
Focusing on Pattern Matching

Neelakantan R. Krishnaswami
Carnegie Mellon University

neelk@cs.cmu.edu

Abstract
We show how to extend the Curry-Howard correspondence to pat-
tern matching, by showing how it arises as a natural proof term as-
signment to a focused sequent calculus for propositional logic. We
demonstrate the value of this calculus by deriving a simple, novel
algorithm to check the exhaustiveness of pattern matching, and to
reconstruct a program transformation corresponding to compiling
patterns via decision trees.

Categories and Subject DescriptorsF.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Pattern Matching, Curry-Howard, Coverage check-
ing, Pattern compilation, Focusing, Sequent calculus

1. Introduction
The Curry-Howard correspondence between typed lambda calculi
and systems of intuitionistic logic is one of the most elegant ideas in
the theory of functional programming languages. Pattern matching
is one of the most practically useful features of modern functional
programming languages. However, these two ideas sit uneasily to-
gether; when programs are considered as proofs, we usually make
the informal claim that pattern matching corresponds to a case anal-
ysis in a proof, but this is not often given a precise mathematical
formalization.

The absence of such a formalization relegates important features
such as coverage checking and match redundancy tests to the status
of implementation detail, buried within the depths of a compiler.
For example, the Definition of Standard ML [13] specifies that
coverage checking will be performed in English text, and does not
give a precise characterization of what that means.

Consider the following pseudo-ML program:

case e of
| (Inl x, Inl y) -> e1
| (Inr u, Inr v) -> e2
| _ -> e3

Even though programmers write things like this every day, it is
an expression with surprising depths. This program merges mul-
tiple logical eliminations and makes use of the sequential priority
ordering of ML pattern matching, to ensure that the first two clauses
take priority over the final wildcard. Programmers also expect that

[Copyright notice will appear here once ’preprint’ option is removed.]

we will warn them if there are no coverage errors, and conversely
also warn them if any of the clauses turn out to be useless.

Our contributions are the following:

• First, we give a strongly logically-motivated nondeterministic
calculus of pattern matching, arising from the proof-theoretic
notion of focusing. We then show how ML-like patterns can
be encoded in this language, including features like or-patterns
and the left-to-right sequentiality of ML-style pattern matching.
This calculus also extends easily to features like recursive and
existential types.

• Second, we give a simple inductive characterization of when a
pattern is deterministic and exhaustive, and prove this algorithm
is sound. This gives a novel exhaustiveness test that does not
rely on examining the output of compiling a set of patterns to
decision trees.

• Third, we show how to take programs with nondeterministic
patterns transform them into an equivalent version that makes
no use of nondeterminism, and prove it correct. This corre-
sponds to compiling pattern matching via decision trees, and
shows how the two main approaches of compiling pattern
matching (backtracking and decision trees) can be related.

2. Core Type Theory
Our programming language can be viewed as a bidirectionally-
typed proof term assignment for afocusedsequent calculus for
intuitionistic logic. Focusing was originally introduced by An-
dreoli [1] to reduce the number of trivially-different in the sequent
calculus, and thereby give normal forms for cut free proofs in linear
logic.

The key idea underlying focusing is to divide the logical con-
nectives into two groups, based on an analysis of whether the con-
nective’s left or right rules are invertible. One group, the positive
connectives, has invertible left rules, and the other group, the nega-
tive connectives, has invertible right rules.1 Proof search can exploit
this categorization, since invertible rules can be applied in any or-
der without the need for backtracking, and once the inversion phase
is complete, we can apply a chain of non-invertible rules.

Now, we can express any pattern match as a nested sequence of
eliminations of sums and products, but there are usually multiple
nestings, and programmers are indifferent to which one is chosen.
Concretely, consider our example from the introduction:

case e of
| (Inl x, Inl y) -> e1
| (Inr u, Inr v) -> e2
| _ -> e3

1 Andreoli called the positive and negative connectives are calledsyn-
chronousandasynchronous, respectively.

Focusing on Pattern Matching 1 2007/7/17

This expression could be written using primitive case statements
in two ways, with no reason to choose between either:

let (a, b) = e in
case(a, Inl x. case(b, Inl y. e1, Inr _. e3),

Inr u. case(b, Inl _. e3, Inr v. e2))

let (a, b) = e in
case(b, Inl y. case(a, Inl x. e1, Inr _. e3),

Inr v. case(a, Inl _. e3, Inr u. e2))

The main observation underlying our type theory is that these
trivial reorderings correspond exactly to the kinds of uninteresting
distinctions that focusing eliminates.

In intuitionistic logic, the implication connective is negative,
and the sum type is positive. The product can be understood either
way, since both its left and right rules are invertible. Understood
as a negative connective, it has projective eliminations, and as a
positive connective, it has a binding elimination:

Γ ` e : A1 ×A2

Γ ` πi e : Ai
×-NEGATIVE

Γ ` e : A1 ×A2 Γ, x : A1, y : A2 ` e′ : B

Γ ` let (x, y) = e in e′ : B
×-POSITIVE

Since we want to interleave sum and product eliminations, we
will choose to treat products as a positive connective. So the func-
tion space (A → B) is the only negative connective; and sums
(A + B), products (A × B) and their units (0 and1) are positive
connectives.

We give the syntax of our language in Figure 1, and the typing
rules in Figure 2. The types are the usual types of the simply-typed
lambda calculus, and we divide the syntax of program expressions
into four classes, for the introduction and elimination forms for
positive and negative types, respectively.

The introduction forms for positive types are the usual unit〈〉,
pair 〈e1, e2〉, and left and right injections,inl e andinr e. They are
typed with the judgementΓ ` e : A, which reads that “given a
variable contextΓ, e typechecks at typeA”.

The introduction form for the negative type is a lambda abstrac-
tion λp. u. The negative introductions are typechecked using the
judgementΓ;∆ ` u : A, which reads “given a variable contextΓ
and the ordered pattern context∆, u typechecks at typeA”. Note
that instead of binding a variable, a lambda abstraction binds an
entire pattern, which goes into the right end of the pattern context.
The existence of the pattern context means that patterns are sepa-
rated from the bodies of their arms, unlike a case expression in an
ML program.

As a result, the judgement for typing positive eliminations,
Γ;∆ � r : A, must link the branches in pattern context with the
arms of the expressionr. This is why the assumption that the pat-
tern context is ordered is essential – it allows us to link branching in
the patterns with branching in the arms. This judgement’s job is to
decompose the patterns and move their variables toΓ, and produces
variables out of them, and it does so by systematically breaking on
the leftmost pattern in the context.

The variable patternx binds values of any type, and its typing
rule simply moves the variable from∆ to Γ.

We have the variable〈〉 pattern for unit values, whose typing
rule 1L, says that an expression is typeable with a unit pattern, if
it is typeable without it. This makes sense, given the intuition that
matching the unit pattern binds no variables. Likewise, the rule for
the pattern〈p1, p2〉matching values of product type, can be seen as
justified when matching destructures a pair given to it and matches
the left and right halves againstp1 andp2 respectively.

The pattern for sum types is[inl p1 | inr p2]. Here, we depart
from the ML/Haskell style by requiring that a programmer to sup-
ply patterns describingboth the left and the right injections. This
ensures that the sum pattern is inherently complete – when a value
of the form inl v is matched against[inl p1 | inr p2], we take the
left branch and then matchv againstp1, and symmetrically for
inr v. Since this is a branch, the proof term for this rule requires that
we have two arms[r1 | r2] to account for the left and right possibil-
ities. Finally, we have the elimination pattern[] for the empty type
0. Since there are no branches in the pattern, there are no branches
in its proof term, which is also[].

We also have a pattern>, which corresponds to the wildcard
pattern in ML, which discards its value argument. As a result,
the premise of the typing rule>L asks that the expression be well-
typed without the> hypothesis. The conjunctive patternp1∧p2 is a
generalization of the as-patterns of ML. Its semantics are to match
a value againstp1, and then to match that same value againstp2.

Now, we come to the two strangest members of our pattern
language. The disjunctive choice patternp1 ∨ p2 matches a value
against eitherp1 or p2, nondeterministically. This is an “angelic”
choice, in the sense that this match can fail if and only if the value
fails to match bothp1 andp2. So we therefore need a branching
proof term r1 ∨ r2, corresponding to the two alternatives. The
failure pattern⊥ is a pattern that fails to match any value, and has
a proof term⊥. This syntactically internalizes match failure in the
language of patterns.

Once all of the hypotheses in the pattern context are eliminated,
we can either shift to one of the non-invertible phases (the positive
introductions or the negative eliminations), or case analyze an ex-
pression withcase(t, p ⇒ r). Here,t supplies the expression to
analyze, withp as the pattern andr as the arms.

Notice that the linearity constraint on the variables appearing in
a pattern arises naturally from requiring that we adopt the Baren-
dregt on variable names – if we are obliged to choose names so that
there are never any repetitions of a variable inΓ, it is not possible to
write repeated variables in any particular branch of a pattern. That
is, we cannot write〈x, x〉, because the second would put twox’s
into the contextΓ. However, we can write[inl x | inr x], because
eachx will be directed into a different branch of the proof tree.

Finally, we can look at the negative eliminationst, typed with
the typing judgementΓ � t : A. In addition to variable references
x and function applicationst e, we also include explicitly type-
annotated expressions(e : A) in this category.

As an aside, our type system is not precisely a focused calculus.
If it were, it would only type beta-normal, eta-long terms. To do
this, we would have to change our rules to eliminate the term
(e : A) (which corresponds to a use of the Cut rule), require all
variables would have to be of negative type (to enforce eta-long
forms at positive types), and require the negative elimination rule
would have to go all the way down to positive types (to enforce
eta-long forms at negative types). However, since we are interested
in programming with this language, we relax these conditions in
order to allow programs that can actually reduce into our system.

Each context gives rise to an associated substitution principle,
and substitution for variables is given in Figure 3. The only devia-
tion from conventional practice is that we carry along a type, and
add an annotation when we substitute an expression for a variable.

LEMMA 1 (Substitution).If Γ ` e : A then

• if Γ, x : A ` e′ : B thenΓ ` [e/x]PI
A e′ : B

• if Γ, x : A;∆ ` u : B thenΓ;∆ ` [e/x]NI
A u : B

• if Γ, x : A;∆ � r : B thenΓ;∆ � [e/x]PE
A r : B

• if Γ, x : A � t : B thenΓ � [e/x]NE
A t : B

Focusing on Pattern Matching 2 2007/7/17

The informal explanation of pattern matching given above is
formalized in the pattern substitution judgements〈〈v/p〉〉PE

A r ;

r′ and〈〈v/p〉〉NI
A u ; u′, which are given in Figure 4. The pattern

substitution we give here is a restricted form of the notion of
hereditary substitution [16], and corresponds to the computational
content of a proof of cut-admissibility.

Thanks to the disjunctive patternp1 ∨ p2 and the failing pat-
tern⊥, pattern substitution forms a relation rather than a function.
Sometimes a value will fail to match against a well-typed patternp,
and against other patterns it might match multiple ways. Neverthe-
less there is a substitution principle for pattern substitution:

LEMMA 2 (Pattern Substitution).If · ` v : A, then

• if Γ; p : A, ∆ ` u : B and 〈〈v/p〉〉NI
A u ; u′, then we have

Γ;∆ ` u′ : B.
• if Γ; p : A, ∆ � r : B and 〈〈v/p〉〉PE

A r ; r′, then we have
Γ;∆ � r′ : B.

We give an operational semantics for this language in Figure 5.
Most of the rules are as expected; the two main novelties are that
we replace ordinary substitution in the function application and
case analysis rules with pattern substitution, and that there are some
extra congruence rules to discard unneeded type annotations.

THEOREM 1 (Type Preservation).We have that:

• If · ` e : A ande 7→PI e′, then· ` e′ : A.
• If ·; · ` u : A andu 7→NI u′, then·; · ` y′ : A.
• If ·; ·� r : A andr 7→PE r′, then·; ·� r′ : A.
• If ·� t : A andt 7→NE t′, then·� t′ : A.

The current form of the type theory has a preservation property,
but no progress property. Progress fails because we have the⊥L
rule, which gives us a well-typed expression which can get stuck.
This lets us typecheck programs with incomplete pattern-matching,
without internalizing failure in the dynamic semantics of our lan-
guage (e.g., with exceptions for match failure).

In the next section, we will give rules for judging when a pattern
is complete, and prove their correctness relative to the current
semantics. Then, once we modify the typing rules to include these
rules, we can ensure that the progress property will hold.

2.1 From ML patterns to Focused Patterns

In this subsection, we will informally explain how to explain ML
pattern matching in terms of focused patterns. For space reasons,
we will not completely formalize this translation – we will merely
indicate how this translation can be done. Let us return to the
example from the introduction:

case e of
| (Inl x, Inl y) -> e1
| (Inr u, Inr v) -> e2
| _ -> e3

To explain this construction, we need to understand two things:
first, how to translate individual branches of a case statement using
ML patterns into focused patterns, and second, how to combine
them in a way that respects the sequential ordering of ML pattern
matching.

Let us take the grammar of ML patterns to be

pm ::= x | 〈〉 | | (pm, p′m) | inl pm | inr pm

The main question in translation is how to treat the constructor
patternsinl pm andinr pm. Our solution is to view each of them as
a focused pattern which uses⊥ for either the left or right branch:

A ::= 1 | A×A | A → A
| 0 | A + A Types

e ::= 〈〉 | 〈e1, e2〉
| inl e | inr e
| u Positive Intros

u ::= λp. u | r Negative Intros

r ::= [] | [r1 | r2] | e | t
| case(t, p ⇒ r) | ⊥ | r1 ∨ r2 Positive Elims

t ::= x | (e : A) | t e Negative Elims

p ::= 〈〉 | 〈p1, p2〉 | []
| [inl p1 | inr p2] | x
| > | p1 ∧ p2 | ⊥ | p1 ∨ p2 Patterns

v ::= λp. u | 〈〉 | 〈v1, v2〉
| inl v | inr v Values

Γ ::= · | Γ, x : A Variable Contexts

∆ ::= · | ∆, p : A Pattern Contexts

Figure 1. Syntax

[[]] = >
[[〈〉]] = 〈〉
[[x]] = x
[[(pm, p′m)]] = 〈[[pm]], [[p′m]]〉
[[inl pm]] = [inl [[pm]] | inr ⊥]
[[inr pm]] = [inl ⊥ | inr [[pm]]]

In the case of our example, we will end up with the three pat-
ternsp1 = 〈[inl x | inr ⊥], [inl y | inr ⊥]〉, p2 = 〈[inl ⊥ | inr u] ,
[inl ⊥ | inr v]〉, andp3 = >. Now, we must consider how to com-
bine them, since the case form of the focused language requires a
single pattern in the expressioncase(t, p ⇒ r).

One way we might consider combining them is by using dis-
junction to constructp1 ∨ p2 ∨ p3. However, this is not quite suf-
ficient – the final wildcard pattern will not match any values of
the form〈inl v, inl v′〉 or 〈inr v, inr v′〉, because the first two lines
take priority. In order to express the correct behavior, we need is
some way to say “p3, but notp1 or p2”.

In Figure 6, we give a syntactic negation function on patterns.
Given a patternp, not(p) will return a pattern that fails to match
on any valuep matches on, and will matches on any valuep fails
on. The reason this is possible is because we included the failure
⊥ and nondeterministic choicep1 ∨ p2 patterns. This turns out
to be essential in the case of pairs; the negationnot(〈p, p′〉) =
〈not(p),>〉 ∨ 〈>, not(p′)〉. Without the disjunction, there would
be no pattern that could express this set of values.

Essentially, what⊥ andp ∨ p′ give us is an algebraic closure
property for the language of patterns – at each type we have a
boolean algebra consisting of the patterns of that type, ordered by
the set inclusion on the set of values each pattern can match.

Using this, we can now give a focused pattern for this ML
case expression, asp1 ∨ (p2 ∧ not(p1)) ∨ (p3 ∧ not(p1 ∨ p2)).
Furthermore, we can check for redundant patterns by testing to
see whether each pattern plus the negation of its predecessors
is empty or not. Using this basic structure we can construct a
compositional translation of ML case expressions into the focused
pattern calculus – even features like or-patterns are unproblematic,

Focusing on Pattern Matching 3 2007/7/17

Γ ` 〈〉 : 1
1R

Γ ` e1 : A1 Γ ` e2 : A2

Γ ` 〈e1, e2〉 : A1 ×A2
×R

Γ ` e : A1

Γ ` inl e : A1 + A2
+L1

Γ ` e : A2

Γ ` inr e : A1 + A2
+L2

Γ; · ` u : A

Γ ` u : A
BLURR

Γ;∆, p : A ` u : B

Γ;∆ ` λp. u : A → B
→R

Γ;∆ � r : A

Γ;∆ ` r : A
BLURL

Γ;∆ � r : B

Γ; 〈〉 : 1, ∆ � r : B
1L

Γ; p1 : A1, p2 : A2, ∆ � r : B

Γ; 〈p1, p2〉 : A1 ×A2, ∆ � r : B
×L

Γ; [] : 0, ∆ � [] : B
0L

Γ; p1 : A1, ∆ � r1 : B Γ; p2 : A2, ∆ � r2 : B

Γ; [inl p1 | inr p2] : A1 + A2, ∆ � [r1 | r2] : B
+L

Γ, x : A;∆ � r : B

Γ; x : A, ∆ � r : B
HYPL

Γ;∆ � r : B

Γ;> : A, ∆ � r : B
>L

Γ; p1 : A, p2 : A, ∆ � r : B

Γ; p1 ∧ p2 : A, ∆ � r : B
∧L

Γ;⊥ : A, ∆ �⊥ : B
⊥L

Γ; p1 : A, ∆ � r1 : B Γ; p2 : A, ∆ � r2 : B

Γ; p1 ∨ p2 : A, ∆ � r1 ∨ r2 : B
∨L

Γ � t : B

Γ; ·� t : B
FOCUSL

Γ ` e : B

Γ; ·� e : B
FOCUSR

Γ � t : A Γ; p : A � r : B

Γ; ·� case(t, p ⇒ r) : B
CASE

x : A ∈ Γ

Γ � x : A
VARL

Γ � t : A → B Γ ` e : A

Γ � t e : B
→L

Γ ` e : B

Γ � (e : B) : B
CUT

Figure 2. Static Semantics

[e/x]PI
A 〈〉 = 〈〉

[e/x]PI
A 〈e1, e2〉 =

˙
[e/x]PI

A e1, [e/x]PI
A e2

¸
[e/x]PI

A inl e = inl [e/x]PI
A e

[e/x]PI
A inr e = inr [e/x]PI

A e
[e/x]PI

A u = [e/x]NI
A u

[e/x]NI
A λp. u = λp. [e/x]NI

A u
[e/x]NI

A r = [e/x]PE
A r

[e/x]PE
A [] = []

[e/x]PE
A [r1 | r2] =

ˆ
[e/x]PE

A r1 | [e/x]PE
A r2

˜
[e/x]PE

A e = [e/x]PI
A e

[e/x]PE
A t = [e/x]NE

A t
[e/x]PE

A case(t, p ⇒ r) = case([e/x]NE
A t, p ⇒ [e/x]PE

A r)
[e/x]PE

A ⊥ = ⊥
[e/x]PE

A r1 ∨ r2 = [e/x]PE
A r1 ∨ [e/x]PE

A r2

[e/x]NE
A x = (e : A)

[e/x]NE
A y = y

[e/x]NE
A t e = ([e/x]NE

A t) ([e/x]PI
A e)

[e/x]NE
A (e : A′) = ([e/x]PI

A e : A′)

Figure 3. Type Aware Substitution

〈〈v/p〉〉NI
A u ; u′

〈〈v/p〉〉NI
A λp′. u ; λp′. u′

〈〈v/p〉〉PE
A r ; r′

〈〈v/p〉〉NI
A r ; r′

〈〈〈〉 / 〈〉〉〉PE
1 r ; r

〈〈v1/p1〉〉PE
A1

r ; r′ 〈〈v2/p2〉〉PE
A2

r′ ; r′′

〈〈〈v1, v2〉 / 〈p1, p2〉〉〉PE
A1×A2

r ; r′′

〈〈v/p1〉〉PE
A1

r1 ; r′

〈〈inl v/ [inl p1 | inr p2]〉〉PE
A1+A2

[r1 | r2] ; r′

〈〈v/p2〉〉PE
A2

r2 ; r′

〈〈inr v/ [inl p1 | inr p2]〉〉PE
A1+A2

[r1 | r2] ; r′

〈〈v/x〉〉PE
A r ; [v/x]PI

A r 〈〈v/>〉〉PE
A r ; r

〈〈v/p1〉〉PE
A r ; r′ 〈〈v/p2〉〉PE

A r′ ; r′′

〈〈v/p1 ∧ p2〉〉PE
A r ; r′′

〈〈v/p1〉〉PE
A r1 ; r′

〈〈v/p1 ∨ p2〉〉PE
A r1 ∨ r2 ; r′

〈〈v/p2〉〉PE
A r2 ; r′

〈〈v/p1 ∨ p2〉〉PE
A r1 ∨ r2 ; r′

Figure 4. Pattern Substitution

Focusing on Pattern Matching 4 2007/7/17

e1 7→PI e′1

〈e1, e2〉 7→PI ˙
e′1, e2

¸ e2 7→PI e′2

〈v1, e2〉 7→PI ˙
v1, e

′
2

¸
e 7→PI e′

inl e 7→PI inl e′
e 7→PI e′

inr e 7→PI inr e′ (e : A) 7→PI e

u 7→NI u′

u 7→PI u′
r 7→PE r′

r 7→NI r′ (u : A) 7→NI u

e 7→PI e′

e 7→PE e′
t 7→NE t′

t 7→PE t′

t 7→NE t′

case(t, p ⇒ r) 7→PE case(t′, p ⇒ r)

〈〈v/p〉〉PE
A r ; r′

case((v : A), p ⇒ r) 7→PE r′ (r : A) 7→PE r

t 7→NE t′

t e 7→NE t′ e

e 7→PE e′

(e : A) 7→NE (e′ : A)

e 7→PI e′

(λp. u : A → B) e 7→NE (λp. u : A → B) e′

〈〈v/p〉〉NI
A u ; u′

(λp. u : A → B) v 7→NE (u′ : B)

Figure 5. Dynamic Semantics

since we can regard an ML or-pattern likepm | p′m as [[pm]] ∨
([[p′m]] ∧ not([[pm]])).

2.2 Deep Operations

The pattern context in our calculus is an ordered context, and as a
result inverting the rules of this calculus will only let us decompose
patterns at the leftmost end of the context. However, we will find
it essential for us to introduce and operate on pattern hypotheses
in the middle of the context. So in this subsection we will state
the technical machinery we need to prove that it is admissible to
operate on patterns anywhere within a context, and not just at the
leftmost end. (In terms of the ordinary typed lambda calculus, we
are developing machinery to work with commuting conversions.)

Since modifying pattern hypotheses within a contexts means we
are adding and removing case statements and disjunctive choices
deep within a context, we will also have to restructure the corre-
sponding lambda term. We will give “deep” variants of the intro-
duction rules and inversion principles, and then we will show that
there is a deep version of pattern substitution, that exchange is ad-
missible in the pattern context, and that deep substitution commutes
with itself and with exchange operations. With all this technical ma-
chinery, we can restructure the pattern context almost as easily as
an ordinary variable context, and compute what the modified proof
terms look like. The algorithms for doing so are given in Figure 9
in the appendix.

To save space, we will let the symbol⊕ range over∨ and[·|·],
and likewise let the symbol⊗ and range over∧ and〈·, ·〉. We will
also use the following relations:

• R[·|·](A1, A2, A) ≡ A = A1 + A2,

• R∨(A1, A2, A) ≡ A1 = A ∧A2 = A,

• R〈·,·〉(A1, A2, A) ≡ A = A1 ×A2, and

• R∧(A1, A2, A) ≡ A1 = A ∧A2 = A.

LEMMA 3 (Deep Introductions).We have that:

• If Γ;∆, p1 : A1, ∆
′ � r1 : B andΓ;∆, p2 : A2, ∆

′ � r2 : B,
andR⊕(A1, A2, A), then
Γ;∆, p1 ⊕ p2 : A, ∆′ � Join⊕(∆; r1; r2) : B.

• If Γ;∆, p1 : A1, p2 : A2, ∆
′�r : B andR⊗(A1, A2, A), then

Γ;∆, p1 ⊗ p2 : A2, ∆
′ � r : B.

• If Γ, x : A;∆, ∆′ � r : B, thenΓ;∆, x : A, ∆′ � r : B.
• If Γ;∆, ∆′ � r : B, thenΓ;∆,>, ∆′ � r : B.
• If r = Zeroc(∆) and c : A = ⊥ : A or c : A = [] : 0 then

Γ;∆, c : A, ∆′ � r : B.

LEMMA 4 (Deep Inversions).We have that:

• If Γ;∆, p1 ⊕ p2 : A, ∆′ � r : B andR⊕(A1, A2, A), then
Γ;∆, p1 : A, ∆′ � Out⊕1 (∆; r) : B and
Γ;∆, p2 : A, ∆′ � Out⊕2 (∆; r) : B.

• If Γ;∆, p1 ⊗ p2 : A, ∆′ � r : B andR⊗(A1, A2, A), then
Γ;∆, p1 : A1, p2 : A2, ∆

′ � r : B and
• If Γ;∆, x : A, ∆′ � r : B thenΓ, x : A;∆, ∆′ � r : B.
• If Γ;∆,> : A, ∆′ � r : B thenΓ;∆, ∆′ � r : B.
• If Γ;∆, c : A, ∆′ � r : B andc : A = ⊥ : A or c : A = [] : 0,

thenr = Zeroc(∆).

LEMMA 5 (Operator Equalities).Assuming appropriate typings,
we have that:

• Out⊕i (∆; Join⊕(∆; r1; r2)) = ri

• Join⊕(∆; Out⊕1 (∆; r); Out⊕2 (∆; r)) = r

• Out⊕i (∆; Out⊕
′

j (∆, p1 ⊕ p2 : A, ∆′; r)) =

Out⊕
′

j (∆, pi : Ai, ∆
′; Out⊕i (∆; r))

• Out⊕i (∆; Join⊕
′
(∆, p1 ⊕ p2 : A, ∆′; r1; r2)) =

Join⊕
′
(∆, pi : Ai, ∆; Out⊕i (∆; r1); Out⊕i (∆; r2))

• Out⊕i (∆, p1 ⊕′ p2 : A, ∆′; Join⊕
′
(∆; r1; r2)) =

Join⊕
′
(∆; Out⊕i (∆, p1 : A1, ∆

′; r1); Out⊕i (∆, p2 : A2, ∆
′; r2))

Given these deep operations, we can give a deep version of the
pattern substitution principle:

PROPOSITION1 (Deep Pattern Substitution).If · ` v : A, then

• if Γ;∆, p : A, ∆′ ` u : B and∆〈〈v/p〉〉NI
A u ; u′, then we

haveΓ;∆, ∆′ ` u′ : B.
• if Γ;∆, p : A, ∆′ � r : B and∆〈〈v/p〉〉PE

A r ; r′, then we
haveΓ;∆, ∆′ � r′ : B.

We can also show that deep pattern substitutions commute:

LEMMA 6 (Pattern Substitution Reordering).If we have that· `
v : A, · ` v′ : B, andΓ;∆, p : A, ∆′, p′ : B, ∆′′ � r : C, then:

∆〈〈v/p〉〉PE
A r ; r1 and∆,∆′

〈〈v′/p′〉〉PE
B r1 ; r2,

if and only if
∆,p:A,∆′

〈〈v′/p′〉〉PE
A r ; r′1 and∆〈〈v′/p′〉〉PE

B r′1 ; r2,

Finally, we can show that exchange is an admissible property of
the pattern context:

PROPOSITION2 (Exchange).We can show that
if Γ;∆, p : A, ∆′, ∆′′ � r : B
thenΓ;∆, ∆′, p : A, ∆′′ � Ex(∆; p : A; ∆′; r) : B

Focusing on Pattern Matching 5 2007/7/17

LEMMA 7 (Substitution/Exchange Reordering).We have that:

• If we have that:
· ` v : A,
∆〈〈v/p〉〉PE

A r ; r′, and
Γ;∆, p : A, ∆′, p′ : B, ∆′′, ∆′′′ � r : C

then it follows that
∆〈〈v/p〉〉PE

A Ex(∆, p : A, ∆′; p′ : B; ∆′′; r) ; r′

wherer′ = Ex(∆, ∆′; p′ : B; ∆′′; r)
• If we have that:

· ` v : B,
Γ;∆, p : A, ∆′, ∆′′, p′ : B, ∆′′′ � r : C
∆,p:A,∆′,∆′′

〈〈v/p′〉〉PE
B r ; r′

then it follows that
∆,∆′,p:A,∆′′

〈〈v/p′〉〉PE
B Ex(∆; p : A; ∆′; r) ; r′′

wherer′′ = Ex(∆; p : A; ∆′; r′)
• If we have that:

· ` v : A,
∆〈〈v/p〉〉PE

A r ; r′, and
Γ;∆, p : A, ∆′, ∆′′ � r : B,

then it follows that∆,∆′
〈〈v/p〉〉PE

A Ex(∆; p : A; ∆′; r) ; r′

• If we have that:
· ` v : B,
∆,p:A,∆′

〈〈v/p〉〉PE
B r ; r′, and

Γ;∆, p : A, ∆′, p′ : B, ∆′′, ∆′′′ � r : C
then it follows that:
∆,∆′

〈〈v/p′〉〉PE
B Ex(∆; p : A; ∆′, p′ : B, ∆′′; r) ; r′′

where
r′′ = Ex(∆; p : A; ∆′, ∆′′; r′)

3. Coverage Checking
Pattern substitution is a partial relation, and this means that a
given pattern may not have any values it will match – for example
[inl x | inr ⊥] ∧ [inl ⊥ | inr y] – or it may be able to match in
multiple ways – for examplex ∨ 〈>, y〉. It would be very useful
to characterize patterns that have exactly one possible match for
each value.

To do this, we introduce two judgements. The first,p det A,
checks for determinacy – ifp det A is derivable, thenp matches
each value of typeA at most once. The second,p covers A, checks
whether a pattern covers all possible values. That is, ifp covers A
is derivable, thenp matches every value inA in at least one way.
Both of these judgements are given in Figure 7. Each one induc-
tively follows the structure ofp, until we reaches a disjunctive
choicep ∨ p′.

In both cases, this is somewhat problematic, because whether a
disjunctive patternp∨p′ is deterministic depends on theinteraction
between the two branches. For example, ifp = [inl x | inr ⊥] and
p′ = [inl ⊥ | inr y], then neitherp norp′ is a covering pattern, but
their disjunctive unionis. Conversely, bothp = x andp′ = > are
deterministic patterns, butx ∨ 〈〉 is nondeterministic.

So we need to check that the intersection ofp andp′ is empty
to claim thatp ∨ p′ det A. Likewise we need to ensure that there
are no values that bothp andp′ fail to match in order to claim that
p ∨ p′ covers A – that is, we need to ensure that the intersection of
the complements is empty.

To do this, we introduce a third judgement,p1, · · · , pn fail A.
The existence of a derivation of this judgement will imply that
for every value of typeA, there is somepi such that the match
will fail. Then, for determinacy we can model the emptiness
of the intersections withp, p′ fail A, and for coverage we can

model the emptiness of the intersection of the complements with
not(p), not(p′) fail A.

First, we show that our syntactic negation operation is a genuine
complement:

PROPOSITION3 (Negation).If we have derivations:

• Γ;∆1, p : A, ∆′
1 � r1 : C,

• Γ;∆2, not(p) : A, ∆′
2 � r : C,

• andΓ ` v : A,

then

1. either∆1〈〈v/p〉〉PE
A r1 ; r′ or ∆2〈〈v/p〉〉PE

A r2 ; r′

2. it is not the case that both∆1〈〈v/p〉〉PE
A r1 ; r′ and

∆2〈〈v/p〉〉PE
A r2 ; r′′

Next, we prove the soundness of the judgements we have de-
scribed.

LEMMA 8 (Failure).If we have derivations

• p1, · · · , pn fail A
• Γ;∆, p1 : A, · · · , pn : A, ∆′ � r1 : C
• Γ ` v : A

then it is not the case that there existr2, · · · , rn such that for all
i ∈ {1 · · ·n}, ∆〈〈v/pi〉〉PE

A ri ; ri+1.

THEOREM 2 (Determinacy).If we have derivations

• Γ;∆, p : A, ∆′ � r : C
• · ` v : A
• p det A
• D :: ∆〈〈v/p〉〉PE

A r ; r′

then ifD′ :: ∆〈〈v/p〉〉PE
A r ; r′′, thenD = D′.

Here, we useD andD′ to name the particular derivations of
the pattern substitution. So ifp det A, then for any derivation that
includesp in its pattern context, any two pattern substitutions forp
must be identical.

For coverage, we assert that for any derivation withp in its con-
text, then ifp covers A then there must exist a pattern substitution.

THEOREM 3 (Coverage).If we have derivations

• Γ;∆, p : A, ∆′ � r : C
• · ` v : A
• p covers A

then∆〈〈v/p〉〉PE
A r ; r′.

Armed with our coverage judgement, we can modify the two
rules introducing pattern binders to require that they are determin-
istic and cover all the possibilities:

p covers A p det A Γ;∆, p : A ` u : B

Γ;∆ ` λp. u : A → B

p covers A p det A Γ � t : A Γ; p : A � r : B

Γ; ·� case(t, p ⇒ r) : B

With our modified rules, it is now possible to give a progress
theorem for this calculus:

THEOREM 4 (Progress).With the modified rules, we have that:

• If · ` e : A, thene 7→PI e′ or e = v.
• If ·; · ` u : A, thenu 7→NI u′ or u = v.
• If ·; ·� r : A, thenr 7→PE r′ or r = v.

Focusing on Pattern Matching 6 2007/7/17

not(x) = ⊥
not([]) = []
not([inl p1 | inr p2]) = [inl not(p1) | inr not(p2)]
not(〈〉) = ⊥
not(〈p1, p2〉) = 〈not(p1),>〉 ∨ 〈>, not(p2)〉
not(>) = ⊥
not(p1 ∧ p2) = not(p1) ∨ not(p2)
not(⊥) = >
not(p1 ∨ p2) = not(p1) ∧ not(p2)

Figure 6. Pattern Negation

• If ·� t : A, thent 7→NE t′ or t = (v : A).

4. Pattern Compilation
In this section, we give an algorithm that accepts a deterministic
and covering set of patterns, and produces a set of patterns that 1)
make no use of⊥ or∨ in them, and 2) only use conjunctive patterns
of the formx ∧ p. The first restriction syntactically guarantees that
matching will never fail or backtrack, and the second restriction
guarantees that no value need ever be tested twice (for instance, by
〈p, p′〉 ∧ 〈p, p′〉.

c ::= [] | [inl c1 | inr c2] | x ∧ [inl c1 | inr c2] | x
| 〈〉 | 〈c1, c2〉 | x ∧ 〈c1, c2〉 | >

Matches against patterns of this form are easily implemented
with simple nested case statements and let-bindings. So our goal is
to transform a deterministic, covering patternp (with bodyr), into
an equivalent form patternc (with body r′), such that any match
of that value againstc in r′ gives the same result as matching that
value againstp in r′.

We give the core pattern compilation algorithm in Figure 8. In
order to strengthen the induction hypothesis enough, we cannot
operate on a single derivationΓ; p : A, ∆ � r : B. Instead, we
have to generalize the induction hypothesis along two dimensions.

First, we strengthen our induction hypothesis so that it consid-
ers an entire sequence of patternsΓ; p1 : A, · · · , pn : An, ∆ � r :
B. This will let us decompose conjunctive and pair patterns be-
fore applying our induction hypothesis (this is the function of the
Decompose(p : A) function).

Then, instead of considering a single derivation, we consider a
whole setS of them, with each row of the formΓ; q1 : A, · · · , qn : An, ∆�

r : B, whereqi is either> or pi. This generalization helps us com-
pile disjunctive patterns.

Concretely, imagine we have a row of the formΓ; p1 ∨ p′1 : A, ∆�

r ∨ r′ : B. By inversion we can get two subderivations

• Γ; p1 : A, ∆ � r : B

• Γ; p′1 : A, ∆ � r′ : B

Notice that we cannot directly apply our induction hypothesis,
because these two subderivations do not have the same row, and
so we cannot collect them in the same setS. However, we can
introduce some harmless> patterns to get

• Γ; p1 : A,> : A, ∆ � r : B

• Γ;> : A, p′1 : A, ∆ � r′ : B

Now, both of these match the form of our generalization, and we
can collect them in the same set. This is whyDecompose(p ∨ p′ : A) =
p : A, p′ : A.

The pattern compiler needs two more supporting definitions.
The first,AndA(∆; c1; c2; r) (given in Figure 13), takes two

[] det 0

p1 det A p2 det B

[inl p1 | inr p2] det A + B 〈〉 det 1

p1 det A p2 det B

〈p1, p2〉 det A×B

x det A > det A

p1 det A p2 det A

p1 ∧ p2 det A

⊥ det A

p1 det A p2 det A p1, p2 fail A

p1 ∨ p2 det A

[] covers 0

p1 covers A p2 covers B

[inl p1 | inr p2] covers A + B 〈〉 covers 1

p1 covers A p2 covers B

〈p1, p2〉 covers A×B

x covers A > covers A

p1 covers A p2 covers A

p1 ∧ p2 covers A

not(p1), not(p2) fail A

p1 ∨ p2 covers A

−→p ,−→p ′ fail A
−→p ,>,−→p ′ fail A

−→p , p1, p2,
−→p ′ fail A

−→p , p1 ∧ p2,
−→p ′ fail A

−→p ,⊥,−→p ′ fail A

−→p , p1,
−→p ′ fail A −→p , p2,

−→p ′ fail A
−→p , p1 ∨ p2,

−→p ′ fail A

−→p ,−→p ′ fail A
−→p , x,−→p ′ fail A

−→p fail A1
−→p ′ fail A2

−−−−−−−−−→ˆ
inl p | inr p′

˜
fail A1 + A2

−→p fail A
−−−−→˙
p, p′

¸
fail A×B

−→p ′ fail B
−−−−→˙
p, p′

¸
fail A×B

Figure 7. Coverage

compiled patterns and produces a third compiled patternc (and
body r′) that is equivalent to the patternc1 ∧ c2. We need this
function because our compiled patterns restrict how we can use
conjunction in order to prohibit redundant re-tests of the same
value.

LEMMA 9 (Conjunction Simplification).If Γ;∆, c1 : A, c2 : A, ∆′�
r : B and· ` v : A, then

• (c; r′) = AndA(∆; c1; c2; r),
• Γ;∆, c : A, ∆′ � r′ : B, and
• ∆〈〈v/c〉〉PE

A r′ ; r′′ if and only if∆〈〈v/c1 ∧ c2〉〉PE
A r ; r′′

Finally, when we split a sum pattern in the third clause of the
compilation function, we make two recursive calls toOpt(∆; S).
This gives us two rows of the formc1,

−→cs1 andc2,
−→cs2. We cannot

assume these two rows have the same form, so we need a function
to merge them and make them the same, so that we can use the+L
rule. This is whatMergeA(∆1; c1; r1;∆2; c2; r2) does:

Focusing on Pattern Matching 7 2007/7/17

Opt(·; {(·; r)}) =
(·; r)

Opt([] : 0,−→p :
−→
A ; S) =

([],
−→
> :

−→
A ; [])

Opt([inl p1 | inr p2] : A1 + A2,
−→p :

−→
A ; S) =

let (c1,
−→cs1; r1) = Opt(p1 : A1;

−→p :
−→
A ; Left(S))

let (c2,
−→cs2; r2) = Opt(p2 : A2;

−→p :
−→
A ;Right(S))

let (−→cs; r′1; r
′
2) = Merge∗−→

A
(c1 : A1;

−→cs1; r1; c2 : A2;
−→cs2; r2)

([inl c1 | inr c2] ;
−→cs; [r1 | r2])

Opt(p : A,−→p :
−→
A ; S) =

let (−→cs; r) = Opt(Decompose(p : A),−→p :
−→
A ;Split(p; S))

CoalesceA(p; −→cs; r)

Figure 8. Pattern Compilation

LEMMA 10 (Pattern Merging).If we have that

• Γ;∆1, c1 : A, ∆′
1 � r1 : B

• Γ;∆2, c2 : A, ∆′
2 � r2 : B

• · ` v : A

then

• (c; r′1; r
′
2) = MergeA(∆1; c1; r1;∆2; c2; r2)

• Γ;∆1, c : A, ∆′
1 � r′1 : B

• Γ;∆2, c : A, ∆′
2 � r′2 : B

• ∆〈〈v/c〉〉PE
A r′1 ; r′′1 if and only if∆〈〈v/c1〉〉PE

A r1 ; r′′1
• ∆〈〈v/c〉〉PE

A r′2 ; r′′2 if and only if∆〈〈v/c2〉〉PE
A r2 ; r′′2

At last, we can show the correctness of our scheme with the
following two theorems:

THEOREM 5 (Soundness of Pattern Compilation).If

• ∆ = p1 : A1, · · · , pn : An,
• S is a set such that for every(q1, · · · , cn; r) ∈ S, qi ∈ {pi,>},

andΓ; q1 : A1, · · · , qn : An, ∆′ � r : B
• (c1, · · · , cn; r′1) = Opt(∆; S)

then

• Γ; c1 : A1, · · · , cn : An, ∆′ � r′1 : B, and
• if there exists a unique((q1, · · · , cn; r1) ∈ S, such that for all

i ∈ {1 · · ·n} , 〈〈vi/qi〉〉PE
Ai

ri ; ri+1 uniquely,
then there existr′2 · · · r′n+1 such that for alli ∈ {1 · · ·n},
〈〈vi/ci〉〉PE

Ai
r′i ; ri+1 andr′n+1 = rn+1.

THEOREM 6 (Termination of Pattern Compilation).If

• ∆ = p1 : A1, · · · , pn : An,
• S is a set such that for every(q1, · · · , cn; r) ∈ S, qi ∈ {pi,>},

andΓ; q1 : A1, · · · , qn : An, ∆′ � r : B
• there exists a unique((q1, · · · , cn; r1) ∈ S, such that for all

i ∈ {1 · · ·n} , 〈〈vi/qi〉〉PE
Ai

ri ; ri+1 uniquely,

then there is a(c1, · · · , cn; r′1) = Opt(∆; S).

Now, note that any pattern for which we can derivep det A and
p covers A is one which our compilation algorithm will success-
fully run on, since such a pattern will uniquely match any value,
which is precisely the precondition of the compilation algorithm.

5. Extensions and Future Work
Extending this calculus to support parametric polymorphism and
iso-recursive types is very easy. Since universal quantification is a
negative type, like the function space, it does not affect the pattern
language. However, existentials are positive, so in addition to an
introduction formpack(A, e) at type∃α.B, we can also add a
pattern elimination formpack(α, p). Likewise, the introduction
form for a recursive typeµα.A will be a term fold e, with a
corresponding patternfold p.

The extensions needed to characterize features like GADTs [8],
and dependent types [17, 12] are much more challenging. All
of these systems use types to constrain the set of patterns that
are needed for coverage in sophisticated ways, and requiring that
unneeded patterns not be retained within the pattern.

Another direction would to examine how pattern matching
should function in a call-by-name setting. To model such lan-
guages, we would have to interleave reduction and pattern sub-
stitution, so that pattern matching could force evaluation on an
as-needed basis.

6. Related Work
We were inspired to view pattern matching as arising from the
invertible left rules of the sequent calculus due to the work of
Kesneret al [9], and Cerrito and Kesner [4]. We have extended
their work by building on a focused sequent calculus. This permits
us to give a simpler treatment; the use of an ordered context allows
us to eliminate the communication variables they used to link sum
patterns and their bodies. Furthermore, we introduced the failure
and nondeterministic choice patterns, which permit us to explain
the sequential pattern matching found in functional languages, as
well as to describe coverage checking and compilation.

Focusing was introduced by Andreoli [1], in order to constrain
proof search for linear logic. Pfenning (in unpublished lecture
notes) gives a simple focused calculus for intuitionistic logic, and
Liang and Miller [10] give calculi for focused intuitionistic logic,
which they relate to both linear and classical logic. Neither of these
have proof terms.

Our pattern substitution is a restricted form of hereditary substi-
tution, which Watkinset al. [16] introduced as a way of reflecting
the computational content of structural proofs of cut admissibil-
ity [14].

Girard’s work on ludics [7] introduced the idea of thedaimon,
a sequent which corresponds to a failed proof. Introducing such se-
quents can give a logical calculus certain algebraic closure proper-
ties, at the cost of soundness. However, once the requisite properties
have been used, we can verify that we have any given proof is gen-
uine by checking that the undesirable sequents are not present. This
is an idea we exploited with the introduction of the⊥ andp1 ∨ p2

patterns, which make our language of patterns closed under com-
plement, at the (temporary!) cost of soundness and determinism,
respectively.

Zeilberger [18] gives an analysis of focusing in terms of Dum-
mett’s notion of logical harmony [5], and uses this analysis to con-
struct a theory which relates patterns to continuations. He does
not give a coverage algorithm, but instead builds in coverage as
a declarative requirement of his typing rules.

In real compilers, there are two classical approaches to com-
piling pattern matching, either by constructing a decision tree (de-
scribed by Cardelli [3]) or building a backtracking automaton (de-
scribed by Augustsson [2]). In our system, both of these approaches
can be represented uniformly, since backtracking is cleanly isolated
with the use of the nondeterministic disjunction patternp1∨p2 and
the abort pattern[].

Focusing on Pattern Matching 8 2007/7/17

Split(x; (x,−→qs; r)) = {(−→qs; r)}
Split(x; (>,−→qs; r)) = {(−→qs; r)}
Split(〈〉; (〈〉 ,−→qs; r)) = {(−→qs; r)}
Split(〈〉; (>,−→qs; r)) = {(−→qs; r)}
Split(〈p1, p2〉; (〈p1, p2〉 ,−→qs; r)) = {(p1, p2,

−→qs; r)}
Split(〈p1, p2〉; (>,−→qs; r)) = {(>,>,−→qs; r)}

Split(>; (>,−→qs; r)) = {(−→qs; r)}
Split(p1 ∧ p2; (p1 ∧ p2,

−→qs; r)) = {(p1, p2,
−→qs; r)}

Split(p1 ∧ p2; (>,−→qs; r)) = {(>,>,−→qs; r)}
Split(⊥; (>,−→qs; r)) = {(−→qs; r)}
Split(p1 ∨ p2; (p1 ∨ p2,

−→qs; r1 ∨ r2)) = {(p1,>,−→qs; r1),
(>, p2,

−→qs; r2)}
Split(p1 ∨ p2; (>,−→qs; r)) = {(>,>,−→qs; r)}

CoalesceA(>; −→cs; r) = (x,−→cs; r)
CoalesceA(p1 ∧ p2; c1, c2,

−→cs; r) = AndA(·; c1; c2; r)
CoalesceA(⊥; −→cs; r) = (>,−→cs; r)
CoalesceA(p1 ∨ p2; c1, c2,

−→cs; r) = AndA(·; c1; c2; r)
CoalesceA(x; −→cs; r) = (x,−→cs; r)
Coalesce1(〈〉; −→cs; r) = (x,−→cs; r)
CoalesceA×B(〈p1, p2〉; c1, c2,

−→cs; r) = (〈c1, c2〉 ,−→cs; r)

Figure 11. Pattern Compilation: Supporting Definitions

Fessant and Maranget [6] describe a modern algorithm for pat-
tern compilation which operates over matrices of patterns. Their
algorithm tries to construct an efficient backtracking automaton,
whereas our compilation algorithm is a reconstruction of the deci-
sion trees method. However, the rows of their matrices correspond,
roughly, to the elements of the input setS in our compilation al-
gorithm, and we believe that we have an unordered set because we
work with unbiasedchoice.

Maranget [11] describes an algorithm for generating warnings
for non-exhaustive matches and useless clauses, for both strict and
lazy languages. This is difficult to compare with our coverage
algorithm, since it operates on a substantially different principle.
He does consider efficiency, a question we have largely ignored.

Sestoft [15] shows how to generate pattern matching code via
partial evaluation. He does not consider the question of coverage
checking.

A. Appendix Title

Acknowledgments
The author would like to thank Jonathan Aldrich, Robert Harper,
Dan Licata, William Lovas, Frank Pfenning, Jason Reed, Kevin
Watkins, and Noam Zeilberger for valuable encouragement and
advice.

This work was supported in part by NSF grant CCF-0541021,
NSF grant CCF-0546550, DARPA contract HR00110710019 and
the Department of Defense.

References
[1] J. Andreoli. Logic Programming with Focusing Proofs in Linear

Logic. Journal of Logic and Computation, 2(3):297, 1992.

[2] L. Augustsson. Compiling pattern matching.Proc. of a conference on
Functional programming languages and computer architecture table
of contents, pages 368–381, 1985.

[3] L. Cardelli. Compiling a functional language. InLFP ’84:
Proceedings of the 1984 ACM Symposium on LISP and functional

Left(∅) = ∅
Left({(>,−→q ; r)} ∪ S) = {(>,−→q ; r)}

∪Left(S)
Left({([inl p1 | inr p2] ,

−→q ; [r1 | r2])} ∪ S) = (p1,
−→q ; r1)

∪Left(S)

Right(∅) = ∅
Right({(>,−→q ; r)} ∪ S) = {(>,−→q ; r)}

∪Right(S)
Right({([inl p1 | inr p2] ,

−→q ; [r1 | r2])} ∪ S) = {(p2,
−→q ; r2)}

∪Right(S)

Decompose(> : A) = ·
Decompose(p1 ∧ p2 : A) = p1 : A, p2 : A
Decompose(⊥ : A) = ·
Decompose(p1 ∨ p2 : A) = p1 : A, p2 : A
Decompose(x : A) = ·
Decompose(〈〉 : 1) = ·
Decompose(〈p1, p2〉 : A×B) = p1 : A, p2 : B

Figure 12. Pattern Compilation: More Supporting Definitions

programming, pages 208–217, New York, NY, USA, 1984. ACM
Press.

[4] S. Cerrito and D. Kesner. Pattern matching as cut elimination.
Theoretical computer science, 323(1-3):71–127, 2004.

[5] M. Dummett.The Logical Basis of Metaphysics. Duckworth, 1991.

[6] F. L. Fessant and L. Maranget. Optimizing pattern matching. In
ICFP ’01: Proceedings of the sixth ACM SIGPLAN international
conference on Functional programming, pages 26–37, New York,
NY, USA, 2001. ACM Press.

[7] J. Girard. Locus Solum: From the rules of logic to the logic of
rules. Mathematical Structures in Computer Science, 11(03):301–
506, 2001.

[8] S. Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs.Proceedings of the
eleventh ACM SIGPLAN international conference on Functional
programming, pages 50–61, 2006.

[9] D. Kesner, L. Puel, and V. Tannen. A Typed Pattern Calculus.
Information and Computation, 124(1):32–61, 1996.

[10] C. Liang and D. Miller. Focusing and polarization in intuitionistic
logic. In 16th EACSL Annual Conference on Computer Science and
Logic. Springer-Verlag, 2007.

[11] L. Maranget. Warnings for pattern matching.Journal of Functional
Programming, 2007.

[12] C. McBride. Epigram.Types for Proofs and Programs, Torino, 2003,
3085:115–129, 2003.

[13] R. Milner. The Definition of Standard Ml:(revised). MIT Press, 1997.

[14] F. Pfenning. Structural Cut Elimination I. Intuitionistic and Classical
Logic. Information and Computation, 157(1-2):84–141, 2000.

[15] P. Sestoft. ML pattern match compilation and partial evaluation.
Lecture Notes in Computer Science, 1110:446–??, 1996.

[16] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework: The propositional fragment.Types for Proofs and
Programs, pages 355–377, 2004.

[17] H. Xi. Dependently Typed Pattern Matching.Journal of Universal
Computer Science, 9(8):851–872, 2003.

[18] N. Zeilberger. The logical basis of evaluation order. Thesis proposal,
May 2007. Carnegie Mellon, Pittsburgh, Pennsylvania. Available at
http://www.cs.cmu.edu/ noam/research/proposal.pdf.

Focusing on Pattern Matching 9 2007/7/17

Out⊕i (·; r1 ⊕ r2) = ri

Out⊕i (> : A, ∆; r) = Out⊕i (∆; r)
Out⊕i (p1 ∧ p2 : A, ∆; r) = Out⊕i (p1 : A, p2 : A, ∆; r)
Out⊕i (⊥ : A, ∆; ⊥) = ⊥
Out⊕i (p1 ∨ p2 : A, ∆; r1 ∨ r2) = Out⊕i (p1 : A, ∆; r1) ∨ Out⊕i (p2 : B, ∆; r2)
Out⊕i (〈〉 : 1, ∆; r) = Out⊕i (∆; r)
Out⊕i (〈p1, p2〉 : A×B, ∆; r) = Out⊕i (p1 : A, p2 : B, ∆; r)
Out⊕i ([] : 0, ∆; []) = []
Out⊕i ([inl p1 | inr p2] : A + B, ∆; [r1 | r2]) =

ˆ
Out⊕i (p1 : A, ∆; r1) | Out⊕i (p2 : B, ∆; r2)

˜
Join⊕(·; r1; r2) = r1 ⊕ r2

Join⊕(> : A, ∆; r1; r2) = Join⊕(∆; r1; r2)
Join⊕(p1 ∧ p2 : A, ∆; r1; r2) = Join⊕(p1 : A, p2 : A, ∆; r1; r2)
Join⊕(⊥ : A, ∆; ⊥; ⊥) = ⊥
Join⊕(p1 ∨ p2 : A, ∆; r1 ∨ r2; r′1 ∨ r′2) = Join⊕(p1 : A, ∆; r1; r′1) ∨ Join⊕(p2 : B, ∆; r2; r′2)
Join⊕(〈〉 : 1, ∆; r1; r2) = Join⊕(∆; r1; r2)
Join⊕(〈p1, p2〉 : A×B, ∆; r1; r2) = Join⊕(p1 : A, p2 : B, ∆; r1; r2)
Join⊕([] : 0, ∆; []; []) = []
Join⊕([inl p1 | inr p2] : A + B, ∆; [r1 | r2]; [r′1 | r′2]) =

ˆ
Join⊕(p1 : A, ∆; r1; r′1) | Join⊕(p2 : B, ∆; r2; r′2)

˜
Zeroc(·) = c
Zeroc(> : A, ∆) = Zeroc(∆)
Zeroc(p1 ∧ p2 : A, ∆) = Zeroc(p1 : A, p2 : A, ∆)
Zeroc(⊥ : A, ∆) = ⊥
Zeroc(p1 ∨ p2 : A, ∆) = Zeroc(p1 : A, ∆) ∨ Zeroc(p2 : A, ∆)
Zeroc(x : A, ∆) = Zeroc(∆)
Zeroc(〈〉 : 1, ∆) = Zeroc(∆)
Zeroc(〈p1, p2〉 : A×B, ∆) = Zeroc(p1 : A, p2 : B, ∆)
Zeroc([] : 0, ∆) = []
Zeroc([inl p1 | inr p2] : A + B, ∆) = [Zeroc(p1 : A, ∆) | Zeroc(p2 : B, ∆)]

Ex(∆; > : A; ∆′; r) = r
Ex(∆; p1 ∧ p2 : A; ∆′; r) = Ex(∆; p2 : A; ∆′, p1 : A; Ex(∆; p1 : A; p2 : A, ∆′; r))
Ex(∆; ⊥ : A; ∆′; r) = Zero⊥(∆, ∆′)
Ex(∆; p1 ∨ p2 : A; ∆′; r) = Join∨(∆, ∆′; Ex(∆; p1 : A; ∆′; Out∨1 (∆; r)); Ex(∆; p1 : A; ∆′; Out∨2 (∆; r)))
Ex(∆; x : A; ∆′; r) = r
Ex(∆; 〈〉 : 1; ∆′; r) = r
Ex(∆; 〈p1, p2〉 : A×B; ∆′; r) = Ex(∆; p2 : B; ∆′, p1 : A; Ex(∆; p1 : A; p2 : B, ∆′; r))

Ex(∆; [] : 0; ∆′; r) = Zero[](∆, ∆′)

Ex(∆; [inl p1 | inr p2] : A + B; ∆′; r) = let r1 = Ex(∆; p1 : A; ∆′; Out
[·|·]
1 (∆; r))

let r2 = Ex(∆; p1 : A; ∆′; Out
[·|·]
2 (∆; r))

Join[·|·](∆, ∆′; r1; r2)

Figure 9. Deep Operators

∆〈〈v/p〉〉NI
A u ; u′

∆〈〈v/p〉〉NI
A λp′. u ; λp′. u′

∆〈〈v/p〉〉PE
A r ; r′

∆〈〈v/p〉〉NI
A r ; r′

∆〈〈〈〉 / 〈〉〉〉PE
1 r ; r

∆〈〈v1/p1〉〉PE
A1

r ; r′ ∆〈〈v2/p2〉〉PE
A2

r′ ; r′′

∆〈〈〈v1, v2〉 / 〈p1, p2〉〉〉PE
A1×A2

r ; r′′

∆〈〈v/p1〉〉PE
A1

Out
[·|·]
1 (∆; r) ; r′

∆〈〈inl v/ [inl p1 | inr p2]〉〉PE
A1+A2

r ; r′

∆〈〈v/p2〉〉PE
A2

Out
[·|·]
2 (∆; r) ; r′

∆〈〈inr v/ [inl p1 | inr p2]〉〉PE
A1+A2

r ; r′ ∆〈〈v/x〉〉PE
A r ; [v/x]PI

A r ∆〈〈v/>〉〉PE
A r ; r

∆〈〈v/p1〉〉PE
A r ; r′ ∆〈〈v/p2〉〉PE

A r′ ; r′′

∆〈〈v/p1 ∧ p2〉〉PE
A r ; r′′

∆〈〈v/p1〉〉PE
A Out∨1 (∆; r) ; r′

∆〈〈v/p1 ∨ p2〉〉PE
A r ; r′

∆〈〈v/p2〉〉PE
A Out∨2 (∆; r) ; r′

∆〈〈v/p1 ∨ p2〉〉PE
A r ; r′

Figure 10. Deep Substitution

Focusing on Pattern Matching 10 2007/7/17

AndA(∆; >; c; r) =
AndA(∆; c; >; r) = (c, r)
AndA(∆; x ∧ c1; c2; r) =
AndA(∆; c1; x ∧ c2; r) = let (c′; r′) = AndA(∆; c1; c2; r)

if c′ = y ∧ c′′ then(c′; [x/y]PE
A r) else(c′; r)

And1(∆; 〈〉; x; r) =
And1(∆; x; 〈〉 ; r) = (x; r)
And0(∆; []; x; r) =

And0(∆; x; []; r) = ([]; Zero[](∆))
AndA×B(∆; x; 〈c1, c2〉 ; r) =
AndA×B(∆; 〈c1, c2〉; x; r) = (x ∧ 〈c1, c2〉; r)
AndA+B(∆; x; [inl c1 | inr c2] ; r) =
AndA+B(∆; [inl c1 | inr c2]; x; r) = (x ∧ [inl c1 | inr c2]; r)
AndA(∆; x; y; r) = (x; [x/y]PE

A r)
And1(∆; 〈〉; 〈〉 ; r) = (〈〉 ; r)
And0(∆; []; []; r) = ([];Zero[](∆))
AndA×B(∆; 〈c1, c2〉; 〈c′1, c′2〉 ; r) = let (c′′1 ; r′) = AndA(∆; c1; c′1; Ex(∆, c1 : A; c2 : B; c′1 : A; r))

let (c′′2 ; r′′) = AndB(∆, c′′1 : A; c2; c′2; r′)
(〈c′′1 , c′′2 〉 ; r′′)

AndA+B(∆; [inl c1 | inr c2]; [inl c′1 | inr c′2] ; r) = let (c′′1 ; r′′1) = AndA(∆; c1; c′1; Out
[·|·]
1 (∆, c1 : A; Out

[·|·]
1 (∆; r)))

let (c′′2 ; r′′2) = AndA(∆; c2; c′2; Out
[·|·]
2 (∆, c1 : A; Out

[·|·]
2 (∆; r)))

([inl c′′1 | inr c′′2] ; Join[·|·](∆; r′′1 ; r′′2))

Figure 13. Conjunction Simplification

Focusing on Pattern Matching 11 2007/7/17

MergeTop(x; y; r) = (y; [y/x]PE
A r)

MergeTop(x;>; r) = (x; r)
MergeTop(x; y ∧ c; r) = (y ∧ c; [y/x]PE

A r)
MergeTop(x; 〈〉; r) = (x; r)
MergeTop(x; []; r) = ([]; r)
MergeTop(x; 〈c1, c2〉; r) = (x ∧ 〈c1, c2〉; r)
MergeTop(x; [inl c1 | inr c2]; r) = (x ∧ [inl c1 | inr c2]; r)

MergeTopA(>;∆; r) = r
MergeTopA(x;∆; r) = r
MergeTopA(x ∧ c;∆; r) = MergeTopA(c;∆; r)
MergeTop1(〈〉;∆;∆)r = r

MergeTop0([];∆; r) = Zero[](∆)
MergeTopA×B(〈c1, c2〉;∆; r) = MergeTopB(c2;∆, c1 : A;MergeTopA(c1;∆; r))

MergeTopA+B([inl c1 | inr c2];∆; r) = Join[·|·](∆; MergeTopA(c1;∆; r); MergeTopA(c2;∆; r))

MergeA(∆1;>; r1;∆2; c2; r2) = let r′1 = MergeTopA(c2;∆1; r1)
(c2; r

′
1; r2)

MergeA(∆1; x; r1;∆2; c2; r2) = let (c; r′1; r
′
2) = MergeA(∆1;>; r1;∆2; c2; r2)

let (c′; r′′1) = MergeTop(x; c; r′1)
(c′; r′′1 ; r′2)

MergeA(∆; x ∧ c1; r1;∆2; c2; r2) = let (c; r′1; r
′
2) = MergeA(∆1; c1; r1;∆2; c2; r2)

let (c′; r′′1) = MergeTop(x; c; r′1)
(c′; r′′1 ; r′2)

Merge1(∆1; 〈〉; r1;∆2; 〈〉; r2) = (〈〉 ; r1; r2)

Merge0(∆1; []; r1;∆2; []; r2) = ([];Zero[](∆1);Zero[](∆2))
MergeA×B(∆1; 〈c1, c2〉; r1;∆2; 〈c′1, c′2〉; r2) = let (c′′1 ; r′1; r

′
2) = MergeA(∆1; c1; r1;∆2; c

′
1; r

′
2)

let (c′′2 ; r′′1 ; r′′2) = MergeB(∆1, c
′′
1 : A; c2; r

′
1;∆2, c

′′
1 : A; c′2; r

′
2)

(〈c′′1 , c′′2 〉 ; r′′1 ; r′′2)

MergeA+B(∆1; [inl c1 | inr c2]; r1;∆2; [inl c′1 | inr c′2]; r2) = let (c′′1 ; r′1; r
′
2) = MergeA(∆1; c1;Out

[·|·]
1 (∆1; r1);∆2; c

′
1;Out

[·|·]
1 (∆2; r′2))

let (c′′2 ; r′′1 ; r′′2) = MergeB(∆1; c1;Out
[·|·]
2 (∆1; r1);∆2; c

′
1;Out

[·|·]
2 (∆2; r′2))

([inl c′′1 | inr c′′2] ; Join[·|·](∆; r′1; r′′1); Join[·|·](∆; r′2; r′′2))
MergeA(∆1; c1; r1;∆2; c2; r2) = MergeA(∆2; c2; r2;∆1; c1; r1)

(when the other cases don’t match)

Merge∗· (∆1; ·; r1; ∆2; ·; r2) = (·; r1; r2)
Merge∗

A1,
−→
A

(∆1; c1,
−→c1 ; r1; ∆2; c2,

−→c2 ; r2) = let (c′; r′1; r
′
2) = MergeA1

(∆1; c1; r1; A2;∆2; c2)r2

let (
−→
c′ ; r′′1 ; r′′2) = Merge∗−→

A
(∆1;

−→c1 ; r′1; ∆2;
−→c2 ; r′2)

(c′,
−→
c′ ; r′′1 ; r′′2)

Figure 14. Context Merging

Focusing on Pattern Matching 12 2007/7/17

