΩ cannot be interpreted in some sense in the field of real
numbers. Note that real versus complex differentiation of cHΩc with respect to c would differ by a factor of 2.
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showing that S is symmetric and its own inverse, S 2 = I . Note that, in general, swapping is not
equal to complex conjugation, ζ̃ = ζ̄.

The swap operator S will be used extensively throughout the remainder of this note, so it is
important to become comfortable with its use and manipulation. The swap operator is a block
permutation matrix which permutes (swaps)45 blocks of rows or blocks of columns depending on
whether S premultiplies or postmultiplies a matrix. Specifically, let a 2n × 2n matrix A be block
partitioned as

A =

(
A11 A12

A21 A22

)
.

Then premultiplication by S results in a block swap of the top n rows en masse with the bottom n
rows,46

SA =

(
A21 A22

A11 A12

)
.

Alternatively, postmultiplication by S results in a block swap of the first n columns with the last n
columns,47

AS =

(
A12 A11

A22 A21

)
.

It is also useful to note the result of a “sandwiching” by S,

SAS = A =

(
A22 A21

A12 A11

)
.

Because S permutes n rows (or columns), it is a product of n elementary permutation matrices,
each of which is known to have a determinant which evaluates to −1. As an easy consequence of
this, we have

det S = (−1)n.

Other important properties of the swap operator S will be developed as we proceed.

Now note that the subset C ∈ C2n contains precisely those elements of C2n for which the
operations of swapping and complex conjugation coincide,

C =
{

ζ ∈ C2n
∣∣∣ ζ̄ = ζ̃

}
⊂ C2n ,

and thus it is true by construction that c ∈ C obeys c̄ = c̃, even though swapping and complex
conjugation are different operations on C2n. Now although C is not a subspace of the complex
vector space C2n, it is a real vector space in its own right. We see that the linear operation of
component swapping on the C-space coordinate representation of Z = Cn is exactly equivalent

45“Permutation” is just a fancy term for “swapping.”
46Matrix premultiplication of A by any matrix always yields a row operation.
47Matrix postmultiplication of A by any matrix always yields a column operation. The fact that pre- and post-

multiplication yield different actions on A is an interesting and illuminating way to interpret the fact that matrix
multiplication is noncommutative, MA = AM .
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to the nonlinear operation of complex conjugation on Z . It is important to note that complex
conjugation and coordinate swapping represent different operations on a vector c when c is viewed
as an element of C2n.48

We can view the linear swap mapping S : C → C as a coordinate transformation (a coordinate
“reparameterization”), c̄ = c̃ = Sc, on C. Because S is linear, the Jacobian of this transformation
is just S itself. Thus from the cogradient transformation property we obtain the useful identity

∂(·)
∂c̄

S =
∂(·)
∂c̃

S =
∂(·)
∂c

(68)

It is also straightforward to show that

I =
1

2
JT SJ (69)

for J given by (58)

Let us now turn to the alternative coordinate representation given by vectors r in the spaceR =
R2n. Specifically, consider the R coordinate vector r corresponding to the change of coordinates
r = 1

2
JHc. Since the vector r is real, it is its own complex conjugate, r̄ = r.49 Complex conjugation

of z is the nonlinear mapping in Cn

z = x + j y→ z̄ = x + j (−y) ,

and corresponds in the representation space R to the linear mapping50

r =

(
x

y

)
→ ř �

(
x

−y

)
=

(
I 0
0 −I

)(
x

y

)
= Cr

where C is the conjugation matrix

C �
(

I 0
0 −I

)
. (70)

Note that
C = CT = C−1 ,

i.e., that C is symmetric, C = CT , and its own inverse, C2 = I . It is straightforward to show that

C =
1

2
JHSJ (71)

48As mentioned earlier, c, in a sense, does “double duty” as a representation for z; once as a (true coordinate)
representation of z in the real vector space C, and alternatively as a “representation” of z in the “doubled up” complex
space C2n = Cn × Cn. In the development given below, we will switch between these two perspectives of c.

49Note that our theoretical developments are consistent with this requirement, as

r̄ =
1
2
(JHc) =

1
2
JT c̄ =

1
2
JT c̃ =

1
2
JT Sc =

1
2
JT SJr = Ir = r .

50We refer to ř as “r-check.”
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which can be compared to (69). Finally, it is straightforward to show that

c = Jr⇔ c̄ = c̃ = Jř . (72)

To summarize, we can represent the complex vector z by either c or r, where c has two inter-
pretations (as a complex vector, “c-complex”, in C2n, or as an element, “c-real”, of the real vector
space C ≈ R2n), and we can represent the complex conjugate z̄ by c̄, c̃, or ř. And complex conju-
gation, which is a nonlinear operation in Cn, corresponds to linear operators in the 2n-dimensional
isomorphic real vector spaces C andR.

6.2 Low Order Series Expansions of a Real-Valued Scalar Function.

By noting that a real-valued scalar function of complex variables can be viewed as a function of
either r or c-real or c-complex or z,

f(r) = f(c) = f(z) ,

it is evident that one should be able to represent f as a power series in any of these representations.
Following the line of attack pursued by [27], by exploiting the relationships (65) and (67) we will
readily show the equivalence up to second order in a power series expansion of f .

Up to second order, the multivariate power series expansion of the real-valued function f
viewed as an analytic function of vector r ∈ R is given as [25]

2nd-Order Expansion in r: f(r + Δr) = f(r) +
∂f(r)

∂r
Δr +

1
2
ΔrT Hrr(r)Δr + h.o.t. (73)

where51

Hrr(ρ) � ∂

∂r

(
∂f(ρ)

∂r

)T

for ρ, r ∈ R (74)

is the real r-Hessian matrix of second partial derivatives of the real-valued function f(r) with
respect to the components of r. It is well known that a real Hessian is symmetric,

Hrr = HT
rr .

However, there is no general guarantee that the Hessian will be a positive definite or positive
semidefinite matrix.

It is assumed that the terms f(r) and f(r + Δr) be readily expressed in terms of c and c + Δc
or z and z + Δz. Our goal is to determine the proper expression of the linear and quadratic terms
of (73) in terms of c and Δc or z and Δz.

51When no confusion can arise, one usually drops the subscripts on the Hessian and uses the simpler notation
H(ρ) = Hrr(ρ). (As is done, for example, in [25].) Note that the Hessian is the matrix of second partial derivatives
of a real-valued scalar function.
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Scalar Products and Quadratic Forms on the Real Vector Space C. Consider two vectors
c = col(z, z̄) ∈ C and s = col(ξ,ξ̄) ∈ C. The scalar product for any two such vectors in C-real
(i.e., in the real vector space C ≈ R2n) is defined by

〈c, s〉 � cT S s = c̄T s = cHs = zHξ + z̄H ξ̄ = cHs = zHξ + zHξ = 2 Re zHξ .

The row vector cT S = cH is a linear functional which maps the elements of C-real into the real
numbers. The set of all such linear functionals is a vector space itself and is known as the dual
space, C∗, of C [36, 37]. The elements of C∗ are known as dual vectors or covectors, and the terms
“dual vector”, “covector”, and “linear functional” should all be taken to be synonymous. Given a
vector c ∈ C, there is a natural one-to-one mapping between c and a corresponding dual vector, c∗

in C∗ defined by52

c∗ � cT S = cH .

Henceforth it is understood that scalar-product expressions like

aHs or cHb

where s ∈ C and c ∈ C are known to be elements of C are only meaningful if a and b are also
elements of C. Thus, it must be the case that both vectors in a scalar product must belong to C if it
is the case that one of them does, otherwise we will view the resulting scalar as nonsensical.

Thus, for a real-valued function of up to quadratic order in a vector c ∈ C,

f(c) = a + bHc +
1

2
cHMc = a + bHc +

1

2
cHs, s = Mc, (75)

to be well-posed, it must be the case that a ∈ R, b ∈ C,53 and s = Mc ∈ C.54 Thus, as we
proceed to derive various first and second order functions of the form (75), we will need to check
for these conditions. If the conditions are met, we will say that the terms, and the quadratic form,
are admissible or meaningful.

To test whether a vector b ∈ C2n belongs to C is straightforward:

b ∈ C ⇔ b̄ = Sb. (76)

It is rather more work to develop a test to determine if a matrix M ∈ C2n×2n has the property
that it is a linear mapping from C to C,

M ∈ L(C, C) = {M | Mc ∈ C, ∀c ∈ C and M is linear } ⊂ L(C2n, C2n) = C2n×2n.

52Warning! Do not confuse the dual vector (linear functional) c ∗ with an adjoint operator, which is often also
denoted using the “star” notation.

53I.e., that bH be a bona fide linear function on C, bH = b∗ ∈ C∗.
54I.e., because cH = c∗ ∈ C∗, is a linear functional on C, it must have a legitimate object s to operate on, namely

an element s = Mc ∈ C.
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Note that the fact that L(C, C) ⊂ L(C2n, C2n) is just the statement that any matrix which maps
from C ⊂ C2n to C ⊂ C2n is also obviously a linear mapping from C2n to C2n. However, this is
just a subset statement; it is not a subspace statement. This is because L(C, C) is a real vector space
of linear operators,55 while L(C2n, C2n) is a complex vector space of linear operators.56 Because
they are vector spaces over different fields, they cannot have a vector-subspace/vector-parent-space
relationship to each other.

To determine necessary and sufficient conditions for a matrix M ∈ C2n×2n to be an element
of L(C, C) suppose that the vector c = col(z, z̄) ∈ C always maps to a vector s = col(ξ, ξ̄) ∈ C
under the action of M , s = Mc. Expressed in block matrix form, this relationship is(

ξ

ξ̂

)
=

(
M11 M12

M21 M22

)(
z

z̄

)
.

The first block row of this matrix equation yields the conditions

ξ = M11z + M12z̄

while the complex conjugate of the second block row yields

ξ = M̄22z + M̄21z̄

and subtracting these two sets of equations results in the following condition on the block elements
of M ,

(M11 − M̄22)z + (M12 − M̄21)z̄ = 0 .

With z = x + j y, this splits into the two sets of conditions,

[(M11 − M̄22) + (M12 − M̄21)]x = 0

and
[(M11 − M̄22)− (M12 − M̄21)]y = 0.

Since these equations must hold for any x and y, they are equivalent to

(M11 − M̄22) + (M12 − M̄21) = 0

and
(M11 − M̄22)− (M12 − M̄21) = 0.

Finally, adding and subtracting these two equations yields the necessary and sufficient conditions
for M to be admissible (i.e., to be a mapping from C to C),

M =

(
M11 M12

M21 M22

)
∈ C2n×2n is an element of L(C, C) iff M11 = M̄22 and M12 = M̄21 . (77)

55I.e., a vector space over the field of real numbers.
56I.e., a vector space over the field of complex numbers.
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This necessary and sufficient condition is more conveniently expressed in the following equivalent
form,

M ∈ L(C, C)⇔M = SM̄S ⇔ M̄ = SMS (78)

which is straightforward to verify.

Given an arbitrary matrix M ∈ C2n×2n, we can define a natural mapping of M into L(C, C) ⊂
C2n×2n by

P(M) � M + SM̄S

2
∈ L(C, C) , (79)

in which case the condition (78) has an equivalent restatement as

M ∈ L(C, C)⇔ P(M) = M . (80)

It is straightforward to demonstrate that

P(M) ∈ C, ∀M ∈ C2n×2n and P(P(M)) = P(M) (81)

i.e., that P is an idempotent mapping of C2n×2n onto L(C, C), P2 = P. However, it is important
to note that P is not a linear operator (the action of complex conjugation precludes this) nor a
projection operator in the conventional sense of projecting onto a lower dimensional subspace as
its range space is not a subspace of its domain space. However, it is reasonable to interpret P as a
projector of the manifold C2n onto the submanifold C ⊂ C2n.57

A final important fact is that if M ∈ C2n×2n is invertible, then M ∈ L(C, C) if and only if
M−1 ∈ L(C, C), which we state formally as

Let M be invertible, then P(M) = M iff P(M−1) = M−1. (82)

I.e., if an invertible matrix M is admissible, then M−1 is admissible. The proof is straightforward:

M = SM̄S and M invertible

⇔M−1 =
(
SM̄S
)−1

= S(M̄)−1S

= SM−1S .

57With C2n×2n ≈ R4n×4n ≈ R16n2
and L(C, C) ≈ L(R2n, R2n) ≈ R2n×2n ≈ R4n2

, it is reasonable to view P
as a linear projection operator from the vector space R16n2

onto the vector subspace R4n2 ⊂ R16n2
. This allows us

to interpret P as a projection operator from the manifold C 2n onto the submanifold C ⊂ C2n. Once we know that
P is a linear mapping from C2n into C2n, we can then compute its adjoint operator, P∗, and then test to see if its
self-adjoint. If it is, then the projection operator P is, in fact, an orthogonal projection operator. In the interest of
time, this additional computation and test will not be done, as in the remainder of this note we will only exploit the
idempotency property of the projector P.
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First Order Expansions. Up to first order, the power series expansion of the real-valued function
f viewed as a function of r ∈ R is

First-Order Expansion in r: f(r + Δr) = f(r) +
∂f(r)

∂r
Δr + h.o.t. (83)

Focussing our attention first on the linear term ∂f(r)
∂r

Δr, and using the c-real vector space
interpretation of c, namely that c ∈ C where, as discussed above, C is a 2n-dimensional coordinate
space isomorphic to R2n, we have

∂f

∂r
Δr =

∂f

∂r
J−1
c Δc (from equation (65))

=
∂f

∂c
Δc (from equation (67))

which yields the first order expansion of f in terms of the parameterization in c,

First-Order Expansion in c: f(c + Δc) = f(c) +
∂f(c)

∂c
Δc + h.o.t. (84)

Note that ∂f(c)
∂c

Δc is real valued. Furthermore, as a consequence of the fact that with f(c) real-
valued we have (

∂f(c)

∂c

)H

=

(
∂f(c)

∂c̄

)H

= S

(
∂f(c)

∂c

)H

,

which is the necessary and sufficient condition given in (76) that(
∂f(c)

∂c

)H

∈ C .

Thus ∂f(c)
∂c
∈ C∗ and the term ∂f(c)

∂c
Δc is admissible in the sense defined earlier. Note that an

equivalent condition for the term ∂f(c)
∂c

Δc to be admissible is that

S

(
∂f(c)

∂c

)T

∈ C,

which is true if and only if (
∂f(c)

∂c

)T

∈ C.

This shows a simple inspection of ∂f(c)
∂c

itself can be performed to test for admissibility of the linear
term.58

58In this note, the first order expansion (84) is doing double duty in that it is simultaneously standing for the c-real
expansion and the c-complex expansion. A more careful development would make this distinction explicit, in which

case one would more carefully explore the distinction between
(

∂f(c)
∂c

)T
versus
(

∂f(c)
∂c

)H
in the linear term. Because

this note has already become rather notationally tedious, this option for greater precision has been declined. However,
greater care must therefore be made when switching between the C-real and C-complex perspectives.
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As discussed above, to be meaningful as a true derivative, the derivative with respect to c
has to be interpreted as a real derivative. This is the c-real interpretation of (84). In addition,
(84) has a c-complex interpretation for which the partial derivative with respect to c is not well-
defined as a complex derivative as it stands, but rather only makes sense as a shorthand notation
for simultaneously taking the complex derivatives with respect to z and z̄,

∂

∂c
=

(
∂

∂z
,

∂

∂z̄

)
.

Thus, to work in the domain of complex derivatives, we must move to the c-complex perspective
c = col(z, z̄), and then break c apart so that we can work with expressions explicitly involving z
and z̄, exploiting the fact that the formal partial derivatives with respect to z and z̄ are well defined.
Noting that

∂

∂c
=
(

∂
∂z

∂
∂z̄

)
and Δc =

(
Δz
Δz̄

)
we obtain

∂f(c)

∂c
Δc =

∂f

∂z
Δz +

∂f

∂z̄
Δz̄

=
∂f

∂z
Δz +

∂f

∂z
Δz (f is real-valued)

= 2 Re

{
∂f

∂z
Δz

}
which yields the first order expansion of f in terms of the parameterization in z,

First-Order Expansion in z: f(z + Δz) = f(z) + 2 Re

{
∂f

∂z
Δz

}
+ h.o.t. (85)

This is the rederivation of (53) promised earlier. Note that (85) makes explicit the relationship
which is implied in the c-complex interpretation of (84).

We also summarize our intermediate results concerning the linear term in a power series ex-
pansion using the r, c or z representations,

Linear-Term Relationships:
∂f

∂r
Δr =

∂f

∂c
Δc = 2 Re

{
∂f

∂z
Δz

}
(86)

The derivative in the first expression is a real derivative. The derivative in the second expression can
be interpreted as a real derivative (the c-real interpretation). The derivative in the last expression
is a complex derivative; it corresponds to the c-complex interpretation of the second term in (86).
Note that all of the linear terms are real valued.

We now have determined the first-order expansion of f in terms of r, c, and z. To construct
the second-order expansion it remains to examine the second-order term in (73) and some of the
properties of the real Hessian matrix (74) which completely specifies that term.
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Second Order Expansions. Note from (73) that knowledge of the real Hessian matrixHrr com-
pletely specifies the second order term in the real power series expansion of f with respect to r.
The goal which naturally presents itself to us at this point is now to reexpress this quadratic-order
term in terms of c, which we indeed proceed to do. However, because the canonical coordinates
vector c has two interpretations, one as a shorthand for the pair (z, z̄ (the c-complex perspective)
and the other as an element of a real vector space (the c-real perspective), we will rewrite the sec-
ond order term in two different forms, one (the c-complex form) involving the c-complex Hessian
matrix

HC

cc(υ) � ∂

∂c

(
∂f(υ)

∂c

)H

for υ, c ∈ C ⊂ C2n (87)

and the other (the c-real form) involving the c-real Hessian matrix

HR

cc(υ) � ∂

∂c

(
∂f(υ)

∂c

)T

for υ, c ∈ C ≈ R2n. (88)

In (87), the derivative with respect to c only has meaning as a short-hand for
(

∂
∂z

, ∂
∂z̄

)
. In (88), the

derivative with respect to c is well-defined via the c-real interpretation.

It is straightforward to show a relationship between the real Hessian Hrr and the c-complex
HessianHC

cc,

Hrr � ∂

∂r

(
∂f

∂r

)T

=
∂

∂r

(
∂f

∂r

)H

=
∂

∂r

(
∂f

∂c
J

)H

(from equation (67))

=
∂

∂r

{
JH

(
∂f

∂c

)H
}

=
∂

∂c

{
JH

(
∂f

∂c

)H
}

J (from equation (67))

= JH ∂

∂c

(
∂f

∂c

)H

J (From equation (32) of [25])

= JH HC

cc J .

The resulting important relationship

Hrr = JH HC

cc J (89)

between the real and c-complex Hessians was derived in [27] based on the there unjustified (but
true) assumption that the second order terms of the powers series expansions of f in terms of r
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and c-complex must be equal. Here, we reverse this order of reasoning, and will show below the
equality of the second order terms in the c-complex and r expansions as a consequence of (89).

Note from (60) that

HC

cc =
1

4
JHrr JH . (90)

Recalling that the Hessian Hrr is a symmetric matrix,59 it is evident from (90) that HC

cc is Hermi-
tian60

HC

cc = (HC

cc)
H

(and hence, like Hrr, has real eigenvalues), and positive definite (semidefinite) if and only Hrr is
positive definite (semidefinite).

As noted by Van den Bos [27], one can now readily relate the values of the eigenvalues ofHC

cc

andHrr from the fact, which follows from (60) and (90), that

HC

cc − λI =
1

4
JHrr JH − λ

2
JJH =

1

4
J (Hrr − 2λI) JH .

This shows that the eigenvalues of the real Hessian matrix are twice the size of the eigenvalues of
the complex Hessian matrix (and, as a consequence, must share the same condition number).61

Focussing our attention now on the second order term of (73), we have

1

2
ΔrT Hrr Δr =

1

2
ΔrH Hrr Δr

=
1

2
ΔrH JH HC

cc J Δr (From equation (89))

=
1

2
ΔcH HC

cc Δc , (From equation (65))

thereby showing the equality of the second order terms in an expansion of a real-valued function f
either in terms of r or c-complex,62

1

2
ΔrT Hrr Δr =

1

2
ΔcH HC

cc Δc . (91)

Note that both of these terms are real valued.

With the proof of the equalities 86 and 91, we have (almost) completed a derivation of the

2nd-Order Expansion in c-Complex: f(c + Δc) = f(c) +
∂f(c)

∂c
Δc +

1
2
ΔcH HC

cc(c)Δc + h.o.t. (92)

59In the real case, this is a general property of the matrix of second partial derivatives of a scalar function.
60As expected, as this is a general property of the matrix of partial derivatives ∂

∂z

(
∂f(z)

∂z

)H
of any real-valued

function f(z).
61For a Hermitian matrix, the singular values are the absolute values of the (real) eigenvalues. Therefore the condi-

tion number, which is the ratio of the largest to the smallest eigenvalue (assuming a full rank matrix) is given by the
ratio of the largest to smallest eigenvalue magnitude.

62And thereby providing a proof of this assumed equality in [27].
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where the c-complex Hessian HC

cc is given by equation (87) and is related to the real hessian Hrr

by equations (89) and (90). Note that all of the terms in (92) are real valued. The derivation has not
been fully completed because we have not verified that ΔcH HC

cc(c) Δc is admissible in the sense
defined above. The derivation will be fully completed once we have verified that HC

cc ∈ L(C, C),
which we will do below.

The c-complex expansion (92) is not differentiable with respect to c-complex itself, which is
not well defined, but, if differentiation is required, should be instead interpeted has a short-hand,
or implicit, statement involving z and z̄, for which derivatives are well defined. To explicitly show
the the second order expansion of the real-valued function f in terms of the complex vectors z and
z̄, it is convenient to define the quantities

Hzz � ∂

∂z

(
∂f

∂z

)H

, Hz̄z � ∂

∂z̄

(
∂f

∂z

)H

, Hzz̄ � ∂

∂z

(
∂f

∂z̄

)H

, and Hz̄z̄ � ∂

∂z̄

(
∂f

∂z̄

)H

. (93)

With ∂
∂c

= ( ∂
∂z

, ∂
∂z̄

), we also have from (87) and the definitions (93) that

HC

cc =

(Hzz Hz̄z

Hzz̄ Hz̄z̄

)
. (94)

Thus, using the earlier proven property that HC

cc is Hermitian, HC

cc = (HC

cc)
H , we immediately

have from (94) the Hermitian conjugate conditions

Hzz = HH
zz and Hz̄z = HH

zz̄ (95)

which also hold for z and z̄ replaced by z̄ and z respectively.

Some additional useful properties can be shown to be true for the block components of (94) de-
fined in (93). First note that as a consequence of f being a real-valued function, it is straightforward
to show the validity of the conjugation conditions

HC

cc = HC

c̄c̄

or, equivalently,
Hz̄z̄ = Hzz and Hz̄z = Hzz̄ , (96)

which also hold for z and z̄ replaced by z̄ and z respectively. It is also straightforward to show that

HC

cc = SHC

c̄c̄S = SHC

cc S ,

for S = ST = S−1 (showing that HC

cc and HC

c̄c̄ are related by a similarity transformation and
therefore share the same eigenvalues63), which is precisely the necessary and sufficient condition
(78) that the matrix HC

cc ∈ L(C, C). This verifies that the term ΔcHHC

ccΔc is admissible and

63Their eigenvectors are complex conjugates of each other, as reflected in the similarity transformation being given
by the swap operator S
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provides the completion of the proof of the validity of (92) promised earlier. Finally, note that
properties (96) and (95) yield the conjugate symmetry conditions,

Hzz = HT
z̄z̄ and Hzz̄ = HT

zz̄ , (97)

which also hold for z and z̄ replaced by z̄ and z respectively.

¿From equations (66), (91), and (94) we can now expand the second order term in (73) as
follows

1

2
ΔrT Hrr Δr =

1

2
ΔcH HC

cc Δc

=
1

2

(
ΔzHHzzΔz + ΔzHHz̄zΔz̄ + Δz̄HHzz̄Δz + Δz̄HHz̄z̄Δz̄

)
= Re
{
ΔzHHzzΔz + ΔzHHz̄zΔz̄

}
where the last step follows as a consequence of (96).64 Thus, we have so-far determined that

1

2
ΔrT Hrr Δr =

1

2
ΔcH HC

cc Δc = Re
{
ΔzHHzzΔz + ΔzHHz̄zΔz̄

}
. (98)

Combining the results given in (73), (86), and (98) yields the desired expression for the second
order expansion of f in terms of z,

2nd-Order Exp. in z: f(z + Δz) = f(z) + 2 Re

{
∂f

∂z
Δz
}

+ Re
{
ΔzHHzzΔz + ΔzHHz̄zΔz̄

}
+ h.o.t.

(99)

We note in passing that Equation (99) is exactly the same expression given as Equation (A.7)
of reference [38] and Equation (8) of reference [34], which were both derived via an alternative
procedure.

The c-complex expansion shown in Equation (92) is one of two possible alternative second-
order representations in c for f(c) (the other being the c-real expansion), and was used as the
starting point of the theoretical developments leading to the z-expansion (99). We now turn to the
development of the c-real expansion of f(c), which will be accomplished by writing the second
order term of the quadratic expansion in terms of the c-real HessianHR

cc.

¿From the definitions (88), (87), and (93), and using the fact that ∂
∂c

= ( ∂
∂z

, ∂
∂z̄

), it is straight-
forward to show that

HR

cc =

(Hzz̄ Hz̄z̄

Hzz Hz̄z

)
= S

(Hzz Hz̄z

Hzz̄ Hz̄z̄

)
(100)

or65

HR

cc = HC

cc̄ = SHC

cc = HC

c̄c̄S. (101)

64Alternatively, the last step also follows as a consequence of (95).
65Alternative derivations are possible. For example, HC

cc = ∂
∂c

(
∂f
∂c

)H
= ∂

∂c

(
∂f
∂c̄

)T
= ∂

∂c

(
∂f
∂cS
)T

=

∂
∂cS
(

∂f
∂c

)T
= S ∂

∂c

(
∂f
∂c

)T
= SHR

cc ⇒ HR

cc = SHC

cc, noting that S = ST = S−1.
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Note from the first equality in (100) and the conjugate symmetry conditions (97) that the c-real
Hessian is symmetric

HR

cc = (HR

cc)
T

. (102)

Let the SVD ofHC

cc be
HC

cc = UΣV H

then from (101) the SVD ofHR

cc is given by

HR

cc = U ′ΣV H , U ′ = SU

showing that HC

cc and HR

cc share the same singular values, and hence the same condition number
(which is given by the ratio of the largest to smallest singular value). The three Hessian matrices
Hrr, HR

cc, and HC

cc are essentially equivalent for investigating numerical issues and for testing
whether a proposed minimizer of the second order expansion of f(r) = f(c) is a local (or even
global) minimum. Thus, one can choose to work with the Hessian matrix which is easiest to
compute and analyze. This is usually the c-complex HessianHC

cc, and it is often most convenient to
determine numerical stability and optimality usingHC

cc even when the algorithm is being developed
from one of the alternative perspectives (i.e., the real r or the c-real second order expansion).

Now note that from (101) we immediately and easily have

1
2

ΔcT HR

cc Δc =
1
2

ΔcT SHC

cc Δc =
1
2

(SΔc)T HC

cc Δc =
1
2

(Δc)
T HC

cc Δc =
1
2

ΔcH HC

cc Δc

showing the equivalence of the c-real and c-complex second order terms in the expansion of f(c).66

Combining this result with (98), we have shown the following equivalences between the second
order terms in the various expansions of f under consideration in this note:

2nd-Order Terms:
1
2
ΔrT Hrr Δr =

1
2

ΔcT HR

cc Δc =
1
2
ΔcH HC

cc Δc = Re
{
ΔzHHzzΔz + ΔzHHz̄zΔz̄

}
(103)

where the second order expansion in r is given by (73), the c-complex expansion by (92), the
expansion in terms of z by (99), and the c-real expansion by

2nd-Order Expansion in c-Real: f(c + Δc) = f(c) +
∂f(c)

∂c
Δc +

1
2
ΔcT HR

cc(c)Δc + h.o.t.

(104)
Note that all of the terms in (103) and (104) are real valued.

The expansion in of f(c) in terms of c-complex shown in (92) is not differentiable with respect
to c (this is only true for the c-real expansion). However, (92) is differentiable with respect to z
and z̄ and can be viewed as a short-hand equivalent to the full (z, z̄) expansion provided by (99).
Therefore, it is Equation (99) which is the natural form for optimization with respect to c-complex

66One can show that the term ΔcT HR

cc Δc is admissible if and only if HR

cc = SM for M ∈ L(C, C), which is the
case here.
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via a derivative-based approach, because only differentiation with respect to the components (z, z̄)
of c-complex is well-posed. On the other hand, differentiation with respect to c-real is well-posed,
so that one can optimize (104) by taking derivatives of (104) with respect to c-real itself.

Note that (73), (92), and (104) are the natural forms to use for optimization via “completing the
square”(see below). This is because the expansions in terms of r, c-complex, and c-real are less
awkward for completing-the-square purposes than the expansion in z provided by (99).67 Note that
the expansions (73) and (92) are both differentiable with respect to the expansion variable itself
and both have a form amenable to optimization by completing the square.

The various second order expansions developed above can be found in references [38], [27]
and [34]. In [27], Van den Bos shows the equality of the first, second, and third second-order terms
shown in equation (98) but does not mention the fourth (which, anyway, naturally follows from the
third term in (98) via a simple further expansion in terms of z and z̄). The approach used in this
note is a more detailed elaboration of the derivations presented in [27]. In reference [34] Yan and
Fan show the equality of the first and last terms in (98), but, while they cite the results of Van den
Bos [27] regarding the middle terms in (98), do not appear to have appreciated that the fourth term
in (98) is an immediate consequence of the second or third terms, and derive it from scratch using
an alternative, “brute force” approach.

Quadratic Minimization and the Newton Algorithm. The Newton algorithm for minimizing a
scalar function f(z) exploits the fact that it is generally straightforward to minimize the quadratic
approximations provided by second order expansions such as (73), (92), (99), and (104). The
Newton method starts with an initial estimate of the optimal solution, say ĉ, then expands f(c)
about the estimate ĉ to second order in Δc = c − ĉ, and then minimizes the resulting second
order approximation of f(c) with respect to Δc. Having determined an estimated update Δ̂c in
this manner, one updates the original estimate ĉ ← ĉ + αΔ̂c, for some small “stepsize” α > 0,
and then starts the optimization cycle all over again. For appropriate choices of the stepsize α, this
iterative approximate quadratic optimization algorithm can result in a sequence of estimates ĉ0, ĉ1,
ĉ2, · · · , which converges to the true optimal solution.

Note that the optimal solution to the quadratic approximations provided by (73), (92), and
(104) can be immediately written down using the “completing-the-square” solution developed in
Equations (5)-(7) of [24], assuming that the relevant Hessians are all invertible:

Δ̂r = −(Hrr)
−1
(

∂f(r)
∂r

)T

(from the r expansion (73)) (105)

Δ̂cC = −(HC

cc)
−1
(

∂f(c)
∂c

)H

(from the c-complex expansion (92)) (106)

Δ̂cR = −(HR

cc)
−1
(

∂f(c)
∂c

)T

(from the c-real expansion (104)) . (107)

67Although (99) can also be optimized by completing the square.
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Solutions (105) and (106) can also be found in Van den Bos [27]. Note that Δ̂cC is an admissible
solution, i.e., that

Δ̂cC ∈ C
as required for self-consistency of our theory, as a consequence of the fact that

(
∂f(c)

∂c

)H
and

(HC

cc)
−1 satisfy (

∂f(c)

∂c

)H

∈ C and (HC

cc)
−1 ∈ L(C, C) ,

with the latter condition a consequence of property (82) and the fact thatHC

cc ∈ L(C, C). If this

were not the case, then we generally would have the meaningless answer that Δ̂cC /∈ C.

The admissibility of the solution (107) follows from the admissibility of (106). This will be
evident from the fact, as we shall show, that all of the solutions (105)-(107) must all correspond to
the same update,

Δ̂cC = Δ̂cR = JΔ̂r .

Note that

Δ̂cC = −(HC

cc)
−1
(

∂f(c)
∂c

)H

= −
(

1

4
JHrrJ

H

)−1(
1
2

∂f(r)
∂r

JH

)H

(from (67) and (90))

=

= − (JHrrJ
−1
)−1

J

(
∂f(r)

∂r

)T

(from (63))

= −J(Hrr)
−1
(

∂f(r)
∂r

)T

= JΔ̂r

as required. On the other hand,

Δ̂cR = −(HR

cc)
−1
(

∂f(c)
∂c

)T

= − (SHC

cc)
−1
(

∂f(c)
∂c

)T

(from (101))

= −(HC

cc)
−1
(

∂f(c)
∂c

S

)T

= −(HC

cc)
−1
(

∂f(c)
∂c̄

)T

= −(HC

cc)
−1
(

∂f(c)
∂c

)H

= Δ̂cC.
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Thus, the updates (105)-(107) are indeed equivalent.

The updates (105) and (107), determined via a completing the square argument, can alterna-
tively be obtained by setting the (real) derivatives of their respective quadratically-approximated
loss functions to zero, and solving the necessary condition for an optimum. Note that if we attempt
to (erroneously) take the (complex) derivative of (92) with respect to c-complex and then set this
expression to zero, the resulting “solution” will be off by a factor of two. In the latter case, we
must instead take the derivatives of (99) with respect to z and z̄ and set the resulting expressions
to zero in order to obtain the optimal solution.68

At convergence, the Newton algorithm will produce a solution to the necessary first-order con-
dition

∂f(ĉ)

∂c
= 0 ,

and this point will be a local minimum of f(·) if the Hessians are strictly positive definite at this
point. Typically, one would verify positive definiteness of the c-complex Hessian at the solution
point ĉ,

HC

cc(ĉ) =

(Hzz(ĉ) Hz̄z(ĉ)
Hzz̄(ĉ) Hz̄z̄(ĉ)

)
> 0 .

As done in [38] and [34], the solution to the quadratic minimization problem provided by (105)-
(107) can be expressed in a closed form expression which directly produces the solution ẑ ∈ Cn.
To do so, we rewrite the solution (106) for the Newton update Δ̂c as

HC

cc Δ̂c = −
(

∂f(c)
∂c

)H

which we then write in expanded form in terms of z and z̄(Hzz Hz̄z

Hzz̄ Hz̄z̄

)(
Δ̂z

Δ̂z̄

)
= −
⎛⎝(∂f

∂z

)H(
∂f
∂z̄

)H
⎞⎠ . (108)

Assuming that HC

cc is positive definite, then Hzz is invertible and the second block row in (108)
results

Δ̂z̄ = −H−1
z̄z̄Hzz̄Δ̂z−H−1

z̄z̄

(
∂f

∂z̄

)H

.

Plugging this into the first block row of (108) then yields the Newton algorithm update equation

H̃zz Δ̂z = −
(

∂f

∂z

)H

+Hz̄zH−1
z̄z̄

(
∂f

∂z̄

)H

, (109)

where
H̃zz � Hzz −Hz̄zH−1

z̄z̄Hzz̄

68This is the procedure used in [38] and [34].
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is the Schur complement of Hzz in HC

cc. Equation (109) is equivalent to the solution given as
Equation (A.12) in [38]. Invertibility of the Schur complement H̃zz follows from our assumption
thatHC

cc is positive definite, and the Newton update is therefore given by

Δ̂z =
(Hzz −Hz̄zH−1

z̄z̄Hzz̄

)−1
{
Hz̄zH−1

z̄z̄

(
∂f

∂z̄

)H

−
(

∂f

∂z

)H
}

. (110)

The matricesHz̄z̄ and H̃z̄z̄ =
(Hzz −Hz̄zH−1

z̄z̄Hzz̄

)
in (109) are invertible if and only ifHC

cc is
invertible. Note that invertibility ofHzz (equivalently,Hz̄z̄ = Hzz) is not a sufficient condition for
the Schur complement to be nonsingular. However, if Hz̄z = Hzz̄ = 0 then invertibility of Hzz is
a necessary and sufficient condition for a solution Δ̂z to exist.

As noted by Yan & Fan [34], the need to guarantee positive definiteness of the Schur comple-
ment H̃z̄z̄ =

(Hzz −Hz̄zH−1
z̄z̄Hzz̄

)
is a significant computational burden for an on-line adaptive

filtering algorithm to bear. For this reason, to improve the numerical robustness of the Newton
algorithm and to provide a substantial simplification, they suggest making the approximation that
the block off-diagonal elements ofHC

cc are zero

Hz̄z = Hzz̄ ≈ 0

which results in the simpler approximate solution

Δ̂z ≈ −H−1
zz

(
∂f

∂z

)H

. (111)

The argument given by Yan and Fan supporting the use of the approximationH z̄z ≈ 0 is that as the
Newton algorithm converges to the optimal solution ẑ = z0, setting Hz̄z “to zero implies that we
will use a quadratic function to approximate the cost near z0” [34]. However Yan and Fan do not
give a formal definition of a “quadratic function” and this statement is not generally true as there
is no a priori reason why the off-diagonal block matrix elements of the Newton Hessian should be
zero, or approach zero, as we demonstrate in Example 2 of the Applications section below.

However, as we shall discuss later below, setting the block off-diagonal elements to zero is
justifiable, but not necessarily as an approximation to the Newton algorithm. Setting the block
off-diagonal elements in the Newton Hessian to zero, results in an alternative, “quasi-Newton”
algorithm which can be studied in its own right as a competitor algorithm to the Newton algorithm,
the Gauss-Newton algorithm, or the gradient descent algorithm.69

Nonlinear Least-Squares: Gauss vs. Newton. In this section we are interested in finding an
approximate solution, ẑ, to the nonlinear inverse problem

g(z) ≈ y

69That is not to say that there can’t be conditions under which the quasi-Newton algorithm does converge to the
Newton algorithm. Just as one can give conditions for which the Gauss-Newton algorithm converges to the Newton
algorithm, one should be able to do the same for the quasi-Newton algorithm.
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for known y ∈ Cm and known real-analytic function g : Cn → Cm. We desire a least-squares
solution, which is a solution that minimizes the weighted least-squares loss function 70

�(z) =
1

2
‖y − g(z)‖2W =

1

2
(y − g(z))H W (y − g(z))

where W is a Hermitian positive-definite weighting matrix. Although the nonlinear function g is
assumed to be real-analytic, in general it is assumed to be not holomorphic (i.e., g is not analytic
in z).

In the subsequent development we will analyze the problem using the c-real perspective devel-
oped in the preceding discussions. Thus, the loss function is assumed to be re-expressible in terms
of c,71

�(c) =
1

2
‖y − g(c)‖2W =

1

2
(y − g(c))H W (y − g(c)) . (112)

Quantities produced from this perspective72 may have a different functional form than those pro-
duced purely within the z ∈ Z perspective, but the end results will be the same.

We will consider two iterative algorithms for minimizing the loss function (112): The Newton
algorithm, discussed above, and the Gauss-Newton algorithm which is usually a somewhat simpler,
yet related, method for iteratively finding a solution which minimizes a least-squares function of
the form (112).73

As discussed earlier, the Newton method is based on an iterative quadratic expansion and min-
imization of the loss function �(z) about a current solution estimation, ẑ. Specifically the Newton
method minimizes an approximation to �(c) = �(z) based on the second order expansion of �(c)
in Δc about a current solution estimate ĉ = col(ẑ, ˆ̄z),

�(ĉ + Δc) ≈ �̂(Δc)Newton

where

�̂(Δc)Newton = �(ĉ) +
∂�(ĉ)

∂c
Δc +

1

2
ΔcH HC

cc(ĉ) Δc. (113)

Minimizing the Newton loss function �̂(Δc)Newton then results in a correction Δ̂c
Newton

which is then

used to update the estimate ĉ ← ĉ + αΔ̂c
Newton

for some stepsize α > 0. The algorithm then

70The factor of 1
2 has been included for notational convenience in the ensuing derivations. If it is removed, some

of the intermediate quantities derived subsequently (such as Hessians, etc.) will differ by a factor of 2, although the
ultimate answer is independent of any overall constant factor of the loss function. If in your own problem solving
ventures, your intermediate quantities appear to be off by a factor of 2 relative to the results given in this note, you
should check whether your loss function does or does not have this factor.

71Quantities produced from this perspective–such as the Gauss-Newton Hessian to be discussed below–may have a
different functional form than those produced purely within the z ∈ Z perspective, but the final answers are the same.

72Such as the Gauss-Newton Hessian to be discussed below.
73Thus the Newton algorithm is a general method that can be used to minimize a variety of different loss functions,

while the Gauss-Newton algorithm is a least-squares estimation method which is specific to the problem of minimizing
the least-squares loss function (112).



K. Kreutz-Delgado — Copyright c© 2003-2007, All Rights Reserved – Version ECE275CG-F05v1.3d 45

starts all over again. As discussed earlier in this note, a “completing-the-square” argument can be
invoked to readily show that the correction which minimizes the quadratic Newton loss function is
given by

Δ̂c
Newton

= −HC

cc(ĉ)
−1

(
∂�(ĉ)

∂c

)H

(114)

provided that the c-complex Hessian HC

cc(ĉ) is invertible. Because it defines the second-order
term in the Newton loss function and directly enters into the Newton correction, we will often
refer to HC

cc(ĉ) as the Newton Hessian. If we block partition the Newton Hessian and solve for

the correction Δ̂z
Newton

, we obtain the solution (110) which we earlier derived for a more general
(possibly non-quadratic).

We now determine the form of the cogradient ∂�(ĉ)
∂c

of the least-squares loss function (112). This
is done by utilizing the c-real perspective which allows us to take (real) cogradients with respect
to c-real. First, however, it is convenient to define the compound Jacobian of g(ĉ) as

G(ĉ) � ∂g(ĉ)

∂c
�
(

∂g(ẑ)
∂z

∂g(ẑ)
∂z̄

)
=
(
Jg(c) Jc

g(c)
) ∈ Cm×2n . (115)

Setting e = y− g(c), we have74

∂�

∂c
=

1

2

∂

∂c
eHWe

=
1

2
eHW

∂

∂c
e +

1

2
eT W T ∂

∂c
ē

= −1

2
eHW

∂g

∂c
− 1

2
eT W T ∂ḡ

∂c

= −1

2
eHW G − 1

2
eT W T

(
∂g

∂c
S

)
= −1

2
eHW G − 1

2
eT W T GS

or
∂�

∂c
= −1

2
eHW G − 1

2
eHW GS. (116)

This expression for ∂�
∂c

is admissible, as required, as it is readily verified that(
∂�

∂c

)H

= S

(
∂�

∂c

)H

as per the requirement given in (76).

74Remember that ∂
∂c is only well-defined as a derivative within the c-real framework.
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The linear term in the Newton loss function �̂Newton is therefore given by

∂�

∂c
Δc = −1

2
eHW G Δc− 1

2
eHW GS Δc

= −1

2
eHW G Δc− 1

2
eHW G Δc

= −Re
{
eHW G Δc

}
.

Thus
∂�

∂c
Δc = −Re

{
eHW G Δc

}
= −Re

{
(y − g(c))H W G Δc

}
. (117)

If the reader has any doubts as to the validity or correctness of this derivation, she/he is invited to
show that the left-hand side of (117) is equal to 2 Re

{
∂f
∂z

Δz
}

as expected from equation (86).

Before continuing on to determine the functional form of the c-complex HessianHC

cc(ĉ) needed
to form the Newton loss function and solution, we turn first to a discussion of the Gauss-Newton
algorithm.

Whereas the Newton method is based on an iterative quadratic expansion and minimization of
the loss function �(z) about a current solution estimation, ẑ, The Gauss-Newton method is based
on iterative “relinearization” of the system equations y ≈ g(z) about the current estimate, ẑ and
minimization of the resulting approximate least-squares problem. We put “linearization” in quotes
because (unless the function g happens to be holomorphic) generally we are not linearizing g with
respect to z but, rather, we are linearizing with respect to c = col(z, z̄).

Expanding the system equations y ≈ g(z) about a current estimate ẑ, we have

y − g(z) = y − g(ẑ + Δz) ≈ y −
(
g(ẑ) +

∂g(ẑ)

∂z
Δz +

∂g(ẑ)

∂z̄
Δz̄

)
where Δz = z− ẑ and Δz̄ = Δz = z̄− ¯̂z = z̄− ˆ̄z. Note that the approximation to g is not a linear
function of z as complex conjugation is a nonlinear operation on z. However, if g is holomorphic,
then ∂g

∂z̄
≡ 0, in which case the approximation is linear in z. Although the approximation of g

generally is not linear in z, it is linear in c = col(z, z̄), and we rewrite the approximation as

y− g(c) = y− g(ĉ + Δc) ≈ Δy −G(ĉ) Δc (118)

where Δy = y− g(ẑ), ĉ = col(ẑ, ˆ̄z), Δc = c− ĉ, and G(ĉ) is the (compound) Jacobian mapping
of g evaluated at the current estimate ĉ given in Equation (115). With this approximation, the loss
function (112) is approximated by the following quadratic loss function (notationally suppressing
the dependence on ĉ),

�(c) = �(ĉ + Δc) ≈ �̂(Δc)Gauss
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where

�̂(Δc)Gauss =
1

2
‖Δy −G Δc‖2W

=
1

2
(Δy −G Δc)H W (Δy −G Δc)

=
1

2
‖Δy‖2 − Re

{
ΔyHW G Δc

}
+

1

2
ΔcH GHWG Δc

= �(ĉ) +
∂�(ĉ)

∂c
Δc +

1

2
ΔcH GHWG Δc. (from (117)

Unfortunately, the resulting quadratic form

�̂(Δc)Gauss = �(ĉ) +
∂�(ĉ)

∂c
Δc +

1

2
ΔcH GHWG Δc (119)

is not admissible as it stands.75 This is because the matrix GHWG is not admissible,

GHWG =

(
∂g

∂c

)H

W

(
∂g

∂c

)
/∈ L(C, C).

This can be seen by showing that the condition (78) is violated:

S GHWGS = S

(
∂g

∂c

)H

W

(
∂g

∂c

)
S

=

(
∂g

∂c̄

)H

W

(
∂g

∂c̄

)
=

(
∂ḡ

∂c

)H

W̄

(
∂ḡ

∂c

)
=
(

∂g

∂c

)H

W

(
∂g

∂c

)
.

Fortunately, we can rewrite the quadratic form (119) as an equivalent form which is admissible
on C. To do this note that GHWG is Hermitian, so that

ΔcHGHWGΔc = ΔcHGHWGΔc ∈ R .

75And thus the complex Gauss-Newton algorithm is more complicated in form than the real Gauss-Newton algo-
rithm for which the quadratic form (119) is acceptable [25].
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Also recall from Equation (79) that P(GHWG) ∈ L(C, C) and Δc ∈ C ⇒ SΔc = Δc̄. We have76

ΔcHGHWGΔc = ΔcHP(GHWG)Δc + ΔcH
(
GHWG−P(GHWG)

)
Δc

= ΔcHP(GHWG)Δc +
1

2
ΔcH
(
GHWG− SGHWGS

)
Δc

= ΔcHP(GHWG)Δc +
1

2

(
ΔcHGHWGΔc−ΔcHGHWGΔc

)
= ΔcHP(GHWG)Δc + 0

= ΔcHP(GHWG)Δc .

Thus we have shown that on the space of admissible variations, Δc ∈ C, the inadmissible
quadratic form (119) is equivalent to the admissible quadratic form

�̂(Δc)Gauss = �(ĉ) +
∂�(ĉ)

∂c
Δc +

1

2
ΔcH HGauss

cc (ĉ) Δc (120)

where
HGauss

cc (ĉ) � P
(
GH(ĉ)WG(ĉ)

)
(121)

denotes the Gauss-Newton Hessian.

Note that the Gauss-Newton HessianHGauss
cc (ĉ) is Hermitian and always guaranteed to be at least

positive semi-definite, and guaranteed to be positive definite if g is assumed to be one-to-one (and
thereby ensuring that the compound Jacobian matrix G has full column rank). This is in contrast
to the Newton (i.e., the c-complex) HessianHC

cc(ĉ) which, unfortunately, can be indefinite or rank
deficient even though it is Hermitian and even if g is one-to-one.

Assuming that HGauss
cc (ĉ) is invertible, the correction which minimizes the Gauss-Newton loss

function (120) is given by

Δ̂c
Gauss

= −HGauss
cc (ĉ)−1

(
∂�(ĉ)

∂c

)H

. (122)

Because of the admissibility ofHGauss
cc and

(
∂�(ĉ)
∂c

)H
, the resulting solution is admissible Δ̂c

Gauss ∈ C.

Comparing Equations (114) and (122), it is evident that the difference between the two al-
gorithms resides in the difference between the Newton Hessian, HC

cc(ĉ), which is the actual c-
complex Hessian of the least-squares loss function �(c), and the Gauss-Newton Hessian HGauss

cc (ĉ)
which has an unclear relationship to �(c).77 For this reason, we now turn to a discussion of the
relationship betweenHC

cc(ĉ) andHGauss
cc (ĉ).

76Note that the following derivation does not imply that GHWG = P(GHWG), a fact which would contradict our
claim that GHWG is not admissible. This is because in the derivation we are not allowing arbitrary vectors in C 2n

but are only admitting vectors Δc constrained to lie in C, Δc ∈ C ⊂ C2n.
77Note that, by construction, HGauss

cc (ĉ) is the Hessian matrix of the Gauss-Newton loss function. The question is:
what is its relationship to the least-squares loss function or the Newton loss function?
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We can compute the Newton HessianHC

cc from the relationship (see Equation (101))

HC

cc = SHR

cc = S
∂

∂c

(
∂�

∂c

)T

where ∂
∂c

is taken to be a c-real cogradient operator. Note from (116) that,(
∂�

∂c

)H

= −1

2
GHWe− 1

2
SGHWe =

1

2

(
B + SB

)
, (123)

where
B � −GHWe (124)

with e = y − g(c). This results in(
∂�

∂c

)T

=

(
∂�

∂c

)H

=
1

2

(
B̄ + SB

)
,

Also note that
∂B̄

∂c
=

∂B

∂c̄
=

(
∂B

∂c
S

)
=

∂B

∂c
S.

We have

HR

cc =
∂

∂c

(
∂�

∂c

)T

=
1

2

(
S

∂B

∂c
+

∂B̄

∂c

)
or

HR

cc =
∂

∂c

(
∂�

∂c

)T

=
1

2

(
S

∂B

∂c
+

∂B

∂c
S

)
. (125)

This yields

HC

cc = SHR

cc =
1

2

(
∂B

∂c
+ S

∂B

∂c
S

)
(126)

with B given by (124), which we can write as

HC

cc = SHR

cc = P

(
∂B

∂c

)
. (127)

Recall thatHC

cc must be admissible. The function P(·) produces admissible matrices which map
from C to C, and thereby ensures that the right-hand side of equation (127) is indeed an admissible
matrix, as required for self-consistency of our development. The presence of the operator P does
not show up in the real case (which is the standard development given in textbooks) as ∂B

∂c
is

automatically symmetric as required for admissibility in the real case [25].

Note that B can be written as

B = −
(

∂g

∂c

)H

W (y − g) = −
m∑

i=1

(
∂gi

∂c

)H

[W (y− g) ]i
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where gi and [W (y − g) ]i denote the i-th components of g and We = W (y − g) respectively.
We can then compute ∂B

∂c
as

∂B

∂c
=

(
∂g

∂c

)H

W

(
∂g

∂c

)
−

m∑
i=1

∂

∂c

(
∂gi

∂c

)H

[W (y − g) ]i

= GHWG−
m∑

i=1

∂

∂c

(
∂gi

∂c

)H

[W (y − g) ]i

or
∂B

∂c
= GHWG−

m∑
i=1

∂

∂c

(
∂gi

∂c

)H

[We ]i . (128)

Equations (127) and (128) result in

HC

cc = HGauss
cc −

m∑
i=1

H(i)

cc . (129)

where

H(i)

cc � P

(
∂

∂c

(
∂gi

∂c

)H

[We ]i

)
, i = 1, · · · , m . (130)

Note that Equation (129), which is our final result for the structural form of the Newton Hessian
HC

cc, looks very much like the result for the real case [25]. 78 The first term on the right-hand-side
of (129) is the Gauss-Newton Hessian HGauss

cc , which is admissible, Hermitian and at least positive
semidefinite (under the standard assumption that W is Hermitian positive definite). Below, we will
show that the matrices H(i)

cc, i = 1, · · · , m, are also admissible and Hermitian. While the Gauss-
Newton Hessian is always positive semidefinite (and always positive definite if g is one-to-one),
the presence of the second term on the right-hand-side of (129) can cause the Newton Hessian to
become indefinite, or even negative definite.

We can now understand the relationship between the Gauss-Newton method and the Newton
method when applied to the problem of minizing the least-squares loss function. The Gauss-
Newton method is an approximation to the Newton method which arises from ignoring the second
term on the right-hand-side of (129). This approximation is not only easier to implement, it will
generally have superior numerical properties as a consequence of the definiteness of the Gauss-
Newton Hessian. Indeed, if the mapping g is onto, via the Gauss-Newton algorithm one can
produce a sequence of estimates ĉk, k = 1, 2, 3, · · · , which drives e(ĉk) = y − g(ĉk), and hence
the second term on the right-hand-side of (129), to zero as k →∞. In which case, asymptotically
there will be little difference in the convergence properties between the Newton and Gauss-Newton
methods. This property is well known in the classical optimization literature, which suggests that
by working within the c-real perspective, we may be able to utilize a variety of insights that have

78The primary difference is due to the presence of the projector P in the complex Newton algorithm. Despite the
similarity, note that it takes much more work to rigorously derive the complex Newton-Algorithm!
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been developed for the Newton and Gauss-Newton methods when optimizing over real vector
spaces.

To complete the proof of the derivation of (129), it remains to demonstrate that H (i)
cc, i =

1, · · · , m, are admissible and Hermitian. Note that the “raw” matrix

[We ]i
∂

∂c

(
∂gi

∂c

)H

is neither Hermitian nor admissible because of the presence of the complex scalar factor [We ]i.
Fortunately, the processing of the second matrix of partial derivatives by the operator P to form
the matrixH(i)

cc via
H(i)

cc = P(Acc(gi))

creates a matrix which is both admissible and Hermitian. The fact thatH(i)
cc is admissible is obvious,

as the projector P is idempotent. We will now prove thatH(i)
cc is Hermitian.

Define the matrix

Acc(gi) � ∂

∂c

(
∂gi

∂c

)H

, (131)

and note that[
∂

∂c

(
∂gi

∂c

)H
]H

=

[
∂

∂c

(
∂ḡi

∂c̄

)T
]T

=

[
∂

∂c̄

(
∂ḡi

∂c

)T
]

=
∂

∂c

(
∂ḡi

∂c

)H

,

which shows that Acc(gi) has the property that

Acc(gi)
H = Acc(ḡi) . (132)

Now note that

S
∂

∂c

(
∂gi

∂c

)H

S = S
∂

∂c̄

(
∂gi

∂c

)H

=
∂

∂c̄

[
S

(
∂gi

∂c

)H
]

=
∂

∂c̄

(
∂gi

∂c
S

)H

=
∂

∂c̄

(
∂gi

∂c̄

)H

,

which establishes the second property that

SAcc(gi)S = Ac̄c̄(gi) . (133)
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Finally note that properties (132) and (133) together yield the property

Acc(gi)
H = Acc(ḡi) = SAc̄c̄(ḡi)S = SAcc(gi)S .

Setting ai = [We ]i, we have

H(i)
cc = P(ai Acc(gi)) =

ai Acc(gi) + S ai Acc(gi)S

2
=

ai Acc(gi) + āi S Acc(gi)S

2
=

ai Acc(gi) + āi Acc(gi)H

2

which is obviously Hermitian. Note that the action of the projector P on the “raw” matrix
ai Acc(gi), is equal to the action of Hermitian symmetrizing the matrix ai Acc(gi).

Below, we will examine the least-squares algorithms at the block-component level, and will
show that significant simplifications occur when g(z) is holomorphic.

Generalized Gradient Descent Algorithms. As in the real case [25], the Newton and Gauss-
Newton algorithms can be viewed as special instances of a family of generalized gradient descent
algorithms. Given a general real-valued loss function �(c) which we wish to minimize79 and a
current estimate, ĉ of optimal solution, we can determine an update of our estimate to a new value
ĉnew which will decrease the loss function as follows.

For the loss function �(c), with c = ĉ + dc, we have

d�(ĉ) = �(ĉ + dc)− �(ĉ) =
∂�(ĉ)

∂c
dc

which is just the differential limit of the first order expansion

Δ�(ĉ; α) = �(ĉ + αΔc)− �(ĉ) ≈ α
∂�(ĉ)

∂c
Δc .

The stepsize α > 0 is a control parameter which regulates the accuracy of the first order approxi-
mation assuming that

α→ 0⇒ αΔc→ dc and Δ�(ĉ; α)→ d�(ĉ) .

If we assume that C is a Cartesian space,80 then the gradient of �(c) is given by81

∇c�(c) =

(
∂�(c)

∂c

)H

.

79The loss function does not have to be restricted to the least-squares loss considered above.
80I.e., We assume that C has identity metric tensor. In [25] we call the resulting gradient a Cartesian gradient (if the

metric tensor assumption is true for the space of intertest) or a naive gradient (if the metric tensor assumption is false,
but made anyway for convenience).

81Note for future reference that the gradient has been specifically computed in Equation (123) for the special case
when �(c) is the least-squares loss function (112).
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Take the update to be the generalized gradient descent correction

Δc = −Q(ĉ)

(
∂�(ĉ)

∂c

)H

= −Q(ĉ)∇c�(ĉ) (134)

where Q(ĉ) is a Hermitian matrix function of c which is assumed to be positive definite when
evaluated at the value ĉ.82 This then yields the key stability condition83

Δ�(ĉ; α) ≈ −α‖∇c�(ĉ)‖2Q � −α∇c�(ĉ)H Q∇c�(ĉ) ≤ 0, (135)

where the right-hand-side is equal to zero if and only if

∇c�(ĉ) = 0 .

Thus if the stepsize parameter α is chosen small enough, making the update

ĉnew = ĉ + αΔc = ĉ−Q∇c�(ĉ)

results in

�(ĉnew) = �(ĉ + αΔc) = �(ĉ) + Δ�(ĉ; α) ≈ �(ĉ)− α‖∇c�(ĉ)‖2Q ≤ �(ĉ)

showing that we either have a nontrivial update of the value of ĉ which results in a strict decrease
in the value of the loss function, or we have no update of ĉ nor decrease of the loss function
because ĉ is a stationary point. If the loss function �(c) is bounded from below, iterating on this
procedure starting from a estimate ĉ1 will produce a sequence of estimates ĉi, i = 1, 2, 3, · · · ,
which will converge to a local minimum of the loss function. This simple procedure is the basis
for all generalized gradient descent algorithms.

Assuming that we begin with an admissible estimate, ĉ1, for this procedure to be valid, we
require that the sequence of estimates ĉi, i = 1, 2, 3, · · · , be admissible, which is true if the corre-
sponding updates Δc are admissible,

Δc = −Q(ĉi)∇ĉi
�(ĉi) = −Q(ĉi)

(
∂�(ĉi)

∂ĉi

)H

∈ C , i = 1, 2, · · · .

We have established the admissibility of ∇c�(c) =
(

∂�(c)
∂c

)H
∈ C above. It is evident that in order

for a generalized gradient descent algorithm (GDA) to be admissible it must be the case that Q be
admissible,

Generalized GDA is Admissible ⇔ Generalized Gradient Q-Matrix is Admissible, Q ∈ L(C, C) .

82The fact that Q is otherwise arbitrary (except for the admissibility criterion discussed below) is what makes the
resulting algorithm a generalized gradient descent algorithm in the parlance of [25]. When Q = I , we obtain the
standard gradient descent algorithm.

83We interpret the stability condition to mean that for a small enough stepsize α > 0, we will have Δ�(ĉ; α) ≤ 0.
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Furthermore, a sufficient condition that the resulting algorithm be stable84 is that Q be Hermitian
and positive definite. Note that given a candidate Hermitian positive definite matrix, Q ′, which is
not admissible,

Q′ /∈ L(C, C) ,

we can transform it into an admissible Hermitian positive definite matrix via the projection

Q = P(Q′) ∈ L(C, C) .

It can be much trickier to ensure that Q remain positive definite.

If we set
QNewton(c) = HNewton

cc (c)−1

with
HNewton

cc � HC

cc

then we obtain the Newton algorithm (114). If we take the loss function to be the least-squares loss
function (112) and set

QGauss(c) = HGauss
cc (c)−1

we obtain the Gauss-Newton algorithm (122). Whereas the Gauss-Newton algorithm generally
has a positive definite Q-matrix (assuming that g(c) is one-to-one), the Newton algorithm can
have convergence problems due to the Newton Hessian HNewton

cc = HC

cc becoming indefinite. Note
that taking

QSimple = I ,

which we refer to as the “simple” choice, results in the standard gradient descent algorithm which
is always stable (for a small enough stepsize so that the stability condition (135) holds).

The important issue being raised here is the problem of stability versus speed of convergence.
It is well-known that the Newton algorithm tends to have a very fast rate of convergence, but at the
cost of constructing and inverting the Newton HessianHNewton

cc = HC

cc and potentially encountering
more difficult algorithm instability problems. On the other hand, standard gradient descent (Q = I)
tends to be very stable and much cheaper to implement, but can have very long convergence times.

The Gauss-Newton algorithm, which is an option available when the loss function �(c) is the
least-squares loss function (112), is considered an excellent trade-off between the Newton algo-
rithm and standard gradient descent. The Gauss-Newton HessianHGauss

cc is generally simpler in form
and, if g(c) is one-to-one, is always positive definite. Furthermore, if g(c) is also onto, assuming
the algorithm converges, the Gauss-Newton and Newton algorithms are asymptotically equivalent.

We can also begin to gain some insight into the proposal by Yan and Fan [34] to ignore the
block off-diagonal elements of the Newton Hessian,85

HNewton
cc = HC

cc =

(Hzz Hz̄z

Hzz̄ Hz̄z̄

)
.

84Assuming a small enough step size to ensure that the stability condition (135) is satisfied.
85The values of the block elements ofHNewton

cc will be computed for the special case of the least-squares loss function
(112) later below.
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As mentioned earlier, Yan and Fan make the claim in [34] that the block off-diagonal elements
vanish for a quadratic loss function. As noted above, and shown in an example below, this is
not generally true.86 However, it is reasonable to ask what harm (if any), or what benefit (if any)
can accrue by constructing a new87 generalized gradient descent algorithm as a modification to
the Newton algorithm created by simply ignoring the block off-diagonal elements in the Newton
Hessian and working instead with the simplified quasi-Newton Hessian,

Hquasi-Newton
cc � ĤC

cc �
(Hzz 0

0 Hz̄z̄

)
.

This results in a new generalized gradient descent algorithm, which we call the quasi-Newton
algorithm, which is somewhere in complexity between the Newton algorithm and standard gradient
descent. Note that the hermitian matrix Hzz is positive definite if and only if Hz̄z̄ is positive
definite. Thus invertibility and positive-definiteness of the quasi-Newton HessianH quasi-Newton

cc = ĤC

cc

is equivalent to invertibility and positive definiteness of the block elementHzz.

On the other hand, invertibility and positive definiteness of Hzz is only a necessary condition
for invertibility and positive definiteness of the complete Newton HessianHNewton

cc = HC

cc. Assuming
thatHC

cc is positive definite, we have the well-known factorization(
I 0

−Hzz̄H−1
zz I

)
HC

cc

(
I −Hz̄zH−1

zz

0 I

)
=

(Hzz 0

0 H̃zz

)
(136)

where
H̃zz = Hzz −Hz̄zH−1

z̄z̄Hzz̄

is the Schur complement of Hzz in HC

cc. From the factorization (136) we immediately obtain the
useful condition

rank (HC

cc) = rank (Hzz) + rank
(
H̃zz

)
. (137)

Note from condition (137) that the Newton Hessian HNewton
cc = HC

cc is positive definite if and
only if Hzz and its Schur complement H̃zz are both positive definite. Thus it is obviously a more
difficult matter to ascertain and ensure the stability of the Newton Hessian than to do the same for
the quasi-Newton Hessian.

The quasi-Newton algorithm is constructed by forming the Q matrix from the quasi-Newton
HessianHquasi-Newton

cc = ĤC

cc,

QPseudo-Newton = (Hquasi-Newton
cc )−1 =

(
ĤC

cc

)−1

=

(H−1
zz 0
0 H−1

z̄z̄

)
which is admissible and hermitian, and positive definite provided Hzz = Hz̄z̄ is positive definite.
Thus, if Hzz = Hz̄z̄ is positive definite, the quasi-Newton algorithm is guaranteed to be stable

86What is true, as we’ve noted, is that for a quadratic loss function, the Gauss-Newton and Newton Hessians asymp-
totically become equal.

87I.e., no approximation algorithms are invoked.
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(assuming a small enough stepsize α > 0 so that the stability condition (135) is satisfied). With
this choice of Q in (134), the quasi-Newton update is given by88

Δzquasi-Newton = −H−1
zz

(
∂f

∂z

)H

(138)

which is just the simplification shown earlier in Equation (111) and proposed by Yan and Fan in
[34]. However, unlike Yan and Fan, we do not present the quasi-Newton algorithm as an approx-
imation to the Newton algorithm, but rather as one more algorithm in the family of generalized
Newton algorithms indexed by the choice of the matrix Q.

Indeed, recognizing that the Gauss-Newton algorithm potentially has better stability properties
than the Newton algorithm, naturally leads us to propose a quasi-Gauss-Newton algorithm for
minimizing the least-squares lose function (112) as follows. Because the hermitian Gauss-Newton
Hessian is admissible, it can be partitioned as

HGauss
cc =

(
Uzz Uz̄z

Uz̄z Uzz

)
with Uz̄z = UT

z̄z.89 The Gauss-Newton Hessian is positive-definite if and only if Uzz (equivalently
Uzz) and its Schur complement Ũzz = Uzz − Uz̄zUzz

−1
Uz̄z are invertible.

On the other hand the quasi-Gauss-Newton Hessian,

Hquasi-Gauss
cc �

(
Uzz 0
0 Uzz

)
is positive definite if and only if Uzz is positive definite. Choosing

Qquasi-Gauss = (Hquasi-Gauss
cc )−1 =

(
U−1

zz 0

0 Uzz
−1

)
results in the quasi-Gauss-Newton algorithm

Δzquasi-Gauss = −U−1
zz

(
∂f

∂z

)H

(139)

which is guaranteed to be stable (for a small enough stepsize so that the stability condition (135)
is satisfied) if Uzz is positive definite.

Note thatHzz can become indefinite even while Uzz remains positive definite. Thus, the quasi-
Gauss-Newton algorithm appears to be generally easier to stabilize than the quasi-Newton algo-
rithm. Furthermore, if g is onto, we expect that asymptotically the quasi-Gauss-Newton and quasi-
Newton algorithm become equivalent. Thus the quasi-Gauss-Newton algorithm is seen to stand in

88We can ignore the remaining update equation as it is just the complex conjugate of the shown update equation.
89The values of these block components will be computed below.
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the same relationship to the quasi-Newton algorithm as the Gauss-Newton algorithm does to the
Newton algorithm.

Without too much effort, we can construct the block matrix components needed to implement
the Newton and Gauss-Newton algorithms developed above in order to minimize the least-squares
loss function (112).90

Let us first look at the elements needed to implement the Gauss-Newton algorithm. ¿From
Equation (121) and the derivations following Equation (119) one obtains

Uzz =
1

2

((
∂g

∂z

)H

W

(
∂g

∂z

)
+

(
∂g

∂z̄

)H

W

(
∂g

∂z̄

))
(140)

which is positive definite, assuming that W is positive definite and that g is one-to-one. Similarly,
one finds that

Uz̄z =
1

2

((
∂g

∂z

)H

W

(
∂g

∂z̄

)
+

(
∂g

∂z̄

)H

W

(
∂g

∂z

))
. (141)

Also Uz̄z̄ = Uzz and Uzz̄ = Uz̄z. We have now completely specified the Gauss-Newton Hessian
HGauss

cc and the quasi-Gauss-Newton Hessian at the block components level,

HGauss
cc =

(
Uzz Uz̄z

Uzz̄ Uz̄z̄

)
Hquasi-Gauss

cc �
(

Uzz 0
0 Uz̄z̄

)
Now note the important fact that Uz̄z = Uzz̄ = 0 when g is holomorphic! Thus, when g is
holomorphic there is no difference between the Gauss-Newton and pseudo-Gauss-Newton algo-
rithms.91 Furthermore, when g(z) is holomorphic, Uzz simplifies to

Uzz =
1

2

(
∂g

∂z

)H

W

(
∂g

∂z

)
=

1

2
JH
g WJg , (142)

where Jg is the Jacobian matrix of g.

Now let us turn to the issue of computing the elements need to implement the Newton Algo-
rithm, recalling that the Newton Hessian is block partitioned as

HNewton
cc = HC

cc =

(Hzz Hz̄z

Hzz̄ Hz̄z̄

)
.

One can readily relate the block componentsHzz andHz̄z to the matrices Uzz and Uz̄z used in the
Gauss-Newton and quasi-Gauss-Newton algorithms by use of Equation (129). We find that

Hzz = Uzz −
m∑

i=1

V (i)

zz

90This, of course, results in only a special case application of the Newton and quasi-Newton algorithms, both of
which can be applied to more general loss functions.

91Recall that g(z) is holomorphic (analytic in z) if and only if the Cauchy-Riemann condition ∂g(z)
∂z̄ = 0 is satisfied.
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and

V (i)

zz =
1

2

⎡⎣( ∂

∂z

(
∂gi(z)

∂z

)H

[We ]i

)
+

(
∂

∂z̄

(
∂gi(z)

∂z̄

)H

[We ]i

)⎤⎦ (143)

where e = y− g(z). Similarly, we find that

Hz̄z = Uz̄z −
m∑

i=1

V (i)

z̄z

and

V (i)

z̄z =
1

2

⎡⎣( ∂

∂z̄

(
∂gi(z)

∂z

)H

[We ]i

)
+

(
∂

∂z

(
∂gi(z)

∂z̄

)H

[We ]i

)⎤⎦ (144)

Furthermore, Vz̄z̄ = Vzz and Vzz̄ = Vz̄z. Note that neither Vzz nor Vz̄z vanish when g is
holomorphic, but instead simplify to

V (i)

zz =
1

2

∂

∂z

(
∂gi(z)

∂z

)H

[We ]i and V (i)

z̄z =
1

2

∂

∂z̄

(
∂gi(z)

∂z

)H

[We ]i . (145)

We have shown that the relationship between the Newton Hessian and Gauss-Newton Hessian
is given by (Hzz Hz̄z

Hzz̄ Hz̄z̄

)
︸ ︷︷ ︸

HNewton
cc

=

(
Uzz Uz̄z

Uzz̄ Uz̄z̄

)
︸ ︷︷ ︸

HGauss
cc

−
m∑

i=1

(
V (i)

zz V (i)

z̄z

V (i)

zz̄ V (i)

z̄z̄

)

In the special case when g(z) is holomorphic, the relationship becomes(Hzz Hz̄z

Hzz̄ Hz̄z̄

)
︸ ︷︷ ︸

HNewton
cc

=

(
Uzz 0
0 Uz̄z̄

)
︸ ︷︷ ︸

HGauss
cc

− 1

2

m∑
i=1

⎛⎜⎜⎜⎝
∂

∂z

(
∂gi(z)

∂z

)H

[We ]i
∂

∂z̄

(
∂gi(z)

∂z

)H

[We ]i

∂

∂z̄

(
∂gi(z)

∂z

)H

[We ]i
∂

∂z

(
∂gi(z)

∂z

)H

[We ]i

⎞⎟⎟⎟⎠ .

This shows that if g(z) is holomorphic, so that the block off-diagonal elements of the Gauss-
Newton Hessian vanish, and g(z) is also onto, so that asymptotically we expect that e ≈ 0, then
the claim of Yan and Fan in [34] that setting the block off-diagonal elements of the Hessian matrix
can proved a a good approximation to the Hessian matrix is reasonable, at least when optimizing
the least-squares loss function. However, when e ≈ 0 the Newton least-squares loss function (113)
reduces to the Gauss-Newton loss function (120), so that in the least-squares case one may as
well make the move immediately to the even simpler Gauss-Newton algorithm (which in this case
coincides with the quasi-Gauss-Newton algorithm).

However, the real point to be made is that any generalized gradient descent algorithm is worthy
of consideration,92 provided that it is admissible, provably stable, and (at least locally) convergent

92I.e., we don’t have to necessarily invoke an approximation argument.
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to the desired optimal solution. After all the standard gradient descent algorithm corresponds to
the cheapest “approximation” of all, namely that

HNewton
cc ≈ I

and very few will deny the utility of this algorithm, even though as an “approximation” to the
Newton algorithm it might be far from correct. The resulting algorithm has intrinsic merit as an
algorithm in its own right, namely as the member of the family of gradient descent algorithms
corresponding to the simplest choice of the Q-matrix,

Q = QSimple = I .

In the end, if the algorithm works, it’s ok. As it is said, “the proof is in the pudding.”93

We see then that we have a variety of algorithms at hand which fit within the framework of
generalized gradient descent algorithms. These algorithms are characterized by the specific choice
of the Q-matrix in the gradient descent algorithm, and include (roughly in the expected order
of decreasing complexity, decreasing ideal performance, and increasing stability when applied to
the least-squares loss function): 1) the Newton algorithm, 2) the quasi-Newton algorithm, 3) the
Gauss-Newton algorithm, 4) the quasi-Gauss-Newton algorithm, and 5) standard gradient descent.
Note that the Newton, quasi-Newton, and standard gradient descent algorithms are general algo-
rithms, while the Gauss-Newton and quasi-Gauss-Newton algorithms are methods for minimizing
the least-squares loss function (112).

For convenience, we will now summarize the generalized gradient descent algorithms that we
have developed in this note. In all of the algorithms, the update step is given by

ĉ← ĉ + αΔc

or, equivalently,
ẑ← ẑ + αΔz

for a specific choice of the stepsize α > 0. The stability claims made are based on the assumption
that α has been chosen small enough to ensure that the stability condition (135) is valid. Further-
more, we use the shorthand notation

G(c) =
∂g(c)

∂c

and
e(c) = y − g(c) .

93Of course, we are allowed to ask what the performance of the Q Simple algorithm is relative to the QNewton algorithm.
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1. Standard (Simple) Gradient Descent.

Applies to any smooth loss function which is bounded from below.

Hsimple
cc (ĉ) = I

Qsimple(ĉ) = (Hsimple
cc (ĉ))−1 = I

Δcsimple = −∇z�(ĉ) = −
(

∂�(ĉ)
∂c

)H
Δzsimple = −∇z�(ẑ) = −

(
∂�(ẑ)
∂z

)H
Application to Least-Squares Loss Function (112):(

∂�
∂c

)H
= −1

2
GHWe− 1

2
SGHWe = 1

2

(
B(ĉ) + SB(ĉ)

)
where B(ĉ) = −G(ĉ)HWe(ĉ)

Δcsimple = −1
2

[
B(ĉ) + SB(ĉ)

]
(

∂�
∂z

)H
= −1

2

[(
g(ẑ)
∂z

)H
We(ẑ) +

(
g(ẑ)
∂z̄

)H
We(ẑ)

]
Δzsimple = 1

2

[(
g(ẑ)
∂z

)H
We(ẑ) +

(
g(ẑ)
∂z̄

)H
We(ẑ)

]
g(z) holomorphic:(

∂�
∂z

)H
= −1

2

(
g(ẑ)
∂z

)H
We(ẑ)

Δzsimple = 1
2

(
g(ẑ)
∂z

)H
We(ẑ)

Generally stable but slow.

2. Gauss-Newton Algorithm.

Applies to the least-squares loss function (112).

HGauss
cc (ĉ) =

(
Uzz Uz̄z

Uzz̄ Uz̄z̄

)
where Uzz is given by (140), Uz̄z̄ = Uzz, Uz̄z is given by (141), and Uzz̄ = Uz̄z.

QGauss(ĉ) = HGauss
cc (ĉ)−1

ΔcGauss = −QGauss(ĉ)
(

∂�(ĉ)
∂c

)H
where(

∂�
∂c

)H
= −1

2
GHWe− 1

2
SGHWe = 1

2

(
B(ĉ) + SB(ĉ)

)
with B(ĉ) = −G(ĉ)HWe(ĉ)

ΔzGauss =
(
Uzz − Uz̄zU

−1
z̄z̄ Uzz̄

)−1
{

Uz̄zU
−1
z̄z̄

(
∂�
∂z̄

)H − ( ∂�
∂z

)H}
where(

∂�
∂z

)H
= −1

2

[(
g(ẑ)
∂z

)H
We(ẑ) +

(
g(ẑ)
∂z̄

)H
We(ẑ)

]
;
(

∂�
∂z̄

)H
=
(

∂�
∂z

)H
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g(z) holomorphic:

Uzz takes the simpler form (142), Uz̄z̄ = Uzz, and Uzz̄ = Uz̄z = 0.

HGauss
cc (ĉ) =

(
Uzz 0
0 Uz̄z̄

)
= 1

2

((
∂g
∂z

)H
W
(

∂g
∂z

)
0

0
(

∂g
∂z

)H
W
(

∂g
∂z

))
(

∂�
∂z

)H
= −1

2

(
g(ẑ)
∂z

)H
We(ẑ)

ΔzGauss = U−1
zz

(
∂�
∂z

)H
=

[(
∂g(ẑ)

∂z

)H
W
(

∂g(ẑ)
∂z

)]−1 (
g(ẑ)
∂z

)H
We(ẑ)

Stability generally requires positive definiteness of both Uzz and its Schur complement:
Ũzz = Uzz−Uz̄zU

−1
z̄z̄ Uzz̄. The need to step for positive-definiteness of the Schur complement

can significantly increase the complexity of an on-line adaptive filtering algorithm.

If g(z) is holomorphic, then stability only requires positive definiteness of the matrix Uzz =(
∂g(ẑ)

∂z

)H
W
(

∂g(ẑ)
∂z

)
, which will be the case if g(z) is one-to-one. Thus, the algorithm may

be easier to stabilize when g(z) is holomorphic.

Convergence tends to be fast.

3. Pseudo-Gauss-Newton Algorithm.

Applies to the least-squares loss function (112).

HGauss
cc (ĉ) =

(
Uzz 0
0 Uz̄z̄

)
where Uzz is given by (140) and Uz̄z̄ = Uzz.

Qpseudo-Gauss(ĉ) = [Hpseudo-Gauss
cc (ĉ)]−1 =

(
U−1

zz 0
0 Uz̄z̄

−1

)
Δcpseudo-Gauss = −Qpseudo-Gauss(ĉ)

(
∂�(ĉ)
∂c

)H
where(

∂�
∂c

)H
= −1

2
GHWe− 1

2
SGHWe = 1

2

(
B(ĉ) + SB(ĉ)

)
with B(ĉ) = −G(ĉ)HWe(ĉ)

Δzpseudo-Gauss = − [Uzz(ẑ)]
−1
(

∂�(ẑ)
∂z

)H
=

[(
∂g
∂z

)H
W
(

∂g
∂z

)
+
(

∂g
∂z̄

)H
W
(

∂g
∂z̄

)]−1 (
∂�(ẑ)
∂z

)H
where

(
∂�
∂z

)H
= −1

2

[(
g(ẑ)
∂z

)H
We(ẑ) +

(
g(ẑ)
∂z̄

)H
We(ẑ)

]
g(z) holomorphic:

Uzz takes the simpler form of (142) , and Uz̄z̄ = Uzz.

Hpseudo-Gauss
cc (ĉ) =

(
Uzz 0
0 Uz̄z̄

)
= 1

2

((
∂g
∂z

)H
W
(

∂g
∂z

)
0

0
(

∂g
∂z

)H
W
(

∂g
∂z

))
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(
∂�
∂z

)H
= −1

2

(
g(ẑ)
∂z

)H
We(ẑ)

Δzpseudo-Gauss =

[(
∂g(ẑ)

∂z

)H
W
(

∂g(ẑ)
∂z

)]−1 (
g(ẑ)
∂z

)H
We(ẑ)

Stability requires positive definiteness of Uzz(ẑ) =
(

∂g(ẑ)
∂z

)H
W
(

∂g(ẑ)
∂z

)
which will be the

case if g(z) is one-to-one.

Convergence is expected to be quick but generally slower than for Gauss-Newton due to loss
of efficiency due to neglecting the block off-diagonal terms in the Gauss-Newton Hessian
(off-set, however, by reduced complexity and possible gains in stability), except for the case
when g(z) is holomorphic, in which case the two algorithms coincide.

4. Newton-Algorithm.

Applies to any smooth loss function which is bounded from below.

HNewton
cc (ĉ) =

(Hzz(ĉ) Hz̄z(ĉ)
Hzz̄(ĉ) Hz̄z̄(ĉ)

)
QNewton(ĉ) = [HNewton

cc (ĉ)]−1

ΔcNewton = −QNewton(ĉ)
(

∂�(ĉ)
∂c

)H
ΔzNewton =

(Hzz −Hz̄zH−1
z̄z̄Hzz̄

)−1
{
Hz̄zH−1

z̄z̄

(
∂�
∂z̄

)H − ( ∂�
∂z

)H}
Application to the Least-Squares Loss Function (112):

HNewton
cc =

(Hzz Hz̄z

Hzz̄ Hz̄z̄

)
=
(

Uzz Uz̄z

Uzz̄ Uz̄z̄

)
−∑m

i=1

(
V (i)
zz V (i)

z̄z

V (i)

zz̄ V (i)

z̄z̄

)
= HGauss

cc (ĉ)−∑m
i=1

(
V (i)
zz V (i)

z̄z

V (i)

zz̄ V (i)

z̄z̄

)
Uzz is given by (140), Uz̄z̄ = Uzz, Uz̄z is given by (141), Uzz̄ = Uz̄z

V (i)
zz is given by (143), V (i)

z̄z̄ = V (i)
zz , V (i)

z̄z is given by (144), V (i)

zz̄ = V (i)

z̄z .

ΔcNewton = −QNewton(ĉ)
(

∂�(ĉ)
∂c

)H
where(

∂�
∂c

)H
= −1

2
GHWe− 1

2
SGHWe = 1

2

(
B(ĉ) + SB(ĉ)

)
with B(ĉ) = −G(ĉ)HWe(ĉ)

ΔzNewton =
(Hzz −Hz̄zH−1

z̄z̄Hzz̄

)−1
{
Hz̄zH−1

z̄z̄

(
∂�
∂z̄

)H − ( ∂�
∂z

)H} where(
∂�
∂z

)H
= −1

2

[(
g(ẑ)
∂z

)H
We(ẑ) +

(
g(ẑ)
∂z̄

)H
We(ẑ)

]
;
(

∂�
∂z̄

)H
=
(

∂�
∂z

)H
g(z) holomorphic:

HNewton
cc =

(
Uzz 0
0 Uz̄z̄

)
−∑m

i=1

(
V (i)

zz V (i)

z̄z

V (i)

zz̄ V (i)

z̄z̄

)
= Hpseudo-Gauss

cc (ĉ)−∑m
i=1

(
V (i)

zz V (i)

z̄z

V (i)

zz̄ V (i)

z̄z̄

)
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V (i)
zz and V (i)

z̄z take the simpler forms of (145), V (i)

z̄z̄ = V (i)
zz , V (i)

zz̄ = V (i)

z̄z

Uzz takes the simpler form of (142), Uz̄z̄ = Uzz

ΔzNewton =
(Hzz −Hz̄zH−1

z̄z̄Hzz̄

)−1
{
Hz̄zH−1

z̄z̄

(
∂�
∂z̄

)H − ( ∂�
∂z

)H} where(
∂�
∂z

)H
= −1

2

(
g(ẑ)
∂z

)H
We(ẑ);

(
∂�
∂z̄

)H
=
(

∂�
∂z

)H
Stability generally requires positive definiteness of both Hzz and its Schur complement
H̃z̄z̄ =

(Hzz −Hz̄zH−1
z̄z̄Hzz̄

)
. The need to step for positive-definiteness of the Schur com-

plement can significantly increase the complexity of an on-line adaptive filtering algorithm.

When minimizing the least-squares loss function, we expect stability to be greater when
g(c) is holomorphic. This is particularly true if g(c) is also onto and the algorithm is con-
vergent, as we then expect the difference between the Newton and Gauss-Newton Hessians
(and hence the difference between the Newton and Gauss-Newton algorithms) to become
negligible asymptotically.

The Newton algorithm is known to have very fast convergence properties, provided it can be
stabilized.

5. Pseudo-Newton Algorithm.

Applies to any smooth loss function which is bounded from below.

Hpseudo-Newton
cc (ĉ) =

(Hzz(ĉ) 0
0 Hz̄z̄(ĉ)

)
Qpseudo-Newton(ĉ) = [Hpseudo-Newton

cc (ĉ)]−1

Δcpsedudo-Newton = −Qpseudo-Newton(ĉ)
(

∂�(ĉ)
∂c

)H
Δzpseudo-Newton = − [Hzz(ẑ)]−1

(
∂�(ẑ)
∂z

)H
Application to the Least-Squares Loss Function (112):

Hpseudo-Newton
cc =

(Hzz(ĉ) 0
0 Hz̄z̄(ĉ)

)
=

⎛⎜⎜⎝Uzz −
m∑

i=1
V (i)
zz 0

0 Uz̄z̄ −
m∑

i=1
V (i)

z̄z̄

⎞⎟⎟⎠
= Hpseudo-Gauss

cc (ĉ)−

⎛⎜⎜⎝
m∑

i=1
V (i)
zz 0

0
m∑

i=1
V (i)

z̄z̄

⎞⎟⎟⎠
V (i)

zz is given by (143) and V (i)

z̄z̄ = V (i)
zz . Uzz is given by (140) and Uz̄z̄ = Uzz

Δcpseudo-Newton = −Qpseudo-Newton(ĉ)
(

∂�(ĉ)
∂c

)H
where(

∂�
∂c

)H
= −1

2
GHWe− 1

2
SGHWe = 1

2

(
B(ĉ) + SB(ĉ)

)
with B(ĉ) = −G(ĉ)HWe(ĉ)
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Δzpseudo-Newton = − [Hzz(ẑ)]−1
(

∂�(ẑ)
∂z

)H
= −
[
Uzz −

m∑
i=1

V (i)
zz

]−1 (
∂�(ẑ)
∂z

)H
where

(
∂�
∂z

)H
= −1

2

[(
g(ẑ)
∂z

)H
We(ẑ) +

(
g(ẑ)
∂z̄

)H
We(ẑ)

]
g(z) holomorphic ⇒
Uzz takes the simpler form of (142), Uz̄z̄ = Uzz.

V (i)
zz takes the simpler form (145), V (i)

z̄z̄ = V (i)
zz(

∂�(ẑ)
∂z

)H
= −1

2

(
g(ẑ)
∂z

)H
We(ẑ)

Δzpseudo-Newton = 1
2

[
Uzz −

m∑
i=1

V (i)
zz

]−1 (
g(ẑ)
∂z

)H
We(ẑ)

=

[(
∂g
∂z

)H
W
(

∂g
∂z

)− m∑
i=1

∂
∂z

(
∂gi(z)

∂z

)H
[We ]i

]−1 (
g(ẑ)
∂z

)H
We(ẑ)

Stability generally requires positive definiteness ofHzz.

The pseudo-Newton is expected to be fast, but have a loss of efficiency relative to the Newton
algorithm. When g(z) is holomorphic and onto, we expect good performance as asymptoti-
cally a stabilized pseudo-Newton algorithm will coincide with the Newton algorithm. If g(z)
is nonholomorphic, the pseudo-Newton and Newton algorithms will not coincide asymptot-
ically, so the speed of the pseudo-Newton algorithm is expected to always lag the Newton
algorithm.

The algorithm suggested by Yan and Fan in [34] corresponds in the above taxonomy to the
pseudo-Newton algorithm. We see that for obtaining a least-squares solution to the nonlinear
inverse problem y = g(z), if g is holomorphic, then the Yan and Fan suggestion can result in a
good approximation to the Newton algorithm. However, for nonholomorphic least-squares inverse
problems and for other types of optimization problems (including the problem considered by Yan
and Fan in [34]), the approximation suggested by Yan and Fan is not guaranteed to provide a good
approximation to the Newton algorithm.94 However, as we have discussed, it does result in an
admissible generalized gradient descent method in its own right, and, as such, one can judge the
resulting algorithm on its own merits and in comparison with other competitor algorithms.

Equality Constraints. The classical approach to incorporating equality constraints into the prob-
lem of optimizing a scalar cost function is via the method of Lagrange multipliers. The theory of
Lagrange multipliers is well-posed when the objective function and constraints are real-valued
functions of real unknown variables. Note that a vector of p complex equality constraint condi-
tions,

g(z) = 0 ∈ Cp

94Such a a claim might be true. However, it would have to be justified.
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is equivalent to 2p real equality constraints corresponding to the conditions

Re g(z) = 0 ∈ Rp and Im g(z) = 0 ∈ Rp .

Thus, given the problem of optimizing a real scalar-valued loss function �(z) subject to a vector
of p complex equality constraints constraints h(z) = 0, one can construct a well-defined lagrangian
as

L = �(z) + λT
R Re g(z) + λT

I Im g(z) , (146)

for real-valued p-dimensional lagrange multiplier vectors λR and λI .

If we define the complex lagrange multiplier vector λ by

λ = λR + j λI ∈ Cp

it is straightforward to show that the lagrangian (146) can be equivalently written as

L = �(z) + Re λHg(z) . (147)

One can now apply the multivariate CR-Calculus developed in this note to find a stationary
solution to the Lagrangian (147). Of course, subtle issues involving the application of the z, c-
complex, and c-real perspectives to the problem will likely arise on a case-by-case basis.

Final Comments on the 2nd Order Analysis. It is evident that the analysis of second-order
properties of a real-valued function on Cn is much more complicated than in the purely real case
[25], perhaps dauntingly so. Thus, it is perhaps not surprising that very little analysis of these
properties can be found in the literature.95 By far, the most illuminating is the paper by Van den
Bos [27], which, unfortunately, is very sparse in its explanation.96 A careful reading of Van den
Bos indicates that he is fully aware that there are two interpretations of c, the real interpretation
and the complex interpretation. This is a key insight. As we have seen above, it provides a very
powerful analysis and algorithm development tool which allows us to switch between the c-real
interpretation (which enables us to use the tools and insights of real analysis) and the c-complex
perspective (which is shorthand for working at the algorithm implementation level of z and z̄). The
now-classic paper by Brandwood [14] presents a development of the complex vector calculus using
the c-complex perspective which, although adequate for the development of first-order algorithms,
presents greater difficulties when used as a tool for second order algorithm development. In this
note, we’ve exploited the insight provided by Van den Bos [27] to perform a more careful, yet still
preliminary, analysis of second-order Newton and Gauss-Newton algorithms. Much work remains
to explore the analytical, structural, numerical, and implementation properties of these, and other
second order, algorithms.

95That I could find. Please alert me to any relevant references that I am ignorant of!
96Likely a result of page limitations.
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7 Applications

1. A Simple “Nonlinear” Least Squares Problem - I. This is a simple, but interesting, problem
which is nonlinear in z ∈ C yet linear in c ∈ C ⊂ C2.

Let z ∈ C be an unknown scalar complex quantity we wish to estimate from multiple iid noisy
measurements,

yk = s + nk ,

k = 1, · · · , n, of a scalar signal s ∈ C which is related to z via

s = g(z), g(z) = αz + βz̄.

where α ∈ C and β ∈ C are known complex numbers. It is assumed that the measurement noise nk

is iid and (complex) Gaussian, nk ∼ N(0, σ2I), with σ2 known. Note that the function g(z) is both
nonlinear in z (because complex conjugation is a nonlinear operation on z) and nonholomorphic
(nonanalytic in z). However, because the problem must be linear in the underlying real space
R = R2 (a fact which shows up in the obvious fact that the function g is linear in c), we expect
that this problem should be exactly solvable, as will be shown to indeed be the case.

Under the above assumptions the maximum likelihood estimate (MLE) is found by minimizing
the loss function [15]97

�(z) =
1

2n

n∑
k=1

‖yk − g(z)‖2

=
1

n

n∑
k=1

‖yk − αz − βz̄‖2

=
1

2n

n∑
k=1

(yk − αz − βz̄)(yk − αz − βz̄)

=
1

2n

n∑
k=1

(ȳk − ᾱz̄ − β̄z)(yk − αz − βz̄).

Note that this is a nonlinear least-squares problem as the function g(z) is nonlinear in z. 98 Further-
more, g(z) is nonholomorphic (nonanalytic in z). Note, however, that although g(z) is nonlinear
in z, it is linear in c = (z, z̄)T , and that as a consequence the loss function �(z) = �(c) has an exact
second order expansion in c of the form (92), which can be verified by a simple expansion of �(z)
in terms of z and z̄ (see below). The corresponding c-complex Hessian matrix (to be computed
below) does not have zero off-diagonal entries, which shows that a loss function being quadratic
does not alone ensure thatHz̄z = 0, a fact which contradicts the claim made in [34].

97The additional overall factor of 1
n has been added for convenience.

98Recall that complex conjugation is a nonlinear operation.
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Defining the sample average of n samples {ξ1, · · · , ξk} by

〈ξ〉 � 1

n

n∑
k=1

ξk

the loss function �(z) can be expanded and rewritten as

2 �(z) =
〈
|y|2
〉

+ αβ̄z2 − (α 〈ȳ〉+ β̄ 〈y〉) z +
(
|α|2 + |β|2

)
zz̄ − (ᾱ 〈y〉+ β 〈ȳ〉) z̄ + ᾱβz̄2 (148)

or

�(z) =
1
2

〈
|y|2
〉
− 1

2
(
α 〈ȳ〉+ β̄ 〈y〉 ᾱ 〈y〉+ β 〈ȳ〉)(z

z̄

)
+

1
4

(
z

z̄

)H (|α|2 + |β|2 2ᾱβ

2αβ̄ |α|2 + |β|2
)(

z

z̄

)
.

Since this expansion is done using the z-perspective, we expect that it corresponds to a second
order expansion about the value ẑ = 0,

�(z) = �(0) +
∂�(0)
∂c

c +
1
2
cHHC

cc(0)c (149)

with
∂�(0)

∂c
=
(

∂�(0)
∂z

∂�(0)
∂z̄

)
= −1

2

(
α 〈ȳ〉+ β̄ 〈y〉 ᾱ 〈y〉+ β 〈ȳ〉)

and

HC

cc(0) =
1

2

(|α|2 + |β|2 2 ᾱβ

2 αβ̄ |α|2 + |β|2
)

.

And indeed this turns out to be the case. Simple differentiation of (148) yields,

∂�(z)

∂z
= αβ̄z +

1

2

(|α|2 + |β|2) z̄ − 1

2

(
α 〈ȳ〉+ β̄ 〈y〉)

∂�(z)

∂z̄
= ᾱβz̄ +

1

2

(|α|2 + |β|2) z − 1

2
(ᾱ 〈y〉+ β 〈ȳ〉)

which evaluated at zero give the linear term in the quadratic loss function, and further differentia-
tions yield,

HC

cc(z) =

(Hzz Hz̄z

Hzz̄ Hz̄z̄

)
=

1

2

(|α|2 + |β|2 2 ᾱβ

2 αβ̄ |α|2 + |β|2
)

which is independent of z. Note that, as expected,

∂�(z)

∂z̄
=

∂�(z)

∂z
.

If we set the two partial derivatives to zero, we obtain two stationarity equations for the two
stationary quantities z and z̄. Solving for z then yields the least-squares estimate of z,99

ẑopt =
1

|α|2 − |β|2 (ᾱ 〈y〉 − β 〈ȳ〉) .

99Note that this answer reduces to the obvious solutions for the two special cases α = 0 and β = 0.
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This solution can also be obtained by completing the square on (149) to obtain

ĉopt = − (HC

cc)
−1

(
∂�(0)

∂c

)H

An obvious necessary condition for the least-squares solution to exist is that

|α|2 = |β|2 .

The solution will be a global100 minimum if the Hessian matrix is positive definite. This will be
true if the two leading principal minors are strictly positive, which is true if and only if, again,
|α|2 = |β|2. Thus, if |α|2 = |β|2 the solution given above is a global minimum to the least squares
problem.

The condition |α|2 = |β|2 corresponds to loss of identifiability of the model

g(z) = αz + βz̄ .

To see this, first note that to identify a complex number is equivalent to identifying both the real
and imaginary parts of the number. If either of them is unidentifiable, then so is the number.

Now note that the condition |α|2 = |β|2 says that α and β have the same magnitude, but, in
general, a different phase. If we call the phase difference φ, then the condition |α|2 = |β|2 is
equivalent to the condition

α = ejφβ ,

which yields

g(z) = ejφβz + βz̄ = ej φ
2 β
(
ej φ

2 z + e−j φ
2 z̄
)

= ej φ
2 β
(
ej φ

2 z + ej φ
2 z
)

= ej φ
2 β Re
{
ej φ

2 z
}

.

Thus, it is evident that the imaginary part of ej φ
2 z is unidentifiable, and thus the complex number

ej φ
2 z itself is unidentifiable. And, since

z = e−j φ
2

(
ej φ

2 z
)

= e−j φ
2

(
Re
{

ej φ
2 z
}

+ j Im
{
ej φ

2 z
})

,

it is obvious that z is unidentifiable.

Note for the simplest case of α = β (φ = 0), we have

g(z) = αz + αz̄ = α Re {z}

in which case Im {z}, and hence z, is unidentifiable.

100Because the Hessian is independent of z.
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2. A Simple “Nonlinear” Least Squares Problem - II. The “nonlinearity” encountered in the
previous example, is in a sense “bogus” and is not a nonlinearity at all, at least when viewed from
the c-real perspective.101 Not surprisingly, then, we were able to compute an exact solution. Here,
we will briefly look at the Newton and Gauss-Newton algorithms applied to the simple problem of
Example 1.

In the previous example, we computed the Newton Hessian of the least-squares loss function
(148). The difference between the Newton and Gauss-Newton algorithm resides in the difference
between the Newton Hessian and the Gauss-Newton Hessian. To compute the Gauss-Newton
Hessian, note that

y = g(c) = (α β)

(
z

z̄

)
= Gc

and therefore (since the problem is linear in c) we have the not surprising result that

GΔc =
∂g(c)

∂c
Δc

with
G = (α β) .

In this example, the least-squares weighting matrix is W = I and we have

GHWG = GHG =

(
ᾱ

β̄

)
(α β) =

(|α|2 ᾱβ

β̄α |β|2
)

which is seen to be independent of c. From (121), we construct the Gauss-Newton Hessian as

HGauss
cc = P

(
GHG
)

=

(|α|2 ᾱβ

β̄α |β|2
)

+ S

(|α|2 ᾱβ

β̄α |β|2
)

S

2
=

1
2

(|α|2 + |β|2 2 ᾱβ

2αβ̄ |α|2 + |β|2
)

= HC

cc

showing that for this simple example the Newton and Gauss-Newton Hessians are the same, and
therefore the Newton and Gauss-Newton algorithms are identical. As seen from Equations (129)
and (131), this is a consequence of the fact that g(c) is linear in c as then the matrix of second
partial derivatives of g required to compute the difference between the Newton and Gauss-Newton
algorithms vanishes

Acc(g) � ∂

∂c

(
∂g

∂c

)H

= 0.

¿From the derivatives computed in the previous example, we can compute
(

∂�(ĉ)
∂c

)H
as

(
∂�(ĉ)

∂c

)H

=

⎛⎝(∂�(ĉ)
∂z

)H(
∂�(ĉ)
∂z̄

)H
⎞⎠ =

⎛⎝(∂�(0)
∂z

)H(
∂�(0)
∂z̄

)H
⎞⎠ +

1

2

(|α|2 + |β|2 2 ᾱβ

2 αβ̄ |α|2 + |β|2
)(

ẑ
ˆ̄z

)
101This problem was designed to have the interesting feature that it is both nonlinear and non (complex) analytic in

z ∈ C, but both linear and (real) analytic when viewed in terms of the corresponding real parameterization r ∈ R 2 or
c ∈ R2.
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or (
∂�(ĉ)

∂c

)H

=

(
∂�(0)

∂c

)H

+HC

ccĉ.

The optimal update in the Newton algorithm is therefore given by

Δ̂c = − (HC

cc)
−1

(
∂�(ĉ)

∂c

)H

= − (HC

cc)
−1

(
∂�(0)

∂c

)H

− ĉ = ĉopt − ĉ .

The update step in the Newton algorithm is given by

ĉnew = ĉ + αΔ̂c .

If we take the “Newton stepsize” α = 1, we obtain

ĉnew = ĉ + Δ̂c = ĉ + ĉopt − ĉ = ĉopt

showing that we can attain the optimal solution in only one update step. For the real case, it
is well-known that the Newton algorithm attains the optimum in one step for a quadratic loss
function. Thus our result is not surprising given that the problem is a linear least-squares problem
in c.

Note that the off-diagonal elements of the constant-valued Hessian HC

cc are never zero and
generally are not small relative to the size of the diagonal elements of HC

cc. This contradicts the
statement made in [34] that for a quadratic loss function, the diagonal elements must be zero.102

However, the pseudo-Newton algorithm proposed in [34] will converge to the correct solution when
applied to our problem, but at a slower convergent rate than the full Newton algorithm, which is
seen to be capable of providing one-step convergence. We have a trade off between complexity
(the less complex pseudo-Newton algorithm versus the more complex Newton algorithm) versus
speed of convergence (the slower converging pseudo-Newton algorithm versus the fast Newton
algorithm).

3. The Complex LMS Algorithm. Consider the problem of determining the complex vector
parameter a ∈ Cn which minimizes the following generalization of the loss function (2) to the
vector parameter case,

�(a) = E
{|ek|2
}

, ek = ηk − aHξk, (150)

for ηk ∈ C and ξk ∈ Cn. We will assume throughout that the parameter space is Euclidean so that
Ωa = I . The cogradient of �(a) with respect to the unknown parameter vector a is given by

∂

∂a
�(a) = E

{
∂

∂a
|e|2
}

.

102It is true, as we noted above, that for the quadratic loss function associated with a holomorphic nonlinear inverse
problem the off-diagonal elements of the Hessian are zero. However, the statement is not true in general.
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To determine the cogradient of

|ek|2 = ēkek = ekēk = (ηk − aHξk)(ηk − aHξk)

note that
ēk = (ηk − aHξk) = (η̄k − ξH

k a)

and that ek = (ηk − aHξk) is independent of a. Then we have

∂

∂a
ekēk = ek

∂

∂a
(η̄k − ξH

k a)

= −ek
∂

∂a
ξH
k a

= − ek ξH
k .

The gradient of |ek|2 = ekēk is given by

∇aekēk =

(
∂

∂a
ekēk

)H

= − (ek ξH
k

)H
= −ξkēk .

Thus, we readily have that the gradient (direction of steepest ascent) of the loss function �(a) =
E
{|ek|2
}

is
∇a �(a) = −E {ξkēk} = −E

{
ξk (η̄k − ξH

k a)
}

.

If we set this (or the cogradient) equal to zero to determine a stationary point of the loss function
we obtain the standard Wiener-Hopf equations for the MMSE estimate of a.103

Alternatively, if we make the instantaneous stochastic-gradient approximation,

∇a�(a) ≈ ∇̂a�(âk) � ∇a|ek|2 = −ξkēk = ξk

(
η̄k − ξH

k âk

)
,

where âk is a current estimate of the MMSE value of a and−∇a�(a) gives the direction of steepest
descent of �(a), we obtain the standard LMS on-line stochastic gradient-descent algorithm for
learning an estimate of the complex vector a,

âk+1 = âk − αk∇̂a�(âk)

= âk + αkξkēk

= âk + αkξk

(
η̄k − ξH

k âk

)
=
(
I − αkξkξ

H
k

)
âk + αkξkη̄k .

Thus, we have easily derived the complex LMS algorithm,

Complex LMS Algorithm: âk+1 =
(
I − αkξkξ

H
k

)
âk + αkξkη̄k . (151)

103Which, as mentioned earlier, can also be obtained from the orthogonality principle or completing the square.
Thus, if the Wiener-Hopf equations are our only goal there is no need to discuss complex derivatives at all. It is only
when a direction of steepest descent is needed in order to implement an on-line adaptive descent-like algorithm that
the need for the extended or conjugate derivative arises.
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