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Abstract. In this paper, we study the k-tree partition problem which
is a partition of the set of edges of a graph into k edge-disjoint trees.
This problem occurs at several places with applications e.g. in network
reliability and graph theory. In graph drawing there is the still unbeaten
(n − 2) × (n − 2) area planar straight line drawing of maximal planar
graphs using Schnyder’s realizers [15], which are a 3-tree partition of the
inner edges. Maximal planar bipartite graphs have a 2-tree partition,
as shown by Ringel [14]. Here we give a different proof of this result
with a linear time algorithm. The algorithm makes use of a new ordering
which is of interest of its own. Then we establish the NP-hardness of the
k-tree partition problem for general graphs and k ≥ 2. This parallels NP-
hard partition problems for the vertices [3], but it contrasts the efficient
computation of partitions into forests (also known as arboricity) by ma-
troid techniques [7].

1 Introduction

A k-tree partition of a graph G = (V, E) is the partition of the set of edges E
into k disjoint subsets which each induce a tree. Alternatively, the edges of G are
colored by k colors and each color induces a tree. The trees are not necessarily
spanning trees. The k-tree partition problem for a graph G and an integer k is
whether or not G has a k-tree partition.

A relaxed version without connectivity is the arboricity a(G) of a graph G,
which is a partition of the edges of G into at most a(G) forests. A well-known
theorem by Nash-Williams states that a graph has arboricity c if and only if
every non-trivial subgraph H has at most c(|V (H)| − 1) edges [11,12]. In par-
ticular, this implies that every planar graph has arboricity at most 3, and every
planar bipartite graph has arboricity 2. In fact, the two forests of the arboricity-
decomposition must be “almost” trees: either one is a spanning tree and the
other has n − 3 edges, or both have n − 2 edges. Ringel [14] proved that in fact,
any maximal planar bipartite graph can be split into two trees, both with n − 2
edges.

In this paper, we study algorithmic aspects of splitting a maximal planar
bipartite graph into two trees. The proof by Ringel [14] is algorithmic in nature,
but not particularly fast; it can be implemented in quadratic time. We give
a different proof to show that every maximal planar bipartite graph can be
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split into two trees; the resulting algorithm is quite simple and can easily be
implemented in linear time. As a side-effect, we develop a special vertex ordering
for maximal planar bipartite graphs, which may be of interest of its own.

For general graphs with n vertices and m edges the arboricity can efficiently
be computed by matroid techniques [7]. Here the relaxation to forests is crucial.
We show the NP-hardness of the k-tree partition problem for every k ≥ 2. For
k = 2 this is proved by a reduction from the Not-All-Equal-3SAT problem, and
for k ≥ 3 there is a reduction from the k-coloring problem. These NP-hardness
results complement common and extended versions of partition and coloring
problems [2,3,8], which however are defined for the vertices.

Partitioning graphs into trees is also used in graph drawing. For example, the
Schnyder realizers [15] are a partition of the inner edges of a maximal planar
graph into three trees. They still yield the best known area bounds for straight-
line grid drawings of maximal planar graphs.

In this paper, first we study maximal planar bipartite graphs and how they
split into two trees, and then we show the NP-hardness results for the general
case.

2 Maximal Planar Bipartite Graphs

Let G = (V, E) be a maximal planar bipartite (mpb) graph. Thus, G has a
vertex partition V = W ∪ B into white vertices W and black vertices B such
that each edge connects a white vertex with a black vertex. Furthermore, G can
be drawn in the plane without crossings such that every face has exactly four
incident edges. It is well-known that G has 2n − 4 edges (where n = |V |) and is
bi-connected (i. e., cannot be disconnected by removing one vertex.)

2.1 A Vertex Ordering for mpb Graphs

In this section, we present a vertex ordering for maximal planar bipartite graphs,
which we will then use in the next section to obtain a split of an mpb graph into
two trees.

Theorem 1. Let G be a maximal planar bipartite graph with a fixed planar
embedding and a fixed outer-face. Then there exists a vertex ordering v1, . . . , vn

of G such that

– v1 and vn are the two black vertices on the outer-face.
– For all i > 1, vertex vi is on the outer-face of the graph induced by v1, . . . , vi.
– Every white vertex vi has exactly one predecessor, i. e., neighbor with a

smaller number.
– Every black vertex vi, i > 1 has at least two predecessors.

We will call such a vertex ordering an mpb-ordering. See Figure 1. To prove
Theorem 1, we need an auxiliary graph. Let EB be the black diagonals, i. e.,
for every face f in G (which has exactly two black vertices since G is maximal
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Fig. 1. An mpb-ordering of G, and the graph GB (solid) with a bipolar orientation

planar bipartite), add an edge between the two black vertices on f to EB. Let
GB be (B, EB), i. e., take the black vertices and black diagonals only. See also
Figure 1.

One can show that GB is bi-connected [4]. Therefore, we can compute an st-
numbering of GB, i. e., an ordering b1, . . . , bl of the black vertices such that for
any 1 < j < l, vertex bj has at least one predecessor and at least one successor,
i. e., neighbor with a larger index [10]. Moreover, we can choose which vertices
should be b1 and bl, and we can compute this order in linear time [6]. We choose
here b1 and bl to be the two black vertices on the outer-face of G.

From this st-numbering, we can obtain a bipolar orientation, i. e., an acyclic
orientation of the edges of GB such that there is only one source (vertex without
incoming edge) and only one sink (vertex without outgoing edge), simply by
directing every edge from the lower-indexed to the higher-indexed vertex.

Let G+ = (V, E ∪ EB) be the graph resulting from G by adding the black
diagonals. We now extend the bipolar orientation of GB into one of G+ as
follows. For every white vertex w, let bi be the neighbor of w (in G) that has the
smallest index among the neighbors of w. Orient the edge (bi, w) from bi to w, and
all other edges incident to w away from w. Clearly this orientation is bipolar:
every white vertex must have degree 2 (by maximality), and has exactly one
incoming edge by definition, and hence at least one outgoing edge. Furthermore,
the orientation is acyclic since any directed path encounters increasingly larger
indices in its black vertices.

From this bipolar orientation, we can recover a vertex ordering of all vertices of
G, simply by computing a topological order in the acyclic graph. Let v1, . . . , vn

be the resulting order; one can easily verify that it satisfies all conditions of
Theorem 1.

Note that all steps of computing the mpb-ordering can easily be implemented
in linear time.

The mbp-ordering is not a canonical ordering [5,9]: The black vertices act
similar to the vertices of a canonical ordering, but white vertices have only one
predecessor and violate the 2-connectivity property of a canonical ordering. E.g.
the mbp-ordering of the graph in Figure 1 is not a canonical ordering.
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2.2 Splitting into Two Trees

Now assume that we are given an mpb-ordering v1, . . . , vn. We now show how
to obtain a decomposition into two trees from it. We have two simple rules (see
also Figure 2):

– For any white vertex, label the (unique) incoming edge with 1.
– For any black vertex vi �= v1, label the leftmost incoming edge with 1 and

the rightmost incoming edge with 2. Here, “leftmost” and “rightmost” are
taken with respect to the planar embedding; recall that vi is in the outer-face
of the graph induced by v1, . . . , vi−1, hence we can sort its incoming edges
by the order in which these neighbors appear on the outer-face.
All other (if any) incoming edges of vi are called “middle incoming” and
labeled with 2 as well. However, we will reverse the orientation of these
edges, to make it easier to argue why the resulting structures must be trees.
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Fig. 2. Splitting the graph into two trees

From now on, let the 1-edges be the edges labeled 1, and the 2-edges be the
edges labeled 2. We also use 1-path, 1-cycle and so on to mean a path/cycle of
1-edges. It is very easy to see that the 1-edges form a tree.

Lemma 1. The 1-edges form a spanning tree.

Proof. Since every vertex except v1 has exactly one incoming 1-edge, there are
n − 1 1-edges. v1 has outgoing 1-edges, so the 1-edges span all vertices of the
graph. No 1-edge had its orientation reversed, so the 1-edges form a directed
acyclic graph. It is well-known that such a graph is a spanning tree.

Now we come to the significantly harder part of proving that the 2-edges form
a tree. We first need observations about the order of edges around each vertex;
see also Figure 3.

Claim. v1 has only outgoing 1-edges. For any other black vertex, the incident
edges are clockwise in the planar embedding as follows:

– One incoming 1-edge.
– Some number (possibly none) of outgoing 1-edges.
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– One incoming 2-edge.
– Some number (possibly none) of outgoing 2-edges.

Proof. This follows directly from the way labels and directions were assigned to
vertices, plus the fact that every successor of a black vertex is a white vertex
and hence contributes an outgoing 1-edge.

Claim. Let w1, w2 be the white vertices on the outer-face. For every white vertex,
the incident edges are ordered clockwise in the planar embedding as follows:

– One incoming 1-edge.
– Some number (possibly none) of outgoing 2-edges.
– One incoming 2-edge (except for w1 and w2).
– Some number (possibly none) of outgoing 1-edges.

Proof. Clearly each white vertex w has an incoming 1-edge. Now consider any
successor b of w, which is a black vertex. The label of the edge (w, b) depends
on whether w is a left, middle or right predecessor of b. If w is a right (left)
predecessor, then (w, b) is labeled 2 (1), and its orientation is maintained. If w is
a middle predecessor of b, then (w, b) is labeled 2 and turned around. Clearly the
clockwise order of edges around w corresponds to whether w is a right, middle,
left predecessor, so all that remains to argue is that if w �= w1, w2, then it indeed
must be the middle predecessor exactly once.

Consider the moment when we add the vertex b that makes w disappear
from the outer-face. Then b must be black (white vertices have indegree 1), and
adjacent to w by maximality, so w is a middle predecessor of b. It cannot be
middle predecessor of anyone else, since it can disappear from the outer-face
only once.

Lemma 2. The 2-edges form a tree.

Proof. Let v1, w1, vn, w2 be the outer-face in clockwise order. By the claims,
every vertex except v1, w1, w2 has exactly one incoming 2-edge, so there are
n − 3 2-edges. w2 has an outgoing 2-edge (to vertex vn), so the graph spanned
by 2-edges has n − 3 edges and n − 2 vertices. To show that this graph is a tree
it therefore suffices to show that it has no cycles.
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Fig. 3. Labeled edges around each vertex, and why no directed 2-cycle can exist
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Assume we had a cycle of 2-edges C. Since every vertex has at most one
incoming 2-edge, such a cycle must necessarily be directed. Assume that the
cycle is directed counter-clockwise in the fixed planar embedding; the case of a
clockwise directed cycle is very similar. By the first Claim, no black vertex on
C can have 1-edges between the incoming 2-edge and the outgoing 2-edge of C.
Hence, a black vertex on C has no incident 1-edges on the inside of C. Similarly
by the second Claim a white vertex has no incident 1-edges on the outside of the
cycle. See also Figure 3.

We know that the 1-edges form a rooted tree, and its root v1 has no incident
2-edges and hence is not part of C. Now where is v1 located? Assume that it
is outside cycle C. Let w be a white vertex on C, and let b be its predecessor
on the (unique) 1-path from v1 to w. Vertex b is inside C by the above, hence
there exists a directed 1-path from the outside of C to the inside of C. However,
the order of edges around each vertex of C makes this impossible: any directed
1-path can reach C from the outside only at a black vertex, and is immediately
directed back to the outside from there. Hence v1 must be inside C. But now we
can repeat the argument with a black vertex b on C; no directed 1-path can go
from inside C to the neighbor of the incoming 1-edge of b (which is outside C).
So we obtain a contradiction and no directed 2-cycle can exist.

Theorem 2. Every maximal planar bipartite graph has a 2-tree partition. Fur-
thermore, such a partition can be found in linear time.

Not only gave we a split into two trees, we also obtained that the edges around
each vertex are ordered in a special way when considering the incoming/outgoing
edges of each tree. Note that this is similar to the edge-orderings obtained when
splitting a triangulated planar graph into three trees [15]. An �n/2� × �n/2 − 1�
grid drawing of planar bipartite graphs has been obtained in [1] using different
techniques.

3 Tree Partitions of General Graphs

In this section we address the complexity of the tree partition problem. Recall
that a k-tree partition of a graph is equivalent with a k-edge coloring such
that each color induces a tree. Our problem is complementary to common and
generalized partition and coloring problems of graphs which however address the
vertices. Such problems have been studied in many versions, see, e.g., [2,3,8].

Clearly, a graph has a 1-tree partition if and only if it is a tree. This can be
checked easily. All other cases are NP-hard. It turns out that connectivity is the
crucial factor for the NP-hardness, since the partition into forests can be solved
in polynomial time.

Theorem 3. It is NP-hard to test whether a graph G has a 2-tree partition.

Proof. We reduce from the Not-All-Equal-3SAT problem [8]. The construction
extends the reduction to the 3-coloring problem in [13].
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Fig. 4. Switch and Double-Switch

Let α = c1, . . . , cm be an expression with clauses c1, . . . , cm and variables
x1, . . . , xn and such that there is a clause (x, x, x̄) for every variable x. The
assignment must be such that there is a true and a false literal in each clause.
Let m > 1. Construct a graph G(α) which has a 2-tree partition into a blue
and a red tree if and only if α has a Not-All-Equal assignment. G(α) has a
distinguished root r. The reduction is based on two gadgets, a switch and a
double-switch between two vertices u and v, as shown in Fig. 4. In a double-
switch there is a direct edge to the root. In both gadgets, only u and v (and r
for the double-switches) may have edges incident to other vertices.

We immediately observe:

Claim. In a 2-tree partition,

– the edges of a triangle cannot belong to a single tree and must be colored
with different colors,

– the edges at the endpoints u and v of a switch are colored by different colors,
and

– the edges at the endpoints u and v of a double-switch are colored by the
same color, which is different from the color of the edges at m.

We can now give the reduction.
For every variable x construct a switch S(x) with the vertices x and x̄, and

directly connect these vertices to the root with an edge. For every clause ci

construct a triangle with vertices ci(1), ci(2), ci(3) which are identified with the
literals. Connect each variable x in S(x) with its occurrences in the clauses by
paths of length two. Each such path pj has a middle vertex mj and two edges
ej = (x, mj) and fj = (mj , xj), where xj is the j-th occurrence of x in some
clause. Finally, connect any two such vertices mi and mj by a double-switch.

Hence each variable x has a gadget H(x) consisting of the switch S(x) and the
triangle for the clause (x, x, x̄) with the vertices x′, x′′ and x̄′. There are paths
between x and x′, x and x′′ and x̄ and x̄′, and there is a double-switch between
the first two paths, see Fig. 5.

Claim. α has a Not-All-Equal truth assignment if and only if G(α) has a 2-tree
partition.

Proof. First, suppose there is a Not-All-Equal truth assignment. Then color the
edges from the root to each vertex representing a true literal blue, and the edges
towards the false literals red, and for the edges between the root and the double-
switches take the opposite color of the edges at the endpoints. Complete the
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Fig. 5. The gadget of a variable x

coloring of the remaining edges of the switches and the double-switches. They
separate edges with the same color at the endpoints. Finally, color the edges
in the triangles of the clauses such that there are no monochrome cycles. The
latter is doable, since there is a Not-All-Equal assignment with a true and a false
literal for each clause. Thus there is a blue and a red path from the root to each
triangle. Now all edges are properly colored, and each color induces a tree.

Conversely, if there is a 2-tree partition, then there is a Not-All-Equal assign-
ment of the variables by the color of the edges on the monochrome paths in
the gadgets H(x), and there is a recoloring of the edges such that blue edges
correspond to true and red edges to false.

Claim. For every gadget H(x) the path from x̄ to x̄′ is monochrome, say blue,
and there is blue path between x̄ and the root. There is a monochrome red path
between x and x′ or x and x′′ and a red path between x and the root.

Proof. By the first claim both colors are present in the triangles for the clause.
Suppose the path between x̄ and x̄′ is not monochrome. Then it is a dead end
and does not connect the edges in the triangle of the clause to the root. Now
both colors in the triangle for the clause must come through x. Then there must
be a blue path and a red path from x to x′ and to x′′. This is impossible by the
double-switch, whose ends have the same color. Thus the path from x̄ to x̄′ is
monochrome, and there must be a monochrome path of the other color to x′ or
x′′ through x. All red (blue) edges must be connected by monochrome paths,
and this connection can only be established through to root.

For every variable we color the vertex x in S(x) by the color of the monochrome
path to x′ or x′′ and accordingly for x̄, and we assign x the value true if x is
blue, and false if x is red. By the previous claim this is consistent for a pair x, x̄.

Finally, to achieve a coloring which agrees with an assignment we may recolor
some edges.

First, for every x all paths between x in S(x) and x in the triangles of the
clauses can be colored with the color of x.
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Therefore, observe that by the double-switches two such paths cannot be
monochrome and with different colors. Suppose that x is blue and let p = (e, f)
be a path from x with different colors for e and f . Then e cannot be red by the
connectivity of the tree. If f is red, then it is a dead end. The two vertices of
the triangle which are not incident with f are attached to a blue and a red edge,
and these edges have monochromatic paths to the root. Now the edge f can be
recolored blue. Subsequently, the edge in the triangle between the two vertices
with an attached blue edge must be colored red, and one of the other edges in
the triangle must be red.

Finally, suppose x is blue and the edge from x to the root is red. Then recolor
this edge blue. This may induce blue cycles from the root to x, via a blue path
to a triangle and back to the root. We break each such cycle in the triangle by
recoloring the edge between the two attached blue edges and let another edge in
the triangle be red. This is consistent with the 2-tree partition.

Now all edges incident with a vertex x of a literal are single-colored, and every
clause has a red and a blue edge. Hence, there is a consistent Not-All-Equal truth
assignment.

For k ≥ 3 we reduce from the k-coloring problem. Let G be an instance of k-
coloring. Add a new root r to G and connect all vertices of G with the root.
Replace each edge (u, v) of G by a switch as shown in Fig. 4. Then the coloring
of G one-to-one corresponds to the tree partition of the constructed graph. In
any k-tree partition of the resulting graph if the edge from the root to a vertex
v is in the i-th tree, then v is assigned the i-th color. By the switches, adjacent
vertices are colored differently. Conversely, color the edges from a vertex v to the
root according to the given color of v, color the remaining edges in the switches
appropriately.

We summarize:

Theorem 4. For every k ≥ 2 is NP-hard whether a graph G has a k-tree
partition.
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