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Abstract 

This paper describes FPC, a lossless compression algorithm for linear streams of 64-bit 
floating-point data. FPC is designed to compress well while at the same time meeting the 
high throughput demands of scientific computing environments. On our thirteen datasets, 
it achieves a substantially higher average compression ratio than BZIP2, DFCM, FSD, 
GZIP, and PLMI. At comparable compression ratios, it compresses and decompresses 8 
to 300 times faster than the other five algorithms. 

 

1. Introduction 
Many scientific programs produce and transfer large amounts of double-precision float-

ing-point data. For example, some exchange data between processing nodes and with 

mass storage devices after every simulated time step. Moreover, scientific programs are 

usually checkpointed at regular intervals so that they can be restarted from the most re-

cent checkpoint after a crash. Checkpoints tend to be large and have to be saved to disk. 

Compression can reduce the amount of data that needs to be transferred and stored. If 

done fast enough, it can also increase the throughput of the data exchanges, which is de-

sirable in high-performance computing environments. The challenge is to achieve a good 

compression ratio and a high compression and decompression speed at the same time. 

Furthermore, the compression algorithm usually has to be lossless and single pass. For 

example, checkpoints cannot be lossy and neither can data from which certain derived 

quantities will be computed [16]. To avoid first writing the uncompressed data to disk, a 

single-pass algorithm is needed so that the data can be compressed and decompressed as 

it is generated and consumed, respectively. 

This paper presents FPC, a lossless, single-pass, linear-time compression algorithm for 

double-precision floating-point data. FPC is specifically designed for scientific and high-

performance computing environments. It delivers a good average compression ratio on 

hard-to-compress 1D numeric data. Moreover, it employs a simple algorithm that can be 

implemented entirely with fast integer operations. As a result, FPC compresses and de-

compresses one to two orders of magnitude faster than other algorithms. 

The rest of this paper is organized as follows. Section 2 explains the FPC algorithm in 

detail. Section 3 summarizes related work. Section 4 discusses the evaluation methods. 

Section 5 presents the results. Section 6 concludes the paper with a summary. 

 

2. The FPC Algorithm 
FPC compresses linear sequences of IEEE 754 double-precision floating-point values by 

repeatedly predicting the next double in the sequence, xoring the double with the pre-

dicted value, and leading-zero compressing the result. As illustrated in Figure 1, it uses 



 

 

an fcm [19] and a dfcm [8] value predictor to predict the doubles, both of which are essen-
tially hash tables. The closer of the two predictions, i.e., the one that shares more com-

mon most significant bits with the true double, is chosen and xored with the double. The 

xor operation turns identical bits into zeros. Hence, if the prediction is accurate, the xor 

result has many leading zero bits. FPC then counts the number of leading zero bytes and 

encodes the count in a three-bit value along with a one-bit value that specifies which pre-

dictor was used. The resulting four-bit code and the nonzero remainder bytes are written 

to the compressed stream. The latter are emitted verbatim without any form of encoding. 
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Figure 1: The FPC compression algorithm 

 

To maintain byte granularity, which is much more efficient than bit granularity, a pair 

of doubles is always processed together and the corresponding two four-bit codes are 

packed into a byte. In case an odd number of doubles needs to be compressed, a spurious 

double is encoded at the end. The extra value is expressed as seven leading zero bytes 

and the “nonzero” byte is set to zero. This encoding is never used with an actual double 

as it would simply be encoded as having eight leading zero bytes. 

Decompression works as follows. It starts by reading the next four-bit code. Then the 

number of remainder bytes specified by the three-bit value are read and zero-extended to 

a full 64-bit number. Based on the one-bit value, this number is xored with the 64-bit fcm 
or dfcm prediction to recreate the original double. This lossless reconstruction is possible 
because xor is a reversible operation. 

For performance reasons, FPC interprets all doubles as 64-bit integers and uses only 

integer arithmetic. Since there can be between zero and eight leading zero bytes, i.e., nine 

possibilities, not all of them can be encoded in the three-bit value. We decided not to 

support a leading zero count of four because it occurs only rarely. Consequently, all xor 

results with four leading zero bytes are expressed as having only three leading zero bytes 

and the fourth zero byte is emitted as part of the remainder bytes. 

Before compression and decompression, both predictors are initialized with all zeros. 

After each prediction, they are updated with the true double value to ensure that they 

generate the same sequence of predictions during compression as they do during decom-

pression. The following pseudo code demonstrates the operation of the fcm predictor. The 

table_size has to be a power of two and fcm is the hash table. 



 

 

unsigned long long true_value, fcm_prediction, fcm_hash, fcm[table_size]; 
... 
fcm_prediction = fcm[fcm_hash];  // prediction: read hash table entry 
fcm[fcm_hash] = true_value;      // update: write hash table entry 
fcm_hash = ((fcm_hash << 6) ^ (true_value >> 48)) & (table_size – 1); 
 

Right shifting the true_value, i.e., the current double expressed as a 64-bit integer, 

by 48 bits eliminates the usually random mantissa bits. The remaining 16 bits are xored 

with the previous hash value to produce the new hash. However, the previous hash is first 

shifted by six bits to the left to gradually phase out bits from older values. The hash value 

can therefore be thought of as representing the most recently encountered doubles, and 

the hash table stores the double that follows this sequence. Hence, making an fcm predic-
tion is tantamount to performing a table lookup to determine which value followed the 

last time a similar sequence of previous doubles was seen. 

The dfcm predictor operates in much the same way. However, it predicts integer dif-

ferences between consecutive values rather than absolute values, and the shift amounts in 

the hash function are different. 
 
unsigned long long last_value, dfcm_prediction, dfcm_hash, dfcm[table_size]; 
... 
dfcm_prediction = dfcm[dfcm_hash] + last_value; 
dfcm[dfcm_hash] = true_value – last_value; 
dfcm_hash = ((dfcm_hash << 2) ^ ((true_value – last_value) >> 40)) & 
  (table_size – 1); 
last_value = true_value; 
 

The complete C source code and a brief description of how to compile and use it are 

available at http://www.csl.cornell.edu/~burtscher/research/FPC/. 

 

3. Related Work 
Our work concentrates on 64-bit floating-point values, such as those produced by nu-

meric programs, which are also the target of the following algorithms from the literature. 

Engelson et al. [5] propose a compression scheme for the double-precision output of a 

numerical solver for ordinary differential equations. The authors use integer delta and 

extrapolation algorithms to compress and decompress the data. Their method is particu-

larly beneficial with gradually changing data. 

Lindstrom and Isenburg [16] designed a scheme for the efficient compression of imag-

ing data, with an emphasis on 2D and 3D data. They predict the data using the Lorenzo 

predictor [12] and encode the residual, i.e., the difference between the predicted and the 

true value, with a range coder based on Schindler’s quasi-static probability model [20]. 

Together with Jian Ke, we have previously proposed the DFCM compressor [18], 

which performs data prediction, residual generation, and backend coding. The data pre-

diction utilizes a modified dfcm value predictor. A four-bit leading zero suppress scheme 

is then employed to encode the residual, which is the xored difference between the true 

and the predicted value. Another paper [14] describes how we incorporated the DFCM 

compression algorithm into an MPI library to speed up parallel message passing pro-

grams running on a cluster of workstations. 

Several papers on lossless compression of floating-point data focus on 32-bit single-

precision values, as exemplified by the following work. Klimenko et al. [15] present a 

method that combines differentiation and zero suppression to compress floating-point 



 

 

data arising from experiments conducted at the Laser Interferometer Gravitation Wave 

Observatory. It has about the same compression ratio as GZIP but is significantly faster. 

Its success is tied to the nature of the LIGO data, which are time series whose values 

change only gradually. Ghido [7] proposes an algorithm for the lossless compression of 

audio data. It transforms the floating-point values into integers and generates an addi-

tional binary stream for the lossless reconstruction of the original floating-point values. 

Several publications concentrate on compressing floating-point data that represent im-

ages. These studies focus on maximizing the compression ratio, as the compression and 

decompression speed are not so important. Usevitch [22] proposes extensions to the 

JPEG2000 standard that allow data to be efficiently encoded with bit-plane coding algo-

rithms where the floating-point values are represented as “big integers”. Gamito et al. [6] 

describe modifications needed in JPEG2000 to accommodate lossless floating-point 

compression, namely, adjustments in the wavelet transformation and earlier signaling of 

special numbers such as NaNs in the main header. Isenburg et al. [13] employ an arith-

metic coder for single-precision floating-point fields that represent residual vectors be-

tween the actual and the predicted vertex positions in triangular meshes. Trott et al. [21] 

use an extended precision algorithm, the Haar wavelet transform, and Huffman coding to 

losslessly compress 3D curvilinear grids. Chen et al. [4] compress irregular grid volume 

data represented as a tetrahedral mesh. Their technique performs differential coding and 

clustering to generate separate data residuals for the mantissa and the exponent. Then, a 

Huffman coder and GZIP are used to encode the mantissa and exponent residuals. 

 

4. Evaluation Methodology 
4.1 System and Compiler 

We compiled and evaluated FPC and the compressors listed in Section 4.4 on a 64-bit 

system with a 1.6GHz Itanium 2 CPU, which has a 16kB L1 data cache, a 256kB unified 

L2 cache, a 3MB L3 cache (on chip), and 3GB of main memory. The operating system is 

Red Hat Enterprise Linux AS4 and the compiler is the Intel C Itanium Compiler version 

9.1. We used the “-O3 -mcpu=itanium2 -static” compiler flags for each compressor. 

 

4.2 Timing Measurements 

All timing measurements refer to the elapsed time reported by the shell command time. 
To make the measurements independent of the disk speed, each experiment was con-

ducted five times in a row and the shortest running time is reported. This approach re-

sulted in close to 100% CPU utilization because the compressors’ inputs were cached in 

main memory. All output was written to /dev/null, that is, it was consumed but ignored. 

 

4.3 Datasets 

We used thirteen datasets from various scientific domains for our evaluation. Each data-

set consists of a one-dimensional binary sequence of IEEE 754 double-precision floating-

point numbers and belongs to one of the following categories. 

Observational data: These datasets comprise measurements from scientific instruments. 

• obs_error: data values specifying brightness temperature errors of a weather satellite 

• obs_info: latitude and longitude of the observation points of a weather satellite 

• obs_spitzer: data from the Spitzer Space Telescope showing a slight darkening as an 

extrasolar planet disappears behinds its star 



 

 

• obs_temp: data from a weather satellite denoting how much the observed temperature 

differs from the actual contiguous analysis temperature field 

Numeric simulations: These datasets are the results of numeric simulations. 

• num_brain: simulation of the velocity field of a human brain during a head impact 

• num_comet: simulation of the comet Shoemaker-Levy 9 entering Jupiter’s atmosphere 

• num_control: control vector output between two minimization steps in weather-

satellite data assimilation 

• num_plasma: simulated plasma temperature of a wire array z-pinch experiment 

Parallel messages: These datasets capture the messages sent by a node in a parallel sys-

tem running NAS Parallel Benchmark (NPB) [1] and ASCI Purple [11] applications. 

• msg_bt: NPB computational fluid dynamics pseudo-application bt 

• msg_lu: NPB computational fluid dynamics pseudo-application lu 

• msg_sp: NPB computational fluid dynamics pseudo-application sp 

• msg_sppm: ASCI Purple solver sppm 

• msg_sweep3d: ASCI Purple solver sweep3d 
Table 1 summarizes information about each dataset. The first two data columns list the 

size in megabytes and in millions of double-precision values. The middle column shows 

the percentage of doubles in each dataset that are unique, i.e., appear exactly once. The 

fourth column displays the first-order entropy of the doubles in bits. The last column ex-

presses the randomness of the datasets in percent, that is, it reflects how close the first-

order entropy is to that of a truly random dataset with the same number of doubles. 

 

Table 1: Statistical information about each dataset 

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

msg_bt 254.0 33.30 92.9 23.67 94.7

msg_lu 185.1 24.26 99.2 24.47 99.7

msg_sp 276.7 36.26 98.9 25.03 99.7

msg_sppm 266.1 34.87 10.2 11.24 44.9

msg_sweep3d 119.9 15.72 89.8 23.41 97.9

num_brain 135.3 17.73 94.9 23.97 99.5

num_comet 102.4 13.42 88.9 22.04 93.1

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 61.9

obs_error 59.3 7.77 18.0 17.80 77.8

obs_info 18.1 2.37 23.9 18.07 85.3

obs_spitzer 189.0 24.77 5.7 17.36 70.7

obs_temp 38.1 4.99 100.0 22.25 100.0  
 

We observe that all datasets contain several million doubles. What is striking is that 

the datasets from all three categories appear to largely consist of unique values. More-

over, they are highly random from an entropy perspective, even the ones that do not con-

tain many unique values (e.g., num_plasma). 
Based on these statistics, it is unlikely that a pure entropy-based compression approach 

would work well. Note that the higher-order entropies are also close to random because 

of the large percentage of unique values. Clearly, we have to use a good data model or 

subdivide the doubles into smaller entities (e.g., bytes), some of which may exhibit less 

randomness, to compress these datasets well. FPC incorporates both of these approaches. 

 



 

 

4.4 Other Compressors 

This subsection describes the compression schemes with which we compare our approach 

in Section 5. GZIP and BZIP2 are lossless, general-purpose algorithms that can be used 

to compress any kind of data. The remaining algorithms represent our implementations of 

special-purpose floating-point compressors from the literature. They are all single-pass, 

lossless compression schemes that “know” about the format of double-precision values. 

BZIP2: BZIP2 [9] is a general-purpose compressor that operates at byte granularity. It 

implements a variant of the block-sorting algorithm described by Burrows and Wheeler 

[2]. It applies a reversible transformation to a block of inputs, uses sorting to group bytes 

with similar contexts together, and then compresses them with a Huffman coder. The 

block size is adjustable. We evaluate all supported block sizes, i.e., one through nine. 

DFCM: Our previously proposed DFCM scheme [18] maps each encountered float-

ing-point value to an unsigned integer and predicts it with a modified dfcm predictor. 
This predictor computes a hash value out of the three most recently encountered differ-

ences between consecutive values in the input. Next, it performs a hash table lookup to 

retrieve the differences that followed the last two times the same hash was encountered, 

and one of the two differences is used to predict the next value. A residual is generated by 

xoring the predicted value with the true value. This residual is encoded using a four-bit 

leading zero bit count. We evaluate predictor sizes between 16 bytes and 512MB. Note 

that DFCM and FPC utilize quite different dfcm predictor implementations. 

FSD: The FSD compressor implements the fixed step delta-algorithm proposed by 

Engelson et al. [5]. As it reads in a stream of doubles, it iteratively generates difference 

sequences from the original sequence. The order determines the number of iterations. A 

zero suppress algorithm is then used to encode the final difference sequence, where each 

value is expected to have many leading zeroes. Generally, gradually changing data tend 

to benefit from higher difference orders whereas rapidly changing data compress better 

with lower orders. We evaluate orders one through seven (higher orders perform worse). 

GZIP: GZIP [10] is a general-purpose compression utility that operates at byte granu-

larity and implements a variant of the LZ77 algorithm [23]. It looks for repeating se-

quences of bytes (strings) within a 32kB sliding window. The length of the string is lim-

ited to 256 bytes, which corresponds to the lookahead buffer size. GZIP uses two Huff-

man trees, one to compress the distances in the sliding window and another to compress 

the lengths of the strings as well as the individual bytes that were not part of any matched 

sequence. The algorithm finds duplicated strings using a chained hash table. A command-

line argument determines the maximum length of the hash chains and whether lazy 

evaluation should be used. We evaluate all supported levels, i.e., one through nine. 

PLMI: The PLMI scheme proposed by Lindstrom and Isenberg [16] uses a Lorenzo 

predictor in the front-end to predict 2D and 3D geometry data for rendering. Since our 

datasets are 1D, we cannot evaluate PLMI in its intended mode. In fact, for general linear 

data, the Lorenzo predictor reverts to a delta predictor, which processes data similarly to 

the first-order FSD algorithm. Hence, we included the modified dfcm predictor (see 
above) in our implementation of PLMI, which compresses linear data better. The pre-

dicted and true floating-point values are mapped to an unsigned integer from which a re-

sidual is computed by a difference process. The final step involves encoding the residual 

with range coding based on Schindler’s quasi-static probability model. We evaluate pre-

dictor sizes between 16 bytes and 512MB. 



 

 

5. Results 
5.1 Compression Ratio 

This subsection investigates the highest compression ratio that the six algorithms achieve 

on each dataset. Note that we individually optimized the size (DFCM, FPC, PLMI), level 

(BZIP2, GZIP), or order (FSD) for each algorithm and dataset to obtain the results shown 

in Table 2. The numbers in bold print reflect the best compression ratio for each dataset. 

 

Table 2: Highest compression ratio of the six algorithms on each dataset 

BZIP2 DFCM FPC FSD GZIP PLMI

msg_bt 1.10 1.36 1.29 1.07 1.13 1.24

msg_lu 1.02 1.24 1.17 1.00 1.06 1.19

msg_sp 1.08 1.25 1.26 0.99 1.11 1.19

msg_sppm 6.93 4.23 5.30 2.35 7.43 5.02

msg_sweep3d 1.29 1.56 3.09 1.21 1.09 1.21

num_brain 1.04 1.23 1.16 1.10 1.06 1.12

num_comet 1.17 1.17 1.16 1.11 1.16 1.18

num_control 1.03 1.07 1.05 0.99 1.06 1.06

num_plasma 5.79 1.30 15.05 1.00 1.61 1.26

obs_error 1.34 1.52 3.60 1.16 1.45 1.26

obs_info 1.22 1.23 2.27 1.00 1.15 1.16

obs_spitzer 1.75 1.00 1.03 0.96 1.23 1.08

obs_temp 1.02 1.01 1.02 0.97 1.04 1.04

geo_mean 1.52 1.36 1.95 1.11 1.35 1.30  
 

FPC achieves the highest geometric-mean compression ratio because on four datasets 

it exceeds the performance of the other five algorithms by a large margin. The other algo-

rithms substantially outperform FPC on two datasets, msg_sppm and obs_spitzer. 
DFCM is sometimes superior to FPC because it employs a more sophisticated predic-

tor, which stores two difference values in each table entry (instead of just a single value 

as FPC’s predictors do) and uses a more elaborate hash function. However, FPC outper-

forms DFCM on the majority of our datasets because FPC contains a second predictor 

that often complements the first predictor well (e.g., on num_plasma). 
No algorithm performs best on all datasets. In fact, no algorithm is best on more than 

five of the thirteen datasets. There is also no best algorithm within the three dataset cate-

gories. Even GZIP and BZIP2, the general-purpose compressors that have no knowledge 

of the format of double-precision floating-point values, provide the highest compression 

ratio on some of the datasets. Only FSD is outperformed on all of our datasets. 

None of our datasets are highly compressible with any of the algorithms we studied. 

Only msg_sppm can be compressed by at least a factor of two with all six algorithms. 

Two datasets, num_control and obs_temp, cannot even be compressed by ten percent. 

These results are consistent with the randomness information presented in Table 1, based 

on which we would expect msg_sppm to be the most and obs_temp the least compressible 

dataset. The highest overall compression ratio of 15.05 is obtained on num_plasma, 
which exhibits the second lowest randomness and the lowest percentage of unique values. 

 On some datasets, most notably msg_sweep3d, num_plasma, obs_error, and obs_info, 
and to a lesser extent obs_spitzer, one algorithm performs much better than the others. 

With the exception of msg_sweep3d, these datasets all have relatively few unique values 
and low randomness. The five datasets with above 99% randomness cannot be com-

pressed by more than 26% by any of the algorithms we investigated. 

 



 

 

5.2 Throughput 

This subsection examines the compression and decompression throughput of the six algo-

rithms (i.e., the raw dataset size divided by the runtime). Figure 2 plots the throughput in 

gigabits per second versus the geometric-mean compression ratio. For DFCM, FPC, and 

PLMI, the table size doubles for each data point from sixteen bytes (leftmost) to 512MB 

(rightmost). For BZIP2 and GZIP, the data points correspond to levels one (leftmost) 

through nine (rightmost). For FSD, the figure shows results for order one (rightmost) 

through order seven (leftmost). All other parameters are fixed. 
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Figure 2: Average compression (left) and decompression (right) throughput ver-

sus the geometric-mean compression ratio over the thirteen datasets 

 

For a given compression ratio, FPC compresses our datasets 8 to 300 times faster and 

decompresses them 9 to 100 times faster than the other algorithms. DFCM has the second 

highest throughput though GZIP’s decompression throughput is similar. FSD is third, but 

it delivers the lowest compression ratios on our datasets. PLMI compresses the datasets 

faster than GZIP but decompresses them more slowly. BZIP2 is the slowest algorithm but 

reaches the second highest compression ratio. All algorithms except our implementation 

of PLMI decompress faster than they compress. FPC compresses at up to 5.43Gb/s and 

decompresses at up to 6.73Gb/s. 

 

5.3 Memory Usage 

This subsection studies the memory footprint, as reported by the UNIX command ps, of 
the six algorithms. Figure 3 shows the total memory consumption in megabytes relative 

to the geometric-mean compression ratio. For GZIP and BZIP2, which allocate a differ-

ent amount of memory for compression and decompression, Figure 3 plots the larger 

amount. The individual datapoints again correspond to different sizes, levels, or orders. 

Except for FPC, all algorithms essentially reach their highest geometric-mean com-

pression ratio with less than ten megabytes. FSD and GZIP have a constant memory 

footprint. PLMI and DFCM’s modified dfcm predictor does not benefit from more than 

six megabytes of memory. At the low end, FPC’s memory usage is determined by its 

code and stack size as well as the input and output buffers. But for larger sizes, the two 

hash tables dominate, as can be seen from the exponentially growing curve. The same is 

true for DFCM and PLMI. However, unlike the modified dfcm predictor, FPC’s two pre-
dictors can turn additional memory (up to ten megabytes) into higher compression ratios. 
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Figure 3: Memory usage versus compression ratio of the six algorithms 

 

6. Summary 
This paper describes the lossless FPC compression algorithm for double-precision float-

ing-point data. FPC uses two context based value predictors to predict the next value. The 

prediction and the true value are xored and the result is leading zero byte compressed. 

This algorithm was chosen because it is effective and can be implemented efficiently. 

Varying the predictors’ table sizes allows to trade off throughput for compression ratio. 

FPC delivers the highest geometric-mean compression ratio and the highest through-

put on our thirteen hard-to-compress scientific datasets. It achieves individual compres-

sion ratios between 1.02 and 15.05. With tables that fit into the L1 data cache, it delivers 

a sustained throughput of roughly 100 million doubles per second on a 1.6GHz Itanium 2. 

This corresponds to only two machine cycles to process a byte of data. The source code is 

available at http://www.csl.cornell.edu/~burtscher/research/FPC/. 

The current version of FPC does not compress multidimensional datasets, 32-bit float-

ing-point values, and easy-to-compress data particularly well. Hence, in future work, we 

intend to generalize FPC by including an optional second compression stage, providing 

support for multiple dimensions, and designing a version that is optimized for single-

precision data. 
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