

High Throughput Compression of Double-Precision

Floating-Point Data

Martin Burtscher and Paruj Ratanaworabhan

School of Electrical and Computer Engineering
Cornell University, Ithaca, NY 14853
{burtscher, paruj}@csl.cornell.edu

Abstract

This paper describes FPC, a lossless compression algorithm for linear streams of 64-bit
floating-point data. FPC is designed to compress well while at the same time meeting the
high throughput demands of scientific computing environments. On our thirteen datasets,
it achieves a substantially higher average compression ratio than BZIP2, DFCM, FSD,
GZIP, and PLMI. At comparable compression ratios, it compresses and decompresses 8
to 300 times faster than the other five algorithms.

1. Introduction
Many scientific programs produce and transfer large amounts of double-precision float-

ing-point data. For example, some exchange data between processing nodes and with

mass storage devices after every simulated time step. Moreover, scientific programs are

usually checkpointed at regular intervals so that they can be restarted from the most re-

cent checkpoint after a crash. Checkpoints tend to be large and have to be saved to disk.

Compression can reduce the amount of data that needs to be transferred and stored. If

done fast enough, it can also increase the throughput of the data exchanges, which is de-

sirable in high-performance computing environments. The challenge is to achieve a good

compression ratio and a high compression and decompression speed at the same time.

Furthermore, the compression algorithm usually has to be lossless and single pass. For

example, checkpoints cannot be lossy and neither can data from which certain derived

quantities will be computed [16]. To avoid first writing the uncompressed data to disk, a

single-pass algorithm is needed so that the data can be compressed and decompressed as

it is generated and consumed, respectively.

This paper presents FPC, a lossless, single-pass, linear-time compression algorithm for

double-precision floating-point data. FPC is specifically designed for scientific and high-

performance computing environments. It delivers a good average compression ratio on

hard-to-compress 1D numeric data. Moreover, it employs a simple algorithm that can be

implemented entirely with fast integer operations. As a result, FPC compresses and de-

compresses one to two orders of magnitude faster than other algorithms.

The rest of this paper is organized as follows. Section 2 explains the FPC algorithm in

detail. Section 3 summarizes related work. Section 4 discusses the evaluation methods.

Section 5 presents the results. Section 6 concludes the paper with a summary.

2. The FPC Algorithm
FPC compresses linear sequences of IEEE 754 double-precision floating-point values by

repeatedly predicting the next double in the sequence, xoring the double with the pre-

dicted value, and leading-zero compressing the result. As illustrated in Figure 1, it uses

an fcm [19] and a dfcm [8] value predictor to predict the doubles, both of which are essen-
tially hash tables. The closer of the two predictions, i.e., the one that shares more com-

mon most significant bits with the true double, is chosen and xored with the double. The

xor operation turns identical bits into zeros. Hence, if the prediction is accurate, the xor

result has many leading zero bits. FPC then counts the number of leading zero bytes and

encodes the count in a three-bit value along with a one-bit value that specifies which pre-

dictor was used. The resulting four-bit code and the nonzero remainder bytes are written

to the compressed stream. The latter are emitted verbatim without any form of encoding.

 64

uncompressed data

FCM DFCM

 64 64

3f82 4… 3f51 9…

compare compare

predictor closer

code value

 1 64

leading

zero byte

counter

encoder compressed data

bita cnta bitb cntb remaindera

 x y 0 2 z

. . .
3f82 3b1e 0e32 f39d

. . .

selector

double

XOR

remainderb
.

1+3 0 to 8 bytes

7129 889b 0e5d
Figure 1: The FPC compression algorithm

To maintain byte granularity, which is much more efficient than bit granularity, a pair

of doubles is always processed together and the corresponding two four-bit codes are

packed into a byte. In case an odd number of doubles needs to be compressed, a spurious

double is encoded at the end. The extra value is expressed as seven leading zero bytes

and the “nonzero” byte is set to zero. This encoding is never used with an actual double

as it would simply be encoded as having eight leading zero bytes.

Decompression works as follows. It starts by reading the next four-bit code. Then the

number of remainder bytes specified by the three-bit value are read and zero-extended to

a full 64-bit number. Based on the one-bit value, this number is xored with the 64-bit fcm
or dfcm prediction to recreate the original double. This lossless reconstruction is possible
because xor is a reversible operation.

For performance reasons, FPC interprets all doubles as 64-bit integers and uses only

integer arithmetic. Since there can be between zero and eight leading zero bytes, i.e., nine

possibilities, not all of them can be encoded in the three-bit value. We decided not to

support a leading zero count of four because it occurs only rarely. Consequently, all xor

results with four leading zero bytes are expressed as having only three leading zero bytes

and the fourth zero byte is emitted as part of the remainder bytes.

Before compression and decompression, both predictors are initialized with all zeros.

After each prediction, they are updated with the true double value to ensure that they

generate the same sequence of predictions during compression as they do during decom-

pression. The following pseudo code demonstrates the operation of the fcm predictor. The

table_size has to be a power of two and fcm is the hash table.

unsigned long long true_value, fcm_prediction, fcm_hash, fcm[table_size];
...
fcm_prediction = fcm[fcm_hash]; // prediction: read hash table entry
fcm[fcm_hash] = true_value; // update: write hash table entry
fcm_hash = ((fcm_hash << 6) ^ (true_value >> 48)) & (table_size – 1);

Right shifting the true_value, i.e., the current double expressed as a 64-bit integer,

by 48 bits eliminates the usually random mantissa bits. The remaining 16 bits are xored

with the previous hash value to produce the new hash. However, the previous hash is first

shifted by six bits to the left to gradually phase out bits from older values. The hash value

can therefore be thought of as representing the most recently encountered doubles, and

the hash table stores the double that follows this sequence. Hence, making an fcm predic-
tion is tantamount to performing a table lookup to determine which value followed the

last time a similar sequence of previous doubles was seen.

The dfcm predictor operates in much the same way. However, it predicts integer dif-

ferences between consecutive values rather than absolute values, and the shift amounts in

the hash function are different.

unsigned long long last_value, dfcm_prediction, dfcm_hash, dfcm[table_size];
...
dfcm_prediction = dfcm[dfcm_hash] + last_value;
dfcm[dfcm_hash] = true_value – last_value;
dfcm_hash = ((dfcm_hash << 2) ^ ((true_value – last_value) >> 40)) &
 (table_size – 1);
last_value = true_value;

The complete C source code and a brief description of how to compile and use it are

available at http://www.csl.cornell.edu/~burtscher/research/FPC/.

3. Related Work
Our work concentrates on 64-bit floating-point values, such as those produced by nu-

meric programs, which are also the target of the following algorithms from the literature.

Engelson et al. [5] propose a compression scheme for the double-precision output of a

numerical solver for ordinary differential equations. The authors use integer delta and

extrapolation algorithms to compress and decompress the data. Their method is particu-

larly beneficial with gradually changing data.

Lindstrom and Isenburg [16] designed a scheme for the efficient compression of imag-

ing data, with an emphasis on 2D and 3D data. They predict the data using the Lorenzo

predictor [12] and encode the residual, i.e., the difference between the predicted and the

true value, with a range coder based on Schindler’s quasi-static probability model [20].

Together with Jian Ke, we have previously proposed the DFCM compressor [18],

which performs data prediction, residual generation, and backend coding. The data pre-

diction utilizes a modified dfcm value predictor. A four-bit leading zero suppress scheme

is then employed to encode the residual, which is the xored difference between the true

and the predicted value. Another paper [14] describes how we incorporated the DFCM

compression algorithm into an MPI library to speed up parallel message passing pro-

grams running on a cluster of workstations.

Several papers on lossless compression of floating-point data focus on 32-bit single-

precision values, as exemplified by the following work. Klimenko et al. [15] present a

method that combines differentiation and zero suppression to compress floating-point

data arising from experiments conducted at the Laser Interferometer Gravitation Wave

Observatory. It has about the same compression ratio as GZIP but is significantly faster.

Its success is tied to the nature of the LIGO data, which are time series whose values

change only gradually. Ghido [7] proposes an algorithm for the lossless compression of

audio data. It transforms the floating-point values into integers and generates an addi-

tional binary stream for the lossless reconstruction of the original floating-point values.

Several publications concentrate on compressing floating-point data that represent im-

ages. These studies focus on maximizing the compression ratio, as the compression and

decompression speed are not so important. Usevitch [22] proposes extensions to the

JPEG2000 standard that allow data to be efficiently encoded with bit-plane coding algo-

rithms where the floating-point values are represented as “big integers”. Gamito et al. [6]

describe modifications needed in JPEG2000 to accommodate lossless floating-point

compression, namely, adjustments in the wavelet transformation and earlier signaling of

special numbers such as NaNs in the main header. Isenburg et al. [13] employ an arith-

metic coder for single-precision floating-point fields that represent residual vectors be-

tween the actual and the predicted vertex positions in triangular meshes. Trott et al. [21]

use an extended precision algorithm, the Haar wavelet transform, and Huffman coding to

losslessly compress 3D curvilinear grids. Chen et al. [4] compress irregular grid volume

data represented as a tetrahedral mesh. Their technique performs differential coding and

clustering to generate separate data residuals for the mantissa and the exponent. Then, a

Huffman coder and GZIP are used to encode the mantissa and exponent residuals.

4. Evaluation Methodology
4.1 System and Compiler

We compiled and evaluated FPC and the compressors listed in Section 4.4 on a 64-bit

system with a 1.6GHz Itanium 2 CPU, which has a 16kB L1 data cache, a 256kB unified

L2 cache, a 3MB L3 cache (on chip), and 3GB of main memory. The operating system is

Red Hat Enterprise Linux AS4 and the compiler is the Intel C Itanium Compiler version

9.1. We used the “-O3 -mcpu=itanium2 -static” compiler flags for each compressor.

4.2 Timing Measurements

All timing measurements refer to the elapsed time reported by the shell command time.
To make the measurements independent of the disk speed, each experiment was con-

ducted five times in a row and the shortest running time is reported. This approach re-

sulted in close to 100% CPU utilization because the compressors’ inputs were cached in

main memory. All output was written to /dev/null, that is, it was consumed but ignored.

4.3 Datasets

We used thirteen datasets from various scientific domains for our evaluation. Each data-

set consists of a one-dimensional binary sequence of IEEE 754 double-precision floating-

point numbers and belongs to one of the following categories.

Observational data: These datasets comprise measurements from scientific instruments.

• obs_error: data values specifying brightness temperature errors of a weather satellite

• obs_info: latitude and longitude of the observation points of a weather satellite

• obs_spitzer: data from the Spitzer Space Telescope showing a slight darkening as an

extrasolar planet disappears behinds its star

• obs_temp: data from a weather satellite denoting how much the observed temperature

differs from the actual contiguous analysis temperature field

Numeric simulations: These datasets are the results of numeric simulations.

• num_brain: simulation of the velocity field of a human brain during a head impact

• num_comet: simulation of the comet Shoemaker-Levy 9 entering Jupiter’s atmosphere

• num_control: control vector output between two minimization steps in weather-

satellite data assimilation

• num_plasma: simulated plasma temperature of a wire array z-pinch experiment

Parallel messages: These datasets capture the messages sent by a node in a parallel sys-

tem running NAS Parallel Benchmark (NPB) [1] and ASCI Purple [11] applications.

• msg_bt: NPB computational fluid dynamics pseudo-application bt

• msg_lu: NPB computational fluid dynamics pseudo-application lu

• msg_sp: NPB computational fluid dynamics pseudo-application sp

• msg_sppm: ASCI Purple solver sppm

• msg_sweep3d: ASCI Purple solver sweep3d
Table 1 summarizes information about each dataset. The first two data columns list the

size in megabytes and in millions of double-precision values. The middle column shows

the percentage of doubles in each dataset that are unique, i.e., appear exactly once. The

fourth column displays the first-order entropy of the doubles in bits. The last column ex-

presses the randomness of the datasets in percent, that is, it reflects how close the first-

order entropy is to that of a truly random dataset with the same number of doubles.

Table 1: Statistical information about each dataset

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

msg_bt 254.0 33.30 92.9 23.67 94.7

msg_lu 185.1 24.26 99.2 24.47 99.7

msg_sp 276.7 36.26 98.9 25.03 99.7

msg_sppm 266.1 34.87 10.2 11.24 44.9

msg_sweep3d 119.9 15.72 89.8 23.41 97.9

num_brain 135.3 17.73 94.9 23.97 99.5

num_comet 102.4 13.42 88.9 22.04 93.1

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 61.9

obs_error 59.3 7.77 18.0 17.80 77.8

obs_info 18.1 2.37 23.9 18.07 85.3

obs_spitzer 189.0 24.77 5.7 17.36 70.7

obs_temp 38.1 4.99 100.0 22.25 100.0

We observe that all datasets contain several million doubles. What is striking is that

the datasets from all three categories appear to largely consist of unique values. More-

over, they are highly random from an entropy perspective, even the ones that do not con-

tain many unique values (e.g., num_plasma).
Based on these statistics, it is unlikely that a pure entropy-based compression approach

would work well. Note that the higher-order entropies are also close to random because

of the large percentage of unique values. Clearly, we have to use a good data model or

subdivide the doubles into smaller entities (e.g., bytes), some of which may exhibit less

randomness, to compress these datasets well. FPC incorporates both of these approaches.

4.4 Other Compressors

This subsection describes the compression schemes with which we compare our approach

in Section 5. GZIP and BZIP2 are lossless, general-purpose algorithms that can be used

to compress any kind of data. The remaining algorithms represent our implementations of

special-purpose floating-point compressors from the literature. They are all single-pass,

lossless compression schemes that “know” about the format of double-precision values.

BZIP2: BZIP2 [9] is a general-purpose compressor that operates at byte granularity. It

implements a variant of the block-sorting algorithm described by Burrows and Wheeler

[2]. It applies a reversible transformation to a block of inputs, uses sorting to group bytes

with similar contexts together, and then compresses them with a Huffman coder. The

block size is adjustable. We evaluate all supported block sizes, i.e., one through nine.

DFCM: Our previously proposed DFCM scheme [18] maps each encountered float-

ing-point value to an unsigned integer and predicts it with a modified dfcm predictor.
This predictor computes a hash value out of the three most recently encountered differ-

ences between consecutive values in the input. Next, it performs a hash table lookup to

retrieve the differences that followed the last two times the same hash was encountered,

and one of the two differences is used to predict the next value. A residual is generated by

xoring the predicted value with the true value. This residual is encoded using a four-bit

leading zero bit count. We evaluate predictor sizes between 16 bytes and 512MB. Note

that DFCM and FPC utilize quite different dfcm predictor implementations.

FSD: The FSD compressor implements the fixed step delta-algorithm proposed by

Engelson et al. [5]. As it reads in a stream of doubles, it iteratively generates difference

sequences from the original sequence. The order determines the number of iterations. A

zero suppress algorithm is then used to encode the final difference sequence, where each

value is expected to have many leading zeroes. Generally, gradually changing data tend

to benefit from higher difference orders whereas rapidly changing data compress better

with lower orders. We evaluate orders one through seven (higher orders perform worse).

GZIP: GZIP [10] is a general-purpose compression utility that operates at byte granu-

larity and implements a variant of the LZ77 algorithm [23]. It looks for repeating se-

quences of bytes (strings) within a 32kB sliding window. The length of the string is lim-

ited to 256 bytes, which corresponds to the lookahead buffer size. GZIP uses two Huff-

man trees, one to compress the distances in the sliding window and another to compress

the lengths of the strings as well as the individual bytes that were not part of any matched

sequence. The algorithm finds duplicated strings using a chained hash table. A command-

line argument determines the maximum length of the hash chains and whether lazy

evaluation should be used. We evaluate all supported levels, i.e., one through nine.

PLMI: The PLMI scheme proposed by Lindstrom and Isenberg [16] uses a Lorenzo

predictor in the front-end to predict 2D and 3D geometry data for rendering. Since our

datasets are 1D, we cannot evaluate PLMI in its intended mode. In fact, for general linear

data, the Lorenzo predictor reverts to a delta predictor, which processes data similarly to

the first-order FSD algorithm. Hence, we included the modified dfcm predictor (see
above) in our implementation of PLMI, which compresses linear data better. The pre-

dicted and true floating-point values are mapped to an unsigned integer from which a re-

sidual is computed by a difference process. The final step involves encoding the residual

with range coding based on Schindler’s quasi-static probability model. We evaluate pre-

dictor sizes between 16 bytes and 512MB.

5. Results
5.1 Compression Ratio

This subsection investigates the highest compression ratio that the six algorithms achieve

on each dataset. Note that we individually optimized the size (DFCM, FPC, PLMI), level

(BZIP2, GZIP), or order (FSD) for each algorithm and dataset to obtain the results shown

in Table 2. The numbers in bold print reflect the best compression ratio for each dataset.

Table 2: Highest compression ratio of the six algorithms on each dataset

BZIP2 DFCM FPC FSD GZIP PLMI

msg_bt 1.10 1.36 1.29 1.07 1.13 1.24

msg_lu 1.02 1.24 1.17 1.00 1.06 1.19

msg_sp 1.08 1.25 1.26 0.99 1.11 1.19

msg_sppm 6.93 4.23 5.30 2.35 7.43 5.02

msg_sweep3d 1.29 1.56 3.09 1.21 1.09 1.21

num_brain 1.04 1.23 1.16 1.10 1.06 1.12

num_comet 1.17 1.17 1.16 1.11 1.16 1.18

num_control 1.03 1.07 1.05 0.99 1.06 1.06

num_plasma 5.79 1.30 15.05 1.00 1.61 1.26

obs_error 1.34 1.52 3.60 1.16 1.45 1.26

obs_info 1.22 1.23 2.27 1.00 1.15 1.16

obs_spitzer 1.75 1.00 1.03 0.96 1.23 1.08

obs_temp 1.02 1.01 1.02 0.97 1.04 1.04

geo_mean 1.52 1.36 1.95 1.11 1.35 1.30

FPC achieves the highest geometric-mean compression ratio because on four datasets

it exceeds the performance of the other five algorithms by a large margin. The other algo-

rithms substantially outperform FPC on two datasets, msg_sppm and obs_spitzer.
DFCM is sometimes superior to FPC because it employs a more sophisticated predic-

tor, which stores two difference values in each table entry (instead of just a single value

as FPC’s predictors do) and uses a more elaborate hash function. However, FPC outper-

forms DFCM on the majority of our datasets because FPC contains a second predictor

that often complements the first predictor well (e.g., on num_plasma).
No algorithm performs best on all datasets. In fact, no algorithm is best on more than

five of the thirteen datasets. There is also no best algorithm within the three dataset cate-

gories. Even GZIP and BZIP2, the general-purpose compressors that have no knowledge

of the format of double-precision floating-point values, provide the highest compression

ratio on some of the datasets. Only FSD is outperformed on all of our datasets.

None of our datasets are highly compressible with any of the algorithms we studied.

Only msg_sppm can be compressed by at least a factor of two with all six algorithms.

Two datasets, num_control and obs_temp, cannot even be compressed by ten percent.

These results are consistent with the randomness information presented in Table 1, based

on which we would expect msg_sppm to be the most and obs_temp the least compressible

dataset. The highest overall compression ratio of 15.05 is obtained on num_plasma,
which exhibits the second lowest randomness and the lowest percentage of unique values.

 On some datasets, most notably msg_sweep3d, num_plasma, obs_error, and obs_info,
and to a lesser extent obs_spitzer, one algorithm performs much better than the others.

With the exception of msg_sweep3d, these datasets all have relatively few unique values
and low randomness. The five datasets with above 99% randomness cannot be com-

pressed by more than 26% by any of the algorithms we investigated.

5.2 Throughput

This subsection examines the compression and decompression throughput of the six algo-

rithms (i.e., the raw dataset size divided by the runtime). Figure 2 plots the throughput in

gigabits per second versus the geometric-mean compression ratio. For DFCM, FPC, and

PLMI, the table size doubles for each data point from sixteen bytes (leftmost) to 512MB

(rightmost). For BZIP2 and GZIP, the data points correspond to levels one (leftmost)

through nine (rightmost). For FSD, the figure shows results for order one (rightmost)

through order seven (leftmost). All other parameters are fixed.

0

1

2

3

4

5

6

7

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t
(G
b
/s
)

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

0

1

2

3

4

5

6

7

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

d
e
c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t
(G
b
/s
)

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Figure 2: Average compression (left) and decompression (right) throughput ver-

sus the geometric-mean compression ratio over the thirteen datasets

For a given compression ratio, FPC compresses our datasets 8 to 300 times faster and

decompresses them 9 to 100 times faster than the other algorithms. DFCM has the second

highest throughput though GZIP’s decompression throughput is similar. FSD is third, but

it delivers the lowest compression ratios on our datasets. PLMI compresses the datasets

faster than GZIP but decompresses them more slowly. BZIP2 is the slowest algorithm but

reaches the second highest compression ratio. All algorithms except our implementation

of PLMI decompress faster than they compress. FPC compresses at up to 5.43Gb/s and

decompresses at up to 6.73Gb/s.

5.3 Memory Usage

This subsection studies the memory footprint, as reported by the UNIX command ps, of
the six algorithms. Figure 3 shows the total memory consumption in megabytes relative

to the geometric-mean compression ratio. For GZIP and BZIP2, which allocate a differ-

ent amount of memory for compression and decompression, Figure 3 plots the larger

amount. The individual datapoints again correspond to different sizes, levels, or orders.

Except for FPC, all algorithms essentially reach their highest geometric-mean com-

pression ratio with less than ten megabytes. FSD and GZIP have a constant memory

footprint. PLMI and DFCM’s modified dfcm predictor does not benefit from more than

six megabytes of memory. At the low end, FPC’s memory usage is determined by its

code and stack size as well as the input and output buffers. But for larger sizes, the two

hash tables dominate, as can be seen from the exponentially growing curve. The same is

true for DFCM and PLMI. However, unlike the modified dfcm predictor, FPC’s two pre-
dictors can turn additional memory (up to ten megabytes) into higher compression ratios.

0

1

2

3

4

5

6

7

8

9

10

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

geometric-mean compression ratio

m
e
m
o
ry
 u
s
a
g
e
 (
m
e
g
a
b
y
te
s
).

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Figure 3: Memory usage versus compression ratio of the six algorithms

6. Summary
This paper describes the lossless FPC compression algorithm for double-precision float-

ing-point data. FPC uses two context based value predictors to predict the next value. The

prediction and the true value are xored and the result is leading zero byte compressed.

This algorithm was chosen because it is effective and can be implemented efficiently.

Varying the predictors’ table sizes allows to trade off throughput for compression ratio.

FPC delivers the highest geometric-mean compression ratio and the highest through-

put on our thirteen hard-to-compress scientific datasets. It achieves individual compres-

sion ratios between 1.02 and 15.05. With tables that fit into the L1 data cache, it delivers

a sustained throughput of roughly 100 million doubles per second on a 1.6GHz Itanium 2.

This corresponds to only two machine cycles to process a byte of data. The source code is

available at http://www.csl.cornell.edu/~burtscher/research/FPC/.

The current version of FPC does not compress multidimensional datasets, 32-bit float-

ing-point values, and easy-to-compress data particularly well. Hence, in future work, we

intend to generalize FPC by including an optional second compression stage, providing

support for multiple dimensions, and designing a version that is optimized for single-

precision data.

7. Acknowledgements
This material is based upon work supported by the Department of Energy under Award

Number DE-FG02-06ER25722. Intel Corporation donated the Itanium 2 server. The

views and opinions expressed herein do not necessarily state or reflect those of the DOE

or Intel. Prof. Joseph Harrington of the Department of Physics at the University of Cen-

tral Florida provided the datasets obs_spitzer and num_comet. Prof. David Hammer and

Ms. Jiyeon Shin of the Laboratory of Plasma Studies at Cornell University provided

num_plasma. Mr. Sami Saarinen of the European Centre for Medium-Range Weather

Forecasts provided obs_temp, obs_error, obs_info, and num_control. num_brain was
generated using a modified version of EULAG [3], [17], a fluid code developed at the

National Center for Atmospheric Research in Boulder, Colorado. Mr. Jian Ke ran the

NPB and ASCI Purple benchmarks with 64 processes to capture the message datasets.

8. References
[1] D. Bailey, T. Harris, W. Saphir, R. v. d. Wijngaart, A. Woo and M. Yarrow. “The NAS

Parallel Benchmarks 2.0.” Tech. Report NAS-95-020, NASA Ames Research Center. 1995.

[2] M. Burrows and D. J. Wheeler. “A Block-Sorting Lossless Data Compression Algorithm.”

Digital SRC Research Report 124. May 1994.

[3] M. Burtscher and I. Szczyrba. “Numerical Modeling of Brain Dynamics in Traumatic

Situations - Impulsive Translations.” International Conf. on Mathematics and Engineering

Techniques in Medicine and Biological Sciences, pp. 205-211. 2005.

[4] D. Chen, Y.-J. Chiang and N. Memon. “Lossless compression of point-based 3D models.”

Pacific Graphics, pp. 124-126. October 2005.

[5] V. Engelson, D. Fritzson and P. Fritzson. “Lossless Compression of High-Volume Numeri-

cal Data from Simulations.” Data Compression Conf., pp. 574-586. 2000.

[6] M. N. Gamito and M. S. Dias. “Lossless Coding of Floating Point Data with JPEG 2000

Part 10.” Applications of Digital Image Processing XXVII, pp. 276-287. 2004.

[7] F. Ghido. “An Efficient Algorithm for Lossless Compression of IEEE Float Audio.” Data

Compression Conference, pp. 429-438. 2004.

[8] B. Goeman, H. Vandierendonck and K. Bosschere. “Differential FCM: Increasing Value

Prediction Accuracy by Improving Table Usage Efficiency.” International Symposium on

High Performance Computer Architecture, pp. 207-216. 2001.

[9] http://www.bzip.org/, 2006.

[10] http://www.gzip.org/, 2006.

[11] http://www.llnl.gov/asci/purple/benchmarks/limited/code_list.html, 2006.

[12] L. Ibarria, P. Lindstrom, J. Rossignac and A. Szymczak. “Out-of-Core Compression and

Decompression of Large n-Dimensional Scalar Fields.” Eurographics, pp. 343-348. Sep-

tember 2003.

[13] M. Isenburg, P. Lindstrom and J. Snoeyink. “Lossless Compression of Floating-Point Ge-

ometry.” CAD2004, pp. 495-502. 2004.

[14] J. Ke, M. Burtscher and E. Speight. “Runtime Compression of MPI Messages to Improve

the Performance and Scalability of Parallel Applications.” High-Performance Computing,

Networking and Storage Conference, pp. 59-65. 2004.

[15] S. Klimenko, B. Mours, P. Shawhan and A. Sazonov. “Data Compression Study with the

E2 Data.” LIGO-T010033-00-E Technical Report, pp. 1-14. 2001.

[16] P. Lindstrom and M. Isenburg. “Fast and Efficient Compression of Floating-Point Data.”

IEEE Trans. on Visualization and Computer Graphics, Vol. 12, No. 5. 2006.

[17] J. M. Prusa, P. K. Smolarkiewicz and A. A. Wyszogrodzki. “Simulations of Gravity Wave

Induced Turbulence Using 512 PE CRAY T3E.” International Journal of Applied Mathe-

matics and Computational Science, Vol. 11, pp. 101-115. 2001.

[18] P. Ratanaworabhan, J. Ke and M. Burtscher. “Fast Lossless Compression of Scientific

Floating-Point Data.” Data Compression Conference, pp. 133-142. 2006.

[19] Y. Sazeides and J. E. Smith. “The Predictability of Data Values.” 30
th
 International Sympo-

sium on Microarchitecture, pp. 248-258. December 1997.

[20] M. Schindler. “A Fast Renormalisation for Arithmetic Coding.” Data Compression Confer-

ence, p. 572. March-April 1998.

[21] A. Trott, R. Moorhead and J. McGenley. “Wavelets Applied to Lossless Compression and

Progressive Transmission of Floating Point Data in 3-D Curvilinear Grids.” IEEE Visuali-

zation, pp. 355-388. 1996.

[22] B. E. Usevitch. “JPEG2000 Extensions for Bit Plane Coding of Floating Point Data.” Data

Compression Conference, pp. 451-461. 2003.

[23] J. Ziv and A. Lempel. “A Universal Algorithm for Data Compression.” IEEE Transaction

on Information Theory, Vol. 23, No. 3, pp. 337-343. May 1977.

