
CROSSING DEPENDENCIES IN PERSIAN

by

Jonathan Dehdari

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Arts

Department of Linguistics & English Language

Brigham Young University

August 2006

Copyright c© 2006 Jonathan Dehdari

Typeset in Palatino using LATEX 2ε

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Jonathan Dehdari

This thesis has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Deryle Lonsdale, Chair

Date Alan Manning

Date Mark Davies

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Jonathan
Dehdari in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Deryle Lonsdale
Chair, Graduate Committee

Accepted for the Department

John S. Robertson
Associate Chair, Department of Linguistics
and English Language

Accepted for the College

Gregory Clark

Associate Dean, College of Humanities

ABSTRACT

CROSSING DEPENDENCIES IN PERSIAN

Jonathan Dehdari

Department of Linguistics & English Language

Master of Arts

Languages occasionally have syntactic constructions that are difficult, if

not impossible, to describe using a context-free grammar. One such construc-

tion is a crossing dependency. Crossing dependencies have been well studied for

Dutch and Swiss German (Huybregts, 1976; Shieber, 1985), and recently for Taga-

log (Maclachlan and Rambow, 2003). In this paper I propose that Persian exhibits

crossing dependencies.

In this SOV language, a light verb construction in the future tense becomes in-

terrupted by a future auxiliary verb, which agrees with its subject in person and

number. The future auxiliary also splits passive constructions in a similar manner.

These forms present interesting challenges for computational models of language.

I will discuss implications of this phenomenon within current formal and linguistic

theories.

ACKNOWLEDGEMENTS

I am greatly indebted to Deryle Lonsdale for advising me these past five

years. This thesis would not have been possible without his years of guidance and

patience. I am also grateful for the kindness and support of John Robertson, Alan

Manning, Mark Davies, Phyllis Daniel, and the entire Linguistics Department. I’d

like to acknowledge the financial support of the Office of Research and Creative

Activities, the Linguistics Department, and BYU.

I am very grateful for Mary and Hooshang Farahnakian, the Center for Lan-

guage Studies, and Lloyd Miller for helping me better understand the Persian lan-

guage, music, and culture.

I’d like to thank my family for their love and support throughout my life. I

am also grateful to the Clement family for their warmth and hospitality. I would

like to extend my warmest gratitude to Carolyn Dehdari for her support, interest,

and encouragement.

Contents

Acknowledgements vi

List of Tables ix

List of Figures x

1 Introduction 1

2 Background and Literature Review 3

2.1 Initial Definitions . 3

2.2 Review of Literature and Concepts . 3

3 Persian 11

3.1 Persian Light Verb Constructions . 11

3.2 Split Light Verb Constructions . 14

3.3 Split Passive Constructions . 15

3.4 Comparison . 17

4 Structural Analyses 18

4.1 Context-free Grammar . 19

4.2 Minimalist Syntax . 24

4.2.1 Split Headedness . 25

4.3 Tree Adjoining Grammar . 28

4.4 Comparison of Different Crossing Dependencies 31

vii

5 Conclusion 35

Bibliography 37

A A Perl 6 Grammar for Persian LVC Crossing Dependencies 41

B A Perl 6 Grammar for Persian Passive Crossing Dependencies 49

C Romanization and Transliteration 51

viii

List of Tables

2.1 The Chomsky hierarchy . 4

2.2 An extended hierarchy of formal languages 7

3.1 Some Persian light verbs in decreasing frequency 13

ix

List of Figures

4.1 A basic CFG and derivation for LVC crossing dependencies 19

4.2 Another CFG for Persian LVC crossing dependencies 21

4.3 Derived trees from a non-overgenerating CFG grammar 22

4.4 A Minimalist tree for Persian split passives 26

4.5 A Minimalist tree for Persian split LVCs 27

4.6 TAG initial, auxiliary, and derived tree for verb-final CSDs 29

4.7 A TAG initial tree and auxiliary tree for Persian LVCs 30

4.8 A TAG derived tree for Persian LVCs 30

4.9 Growth of Swiss German and Persian crossing dependencies 32

4.10 Differences among various crossing dependencies 33

x

Chapter 1

Introduction

The aim of this thesis is to show crossing dependencies in Persian and pos-

sible ways to theoretically and computationally account for them. In a crossing

dependency, a language includes a sequence of words like a1 b2 c1 d2 . Words a

and c exhibit some type of dependency, such as case, φ-feature, or compound lex-

eme. However, words b and d exhibit another dependency, resulting in crossing

dependencies. In Persian a light verb construction becomes interrupted by a fu-

ture auxiliary verb, which itself agrees with its subject in person and number. For

example, in the sentence ānhā1 dæst2 xāhænd1 zæd2 ‘they will clap’, the light verb

construction dæst zæd ‘clap’ becomes split by the future auxiliary xāh-ænd ‘will-3P’,

which agrees with the subject ānhā ‘they’ in person and number.

Crossing dependencies are interesting linguistically and computationally,

as they can present challenges for restricted theories of syntax. Since their struc-

tures are not context-free, traditional methods of describing the relations between

words are not fully adequate. This is because the only way derive such construc-

tions is through incorrect linguistic derivations of their context-free form—if they

can be derived at all. Some crossing dependencies are types of scrambling, com-

mon in freer-word-order languages like German, Czech, or Warlpiri. Other cross-

ing dependencies are fixed-word-order, required, and bounded as to the number

of crossing dependencies. Others are optional, but have no theoretical limit on

1

their number of crossings. This paper will treat the second and third types. See

Karimi (2003) for a thorough treatment of the first type.

The outline of this work is as follows. First I will introduce crossing depen-

dencies and discuss their context within linguistics and computer science. Then

I will review how they have been explained in various formal and linguistic the-

ories. After a brief survey of the Persian language and its syntax, I will present

structures in Persian that display crossing dependencies. I will show that the same

mechanisms used to account for crossing dependencies in previously described

languages also aptly account for the Persian structures. A comparison between

the Persian forms and those of other languages is also put forward, as well as con-

cluding remarks.

2

Chapter 2

Background and Literature Review

An overview of formal languages is given in this chapter, and their rela-

tion to natural languages. This initial information will serve as a context for the

syntactic analyses in Chapter 4. To start, some terms will be initially defined.

2.1 Initial Definitions

grammar – a device to generate and recognize all forms and only the forms of a

given language.

language – either a natural language or a formal language.

strong generative capacity (SGC) – the set of structures that can be generated by

a grammar.

Turing machine – a hypothesized machine that is theoretically equivalent to any

computer in what it can and cannot perform.

weak generative capacity (WGC) – the set of strings that can be generated by a

grammar.

2.2 Review of Literature and Concepts

With the advent of computers, attempts were made to mechanistically de-

scribe what natural language is and what it is not. Chomsky (1956) helped lay the

foundations for describing languages generatively. A hierarchy, currently known

3

Type Language Grammar

0 recursively enumerable Turing machine

1 context-sensitive context-sensitive

2 context-free context-free

3 regular finite-state automata

Table 2.1: The Chomsky hierarchy

as the Chomsky hierarchy of languages, classified formal languages in increasing

order of restrictiveness, as seen in Table 2.1. The least restricted are recursively enu-

merable (type 0), which are languages described by a Turing Machine1. A grammar

production for these languages can look like aAbB → aCb . The lower-case letters

represent primitive symbols known as terminals, capital letters represent variables

called non-terminals, and the rightward arrow represents a string rewriting from

the left-hand side to the right-hand side (in the case of generation). The left-hand

side of recursively enumerable productions must be non-empty. Any algorithm

(in the modern sense) has the weak generative capacity to describe any recursively

enumerable (RE) language. For example, a RE language can allow for sentences

that grow exponentially, rather than incrementally. The computation of RE lan-

guages can be extremely difficult.

Context-sensitive languages (type 1) are a proper subset of recursively enu-

merable languages, being equivalent to linear-bounded non-deterministic auto-

mata. Productions, or grammatical rules for a context-sensitive language can look

like aAbBc → aCdDbBc . The right-hand side of a production must be equal to or

larger than the left-hand side (Stabler, 2004), thus the right-hand side of the pro-

duction must be non-empty. Linguists might be more familiar with another nota-

tion for context-sensitive grammars: A → CdD / a bBc . Savitch (1987) discusses

1or the λ-calculus (Turing, 1937; Barendregt, 1997), Markov algorithms (Markov, 1960), among
others

4

why context-sensitive grammars are a poor choice for treating natural language.

He asserts that “all the recursively enumerable languages can be found among the

context-sensitive languages” (pg. 362). Type 1 languages are not as widely studied

in mathematical linguistics or computer science as other language types.

Since the original hierarchy in Chomsky (1959), there have been other for-

mal languages found to be proper subsets of context-sensitive languages and pro-

per supersets of context-free languages (Aho, 1968). Indexed languages can be de-

scribed by a context-free grammar with a stack (Gazdar and Mellish, 1989). A pro-

duction for such a language could look like A[i] → BaC, where non-terminals in-

herit their parent node’s stack and optionally pop one element off. Linguistically,

indexed grammars allow features to dynamically appear (push) and get checked-

off (pop) without hard-coding them into the grammar. Gazdar and Pullum (1985)

assert that all grammatical natural language phenomena can be handled by in-

dexed grammars.

Mildly context-sensitive languages are a proper subset of indexed languages

and a proper superset of context-free languages. A production for these languages

can look like those for indexed languages, but only one non-terminal may in-

herit its parent node’s stack (Vijay-Shanker, 1987). Their computational complex-

ity is considerably lower than the languages previously mentioned. Tree adjoining

grammars (Joshi et al., 1975), head grammars (Pollard, 1984), and combinatory cat-

egorial grammars (Steedman, 1985) generate mildly context-sensitive languages.

Context-free languages (type 2) can be described by a grammar having a pro-

duction like A → BaC, where the left-hand side has only one non-terminal node.

They are sometimes referred to as PDA languages, since they can be described by

pushdown automata, which are finite-state automata with a stack (Kracht, 2003,

pg. 117). Categorial grammars have the weak generative capacity of a context-free

grammar (CFG). CFGs are widely used in probabilistic and symbolic parsers of

natural languages and programming languages.

5

Deterministic context-free languages, or deterministic PDA languages, are a

proper subset of context-free languages and a proper superset of regular languages.

A grammar for these languages is unambiguous (Hopcroft and Ullman, 1979, pg.

255). They are rarely studied in linguistics, although they offer potential relevance

in the area of sentence processing, since backtracking is not permitted in parsing

these languages.

Regular languages (type 3) have grammars which must only have one node

on the left-hand side, and either a terminal node or a non-terminal node and a

terminal node on the right-hand side (Vogel et al., 1996). A regular grammar can

have a production like A → Ba. An alternative notation is expressed in the form

of regular expressions2, although the current use of the term extends to non-regular

grammars. Regular grammars are also often expressed in the form of finite-state

automata. Since regular languages are so restricted, they can be parsed extremely

efficiently.

Our knowledge of formal languages has increased considerably since the

original descriptions in the 1950’s and 1960’s. Table 2.2 shows an expanded hier-

archy of formal languages, adapted from Hopcroft and Ullman (1979); Partee et al.

(1990); Sipser (1997).

Given this hierarchy of language types, attempts were made to determine

where the syntax of natural language fits. Chomsky stated “we should like to

accept the least ‘powerful’ theory that is empirically adequate” (1965, pg. 62). He

asserted that natural language could not completely be described using a regular

grammar (1956, pg. 115). Essentially, recursive center clausal embedding is not

regular:

(1) a. If S1, then S2.

b. Either S3, or S4.

c. The man who said that S5, is arriving today.

2See Friedl and Oram (2002) for an in-depth treatment.

6

Language

Non-Turing-acceptable

Recursively enumerable

Recursive/ Decidable

Context-sensitive

Indexed

Mildly context-sensitive

Context-free

Deterministic context-free

Regular

Finite

Table 2.2: An extended hierarchy of formal languages

He then addressed context-free grammars, stating that they have “no place for

discontinuous elements” (pg. 120). He argued that English constructions like the

one found in (2) were not context-free (1956, pg. 120):

(2) the man had be-en tak-ing the book.

The past perfect had requires a past participle to follow it. This is usually manifest

as the suffix -ed/-en. Also, the progressive be requires a present participle afterward,

which is indicated by the suffix -ing. These morphemic dependencies cross each

other. Chomsky viewed the above example as a discontinuous morphophone-

mic derivation from originally continuous morphemes. Accordingly he adopted

a more powerful mechanism of transformations, based on the work of Zellig Har-

ris (1952). Crossing dependencies like the one above have been observed for other

languages as well, although there is no treatment of crossing dependencies for Per-

sian to the author’s knowledge.

Over the next 25 years many others presented arguments in favor of the

non-context-freeness of natural language, including: Bar-Hillel and Shamir (1960)

7

who based their assertion on an English construction involving respectively, Postal

(1964) on Mohawk incorporation, Bach (1974) on English number agreement,

Huybregts (1976) on Dutch cross-serial dependencies, and Bresnan (1978) on wh-

extraction and number agreement.

Of interest to this paper is the case of Dutch cross-serial dependencies (CSDs).

Cross-serial dependencies are a type of crossing dependency where any number of

crossings are chained together. In Dutch complement clauses, complementizing fi-

nite verbs allow their complement clause to circumscribe them, with noun phrases

preceding the complementizing verb and non-finite verbs following it:

(3) . . . dat
. . . that

Jan
Jan

de
the

kinderen
children

zag
saw

zwemmen
swim

‘. . . that Jan saw the children swim’

Subsequent complement clauses may follow this same pattern around each com-

plementizing verb with no upper bound on the number of times this may occur.

Bresnan et al. (1982) offered an LFG account for these structures, making use of

non-endocentric c-structures.

The notion of natural language not being context-free was fairly uncon-

tested until Pullum and Gazdar (1982) showed that the stringsets of each of these

phenomena could in fact be explained with a CFG, and some even with a regular

grammar. Their claim was not that natural language was necessarily context-free,

but rather that “every published argument purporting to demonstrate the non-

context-freeness of some natural language is invalid, either formally or empirically

or both” (§ 7).

A prominent argument came soon after when Huybregts (1984) and Shieber

(1985) declared that Swiss German cross-serial dependencies could not be weakly

generated by a CFG. Their form was very similar to the Dutch counterpart, but

8

with one crucial difference: overt case agreement between each verb and its corre-

sponding noun. That is, the noun must either be inflected for the accusative or the

dative case, depending on which verb is used:

(4) . . . das
. . . that

mer
we

d’chind
the children-ACC

em Hans
Hans-DAT

es huus
house-ACC

lönd
let

hälfe
help

aastriiche
paint

‘. . . that we let the children help Hans paint the house’

The renowned finding was not without criticism, however. Manaster Ramer

(1988) argued that Shieber (1985) contains a flaw in mathematical reasoning, stat-

ing that the paper assumes that “the number of verbs that govern the dative must

equal the number of actual NPs in the dative case in the sentence, and likewise for

the accusative” (pg. 101). Instead he offers an alternative where the number of da-

tive (or accusative) NPs are no greater than the number of dative-governing verbs.

At any rate Gazdar and Pullum (1985) emphasize that regardless of whether natu-

ral language (NL) as a whole is context-free or not, “the overwhelming majority of

the structures of any NL can be elegantly and efficiently parsed using context-free

parsing technologies.”

Since the work on Dutch and Swiss German—both West Germanic lang-

uages—little research has been conducted on cross-serial dependencies in other

languages. A notable exception is Maclachlan and Rambow (2003) on Tagalog, an

Austronesian language. Unlike the Dutch and Swiss German CSDs, the verbs pre-

cede the NPs in Tagalog CSDs:

(5) Nagisip
AT-thought

na
LK

bumili
AT-buy

si Pedro
NOM-Pedro

ng bulaklak
flower

‘Pedro thought to buy (of buying) a flower.’

While such orderings are optional, they nevertheless are grammatical and thus

need to be accounted for in some way. Certainly the Dutch (3), Swiss German (4),

9

and Tagalog (5) examples exceed the strong generative capacity of a context-free

grammar, as well as the English example (2) from a morphemic perspective.

Having reviewed crossing dependencies in English, Dutch, Swiss German,

and Tagalog, I will discuss the Persian language in the next chapter. Specifically,

two constructions of the language are analyzed—the light verb construction and

the passive construction.

10

Chapter 3

Persian

The Persian language, or Farsi, is an Indo-European language natively spo-

ken by about 60 million people in Iran, Afghanistan, Tajikistan, and surrounding

areas. The language has remained remarkably stable since the eighth century. It

has a subject-object-verb word order, but has some head-initial structures. This

paper will focus on the written form of modern Iranian Persian. An explanation of

the orthographic conventions used in this work is found in Appendix C.

3.1 Persian Light Verb Constructions

In addition to normal verbal forms, Persian makes extensive and highly

productive use of Light Verb Constructions (LVC)1. Such formations are composed

of a light verb (LV) and a non-verbal element (NV). The non-verbal element can be

a noun, adjective, preposition, prepositional phrase, or idiomatic structure, as seen

in (1) from Megerdoomian (2002).

(1) a. fæks
fax

kærdæn
do

‘to fax’

b. delxor
annoyed

kærdæn
do

‘to annoy’

1Other works also refer to Persian LVCs as Complex Predicates, Complex Verbs, and
Compound Verbs.

11

c. æz
from

beyn
between

bordæn
take

‘to destroy’

d. piš
before

ræftæn
go

‘to advance’

e. dæst
hand

be
to

dæst
hand

kærdæn
do

‘to hesitate’

These constructions can range from highly compositional, like (1a), to highly

non-compositional, like (1c). The more compositional LVCs tend to contain non-

verbal elements that are nouns or adjectives2, and light verbs that are frequently

occurring. Conversely, the more non-compositional LVCs tend to contain non-

verbal elements that are native, concrete, or more complex than a simple noun,

and light verbs that are less frequent. To illustrate the number of LVs in Persian, I

have compiled a sorted listing of 35 light verbs in Table 3.1. It was produced us-

ing pattern matching tools on Dr. Amir Shakib-Manesh’s digital Persian-English

dictionary. Each entry was verified in multiple corpora and other dictionaries3.

Most nouns and many adjectives combine with a light verb to form an LVC.

The number of non-verbal elements has no upper bound, as the number of loan-

words and neologisms continues to grow. Some examples include:

(2) a. ček
check

kærdæn
do

‘to check’4

b. imeyl
email

zædæn
hit

‘to email’

2They are also usually borrowed or abstract.
3The corpora primarily consist of a 20 million word Kayhan online news text and a 10 million

word BBC Persian online news text.
4Interestingly the English word check ultimately derives from the Persian word šāh ‘shah, king’.

12

Light verb Gloss Example Literal Trans. Gloss

kærdæn ‘do’ peydā kærdæn visible do ‘find’

šodæn ‘become’ vāred šodæn arriving become ‘enter’

dādæn ‘give’ pošt dādæn back give ‘lean’

zædæn ‘hit’ dæst zædæn hand hit ‘clap’

budæn ‘be’ šāmel budæn containing be ‘include’

dāštæn ‘have’ dust dāštæn friend have ‘like’

gereftæn ‘take’ tæ’ælloq gereftæn attachment take ‘accrue’

ræftæn ‘go’ qærāvol ræftæn sentinel go ‘aim’

kešidæn ‘pull’ dæst kešidæn hand pull ‘desist’

ændāxtæn ‘throw’ dæst ændāxtæn hand throw ‘spoof’

xordæn ‘eat’ šekæst xordæn break eat ‘lose’

gozāštæn ‘put’ qāl gozāštæn smelting put ‘leave waiting’

āværdæn ‘bring’ ‘æml āværdæn act bring ‘manufacture’

sāxtæn ‘build’ mærbut sāxtæn related build ‘affiliate’

goftæn ‘say’ mæhræmāne goftæn confidential say ‘confide’

yāftæn ‘find’ dæst yāftæn hand find ‘attain’

bæstæn ‘close’ čæšm bæstæn eye close ‘blindfold’

bordæn ‘carry’ nām bordæn name carry ‘mention’

āmædæn ‘come’ ‘æml āmædæn act come ‘ripen’

rixtæn ‘pour’ foru rixtæn downward pour ‘collapse’

oftādæn ‘fall’ eteffāq oftādæn event fall ‘happen’

næmudæn ‘appear’ xonsā næmudæn neutral appear ‘annihilate’

resāndæn ‘extend’ ziān resāndæn loss extend ‘injure’

bærdāštæn ‘pick up’ dæst bærdāštæn hand pick up ‘desist’

jostæn ‘search’ del jostæn heart search ‘be agreeable’

bæxšidæn ‘forgive/bestow’ ruhiye bæxšidæn morale bestow ‘uplift’

xāndæn ‘read/sing’ færā xāndæn back read ‘summon’

peydā kærdæn ‘find’ šib peydā kærdæn slope find ‘decline’

residæn ‘arrive’ xedmæt residæn service arrive ‘wait upon’

didæn ‘see’ āsib didæn injury see ‘sustain an injury’

bāxtæn ‘lose/play’ jān bāxtæn soul lose ‘self-sacrifice’

kubidæn ‘pound’ xāl kubidæn spot pound ‘tattoo’

gærdidæn ‘turn’ montej gærdidæn result turn ‘accrue’

čidæn ‘clip/pluck’ čæšm čidæn eye pluck ‘counteract’

boridæn ‘cut’ omid boridæn hope cut ‘despair’

Table 3.1: Some Persian light verbs in decreasing frequency

13

c. čæt
chat

kærdæn
do

‘to chat (online)’

Nouns may also appear in prepositional phrases that serve as a non-verbal ele-

ment. Nominal compounding also indicates their non-finiteness.

Non-verbal elements combine with light verbs in idiosyncratic distribu-

tions. A common way of encoding their combinatory possibilities in current dic-

tionaries is to store possible light verb usage in the lexicon entry of each non-verbal

element.

3.2 Split Light Verb Constructions

Unlike most other languages with light verb constructions, Persian LVCs

may become split, by accusative pronominal clitics, noun/determiner phrases,

prepositional phrases, or certain auxiliary verbs:

(3) a. ānhā
they

dæst=æš
hand=3S.ACC

zæd-ænd
hit-3P

‘They touched it.’

b. xāb-e
dream-GEN

bæčče
child

rā
ACC

did-æm
saw-1S

‘I dreamt of the kid.’ (adapted from Megerdoomian (2002))

c. ānhā
they

dæst
hand

be
to

tæzāhor-āt
demonstration-PL

zæd-ænd
hit-3P

‘They embarked on demonstrations.’

d. ānhā
they

dæst
hand

xāh-ænd
will-3P

zæd
hit

‘They will clap.’

e. ānhā
they

dæst
hand

be
to

tæzāhor-āt
demonstration-PL

xāh-ænd
will-3P

zæd
hit

‘They will embark on demonstrations.’

In (3d) not only is the LVC interrupted by the future auxiliary xāhænd, but

this interrupting word contains information, or features, that must agree with the

14

subject: number and person. Failure to achieve agreement in both pairs results in

either full or partial ungrammaticality.

(4) a. *ānhā
they

peydā
visible

xāh-æm
FUT-1S

kærd
did

‘They/I will find.’

b. *ānhā
they

ketāb
book

xāh-ænd
FUT-3P

ræft
went

‘* They will book-go.’

Lack of φ-feature agreement in (4a) clearly indicates ungrammaticality, rather than

semantic unacceptability. Sentences which have intransitive (light) verbs are al-

ways ungrammatical unless the NV lexically corresponds to the LV. What’s more,

it is apparent that (4b) is a syntactic issue since the semantic class of word(s) oc-

cupying the NV/bare noun slot generally gives no indication as to whether the

sentence will be felicitous or not5.

3.3 Split Passive Constructions

The future auxiliary also interrupts passive constructions. Normal passive

sentences are formed by suffixing the past participle morpheme e to the past-tense

verb stem, then using a normally inflected form of the verb šodæn ‘to become’.

Light verb constructions are passivized in a similar way, attaching the past partici-

ple morpheme to the light verb:

(5) a. ānhā
they

gošud-e
open-PSPT

šod-ænd
became-3P

‘They were opened.’

b. ānhā
they

be
to

zæmin
earth

zæd-e
hit-PSPT

šod-ænd
became-3P

‘They were overthrown.’

5This is particularly the case for sentences using (light) verbs like kærdæn ‘do’ or ræftæn ‘go’,
for example. Other sentences can be more dependent on the semantic class of the NV/bare noun,
such as those using transitive (light) verbs like xordæn ‘eat’ or zædæn ‘hit’. Like many questions
involving the nature of Persian LVCs, they exhibit dualistic properties that greatly vary depending
on the specific light verb involved, and to a lesser extent, the non-verbal element.

15

If the sentence is in the future tense, however, the future auxiliary separates these

two words. The subject and the future auxiliary share person and number infor-

mation, or features, while the past participle verb and the passive verb share a

passive feature. This results in crossing dependencies:

(6) a. ānhā
they

gošud-e
open-PSPT

xāh-ænd
FUT-3P

šod
became

‘They will be opened.’

b. ānhā
they

be
to

zæmin
earth

zæd-e
hit-PSPT

xāh-ænd
FUT-3P

šod
became

‘They will be overthrown.’

Failure of either the past participle verb in the passive construction to have

proper passivization markers (i.e. verb-e + šodæn) results in ungrammaticality,

as does failure of the subject and future auxiliary to agree in person and number

features:

(7) a. *ānhā
they

gošud
open

xāh-ænd
FUT-3P

šod
became

‘They will be open.’

b. *ānhā
they

gošud-e
open-PSPT

xāh-ænd
FUT-3P

ræft
went

‘* They will went opened.’

c. *ānhā
they

gošud-e
open-PSPT

xāh-æm
FUT-1S

šod
became

‘They will be opened.’

Like (4), these examples represent a crossing of information at a syntactic level.

Thus substituting other words and/or morphemes that fail to meet the require-

ments mentioned above will predictably result in ungrammaticality.

16

3.4 Comparison

Crossing dependencies in Persian split light verb constructions and split

passives exhibit some similarities, although split LVCs are more complex overall.

Whether they are split or not, both constructions maintain their compositionality

or lack thereof. Passivization can syntactically involve any verb, as long as the

verb is in the form of a past participle. On the other hand, light verb constructions

occur idiosyncratically.

Both constructions are split by the future auxiliary xāstæn. As Persian is

SOV, we would normally expect to find this word at the end of the sentence. But

this is not the case: the future auxiliary almost always occurs as the second-to-last

word in a complement clause6. This could indicate a split headedness in Persian,

which will be discussed further in section 4.2.

6Elliptical forms are naturally an exception.

17

Chapter 4

Structural Analyses

This chapter will synthesize the findings of the previous two chapters to

offer multiple explanations of the phenomena mentioned in Chapter 3. The split

light verb constructions and split passive constructions both result in crossing de-

pendencies when a future auxiliary separates their two parts1. These phenomena

can be represented visually as a line connecting the subject and the future auxil-

iary, and another line connecting either the non-verbal element with the light verb

(1a) to (1b) , or the past participle with the passive verb (1c):

(1) a. ānhā
they

dæst
hand

xāh-ænd
FUT-3P

zæd
hit

‘They will clap.’

b. ānhā
they

dæst
hand

be
to

tæzāhor-āt
demonstration-PL

xāh-ænd
FUT-3P

zæd
hit

‘They will embark on demonstrations.’

c. ānhā
they

gošud-e
open-PSPT

xāh-ænd
FUT-3P

šod
became

‘They will be opened.’

1I first observed these crossing dependencies while implementing a syntactic parser for Per-
sian (Dehdari and Lonsdale, 2007, forthcoming).

18

S

NP

N

ānhā

‘they’

VP

NV

dæst

‘hand’

V′

V

xāhænd

‘will-3P’

LV

zæd

‘hit’

S → NP VP

NP → N

VP → NV V
′

V
′ → V LV

Figure 4.1: A basic CFG and derivation for LVC crossing dependencies

4.1 Context-free Grammar

As the crossing dependencies in both the Persian LVC and passive types

seem to have an upper bound in length, they can be weakly described by a context-

free grammar. Clearly a CFG would fail to appropriately capture the structural

relations of both types, hence these forms are not strongly context-free. A basic

context-free grammar to capture strings of Persian crossing dependencies could

look like the left-hand side of Figure 4.1. This grammar is mostly written in Chom-

sky normal form, omitting terminal productions. The resulting derivation would

look like the right-hand side of Figure 4.1. The node labels may be renamed to suit

one’s theoretical persuasion.

The important point to note with this particular grammar is that it recog-

nizes many ungrammatical strings. For example, subjects which do not agree with

the future auxiliary are accepted. Also, non-verbal element/light verb pairings for

which no lexical entry exists are likewise accepted as grammatical. This situation

normally would not be problematic for a grammar acting only as a string acceptor,

19

were it not for the intransitive verbs which function as light verbs. That is, even if

an NV/LV pairing was not found in the lexicon, it would still be grammatical—it

would be interpreted as an bare indefinite/non-specific object and a normal tran-

sitive verb, in the case of a noun in the NV position. On the other hand, light

verbs which also serve as normal intransitive verbs, such as ræftæn ‘go’, āmædæn

‘come’, residæn ‘arrive’, would render non-lexical pairings as ungrammatical, as

was shown in (7b) of the previous chapter and repeated here:

(2) a. *ānhā
they

gošud-e
open-PSPT

xāh-ænd
FUT-3P

ræft
went

‘* They will went opened.’

Feature requirements can overcome the problem of overgeneration in the grammar

found in Figure 4.1. An easy way to implement featural restrictions in a context-

free grammar is to simply create different nodes for all possible combinations of

features. For a grammar with relatively few features, this is a trivial task. How-

ever, when the number of feature combinations is large, this approach becomes

increasingly impractical. The number of possible different non-terminal nodes at

a given position is the Cartesian product of all feature sets underneath it that have

not been yet resolved locally:

X1 × X2 × . . . × Xn = { (x1, x2, . . . , xn) | x1 ∈ X1 ∧ x2 ∈ X2 ∧ . . . ∧ xn ∈ Xn}

An abbreviated example of a grammar which makes use of such featural alterna-

tions is seen in Figure 4.2. Given the crossing feature sets, this grammar swells

to 210 alternations at the V′ node, in order to accurately accept a string of just

four words. A complete implementation of this grammar in Perl 6 was written

for this thesis and is found in Appendix A2. As an acceptor, the program will out-

put “Grammatical” if the input sentence is a well-formed Persian split light verb

2Since Perl 6 is currently under development, the code may need minor modifications in the
future. Productions in Perl 6 grammars are written as, for example: rule S { <NP> <VP> }

20

S → NP-1S VP-1S | NP-2S VP-2S | ...

NP-1S → N-1S

NP-2S → N-2S

...

VP-1S → NV-kard V-1S-kard′ | NV-zad V-1S-zad′ | ...

VP-2S → NV-kard V-2S-kard′ | NV-zad V-2S-zad′ | ...

...

V-1S-kard′ → AUX-1S V-kard

V-2S-kard′ → AUX-2S V-kard

...

V-1S-zad′ → AUX-1S V-zad

V-2S-zad′ → AUX-2S V-zad

...

Figure 4.2: A non-overgenerating CFG for Persian LVC crossing dependencies

construction. Appendix B shows a similar acceptor for the split passive construc-

tions. Both programs use a transliteration scheme defined in the second column of

Appendix C.

The resulting derivation of a context-free grammar that includes feature re-

strictions is found in the first tree of Figure 4.3. An alternative way to express this

is to place the features below the non-terminal’s general part-of-speech, as is com-

mon in GPSG. The lower tree in Figure 4.3 displays this modified, but equivalent,

derivation.

An important assumption that context-free grammars make (and indeed

string-rewriting grammars of any expressive power) is that the number of termi-

nals is finite. In grammars for natural languages the terminals are normally words

or morphemes. Hopcroft and Ullman (1979, pg. 79) define a CFG as a 4-tuple

“G = (V, T, P, S), where V and T are finite sets of variables and terminals” (italics

original). To complete the definition, P is the finite set of productions, or rules, and

S is the start symbol, or topmost non-terminal node. However, Gazdar and Pullum

(1985, § 2.1.1) note the implausibility of a finite lexicon:

21

S

NP-3P

N-3P

ānhā

‘they’

VP-3P

NV-zad

dæst

‘hand’

V-3P-zad′

AUX-3P

xāh-ænd

‘will-3P’

V-zad

zæd

‘hit’

S

NP
[

3 PERS

+ PL

]

N
[

3 PERS

+ PL

]

ānhā

‘they’

VP
[

3 PERS

+ PL

]

NV
[

zad
]

dæst

‘hand’

V′






3 PERS

+ PL

zad







AUX
[

3 PERS

+ PL

]

xāh-ænd

‘will-3P’

V
[

zad
]

zæd

‘hit’

Figure 4.3: Equivalent derived trees from a non-overgenerating CFG grammar

22

Do all [natural] languages have a finite lexicon? The common sense

answer is “yes”; after all, dictionaries contain all the words in a lan-

guage, and while dictionaries may be very long [...], they are not in-

finitely long. But the common sense answer is incorrect: there are few

if any languages whose dictionaries contain all the words of the lan-

guage. No Finnish dictionary contains all the possible forms of Finnish

verbs [...] Most languages employ word-formation processes that can

apply iteratively to each other’s output, and, in so doing, trivially in-

duce an infinite language [...].

Such is the case with Persian nominal compounds and with light verbs, which

occasionally apply word-formation processes from light verb constructions. Thus

what were originally two terminal nodes become a single terminal. Iterative nom-

inal compounding is quite common in many languages, and is found in Persian as

well:

(3) a. rāh-row
path-go
‘corridor’

b. sær-pušid-e
head-cover-PSPT
‘porch’

c. rāh-row
path-go

sær-pušid-e
head-cover-PSPT

‘cloister’

Perhaps more interesting is the iterative process for developing new light

verbs from light verb constructions. While they are not as productive as the nomi-

nal counterpart, they offer challenges to clearly distinguishing terminals from non-

terminals:

(4) a. peydā
visible

kærdæn
do

‘to find’

23

b. šib
slope

peydā-kærdæn
visible-do

‘to decline’

c. loknæt-e
stutter-GEN

zæbān
tongue

peydā-kærdæn
visible-do

‘to falter’

(5) a. kār
work

kærdæn
do

‘to work’

b. sæxt
hard

kār-kærdæn
work-do

‘to grind’

One method of parsing a context-free language that contains non-finite terminals

is to write a CFG for individual words/morphemes and another for the entire sen-

tence (Sadock, 1985). The finite number of word-level root nodes would serve

as terminals in the sentential CFG. A given sentence would be grammatical if

both CFGs accepted their respective inputs as grammatical. The appeal of using a

context-free grammar is the formal weakness and computational efficiency. These

grammars are fairly high in the Chomsky hierarchy, and the most time a CFG

requires to parse a sentence is proportional to the cubed length of the sentence

(Earley, 1970). One drawback is that CFGs do not correspond semantically related

sentences. Productions would be completely different for crossing dependencies

and their related counterparts not in the future tense.

4.2 Minimalist Syntax

The Minimalist Program (Chomsky, 1995) can provide an alternative expla-

nation for crossing dependencies in Persian. The vP shell gives a suitable locus

for analyzing passive constructions and LVCs, as Megerdoomian (2002) discussed.

Hence, the light verbs and the passive verb šodæn are found at the v node:

24

(6) vP

DP

ānhā

‘they’

v′

VP

gošude

‘opened’

v

šod

‘became’

vP

DP

ānhā

‘they’

v′

VP

V′

DP

dæst

‘hand’

V

ti

v

zæd

‘hit’

As LVCs themselves may passivize, the light verb must originate as V, then move

to v if unoccupied. Once reaching this node, the v does not overtly move anywhere

else.

4.2.1 Split Headedness

At this point I depart from the traditionally-held notion that Persian is head-

final. I propose that there is a split-headedness in Persian, where the vP node and

lower phrases are head-final, and the CP node and lower phrases until vP are

head-initial. Such an analysis allows us to economically account for the crossing

dependencies, as well as many other seemingly-contradictory phenomena in this

language.

The general structure of the two phrase types is as follows:

(7) CP

Spec C′

C Comp

vP

Spec v ′

Comp v

These two phrase types (CP and vP) correspond to the two phases mentioned in

Chomsky (2000). He describes phases as self-contained components of derivation,

and asserts that internal elements of a given phase must be on its phase’s edge

25

AgrSP

DP

ānhā

‘they’

AgrS′

AgrS TP

VP

gošude

‘opened’

T′

T

xāhænd

‘will-3P’

vP

ti v′

tj v

šod

‘became’

Figure 4.4: A Minimalist tree for Persian split passives

before moving out to another phase. As such, we could say that in this analysis the

specifier of vP, on the left edge of this phase, moves to the specifier of AgrSP. With

this movement, subject agreement features can then be covertly checked at AgrS.

This also has the effect of placing the VP on the edge of its phase and allowing it

to move outside to the specifier of TP, as can be seen in the split passivization of

Figure 4.4 and the split light verb construction of Figure 4.5.

Another benefit of describing CP as head-initial is that this can economi-

cally account for four facts about CPs in Persian: 1) complement clauses follow

matrix clauses; 2) relative clauses follow matrix clauses; 3) the interrogative par-

ticles āyā/mægær begin interrogative sentences; and 4) although wh-words do not

always move, when they do they move to the beginning of a sentence. These phe-

nomena are respectively shown below:

26

AgrSP

DP

ānhā

‘they’

AgrS′

AgrS TP

VP

dæst

‘hand’

T′

T

xāhænd

‘will-3P’

vP

ti v′

tj v

zæd

‘hit’

Figure 4.5: A Minimalist tree for Persian split LVCs

(8) a. ne-mi-dun-e
NEG-DUR-know-3S

[CP ke
that

færdā
tomorrow

mi-yām]
DUR-come-1S

‘She doesn’t know I’m coming tomorrow.’ (from Mahootian (1997, pg. 90))

b. un
that

mærd-o
man-OM

[CP ke
that

ruznāme
newspaper

mi-xund]
DUR-read

peydā
visible

kærd
did

‘He found the man who was reading the newspaper.’ (Ibid, pg. 34)

c. āyā
INTER

in
this

gorbe-ye
cat-GEN

šomā-st?
you-is

‘Is this your cat?’ (Ibid, pg. 9)

d. čerā
why

mā
we

sāket
quiet

be-mān-im?
SBJN-remain-1P

‘Why do we remain quiet?’

The notion of split headedness was independently noted for Pashto, a closely

related language, by Roberts (2000, pgs. 54–63). His division for Pashto headed-

ness loosely approximates to the one for Persian suggested in this paper, although

he separates the phrases by functional vs. lexical category, rather than structural

categories as is suggested here.

27

By separating the phrases by functional vs. lexical, we are able to see a

general division between the head-initial functional categories and the head-final

lexical categories. On the other hand, by separating the phrases by structure, we

can see a general division between the upper head-initial CP-phase and the lower

head-final vP-phase. It should be noted, however, that both divisions have their

exceptions—aspect, for example, proves problematic for both types of divisions

(and in both Persian and Pashto).

The Minimalist Program allows us to overcome some of the inherent inad-

equacies of context-free grammars, such as being able to relate present-tense and

future-tense light verb constructions, but at a price. It is not clear at the present

time exactly what formal language a grammar for Chomsky (1995)’s Minimalist

Program could generate, but it would necessarily be more formally powerful than

a context-free language3.

4.3 Tree Adjoining Grammar

Maclachlan and Rambow (2003) present a TAG4 analysis of Tagalog CSDs,

arguing that adjunction is ideally suited for crossing dependencies. Adjunction

allows for an unbounded number of localized crossing dependencies, giving a for-

mally restricted account of CSDs.

A general format for adjunction in CSDs may be seen in Figure 4.6, adapted

from Maclachlan and Rambow (2003, pg. 102). This would be used for verb-final

CSDs, while a mirrored counterpart would be suitable for verb-initial CSDs. A

tree may adjoin if it has a leaf node that matches its root node, as in tree (β). It

may adjoin to another tree that has a node labeled the same as the adjoining tree’s

root node. A tree resulting from adjunction may be seen in (γ). The initial and

3But see Michaelis (1998) for a characterization of Stabler (1997)’s Minimalist Grammars as
mildly context-sensitive.

4See Abeillé and Rambow (2000) for an introduction to Tree Adjoining Grammar.

28

(α) S
(1)
NA

A(1) S(1)

A(1)

(β) S
(2)
NA

B(2) S(2)

S
(2)
NA

B(2)

(γ) S
(1)
NA

A(1) S
(2)
NA

B(2) S(2)

S
(2)
NA

A(1)

B(2)

Figure 4.6: TAG initial (α), auxiliary (β), and derived tree (γ) for verb-final CSDs

auxiliary trees in Figure 4.6 generate a language L = {xx | x ∈ {a, b}+}, which is a

reduplicating language.

Figure 4.7 shows a specific format for initial and auxiliary trees in Persian

crossing dependencies. Using auxiliary trees in this format allows us to define

individual light verb constructions in the lexicon as paired units of a single lexeme.

This corresponds with our intuitive notion of pairing them together lexically, while

also allowing them to separate in a formally restricted manner.

Adjoining the initial tree with the auxiliary tree gives the derived tree in

Figure 4.8. One shortcoming of this approach, however, is that it fails to show

proper relations between words. On the other hand, TAG is well understood for-

mally and is known to be mildly context-sensitive. The most time a TAG requires

to parse a sentence is proportional to the length of the sentence raised to the sixth

(Vijay-Shanker, 1987).

29

(α) S

NP↓

N

ānhā

‘they’

VP

V′

V

xāhænd

‘will-3P’

(β) V′

NV

dæst

‘hand’

V′

V′ LV

zæd

‘hit’

Figure 4.7: A TAG initial tree (α) and auxiliary tree (β)

S

NP↓

N

ānhā

‘they’

VP

V′

NV

dæst

‘hand’

V′

V′

V

xāhænd

‘will-3P’

LV

zæd

‘hit’

Figure 4.8: A TAG derived tree

30

4.4 Comparison of Different Crossing Dependencies

The Persian crossing dependencies described in this thesis have properties

that are similar to the cross-serial dependencies of Dutch, Swiss German, and Taga-

log. Their crossing is not a result of stylistic extraction. Rather, these crossings

occur in a highly controlled and predictable manner. We also see similarities with

the English example of (2), where both the Persian and English structures have an

upper bound on the number of dependencies which can cross. This upper bound

distinguishes them from their serial counterparts. The number of dependencies

which can cross appears to be limited to one pair in Persian. In contrast to the lan-

guages with CSDs, the English and Persian crossing dependencies are required to

be in their respective word orders; a non-crossing variant is not an option.

While Swiss German and Dutch CSDs are unbounded in the number of

crossing dependencies, Persian LVC crossing dependencies appear unbounded in

individual crossing dependency complexity—there is no upper bound on the num-

ber of possible light verbs and possible non-verbal elements. In practice, though,

both have practical limits. Performance limitations place Swiss German CSDs at

a maximum length of about four or five (Shieber, 1985, pg. 341), while the ac-

tual number of Persian light verbs in common use is less than 40. Thus five Swiss

German cross-serial dependencies results in 25 = 32 possibilities, which can be

generalized to

(9) {DAT,ACC}n

where n = number of CSDs in a given complement phrase. A single Persian LVC

crossing dependency gives 3 × 2 × 35 = 210 possibilities, or

(10) [{1, 2, 3} Person]× [{SG, PL} Number]× [n Light Verb]

where n = number of light verbs. With each additional light verb, the possibilities

grow 6n. Thus in theory, the Swiss German CSDs seem more challenging since

31

Figure 4.9: Growth of Swiss German and Persian crossing dependencies

they have exponential growth. However, the practical limitations of both lang-

uage constructions means that the Persian crossing dependencies almost always

have more combinatorial possibilities in practice, which is shown in Figure 4.9.

Unlike Persian LVC crossing dependencies, the combination possibilities

of Dutch and Swiss German CSDs represent a complete bipartite graph. That is,

any noun can grammatically combine with any complementizing verb to form a

dependency in a CSD, with Swiss German adding the requirement of overt case

agreement, either dative or accusative, between a (sometimes optional) noun and

its governing verb. This can be represented as a graph which connects every ver-

tex or node from one set or column to every vertex in another set, as seen in the

Dutch and Swiss German parts of Figure 4.10. The combination possibilities in

Persian light verb constructions are arbitrary, as represented in the Persian part

of Figure 4.10. At least with intransitive verbs, not any noun can grammatically

combine with any light verb.

32

Dutch Swiss German Persian

N V N V X V

[+ comp] [α case]

[

α case

+ comp

] [

α LV

– verb

] [

α LV

+ light

]

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word word word word

word word word

word word word

word word word
...

...
...

Figure 4.10: Differences among various crossing dependencies

33

This knowledge would have an impact on the implementation of a system

that parses or recognizes these constructions. For example, any noun phrase and

any complementizing verb found in their respective positions results in the Dutch

construction being grammatical. Less information is required, so the implementa-

tion is simpler. Swiss German also allows any noun phrase and any complementiz-

ing verb, but requires the two parts to agree in case, as specified lexically with the

verb. This means that the implementation of parsing these Swiss German forms is

more involved, and each additional crossing dependency doubles the information

needed to determine whether the construction is grammatical or not. On the other

hand, not any Persian non-verbal element (noun, adjective, etc.) may combine

with any light verb. These arbitrary relations require much more information in

the grammar, as each pairing must be explicitly specified. This makes the parsing

or recognition of these structures particularly complex.

34

Chapter 5

Conclusion

This thesis has described two varieties of crossing dependencies in the Per-

sian language, namely light verb constructions split by a future auxiliary and

passive constructions split by a future auxiliary. These structures are interesting

linguistically and computationally because they are not strongly context-free and

feature split-headedness. This paper has also shown ways to account for these

structures in a context-free grammar, the Minimalist Program, and Tree Adjoining

Grammar.

Since both structures are bounded in length, a context-free grammar can

recognize both varieties, although the LVC implementation is quite lengthy. A

Minimalist explanation would involve overt movement of the specifier of vP to

the specifier of AgrSP, overt movement of the VP to the specifier of TP, and fea-

ture checking of T with AgrS. The same manner which the TAG formalism has

been able to locally handle other languages’ cross-serial dependencies can nicely

account for Persian crossing dependencies.

Persian crossing dependencies resemble Dutch, Swiss German, and Taga-

log cross-serial dependencies with two notable differences. First, Persian seems

to have an upper bound on the number of crossing dependencies. Second, the

amount of crossing information in Persian can be much greater than the CSDs of

35

the other languages. Thus, Persian crossing dependencies are a unique and inter-

esting departure from other types of crossing dependencies that have been previ-

ously studied.

Moreover, additional questions arise from the inquiries of this paper. For

example, corpus analyses indicate that the modal auxiliary verb tævānestæn ‘can’

may also split light verb constructions, in a different manner than the future aux-

iliary does. Many other Indo-Iranian languages have light verb constructions, so

it would be interesting to see if similar crossing dependencies are found among

them. Further investigations could affirm the split-headedness hypothesis pro-

posed in this paper, or could explore more orthodox solutions to the phenomena.

Future work in this area could include implementing split-headedness within a

Minimalist parser. This thesis will hopefully prompt further research into these

areas.

36

Bibliography

Abeillé, Anne, and Owen Rambow. 2000. Tree Adjoining Grammars. Stanford, CA:

CSLI.

Aho, Alfred. 1968. Indexed grammars—an extension of context-free grammars.

Journal of the Association for Computing Machinery 15.647–671.

Bach, Emmon. 1974. Syntactic Theory. New York: Holt Rinehard and Winston.

Bar-Hillel, Yehoshua, and Eli Shamir. 1960. Finite state languages: Formal rep-

resentations and adequacy problems. Language and Information. Addison Wesley,

Reading, Massachusetts 87–98.

Barendregt, Henk. 1997. The impact of the lambda calculus in logic and computer

science. The Bulletin of Symbolic Logic 3.181–215.

Bresnan, Joan. 1978. A realistic transformational grammar. In Linguistic Theory and

Psychological Reality, ed. by M. Halle, J. Bresnan, and G. Miller. Cambridge, MA:

MIT Press.

Bresnan, Joan, Ronald Kaplan, Stanley Peters, and Annie Zaenen. 1982. Cross-

serial dependencies in Dutch. Linguistic Inquiry 13.613–35.

Chomsky, Noam. 1956. Three models for the description of language. IRE Trans-

actions on Information Theory 2.113–124.

Chomsky, Noam. 1959. On certain formal properties of grammars. Information and

Control 2.137–167.

Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, Massachusetts:

The MIT Press.

37

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, Massachusetts: The

MIT Press.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Step by Step: Es-

says on Minimalist Syntax in honor of Howard Lasnik, ed. by R. Martin, D. Michaels,

and J. Uriagereka. Cambridge, MA: MIT Press.

Dehdari, Jon, and Deryle Lonsdale. 2007, forthcoming. A link grammar parser for

Persian. In Aspects of Iranian Linguistics. Cambridge Scholars Press.

Earley, Jay. 1970. An efficient context-free parsing algorithm. Communications of the

ACM 13.94–102.

Friedl, Jeffrey E. F., and Andy Oram. 2002. Mastering Regular Expressions. O’Reilly

& Associates, Inc.

Gazdar, Gerald, and Christopher Mellish. 1989. Natural language processing in Pro-

log. Reading, MA: Addison-Wesley.

Gazdar, Gerald, and Geoffrey K. Pullum. 1985. Computationally relevant proper-

ties of natural languages and their grammars. New Generation Computing 3.273–

306.

Harris, Zellig. 1952. Discourse analysis. Language 28.1–30.

Hopcroft, John, and Jeffrey Ullman. 1979. Introduction to Automata Theory, Lan-

guages, and Computation. Reading, MA: Addison-Wesley.

Huybregts, Marinus A. C. 1976. Overlapping dependencies in Dutch. Utrecht

Working Papers in Linguistics 1.24–65.

Huybregts, Riny. 1984. The weak inadequacy of context-free phrase structure

grammars. In Van Periferie naar Kern, ed. by Ger de Haan, M. Trommelen, and

W. Zonneveld, 81–99. Dordrecht: Foris.

Joshi, Aravind, Leon S. Levy, and Masako Takahashi. 1975. Tree adjunct grammars.

Journal of Computing and System Sciences 10.136–163.

38

Karimi, Simin (ed.) 2003. Word Order and Scrambling. Oxford, UK: Blackwell

Publishing.

Kracht, Marcus. 2003. The Mathematics of Language. Berlin: Mouton de Gruyter.

Maclachlan, Anna, and Owen Rambow. 2003. Cross-serial dependencies in Taga-

log. In Proceedings of the Sixth International Workshop on Tree Adjoining Grammar

and Related Frameworks (TAG+6), 100–104, Università di Venezia.

Mahootian, Shahrzad. 1997. Persian. Descriptive Grammars. London: Routledge.

Manaster Ramer, Alexis. 1988. Review of “The formal complexity of natural lan-

guage” by Savitch et al. (1987). Computational Linguistics 14.98–103.

Markov, Andrey A. 1960. The theory of algorithms. American Mathematical Society

Translations 2.1–14.

Megerdoomian, Karine, 2002. Beyond Words and Phrases: A Unified Theory of Predi-

cate Composition. University of Southern California dissertation.

Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. Log-

ical Aspects of Computational Linguistics, Lecture Notes in Artificial Intelligence

2014.179–182.

Partee, Barbara, Alice ter Meulen, and Robert Wall. 1990. Mathematical Methods in

Linguistics. Dordrecht: Kluwer Academic Publishers.

Pollard, Carl, 1984. Generalized phrase structure grammars, head grammars, and natural

language. Stanford University dissertation.

Postal, Paul. 1964. Limitations of phrase structure grammars. In The Structure

of Language: Readings in the Philosophy of Language, ed. by J. Fodor and J. Katz,

137–151. Englewood Cliffs, N.J.: Prentice-Hall.

Pullum, Geoffrey K., and Gerald Gazdar. 1982. Natural languages and context-free

languages. Linguistics and Philosophy 4.471–504.

Roberts, Taylor, 2000. Clitics and Agreement. The Massachusetts Institute of Tech-

nology dissertation.

39

Sadock, Jerrold M. 1985. Autolexical syntax: A theory of noun incorporation and

similar phenomena. Natural Language and Linguistic Theory 3.379–439.

Savitch, Walter. 1987. Context-sensitive grammar and natural language syntax. In

The Formal Complexity of Natural Language, ed. by W. J. Savitch, E. Bach, W. Marsh,

and G. Safran-Naveh, 358–368. Dordrecht, Holland: Reidel.

Shieber, Stuart. 1985. Evidence against the context-freeness of natural language.

Linguistics and Philosophy 8.333–343.

Sipser, Michael. 1997. Introduction to the Theory of Computation. Boston, MA: PWS

Publishing.

Stabler, Edward. 1997. Derivational minimalism. Logical Aspects of Computational

Linguistics 1328.68–95.

Stabler, Edward. 2004. Varieties of crossing dependencies. Cognitive Science 28.699–

720.

Steedman, Mark. 1985. Dependency and coordination in the grammar of Dutch

and English. Language 61.523–568.

Turing, Alan. 1937. Computability and lambda definability. Journal of Symbolic

Logic 42.230–265.

Vijay-Shanker, K., 1987. A Study of Tree Adjoining Grammars. University of Penn-

sylvania dissertation.

Vogel, Carl, Ulrike Hahn, and Holly Branigan. 1996. Cross-serial dependencies

are not hard to process. In Proceedings of COLING-96, 157–162, Copenhagen,

Denmark.

40

Appendix A

A Perl 6 Grammar for Persian LVC Crossing Dependencies

#!/usr/bin/pugs

Jon Dehdari, 2006

A Perl 6 context-free grammar to recognize Persian LVC crossing dependencies

use v6;

$_ = shift || "AnhA dst xuAhnd zd";

grammar Persian {

Grammatical stuff

rule sentence {

<NP_1S> <VP_1S> | <NP_2S> <VP_2S> | <NP_3S> <VP_3S> | <NP_1P> <VP_1P> | <NP_2P> <VP_2P> | <NP_3P> <VP_3P>

}

rule VP_1S:w {

<NV_krd> <Vbar_1S_krd> | <NV_Cd> <Vbar_1S_Cd> | <NV_dAd> <Vbar_1S_dAd> | <NV_zd> <Vbar_1S_zd> |

<NV_bud> <Vbar_1S_bud> | <NV_dACt> <Vbar_1S_dACt> | <NV_grft> <Vbar_1S_grft> |

<NV_rft> <Vbar_1S_rft> | <NV_kCid> <Vbar_1S_kCid> | <NV_andAxt> <Vbar_1S_andAxt> |

<NV_xurd> <Vbar_1S_xurd> | <NV_gLACt> <Vbar_1S_gLACt> | <NV_Aurd> <Vbar_1S_Aurd> |

<NV_sAxt> <Vbar_1S_sAxt> | <NV_gft> <Vbar_1S_gft> | <NV_iAft> <Vbar_1S_iAft> |

<NV_bst> <Vbar_1S_bst> | <NV_brd> <Vbar_1S_brd> | <NV_Amd> <Vbar_1S_Amd> |

<NV_rixt> <Vbar_1S_rixt> | <NV_oftAd> <Vbar_1S_oftAd> | <NV_nmud> <Vbar_1S_nmud> |

<NV_rsAnd> <Vbar_1S_rsAnd> | <NV_brdACt> <Vbar_1S_brdACt> | <NV_jst> <Vbar_1S_jst> |

<NV_bxCid> <Vbar_1S_bxCid> | <NV_xuAnd> <Vbar_1S_xuAnd> | <NV_pidAkrd> <Vbar_1S_pidAkrd> |

<NV_rsid> <Vbar_1S_rsid> | <NV_did> <Vbar_1S_did> | <NV_bAxt> <Vbar_1S_bAxt> |

<NV_kubid> <Vbar_1S_kubid> | <NV_grdid> <Vbar_1S_grdid> | <NV_cid> <Vbar_1S_cid> |

<NV_brid> <Vbar_1S_brid> | ...

}

rule VP_2S:w {

<NV_krd> <Vbar_2S_krd> | <NV_Cd> <Vbar_2S_Cd> | <NV_dAd> <Vbar_2S_dAd> | <NV_zd> <Vbar_2S_zd> |

<NV_bud> <Vbar_2S_bud> | <NV_dACt> <Vbar_2S_dACt> | <NV_grft> <Vbar_2S_grft> |

<NV_rft> <Vbar_2S_rft> | <NV_kCid> <Vbar_2S_kCid> | <NV_andAxt> <Vbar_2S_andAxt> |

<NV_xurd> <Vbar_2S_xurd> | <NV_gLACt> <Vbar_2S_gLACt> | <NV_Aurd> <Vbar_2S_Aurd> |

<NV_sAxt> <Vbar_2S_sAxt> | <NV_gft> <Vbar_2S_gft> | <NV_iAft> <Vbar_2S_iAft> |

<NV_bst> <Vbar_2S_bst> | <NV_brd> <Vbar_2S_brd> | <NV_Amd> <Vbar_2S_Amd> |

<NV_rixt> <Vbar_2S_rixt> | <NV_oftAd> <Vbar_2S_oftAd> | <NV_nmud> <Vbar_2S_nmud> |

<NV_rsAnd> <Vbar_2S_rsAnd> | <NV_brdACt> <Vbar_2S_brdACt> | <NV_jst> <Vbar_2S_jst> |

41

<NV_bxCid> <Vbar_2S_bxCid> | <NV_xuAnd> <Vbar_2S_xuAnd> | <NV_pidAkrd> <Vbar_2S_pidAkrd> |

<NV_rsid> <Vbar_2S_rsid> | <NV_did> <Vbar_2S_did> | <NV_bAxt> <Vbar_2S_bAxt> |

<NV_kubid> <Vbar_2S_kubid> | <NV_grdid> <Vbar_2S_grdid> | <NV_cid> <Vbar_2S_cid> |

<NV_brid> <Vbar_2S_brid> | ...

}

rule VP_3S:w {

<NV_krd> <Vbar_3S_krd> | <NV_Cd> <Vbar_3S_Cd> | <NV_dAd> <Vbar_3S_dAd> | <NV_zd> <Vbar_3S_zd> |

<NV_bud> <Vbar_3S_bud> | <NV_dACt> <Vbar_3S_dACt> | <NV_grft> <Vbar_3S_grft> |

<NV_rft> <Vbar_3S_rft> | <NV_kCid> <Vbar_3S_kCid> | <NV_andAxt> <Vbar_3S_andAxt> |

<NV_xurd> <Vbar_3S_xurd> | <NV_gLACt> <Vbar_3S_gLACt> | <NV_Aurd> <Vbar_3S_Aurd> |

<NV_sAxt> <Vbar_3S_sAxt> | <NV_gft> <Vbar_3S_gft> | <NV_iAft> <Vbar_3S_iAft> |

<NV_bst> <Vbar_3S_bst> | <NV_brd> <Vbar_3S_brd> | <NV_Amd> <Vbar_3S_Amd> |

<NV_rixt> <Vbar_3S_rixt> | <NV_oftAd> <Vbar_3S_oftAd> | <NV_nmud> <Vbar_3S_nmud> |

<NV_rsAnd> <Vbar_3S_rsAnd> | <NV_brdACt> <Vbar_3S_brdACt> | <NV_jst> <Vbar_3S_jst> |

<NV_bxCid> <Vbar_3S_bxCid> | <NV_xuAnd> <Vbar_3S_xuAnd> | <NV_pidAkrd> <Vbar_3S_pidAkrd> |

<NV_rsid> <Vbar_3S_rsid> | <NV_did> <Vbar_3S_did> | <NV_bAxt> <Vbar_3S_bAxt> |

<NV_kubid> <Vbar_3S_kubid> | <NV_grdid> <Vbar_3S_grdid> | <NV_cid> <Vbar_3S_cid> |

<NV_brid> <Vbar_3S_brid> | ...

}

rule VP_1P:w {

<NV_krd> <Vbar_1P_krd> | <NV_Cd> <Vbar_1P_Cd> | <NV_dAd> <Vbar_1P_dAd> | <NV_zd> <Vbar_1P_zd> |

<NV_bud> <Vbar_1P_bud> | <NV_dACt> <Vbar_1P_dACt> | <NV_grft> <Vbar_1P_grft> |

<NV_rft> <Vbar_1P_rft> | <NV_kCid> <Vbar_1P_kCid> | <NV_andAxt> <Vbar_1P_andAxt> |

<NV_xurd> <Vbar_1P_xurd> | <NV_gLACt> <Vbar_1P_gLACt> | <NV_Aurd> <Vbar_1P_Aurd> |

<NV_sAxt> <Vbar_1P_sAxt> | <NV_gft> <Vbar_1P_gft> | <NV_iAft> <Vbar_1P_iAft> |

<NV_bst> <Vbar_1P_bst> | <NV_brd> <Vbar_1P_brd> | <NV_Amd> <Vbar_1P_Amd> |

<NV_rixt> <Vbar_1P_rixt> | <NV_oftAd> <Vbar_1P_oftAd> | <NV_nmud> <Vbar_1P_nmud> |

<NV_rsAnd> <Vbar_1P_rsAnd> | <NV_brdACt> <Vbar_1P_brdACt> | <NV_jst> <Vbar_1P_jst> |

<NV_bxCid> <Vbar_1P_bxCid> | <NV_xuAnd> <Vbar_1P_xuAnd> | <NV_pidAkrd> <Vbar_1P_pidAkrd> |

<NV_rsid> <Vbar_1P_rsid> | <NV_did> <Vbar_1P_did> | <NV_bAxt> <Vbar_1P_bAxt> |

<NV_kubid> <Vbar_1P_kubid> | <NV_grdid> <Vbar_1P_grdid> | <NV_cid> <Vbar_1P_cid> |

<NV_brid> <Vbar_1P_brid> | ...

}

rule VP_2P:w {

<NV_krd> <Vbar_2P_krd> | <NV_Cd> <Vbar_2P_Cd> | <NV_dAd> <Vbar_2P_dAd> | <NV_zd> <Vbar_2P_zd> |

<NV_bud> <Vbar_2P_bud> | <NV_dACt> <Vbar_2P_dACt> | <NV_grft> <Vbar_2P_grft> |

<NV_rft> <Vbar_2P_rft> | <NV_kCid> <Vbar_2P_kCid> | <NV_andAxt> <Vbar_2P_andAxt> |

<NV_xurd> <Vbar_2P_xurd> | <NV_gLACt> <Vbar_2P_gLACt> | <NV_Aurd> <Vbar_2P_Aurd> |

<NV_sAxt> <Vbar_2P_sAxt> | <NV_gft> <Vbar_2P_gft> | <NV_iAft> <Vbar_2P_iAft> |

<NV_bst> <Vbar_2P_bst> | <NV_brd> <Vbar_2P_brd> | <NV_Amd> <Vbar_2P_Amd> |

<NV_rixt> <Vbar_2P_rixt> | <NV_oftAd> <Vbar_2P_oftAd> | <NV_nmud> <Vbar_2P_nmud> |

<NV_rsAnd> <Vbar_2P_rsAnd> | <NV_brdACt> <Vbar_2P_brdACt> | <NV_jst> <Vbar_2P_jst> |

<NV_bxCid> <Vbar_2P_bxCid> | <NV_xuAnd> <Vbar_2P_xuAnd> | <NV_pidAkrd> <Vbar_2P_pidAkrd> |

<NV_rsid> <Vbar_2P_rsid> | <NV_did> <Vbar_2P_did> | <NV_bAxt> <Vbar_2P_bAxt> |

<NV_kubid> <Vbar_2P_kubid> | <NV_grdid> <Vbar_2P_grdid> | <NV_cid> <Vbar_2P_cid> |

<NV_brid> <Vbar_2P_brid> | ...

}

rule VP_3P:w {

<NV_krd> <Vbar_3P_krd> | <NV_Cd> <Vbar_3P_Cd> | <NV_dAd> <Vbar_3P_dAd> | <NV_zd> <Vbar_3P_zd> |

42

<NV_bud> <Vbar_3P_bud> | <NV_dACt> <Vbar_3P_dACt> | <NV_grft> <Vbar_3P_grft> |

<NV_rft> <Vbar_3P_rft> | <NV_kCid> <Vbar_3P_kCid> | <NV_andAxt> <Vbar_3P_andAxt> |

<NV_xurd> <Vbar_3P_xurd> | <NV_gLACt> <Vbar_3P_gLACt> | <NV_Aurd> <Vbar_3P_Aurd> |

<NV_sAxt> <Vbar_3P_sAxt> | <NV_gft> <Vbar_3P_gft> | <NV_iAft> <Vbar_3P_iAft> |

<NV_bst> <Vbar_3P_bst> | <NV_brd> <Vbar_3P_brd> | <NV_Amd> <Vbar_3P_Amd> |

<NV_rixt> <Vbar_3P_rixt> | <NV_oftAd> <Vbar_3P_oftAd> | <NV_nmud> <Vbar_3P_nmud> |

<NV_rsAnd> <Vbar_3P_rsAnd> | <NV_brdACt> <Vbar_3P_brdACt> | <NV_jst> <Vbar_3P_jst> |

<NV_bxCid> <Vbar_3P_bxCid> | <NV_xuAnd> <Vbar_3P_xuAnd> | <NV_pidAkrd> <Vbar_3P_pidAkrd> |

<NV_rsid> <Vbar_3P_rsid> | <NV_did> <Vbar_3P_did> | <NV_bAxt> <Vbar_3P_bAxt> |

<NV_kubid> <Vbar_3P_kubid> | <NV_grdid> <Vbar_3P_grdid> | <NV_cid> <Vbar_3P_cid> |

<NV_brid> <Vbar_3P_brid> | ...

}

rule Vbar_1S_krd:w { <AUX_1S> <LV_krd> }

rule Vbar_2S_krd:w { <AUX_2S> <LV_krd> }

rule Vbar_3S_krd:w { <AUX_3S> <LV_krd> }

rule Vbar_1P_krd:w { <AUX_1P> <LV_krd> }

rule Vbar_2P_krd:w { <AUX_2P> <LV_krd> }

rule Vbar_3P_krd:w { <AUX_3P> <LV_krd> }

rule Vbar_1S_Cd:w { <AUX_1S> <LV_Cd> }

rule Vbar_2S_Cd:w { <AUX_2S> <LV_Cd> }

rule Vbar_3S_Cd:w { <AUX_3S> <LV_Cd> }

rule Vbar_1P_Cd:w { <AUX_1P> <LV_Cd> }

rule Vbar_2P_Cd:w { <AUX_2P> <LV_Cd> }

rule Vbar_3P_Cd:w { <AUX_3P> <LV_Cd> }

rule Vbar_1S_dAd:w { <AUX_1S> <LV_dAd> }

rule Vbar_2S_dAd:w { <AUX_2S> <LV_dAd> }

rule Vbar_3S_dAd:w { <AUX_3S> <LV_dAd> }

rule Vbar_1P_dAd:w { <AUX_1P> <LV_dAd> }

rule Vbar_2P_dAd:w { <AUX_2P> <LV_dAd> }

rule Vbar_3P_dAd:w { <AUX_3P> <LV_dAd> }

rule Vbar_1S_zd:w { <AUX_1S> <LV_zd> }

rule Vbar_2S_zd:w { <AUX_2S> <LV_zd> }

rule Vbar_3S_zd:w { <AUX_3S> <LV_zd> }

rule Vbar_1P_zd:w { <AUX_1P> <LV_zd> }

rule Vbar_2P_zd:w { <AUX_2P> <LV_zd> }

rule Vbar_3P_zd:w { <AUX_3P> <LV_zd> }

rule Vbar_1S_bud:w { <AUX_1S> <LV_bud> }

rule Vbar_2S_bud:w { <AUX_2S> <LV_bud> }

rule Vbar_3S_bud:w { <AUX_3S> <LV_bud> }

rule Vbar_1P_bud:w { <AUX_1P> <LV_bud> }

rule Vbar_2P_bud:w { <AUX_2P> <LV_bud> }

rule Vbar_3P_bud:w { <AUX_3P> <LV_bud> }

rule Vbar_1S_dACt:w { <AUX_1S> <LV_dACt> }

rule Vbar_2S_dACt:w { <AUX_2S> <LV_dACt> }

rule Vbar_3S_dACt:w { <AUX_3S> <LV_dACt> }

rule Vbar_1P_dACt:w { <AUX_1P> <LV_dACt> }

rule Vbar_2P_dACt:w { <AUX_2P> <LV_dACt> }

rule Vbar_3P_dACt:w { <AUX_3P> <LV_dACt> }

rule Vbar_1S_grft:w { <AUX_1S> <LV_grft> }

rule Vbar_2S_grft:w { <AUX_2S> <LV_grft> }

rule Vbar_3S_grft:w { <AUX_3S> <LV_grft> }

rule Vbar_1P_grft:w { <AUX_1P> <LV_grft> }

43

rule Vbar_2P_grft:w { <AUX_2P> <LV_grft> }

rule Vbar_3P_grft:w { <AUX_3P> <LV_grft> }

rule Vbar_1S_rft:w { <AUX_1S> <LV_rft> }

rule Vbar_2S_rft:w { <AUX_2S> <LV_rft> }

rule Vbar_3S_rft:w { <AUX_3S> <LV_rft> }

rule Vbar_1P_rft:w { <AUX_1P> <LV_rft> }

rule Vbar_2P_rft:w { <AUX_2P> <LV_rft> }

rule Vbar_3P_rft:w { <AUX_3P> <LV_rft> }

rule Vbar_1S_kCid:w { <AUX_1S> <LV_kCid> }

rule Vbar_2S_kCid:w { <AUX_2S> <LV_kCid> }

rule Vbar_3S_kCid:w { <AUX_3S> <LV_kCid> }

rule Vbar_1P_kCid:w { <AUX_1P> <LV_kCid> }

rule Vbar_2P_kCid:w { <AUX_2P> <LV_kCid> }

rule Vbar_3P_kCid:w { <AUX_3P> <LV_kCid> }

rule Vbar_1S_andAxt:w { <AUX_1S> <LV_andAxt> }

rule Vbar_2S_andAxt:w { <AUX_2S> <LV_andAxt> }

rule Vbar_3S_andAxt:w { <AUX_3S> <LV_andAxt> }

rule Vbar_1P_andAxt:w { <AUX_1P> <LV_andAxt> }

rule Vbar_2P_andAxt:w { <AUX_2P> <LV_andAxt> }

rule Vbar_3P_andAxt:w { <AUX_3P> <LV_andAxt> }

rule Vbar_1S_xurd:w { <AUX_1S> <LV_xurd> }

rule Vbar_2S_xurd:w { <AUX_2S> <LV_xurd> }

rule Vbar_3S_xurd:w { <AUX_3S> <LV_xurd> }

rule Vbar_1P_xurd:w { <AUX_1P> <LV_xurd> }

rule Vbar_2P_xurd:w { <AUX_2P> <LV_xurd> }

rule Vbar_3P_xurd:w { <AUX_3P> <LV_xurd> }

rule Vbar_1S_gLACt:w { <AUX_1S> <LV_gLACt> }

rule Vbar_2S_gLACt:w { <AUX_2S> <LV_gLACt> }

rule Vbar_3S_gLACt:w { <AUX_3S> <LV_gLACt> }

rule Vbar_1P_gLACt:w { <AUX_1P> <LV_gLACt> }

rule Vbar_2P_gLACt:w { <AUX_2P> <LV_gLACt> }

rule Vbar_3P_gLACt:w { <AUX_3P> <LV_gLACt> }

rule Vbar_1S_Aurd:w { <AUX_1S> <LV_Aurd> }

rule Vbar_2S_Aurd:w { <AUX_2S> <LV_Aurd> }

rule Vbar_3S_Aurd:w { <AUX_3S> <LV_Aurd> }

rule Vbar_1P_Aurd:w { <AUX_1P> <LV_Aurd> }

rule Vbar_2P_Aurd:w { <AUX_2P> <LV_Aurd> }

rule Vbar_3P_Aurd:w { <AUX_3P> <LV_Aurd> }

rule Vbar_1S_sAxt:w { <AUX_1S> <LV_sAxt> }

rule Vbar_2S_sAxt:w { <AUX_2S> <LV_sAxt> }

rule Vbar_3S_sAxt:w { <AUX_3S> <LV_sAxt> }

rule Vbar_1P_sAxt:w { <AUX_1P> <LV_sAxt> }

rule Vbar_2P_sAxt:w { <AUX_2P> <LV_sAxt> }

rule Vbar_3P_sAxt:w { <AUX_3P> <LV_sAxt> }

rule Vbar_1S_gft:w { <AUX_1S> <LV_gft> }

rule Vbar_2S_gft:w { <AUX_2S> <LV_gft> }

rule Vbar_3S_gft:w { <AUX_3S> <LV_gft> }

rule Vbar_1P_gft:w { <AUX_1P> <LV_gft> }

rule Vbar_2P_gft:w { <AUX_2P> <LV_gft> }

rule Vbar_3P_gft:w { <AUX_3P> <LV_gft> }

rule Vbar_1S_iAft:w { <AUX_1S> <LV_iAft> }

rule Vbar_2S_iAft:w { <AUX_2S> <LV_iAft> }

rule Vbar_3S_iAft:w { <AUX_3S> <LV_iAft> }

44

rule Vbar_1P_iAft:w { <AUX_1P> <LV_iAft> }

rule Vbar_2P_iAft:w { <AUX_2P> <LV_iAft> }

rule Vbar_3P_iAft:w { <AUX_3P> <LV_iAft> }

rule Vbar_1S_bst:w { <AUX_1S> <LV_bst> }

rule Vbar_2S_bst:w { <AUX_2S> <LV_bst> }

rule Vbar_3S_bst:w { <AUX_3S> <LV_bst> }

rule Vbar_1P_bst:w { <AUX_1P> <LV_bst> }

rule Vbar_2P_bst:w { <AUX_2P> <LV_bst> }

rule Vbar_3P_bst:w { <AUX_3P> <LV_bst> }

rule Vbar_1S_brd:w { <AUX_1S> <LV_brd> }

rule Vbar_2S_brd:w { <AUX_2S> <LV_brd> }

rule Vbar_3S_brd:w { <AUX_3S> <LV_brd> }

rule Vbar_1P_brd:w { <AUX_1P> <LV_brd> }

rule Vbar_2P_brd:w { <AUX_2P> <LV_brd> }

rule Vbar_3P_brd:w { <AUX_3P> <LV_brd> }

rule Vbar_1S_Amd:w { <AUX_1S> <LV_Amd> }

rule Vbar_2S_Amd:w { <AUX_2S> <LV_Amd> }

rule Vbar_3S_Amd:w { <AUX_3S> <LV_Amd> }

rule Vbar_1P_Amd:w { <AUX_1P> <LV_Amd> }

rule Vbar_2P_Amd:w { <AUX_2P> <LV_Amd> }

rule Vbar_3P_Amd:w { <AUX_3P> <LV_Amd> }

rule Vbar_1S_rixt:w { <AUX_1S> <LV_rixt> }

rule Vbar_2S_rixt:w { <AUX_2S> <LV_rixt> }

rule Vbar_3S_rixt:w { <AUX_3S> <LV_rixt> }

rule Vbar_1P_rixt:w { <AUX_1P> <LV_rixt> }

rule Vbar_2P_rixt:w { <AUX_2P> <LV_rixt> }

rule Vbar_3P_rixt:w { <AUX_3P> <LV_rixt> }

rule Vbar_1S_oftAd:w { <AUX_1S> <LV_oftAd> }

rule Vbar_2S_oftAd:w { <AUX_2S> <LV_oftAd> }

rule Vbar_3S_oftAd:w { <AUX_3S> <LV_oftAd> }

rule Vbar_1P_oftAd:w { <AUX_1P> <LV_oftAd> }

rule Vbar_2P_oftAd:w { <AUX_2P> <LV_oftAd> }

rule Vbar_3P_oftAd:w { <AUX_3P> <LV_oftAd> }

rule Vbar_1S_nmud:w { <AUX_1S> <LV_nmud> }

rule Vbar_2S_nmud:w { <AUX_2S> <LV_nmud> }

rule Vbar_3S_nmud:w { <AUX_3S> <LV_nmud> }

rule Vbar_1P_nmud:w { <AUX_1P> <LV_nmud> }

rule Vbar_2P_nmud:w { <AUX_2P> <LV_nmud> }

rule Vbar_3P_nmud:w { <AUX_3P> <LV_nmud> }

rule Vbar_1S_rsAnd:w { <AUX_1S> <LV_rsAnd> }

rule Vbar_2S_rsAnd:w { <AUX_2S> <LV_rsAnd> }

rule Vbar_3S_rsAnd:w { <AUX_3S> <LV_rsAnd> }

rule Vbar_1P_rsAnd:w { <AUX_1P> <LV_rsAnd> }

rule Vbar_2P_rsAnd:w { <AUX_2P> <LV_rsAnd> }

rule Vbar_3P_rsAnd:w { <AUX_3P> <LV_rsAnd> }

rule Vbar_1S_brdACt:w { <AUX_1S> <LV_brdACt> }

rule Vbar_2S_brdACt:w { <AUX_2S> <LV_brdACt> }

rule Vbar_3S_brdACt:w { <AUX_3S> <LV_brdACt> }

rule Vbar_1P_brdACt:w { <AUX_1P> <LV_brdACt> }

rule Vbar_2P_brdACt:w { <AUX_2P> <LV_brdACt> }

rule Vbar_3P_brdACt:w { <AUX_3P> <LV_brdACt> }

rule Vbar_1S_jst:w { <AUX_1S> <LV_jst> }

rule Vbar_2S_jst:w { <AUX_2S> <LV_jst> }

45

rule Vbar_3S_jst:w { <AUX_3S> <LV_jst> }

rule Vbar_1P_jst:w { <AUX_1P> <LV_jst> }

rule Vbar_2P_jst:w { <AUX_2P> <LV_jst> }

rule Vbar_3P_jst:w { <AUX_3P> <LV_jst> }

rule Vbar_1S_bxCid:w { <AUX_1S> <LV_bxCid> }

rule Vbar_2S_bxCid:w { <AUX_2S> <LV_bxCid> }

rule Vbar_3S_bxCid:w { <AUX_3S> <LV_bxCid> }

rule Vbar_1P_bxCid:w { <AUX_1P> <LV_bxCid> }

rule Vbar_2P_bxCid:w { <AUX_2P> <LV_bxCid> }

rule Vbar_3P_bxCid:w { <AUX_3P> <LV_bxCid> }

rule Vbar_1S_xuAnd:w { <AUX_1S> <LV_xuAnd> }

rule Vbar_2S_xuAnd:w { <AUX_2S> <LV_xuAnd> }

rule Vbar_3S_xuAnd:w { <AUX_3S> <LV_xuAnd> }

rule Vbar_1P_xuAnd:w { <AUX_1P> <LV_xuAnd> }

rule Vbar_2P_xuAnd:w { <AUX_2P> <LV_xuAnd> }

rule Vbar_3P_xuAnd:w { <AUX_3P> <LV_xuAnd> }

rule Vbar_1S_pidAkrd:w { <AUX_1S> <LV_pidAkrd> }

rule Vbar_2S_pidAkrd:w { <AUX_2S> <LV_pidAkrd> }

rule Vbar_3S_pidAkrd:w { <AUX_3S> <LV_pidAkrd> }

rule Vbar_1P_pidAkrd:w { <AUX_1P> <LV_pidAkrd> }

rule Vbar_2P_pidAkrd:w { <AUX_2P> <LV_pidAkrd> }

rule Vbar_3P_pidAkrd:w { <AUX_3P> <LV_pidAkrd> }

rule Vbar_1S_rsid:w { <AUX_1S> <LV_rsid> }

rule Vbar_2S_rsid:w { <AUX_2S> <LV_rsid> }

rule Vbar_3S_rsid:w { <AUX_3S> <LV_rsid> }

rule Vbar_1P_rsid:w { <AUX_1P> <LV_rsid> }

rule Vbar_2P_rsid:w { <AUX_2P> <LV_rsid> }

rule Vbar_3P_rsid:w { <AUX_3P> <LV_rsid> }

rule Vbar_1S_did:w { <AUX_1S> <LV_did> }

rule Vbar_2S_did:w { <AUX_2S> <LV_did> }

rule Vbar_3S_did:w { <AUX_3S> <LV_did> }

rule Vbar_1P_did:w { <AUX_1P> <LV_did> }

rule Vbar_2P_did:w { <AUX_2P> <LV_did> }

rule Vbar_3P_did:w { <AUX_3P> <LV_did> }

rule Vbar_1S_bAxt:w { <AUX_1S> <LV_bAxt> }

rule Vbar_2S_bAxt:w { <AUX_2S> <LV_bAxt> }

rule Vbar_3S_bAxt:w { <AUX_3S> <LV_bAxt> }

rule Vbar_1P_bAxt:w { <AUX_1P> <LV_bAxt> }

rule Vbar_2P_bAxt:w { <AUX_2P> <LV_bAxt> }

rule Vbar_3P_bAxt:w { <AUX_3P> <LV_bAxt> }

rule Vbar_1S_kubid:w { <AUX_1S> <LV_kubid> }

rule Vbar_2S_kubid:w { <AUX_2S> <LV_kubid> }

rule Vbar_3S_kubid:w { <AUX_3S> <LV_kubid> }

rule Vbar_1P_kubid:w { <AUX_1P> <LV_kubid> }

rule Vbar_2P_kubid:w { <AUX_2P> <LV_kubid> }

rule Vbar_3P_kubid:w { <AUX_3P> <LV_kubid> }

rule Vbar_1S_grdid:w { <AUX_1S> <LV_grdid> }

rule Vbar_2S_grdid:w { <AUX_2S> <LV_grdid> }

rule Vbar_3S_grdid:w { <AUX_3S> <LV_grdid> }

rule Vbar_1P_grdid:w { <AUX_1P> <LV_grdid> }

rule Vbar_2P_grdid:w { <AUX_2P> <LV_grdid> }

rule Vbar_3P_grdid:w { <AUX_3P> <LV_grdid> }

rule Vbar_1S_cid:w { <AUX_1S> <LV_cid> }

46

rule Vbar_2S_cid:w { <AUX_2S> <LV_cid> }

rule Vbar_3S_cid:w { <AUX_3S> <LV_cid> }

rule Vbar_1P_cid:w { <AUX_1P> <LV_cid> }

rule Vbar_2P_cid:w { <AUX_2P> <LV_cid> }

rule Vbar_3P_cid:w { <AUX_3P> <LV_cid> }

rule Vbar_1S_brid:w { <AUX_1S> <LV_brid> }

rule Vbar_2S_brid:w { <AUX_2S> <LV_brid> }

rule Vbar_3S_brid:w { <AUX_3S> <LV_brid> }

rule Vbar_1P_brid:w { <AUX_1P> <LV_brid> }

rule Vbar_2P_brid:w { <AUX_2P> <LV_brid> }

rule Vbar_3P_brid:w { <AUX_3P> <LV_brid> }

...

Lexicon

rule NP_1S { mn }

rule NP_2S { tu }

rule NP_3S { u | mACin | uqt | mrd | CxS | ... }

rule NP_1P { mA }

rule NP_2P { CmA }

rule NP_3P { AnhA }

rule NV_krd { kmk | ElAm | pidA | kAr | sfr | ... }

rule NV_Cd { uArd | Ab | ... }

rule NV_dAd { pCt | qrAr | dst | ... }

rule NV_zd { dst | rqm | Drbh | tup | Hrf | ... }

rule NV_bud { CAml | ... }

rule NV_dACt { dust | HDur | dnbAl | pi | qrAr | ... }

rule NV_grft { tElq | ... }

rule NV_rft { qrAul | ... }

rule NV_kCid { dst | ... }

rule NV_andAxt { dst | ... }

rule NV_xurd { Ckst | ... }

rule NV_gLACt { qAl | ... }

rule NV_Aurd { Eml | ... }

rule NV_sAxt { mrbuT | ... }

rule NV_gft { mhrmAnh | ... }

rule NV_iAft { dst | ... }

rule NV_bst { cCm | ... }

rule NV_brd { nAm | ... }

rule NV_Amd { Eml | ... }

rule NV_rixt { fru | ... }

rule NV_oftAd { etfAq | ... }

rule NV_nmud { xnVA | ... }

rule NV_rsAnd { ziAn | ... }

rule NV_brdACt { dst | ... }

rule NV_jst { dl | ... }

rule NV_bxCid { ruHih | ... }

rule NV_xuAnd { frA | ... }

rule NV_pidAkrd { Cib | ... }

rule NV_rsid { xdmt | ... }

rule NV_did { Asib | ... }

rule NV_bAxt { jAn | ... }

rule NV_kubid { xAl | ... }

47

rule NV_grdid { mntj | ... }

rule NV_cid { cCm | ... }

rule NV_brid { omid | ... }

...

rule AUX_1S { xuAhm }

rule AUX_2S { xuAhi }

rule AUX_3S { xuAhd }

rule AUX_1P { xuAhim }

rule AUX_2P { xuAhid }

rule AUX_3P { xuAhnd }

rule LV_krd { krd }

rule LV_Cd { Cd }

rule LV_dAd { dAd }

rule LV_zd { zd }

rule LV_bud { bud }

rule LV_dACt { dACt }

rule LV_grft { grft }

rule LV_rft { rft }

rule LV_kCid { kCid }

rule LV_andAxt { andAxt }

rule LV_xurd { xurd }

rule LV_gLACt { gLACt }

rule LV_Aurd { Aurd }

rule LV_sAxt { sAxt }

rule LV_gft { gft }

rule LV_iAft { iAft }

rule LV_bst { bst }

rule LV_brd { brd }

rule LV_Amd { Amd }

rule LV_rixt { rixt }

rule LV_oftAd { oftAd }

rule LV_nmud { nmud }

rule LV_rsAnd { rsAnd }

rule LV_brdACt { brdACt }

rule LV_jst { jst }

rule LV_bxCid { bxCid }

rule LV_xuAnd { xuAnd }

rule LV_pidAkrd { pidAkrd }

rule LV_rsid { rsid }

rule LV_did { did }

rule LV_bAxt { bAxt }

rule LV_kubid { kubid }

rule LV_grdid { grdid }

rule LV_cid { cid }

rule LV_brid { brid }

...

}

say "Grammatical" if m:w/^ <Persian.sentence> $/;

48

Appendix B

A Perl 6 Grammar for Persian Passive Crossing Dependencies

#!/usr/bin/pugs

Jon Dehdari, 2006

A Perl 6 context-free grammar to recognize Persian crossing dependencies in passive constructions

use v6;

$_ = shift || "AnhA gCudh xuAhnd Cd";

grammar Persian {

Grammatical stuff

rule sentence {

<NP_1S> <vP_1S> | <NP_2S> <vP_2S> | <NP_3S> <vP_3S> |

<NP_1P> <vP_1P> | <NP_2P> <vP_2P> | <NP_3P> <vP_3P>

}

rule vP_1S:w { <VP_PAS> <vbar_1S_PAS> }

rule vP_2S:w { <VP_PAS> <vbar_2S_PAS> }

rule vP_3S:w { <VP_PAS> <vbar_3S_PAS> }

rule vP_1P:w { <VP_PAS> <vbar_1P_PAS> }

rule vP_2P:w { <VP_PAS> <vbar_2P_PAS> }

rule vP_3P:w { <VP_PAS> <vbar_3P_PAS> }

rule vbar_1S_PAS:w { <AUX_1S> Cd }

rule vbar_2S_PAS:w { <AUX_2S> Cd }

rule vbar_3S_PAS:w { <AUX_3S> Cd }

rule vbar_1P_PAS:w { <AUX_1P> Cd }

rule vbar_2P_PAS:w { <AUX_2P> Cd }

rule vbar_3P_PAS:w { <AUX_3P> Cd }

Lexicon

rule NP_1S { mn }

rule NP_2S { tu }

49

rule NP_3S { u | mACin | uqt | mrd | CxS | ... }

rule NP_1P { mA }

rule NP_2P { CmA }

rule NP_3P { AnhA }

rule AUX_1S { xuAhm }

rule AUX_2S { xuAhi }

rule AUX_3S { xuAhd }

rule AUX_1P { xuAhim }

rule AUX_2P { xuAhid }

rule AUX_3P { xuAhnd }

rule VP_PAS { gCudh | dAdh | gLACth | grfth | sAxth | kCidh | brdACth | zdh | ... }

}

say "Grammatical" if m:w/^ <Persian.sentence> $/;

50

Appendix C

Romanization and Transliteration

Persian is normally written in the Perso-Arabic script, an extension of the

Arabic script. It is written from right-to-left, and omits three vowels: /æ e o/ . All

of the Persian words and sentences in this thesis are written using the homomor-

phic romanization scheme listed in the third column of the following table. The

Perl scripts in Appendices A and B use the monomorphic transliteration found

in the second column. Most modern digital texts in the Perso-Arabic script are

encoded in UTF-8, CP-1256, ISIRI 3342, or HTML numeric character references.

51

Perso-
Arabic
Script

Dehdari
translit. Romanization ArabTEX Uni-Dec Uni-Hex UTF-8

ISIRI
3342 CP1256 Unicode Name

@ ' A ā/æ/o/e A 1575 0627 d8a7 c1 c7 ARABIC LETTER ALEF

H. b b b 1576 0628 d8a8 c3 c8 ARABIC LETTER BEH

H� p p p 1662 067e d9be c4 81 ARABIC LETTER PEH
�H t t t 1578 062a d8aa c5 ca ARABIC LETTER TEH
�H V s t 1579 062b d8ab c6 cb ARABIC LETTER THEH

h. j j j 1580 062c d8ac c7 cc ARABIC LETTER JEEM

h� c č ^c 1670 0686 da86 c8 8d ARABIC LETTER TCHEH

h H h .h 1581 062d d8ad c9 cd ARABIC LETTER HAH

p x x x 1582 062e d8ae ca ce ARABIC LETTER KHAH

X d d d 1583 062f d8af cb cf ARABIC LETTER DAL
	X L z d 1584 0630 d8b0 cc d0 ARABIC LETTER THAL

P r r r 1585 0631 d8b1 cd d1 ARABIC LETTER REH

	P z z z 1586 0632 d8b2 ce d2 ARABIC LETTER ZAIN

�P J ž ^z 1688 0698 da98 cf 8e ARABIC LETTER JEH

� s s s 1587 0633 d8b3 d0 d3 ARABIC LETTER SEEN
�� C š ^s 1588 0634 d8b4 d1 d4 ARABIC LETTER SHEEN

� S s .s 1589 0635 d8b5 d2 d5 ARABIC LETTER SAD
	� D z .d 1590 0636 d8b6 d3 d6 ARABIC LETTER DAD

 T t .t 1591 0637 d8b7 d4 d8 ARABIC LETTER TAH
	 Z z .z 1592 0638 d8b8 d5 d9 ARABIC LETTER ZAH

¨ E ’ ‘ 1593 0639 d8b9 d6 da ARABIC LETTER AIN
	̈

G q/ġ .g 1594 063a d8ba d7 db ARABIC LETTER GHAIN
	¬ f f f 1601 0641 d981 d8 dd ARABIC LETTER FEH
�� q q/ġ q 1602 0642 d982 d9 de ARABIC LETTER QAF

¸ k k k 1705 06a9 daa9 da 98 ARABIC LETTER KEHEH

À g g g 1711 06af daaf db 90 ARABIC LETTER GAF

È l l l 1604 0644 d984 dc e1 ARABIC LETTER LAM

Ð m m m 1605 0645 d985 dd e3 ARABIC LETTER MEEM
	à n n n 1606 0646 d986 de e4 ARABIC LETTER NOON

ð' u u/v/w U 1608 0648 d988 df e6 ARABIC LETTER WAW

è h h h 1607 0647 d987 e0 e5 ARABIC LETTER HEH

ø' i i/y I 1740 06cc db8c e1 ARABIC LETTER FARSI YEH

�� a æ a 1614 064e d98e f0 f3 ARABIC FATHA

�� o o o 1615 064f d98f f2 f5 ARABIC DAMMA

�� e e e 1616 0650 d990 f1 f6 ARABIC KASRA
�
@] ā ’A 1570 0622 d8a2 c0 c2 AR. LET. ALEF WITH MADDA ABOVE

Z' M ’ ’| 1569 0621 d8a1 c2 c1 ARABIC LETTER HAMZA

è' X eye H-i 1728 06c0 db80 c0 AR. LET. HEH WITH YEH ABOVE

ø I ’i ’y 1574 0626 d8a6 fb c6 AR. LET. YEH WITH HAMZA ABOVE

ð' U o’ U’ 1572 0624 d8a4 fa c4 AR. LET. WAW WITH HAMZA ABOVE
�
@ N æn aN 1611 064b d98b f3 f0 ARABIC FATHATAN

�� ∼ xx xx 1617 0651 d991 f6 f8 ARABIC SHADDA

\ { “ \lq 0171 00ab ab e7 ab LEFT-POINTING DOUBLE ANGLE . . .

" } ” \rq 0187 00bb bb e6 bb RIGHT-POINTING DOUBLE ANGLE . . .

- - \hspace{0ex} 8204 200c e2808c a1 9d ZERO WIDTH NON-JOINER

52

	Title
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background and Literature Review
	Initial Definitions
	Review of Literature and Concepts

	Persian
	Persian Light Verb Constructions
	Split Light Verb Constructions
	Split Passive Constructions
	Comparison

	Structural Analyses
	Context-free Grammar
	Minimalist Syntax
	Split Headedness

	Tree Adjoining Grammar
	Comparison of Different Crossing Dependencies

	Conclusion
	Bibliography
	A Perl 6 Grammar for Persian LVC Crossing Dependencies
	A Perl 6 Grammar for Persian Passive Crossing Dependencies
	Romanization and Transliteration

