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Logic  Synthesis  Through  Local  Transformations 

A logic designer today  faces a growing number of design  requirements and technology restrictions, brought  about  by 
increases in circuit density and processor  complexity.  At  the  same  time,  the  cost  of engineering changes  has  made  the 
correctness  of chip implementations more  important, and minimization of circuit count less so. These  factors underscore 
the need for increased  automation of logic design. This paper describes  an  experimental system for  synthesizing 
synchronous  combinational  logic. It allows  a  designer to start with a  naive implementation  produced  automatically  from 
a functional  specification, evaluate it with respect  to  these  many  factors, and incrementally  improve  this implementation 
by applying local transformations until it is acceptable for manufacture.  The  use  of simple local transformations  in this 
system ensures correct implementations, isolates technology-specac  data, and will allow the  total  process  to  be applied 
to larger, VLSI designs.  The  system  has  been  used  to  synthesize masterslice chip implementations from functional 
specacations, and to  remap  implemented masterslice chips from one  technology to another while preserving their 
functional behavior. 

Introduction 
The goal of generating an acceptable, technology-specific 
hardware implementation  from a functional specification 
is  not a new one, and it has received  much attention in the 
past. The nature of this  problem depends on the level of 
the functional description, the set of implementation 
primitives, and the criteria of acceptability. Early  work 
centered on  developing  algorithms for translating a bool- 
ean function into a minimum  two-level network of bool- 
ean primitives. Extensions were developed for handling 
limited  circuit  fan-in and alternative cost functions [ 1, 21. 
But because these algorithms search for minimal  imple- 
mentations  they require time exponential in the number 
of circuits and thus cannot be  used on most actual 
designs. 

Other efforts have attempted to raise the level of 
specification. The DDL  work at Wisconsin [2-41, APDL 
at Carnegie-Mellon University [5],  and ALERT at IBM 
[6] all began  with behavioral specifications and produced 
technology-independent implementations at the level of 
boolean equations. The results were usually  more expen- 

sive than manual implementations and did not take ad- 
vantage of the target technology. For example, the 
ALERT system was validated  on an existing  design, the 
IBM  1800, and the implementation produced required 
160% more gates than the manual  design [7]. 

Attempts have been made to produce more  efficient 
logic  and to give the designer  more control over the 
implementation  [8-lo]. This control has resulted in speci- 
fication  language constraints, so that the specification is 
at a fairly  low level and  in closer correspondence with the 
implementation. This necessarily decreases the advan- 
tage of  an automated approach, bringing  it closer to a 
system for logic entry than for logic synthesis. 

Several tools have been  developed at Carnegie-Mellon 
University to support the early part of the design  cycle 
[ll-141. In one experiment [15] the CMU-DA (Carnegie- 
Mellon  University-Design  Automation) system was  used 
to implement the data path portion of a Digital  Equipment 
Corporation (DEC) PDP3/E. It began  with a functional 
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description of the  machine and produced  an implementa- 
tion in two  technologies of the  registers,  register  opera- 
tors, and  their  interconnections,  but  not the control logic 
to sequence the register  transfers. When the target  tech- 
nology was TTL  series modules the implementation re- 
quired 30% more  modules than the DEC implementation. 
With CMOS standard cells it required 150% more area 
than  an existing Intersil chip. 

There  has also  been  recent work in logic remapping, 
transforming existing implementations from one technol- 
ogy to  another. A group in Japan has described a system 
to help a designer translate an existing small- or medium- 
scale integration implementation  into  large-scale integra- 
tion [16]. 

Our approach focuses on the control  portion of syn- 
chronous  machines,  since  that design is  more  error-prone 
than data path design. Thus we assume  that all memory 
elements of the final implementation are identified in the 
specification; the goal is to generate the combinational 
logic that computes, on  each clock cycle,  new  values of 
outputs and memory  elements from inputs  and  the old 
values of the  memories. Also we are focusing on  produc- 
ing random logic implementations, initially for master- 
slice chip implementations,  instead of generating micro- 
code  for a control processor or using a programmable 
logic array. Our initial experiments have been with logic 
for single chips, so that chip  interface  information  (inputs, 
outputs, polarities, sendedreceiver requirements)  was 
assumed to  be specified. The implementations  produced 
by our system are composed of primitives selected from a 
specified set,  connected  to satisfy given performance 
requirements and technology  restrictions,  and  ready to be 
placed  on  a  masterslice  chip. 

In a previous paper [17] we described our approach to 
this form of synthesis;  the present paper is an expansion 
on work reported in [18]. We are not  proposing a com- 
pletely automatic  replacement for  the manual design 
process.  Instead, we envision an  interactive  system in 
which the  user  operates on a logic design at  three levels of 
abstraction. He begins with an initial implementation 
generated in a straightforward  manner  from the specifica- 
tion. He  can simplify the implementation at this level, 
and, when satisfied, can move to  the next  level. He does 
this by applying transformations,  either locally or global- 
ly,  to achieve the simplification or refinement. By being 
able to  operate  on  the implementation at  several levels, 
the  user  can often make a small change at one level that 
will cause a larger simplification at a lower level. By 
limiting the user  to directing  function-preserving  transfor- 
mations, we can  ensure that in all cases  the implementa- 
tion produced will be functionally equivalent to  the 
specified behavior. 
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Figure 1 The logic synthesis system. 

Detailed 
implementation I 

The  use of transformations and levels of abstraction 
allows a modified form of this scenario to be used in 
remapping designs from one technology to  another. “Re- 
mapping” usually refers  to the  one-to-one  substitution of 
new technology primitives for old technology primitives. 
Our approach is different: We first transform technology- 
specific primitives to  ones  at a higher technology-inde- 
pendent level. To this  intermediate-level  representation 
we can apply the synthesis  transformations to produce  an 
implementation in a different target  technology with the 
benefit of simplification at several  levels. 

Both logic synthesis and remapping are problems of 
finding feasible (not optimal) implementations: networks 
of primitive boxes  that satisfy a large number of con- 
straints. In  addition to gate and I/O pin limitations, there 
are timing constraints, a restricted  library of primitives, 
driver  requirements, clock distribution rules, fan-in and 
fan-out constraints, and  rules for testability.  Since we 
hope  to apply our techniques to VLSI chips, we are 
attempting to limit our transformations to local changes 
that  do not require time or space exponential in the 
number of circuits. 

An  experimental  system  for  logic  synthesis  and  re- 
mapping 
The organization of the logic synthesis system is  shown in 
Fig. 1. Its inputs are  the register  transfer specification, 
the interface constraints, and a technology file which 
characterizes the target  technology. The  output is a 
detailed implementation in terms of the primitives of the 
target  technology, which is submitted to placement and 
wiring programs for physical design. Some timing or 
other physical problems may not be detectable before 
placement and wiring. In this case the synthesis process 273 
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Figure 2 The scenario of synthesis. 

is repeated  with a revised specification or modified con- 
straints until an  acceptable implementation is achieved. 

An important requirement of our  approach is that  the 
data  base  be  capable of representing the implementation 
at different levels of abstraction. Our system  to  support 
logic synthesis makes  use of a graph-like internal data 
structure  for storing the implementation as  it  progresses 
from  the higher-level description to  its final form, and all 
transformations operate  on this  graph. There  is a single 
organizational component:  the  “box.” A box  has input 
and  output terminals which are  connected .by wires to 
other boxes. Each  box  also  has a type, which may be a 
primitive or may reference a definition in terms of other 
boxes.  Thus a hierarchy of boxes can  be  used,  and  an 
instance of a high-level box  such as a parity box  can be 
treated  as a single box  or expanded into  its next-level 
implementation when  that is desirable. 

The logic synthesis  data  base  is implemented using a 
system originally developed for  use in an experimental 
compiler project within IBM Research [19]. It  is made up 
of two groups of tables.  The first group  describes  the 
technology being used;  it is created  from a technology file 
containing for  each  box  type information such  as  name, 
function, and  number  and  names of input  and  output pins. 
These  data  are  created in batch mode and read  during 
initialization of the  interactive system. 

The  second  group of tables contains the  representation 
of the logic created  by  the interactive system. This group 
consists of a box  table, a signal table,  and a set of 
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the  boxes and the signals. There  is  some intentional 
redundancy in the  data; each  box has a complete list of 
input  and output signals, and  each signal has a source and 
a list of sinks.  Every box  table entry  contains  type 
information which provides a link to  the technology 
group. This allows  programs to get  technology informa- 
tion  about a specific box. 

Transformations  communicate with the  data base 
through a layer of functions which perform all data 
addition, retrieval,  and deletion. These  functions provide 
the transformations  with the ability to  traverse a  chip by 
following signal paths,  or by visiting each box.  They 
make it easy to  remove  boxes  and  reconnect  their input/ 
output signals, to move  connections from  one box to 
another,  to  insert  boxes  on signal paths,  etc.  The func- 
tions provide a conceptual view of the  data  base which 
remains  stable even  when  the  data  base implementation is 
altered.  The  table  structure representing  this  view  can be 
significantly changed with a minimal impact  on  the pro- 
cessing  programs. 

The  use of data  abstraction, of a data  base system 
which allows one  to easily define a data  base,  and of 
modular  implementation of data  structures  made it possi- 
ble  for  us  to quickly  bring  up a usable support  system  for 
the transformations.  As we learned  more about  the re- 
quirements of the  transformations, we were  able to 
change  the  data  base completely, to  add  and  remove  data 
fields, to change  individual data  structures,  and  to con- 
centrate efforts in performance improvement in areas 
where  experience indicated that  better  performance  was 
required.  In all cases, only modifications to the  data 
management programs  were required to accomplish these 
changes; the  programs which use  the  data manager  were 
completely  unaffected. 

The interactive  design of the logic synthesis system  not 
only allows the  user  to control the  transform application, 
but also  permits  him to invoke  programs that aid in his 
decisions.  A BACKTRACE facility displays the  cone of 
influence of a signal or box, showing graphically the logic 
producing a signal from registers or chip inputs. MEASURE 

lists,  for a design, the number of boxes, signals,  connec- 
tions,  inputs,  outputs, cells,  number of boxes of each 
type. SEGMENT lists,  for  each chip output  and register, the 
number  and  names of the  chip inputs and  other registers 
influencing it,  the  depth of the  tree with those  leaves,  and 
the number of boxes  in it. PRINTBOX lists all boxes of a 
design and  their  inputs  and  outputs,  and PRINTREF lists all 
signals of a design  with their  sources  and  sinks. Individual 
boxes  and signals can  also  be listed  in this way.  Facilities 
also  exist  for  producing logic diagrams from a design in 
the  data  base. 
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Expansion and compression commands  allow the user 
to expand a box  by  replacing  it  with its more  primitive 
components from a box type definition,  and to identify a 
group of boxes and form a new type of them, replacing 
the group  with a single box. Expansion permits hierarchi- 
cal development, and compression can  be used to parti- 
tion a design into smaller parts. 

The system will accept input  in  two languages. All  of 
the examples were described in a flowchart-like  language, 
similar to  that in [20], allowing GOTOs, assignments to 
registers and signals, decisions based on the values of 
registers, computed GOTOS based on values of a group of 
signals, etc. Parallelism is described in this language by 
multiple GOTO statements which branch to several actions 
at  the same time. We are also experimenting with a 
language,  similar to CDL (Computer  Design  Language) 
1211, that more closely models the internal form of the 
data base. In addition, it allows convenient description of 
hardware hierarchy. This aids in the input of box type 
descriptions which are later to be expanded a hierarchical 
way, such as  a parity function or a decoder. 

The  synthesis  scenario 
Though there has been some variation in the synthesis 
process as the system has been developed and has been 
applied to more examples, a fairly standard sequence of 
steps has emerged. Figure 2 shows the three levels of 
description common to our experiments: the initial AND/ 

OR/NOT level, a NAND or NOR level (depending on the 
target technology), and a hardware level in  which the 
types of the boxes are books or primitives of the target 
technology. At every level the implementation is a net- 
work of boxes connected by signals.  Our objective in 
devising this scenario was to find a  set of transformations 
and a sequence for applying  them such that the original 
functional specification  could  be transformed by a se- 
quence of small steps into an acceptable implementation. 
The transformations at the AND/OR level are local, text- 
book  simplifications of boolean expressions; most of 
them reduce the number of boxes, but they do not 
produce a normal form. The NAND and NOR transforms 
are similar, and required more  work because there was 

. less of a foundation on which to build. The hardware 
transformations were developed after considerable time 
was spent with chip designers to understand the technolo- 
gies  and the motivation for the many  design decisions. 
Transformations are used not  only to simplify the imple- 
mentation at each level according to appropriate mea- 
sures but also to move the implementation  from one level 
to the next. The transformations are local in that they 
replace a small subgraph of the network (usually five or 
fewer boxes)  with another subgraph  which is functionally 
equivalent but simpler according to some measure. 
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The initial implementation at the AND/OR level  is pro- 
duced by merely  replacing  specification  language  con- 
structs with their equivalent AND/OR implementations. 
Methods for this translation have  been described in [3, 51. 
At  this  first  level the boxes are of types such as AND, OR, 
NOT, PARITY, EQ, XOR, DECODE, or REGISTER. Simple  local 
transformations are applied to reduce the number of 
boxes. Some of the particular transformations used are 
listed as follows: 

NOT(NOT(a)) + a 

AND@, NOT(U)) + 0 

OR(U, NOT(a)) j 1 

OR(a, AND(NOT(a), b)) * OR(a, b) 

XOR(PARITY(U,, . . ., a,,), b) .$ PARITY(U,, . . ., a,,, b) 

AND(U, 1) j a 

OR(a, 1) I$ 1 

The last two  simplifications are examples of a more 
general constant propagation that is performed. These 
transformations may leave fragments of logic disconnect- 
ed. We clean up this disconnected logic  in a manner 
similar to the way compilers perform dead-code elimina- 
tion. Another technique from  optimizing compilers, com- 
mon subexpression elimination,  is also applied here and 
at other points in the synthesis process to further reduce 
the size of the implementation. The expansion of “high- 
level” boxes such as  panty and decoders was done here 
in some of the experiments and  was postponed to the 
hardware level  in others. The interactive nature of the 
system allows this flexibility, which is useful if technolo- 
gy rules require that certain constructs be used for these 
functions. However, in  most cases our simplification 
rules at the AND/OR and the NOR or NAND levels were 
powerful  enough so that textbook expansions of DECODE, 
XOR, etc. in terms of AND/OR gates reduced to efficient 
technology-specific  logic. 

Next the AND, OR, NOT, and  most other operators of the 
initial description are replaced by their NAND or NOR 

implementations. The target technologies in our experi- 
ments were either NAND- or NOR-based, and this deter- 
mined the primitive selected for this level. The NANDs or 
NORS are “idealized,” however, in that they have no fan- 
in or fan-out restrictions. The transition to these primi- 
tives is accomplished naively by local transformations, 
and may introduce unnecessary double NANDs or NORs, 
which  will be eliminated later. Also at this point, the chip 
interface information  is  used to place generic (i.e., not 
technology-specific) senders and receivers on the chip 
inputs and primary outputs, and to insert inverters where 
necessary to ensure the correct signal polarities. 
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Figure 3 The NAND transformations. 

Simplifying transformations are now  applied to each 
signal in the network at this level. These transformations 
attempt to reduce the number of boxes of the implementa- 
tion without increasing the number of connections. To 
accomplish this, the transformations must check the fan- 
out of the various signals involved, since this will affect 
the number of boxes and signals actually removed. The 
transformations are applied repeatedly throughout the 
network until no more apply. Figure 3 illustrates the 
NAND transformations used  in our experiments; the NOR 
transformations are identical except for the operator. 
Each transformation has an associated condition that 
determines if the replacement will  simplify the implemen- 
tation by reducing boxes or connections. These condi- 
tions depend on the fan-out of the intermediate signals 
and on whether the target technology is assumed to have 
dual-rail output. For example, NAND3 is only  profitable in 
certain cases. It does not appear to reduce the box or 
connection count, but if dual-rail outputs are assumed, 
the single-input NAND on the right-hand side is “free” and 
disappears after hardware generation. NANDS is the dual 
of N A N D ~ ,  but the two do not  cycle because of restrictions 
on their application. Though NAND5 and NAND6 appear to 
increase box count, they decrease connections and leave 
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In the transition to  the hardware level, the NAND or NOR 
gates and generic registers are replaced by technology- 
specific  primitives.  Single  primitives or macros are select- 
ed to match the fan-in of the actual primitives with that of 
the “idealized” boxes. Also the number of control and 
data lines of the idealized registers might exceed those 
normally available, necessitating the generation of addi- 
tional logic. At this point the implementation  is  in terms 
of primitives used by the engineers in their implementa- 
tions, but because transformations have been made  local- 
ly there may be some  violations of timing, fan-out, and 
other technology restrictions. 

The simplifying transformations at the hardware level 
are of two sorts. Some are simplifications  similar to those 
at the previous levels, such as eliminating the equivalent 
of double NOTS, which may occur as  a result of expanding 
higher-level boxes. Others attempt to take advantage of 
the particular technology. For example, flip-flops  may 
provide an output and its complement, allowing  some 
inverters to be removed at this level. Also, because of 
combination  flip-flop-receiver  books available, some re- 
ceivers may be eliminated. Wired or dotted ANDs or ORs 

can  be introduced to reduce cell count where  possible. 
Some technologies may be dual-rail, having both phases 
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available at  every  gate; this  makes  possible simplifica- 
tions not  possible  with the technology-independent earli- 
er levels. Other technology-specific transformations ap- 
plied at this  level distribute clock  signals to flip-flops 
according  to  the technology rules, eliminate long and 
short  paths  between flip-flops (assuming a unit gate delay 
and technology-specific  guidelines), and  adjust fan-out by 
repowering  signals. 

Several of the  transforms  at  the  three levels are analo- 
gous, differing only  in the  types of boxes  to which they 
apply, so that simplifications  not  made at  one level would 
be caught  later. This may appear  redundant;  however,  the 
application of transforms  as early as possible reduces  the 
size of the implementation and helps prevent a greater 
explosion in size  when,  for  example,  conversion  to 
NANDS takes place.  Though the  same implementation 
might be produced without the NAND simplifications, they 
are included for efficiency. 

The expansion of boxes in terms of more primitive 
gates  was first done only at  the  hardware level. However, 
in successive  experiments it was  found that  expansions  at 
other levels were  sometimes desirable. For  example, if a 
counter could be  expanded in terms of ANDS and ORS, the 
same expansion could  be used for various  technologies. 
The expansion transform therefore  was extended  to per- 
mit selective expansion of box types  at various  levels. 

Synthesis  experiments 
The  synthesis  system  has been  used to  create  several chip 
implementations in two  different  technologies. In  some 
cases,  an engineer  had  implemented  the  same chip, and 
we were able  to  compare  the  automated design with that 
of the  engineer.  In  other  cases  no implementation  had 
been  previously attempted. 

The first  experiments with the logic synthesis system 
were attempts  to  produce implementations for chips  from 
existing processors  that had been specified functionally 
and implemented by engineers. The  existence of the 
engineers’  implementations  permitted  comparison of de- 
signs and a study of the differences  between  manual 
designs and those produced automatically. Each of the 
experiments was carried out  automatically,  although the 
particular sequence of transformations was  the result of 
much experimentation. 

Experiment I 
For  our first experiment we selected a straightforward 
chip that had  already been manually designed. The speci- 
fication described seven registers totaling 24 bits,  two 
parity operators,  and  the conditions for the data  transfers. 
The  target technology was a TTL masterslice that provid- 
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ed 96 I/O pins and 704 cells (divided between three-  and 
four-input NAND gates) on  each chip. In addition to  the 
NAND gates,  there  are a number of macros  such  as 
receivers,  senders,  and flip-flops that  are implemented 
with these NAND gates. Restrictions on  the  use of the 
primitives  available, such  as fan-in  and  fan-out  require- 
ments, timing constraints, clocking  and  powering rules, 
were described in the technology file or in some cases 
built into  the transformations. In this  experiment EQ, 

XOR,  PARITY, and other high-level boxes  were  not ex- 
panded until the hardware level. 

In examining the implementation after  the NAND trans- 
formations were  applied, it was noticed that  further 
improvements could be made.  In particular, a reduction 
in fan-out of a signal by repowering  its source would 
allow a transformation to apply  and  eventually reduce  the 
size of the implementation. The system  allows repower- 
ing and some  other  transformations  to  be applied to 
particular signals, rather  than  across  the whole  implemen- 
tation,  as a  form of user “coaching.” In this instance 
coaching saved only four  boxes,  but resulted in an 
implementation slightly better  than  the manual  design. 

The first experiment  resulted in a synthesized imple- 
mentation that  was remarkably similar to  the manual one. 
In  fact, it required four  fewer cells, five fewer  connec- 
tions,  and  four  shorter  paths  than  the engineer’s imple- 
mentation.  The similarity, however, was  not such a 
surprise  since we had used  this  example in the design of 
our  system,  and since we had worked so closely  with the 
chip’s  designer. 

Experiment 2 
In  the  second experiment the  same sequence of transfor- 
mations was applied to a more complex  chip. The  chip 
specification  contained 13 register bits, a  three-bit 
counter, a five-bit counter,  two parity operators,  and 
more complex conditions  controlling the  data  transfers. 
The  target technology was  the  same as in the first 
experiment. This time there  was virtually no  contact with 
the engineer who designed the chip. 

While we tried to  use  the  same  scenario, we did make 
two  changes.  There  was  no coaching in this experiment 
and counters were  handled differently from the EQ and 
PARITY in the first experiment. We found that it is better 
to  expand  the  counters  at  the AND/OR level than at  the 
hardware level. This  exposes  the expanded counter  to all 
subsequent simplifications and allows one definition to be 
used for different technologies. The expansion transfor- 
mation  therefore has  been  extended  to permit expansion 
of a nonprimitive  box at  any level. 277 
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Replace NORs with NANDs 
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Timing adjustments 
Fan-out adjustments 
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Figure 4 The scenario for remapping. 

The  synthesis of the second chip  resulted  in an imple- 
mentation  with 15% more  cells and 20% more connec- 
tions  than  the manual implementation. We are  currently 
analyzing these results to  understand why our implemen- 
tation is more complex. 

Experiment 3 
The  third experiment was  an  attempt to synthesize anoth- 
er  complex chip in a different  technology. This  third chip 
specification  described 28 register bits, three  parity  oper- 
ators,  four  decoders,  seven  comparators,  and  even  more 
complex control logic. The target  technology was  an  ECL 
masterslice. In addition to a new set of technology rules 
and  restrictions, this meant  that the  basic primitive was a 
NOR and  that  each primitive had “dual-rail outputs”;  that 
is,  it  provided  both polarities of its  output.  The  synthesis 
scenario  was adapted to this  technology and changed 
slightly, but  the three  levels of implementation were 
maintained. The  decoders  and  comparators were expand- 
ed at the AND/OR level and  the AND/OR transformations 
remained  unchanged.  Common  subexpression elimina- 
tion was applied  more often  at this level and throughout 
the  scenario. 

The NAND level became the NOR level because of the 
new  technology.  This  required a new transformation to 
translate  the AND/OR primitives into NORS, and a set of 
NOR simplification transformations. These were originally 
just  the NAND transformations  with the NANDs converted 
to NORS, but we later realized that with  dual-rail outputs, 
an  apparent  box saving at  the NOR level might not be a 
saving at  the  hardware  level,  and  that the  transformation 
might increase fan-in or number of connections. Thus 
different fan-out  restrictions  were  used in the NOR trans- 
forms. The technology-specific  transformations had  to  be 
rewritten  for  the new technology,  and some new ones 
were added,  such  as  the  one  to eliminate inverters. 

This  experiment resulted in an implementation  with 5% 
278 more gates  than  the manual one. We are trying to  account 

for  this additional logic and  determine if it could be 
eliminated  through local transformations. 

The  remapping  scenario 
The logic synthesis  system  has been  used to  remap  chips 
from one technology to  another.  Our  approach  to remap- 
ping is not to  attempt a one-to-one  mapping of hardware 
primitives,  but  first to  abstract  from  the  hardware level to 
the technology-independent NAND or NOR level, with 
generic  registers, drivers,  and  receivers.  The NANDS (or 
NORs) can be  mapped to NORS (or NANDS) in a straightfor- 
ward way,  and  the NANDINOR and hardware parts of the 
synthesis  scenario  can  be applied to produce an imple- 
mentation in the  target  technology.  This  required two 
new transformations,  one  that transformed  primitives at 
the  hardware level  back to  the NAND level, and a second 
that  transformed  the NAND implementation into a NOR 
one, while  preserving the chip  inputloutput behavior. 
This  approach  is  better  than  the straightforward replace- 
ment of old technology  primitives by new ones,  since it 
exposes  the remapped  implementation to  the simplifica- 
tions at  the NOR level and  at  the  hardware level. Figure 4 
outlines  the remapping scenario. 

Remapping  experiments 
The first experiment  performed  was to transform a chip 
implementation  from a TTL masterslice to  an  ECL mas- 
terslice. The chips  were of comparable  capacity and this 
chip-to-chip remapping was possible.  Since this  chip 
conversion had not been performed manually we could 
not make  an objective  comparison. We did check  that  the 
inputloutput  behavior was  preserved and showed  the 
implementation to  an  experienced engineer, who  found 
no  serious problems. 

Chip-to-chip  remapping is rare. Usually a new technol- 
ogy will have a different density  and number of pins.  This 
could require a merging of several chips from  the initial 
implementation  and  a  partitioning of that  remapped, 
larger  function into  the chips of the target  technology. 

Observations 

Comparing  implementations 
One of the problems that  confronts  us is the difficulty of 
evaluating the result of the  synthesis process. In  our work 
to  date, this  evaluation has  meant a comparison between 
our  generated implementation and a manually produced 
implementation. There  are two aspects  to  the compari- 
sons  that we must perform. One is the problem of 
determining  functional  equivalence  between the  two im- 
plementations. The  other  is  to furnish a response  to  the 
ill-posed question: “How  do  these implementations dif- 
fer?” 
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Functional equivalence in its full generality is  the 
problem of boolean  equivalence and is known to  be co- 
NP complete.  This implies that  at our present level of 
understanding it is not  possible to devise a program which 
will efficiently, in all cases,  decide equivalence between 
two implementations. In our case,  the problem is often 
complicated  by  “don’t care” conditions-certain  combi- 
nations of inputs may be  known  not to  occur. We cannot 
solve the functional  equivalence  problem, but we are 
exploring  heuristics which may offer significant speed-up 
on a large class of implementations.  A report  on this  work 
is in preparation [22]. 

Even when two implementations are functionally 
equivalent, we are still interested in their structural 
similarity.  This  form of comparison permits us to evaluate 
a stylistic difference between  our implementation and  that 
produced by an engineer.  This is necessary for  discover- 
ing new  heuristics. For this form of comparison we are 
considering formalizing the notion of “distance”  between 
two implementations, following an analogy to  the spelling 
correction problem. 

Completeness and  coaching 
A desirable  property of a set of transformations is  com- 
pleteness-it  should  be  possible to reach  any NAND 

realization of a boolean  function  from  any other by 
application of the  transformations. Our set of NAND 

transformations does not have this  property.  Any set of 
transformations  complete in this sense must allow appli- 
cation of transformations in the  reverse  direction,  and 
this would prevent  an  automatic application of transfor- 
mations  throughout a design from terminating. What 
seems desirable is a complete set of bidirectional transfor- 
mations, with a set of preferred (e .g . ,  box-reducing) 
directions, yielding a set which terminates with a “good” 
implementation. The  reverse directions would also be 
available,  but only in a user “coaching” mode-they 
could  be  invoked on particular parts of the  design. 

The  desire  to avoid  user-invoked  transformations leads 
to  the development of more  complicated criteria  under 
which a transformation is to be  applied. For  example,  the 
coaching  described in the first experiment  invoked  a 
transformation which would, if applied uniformly, in- 
crease  the number of boxes  in the design. Allowing it to 
be  applied at a particular place by the user  has  the 
advantage of providing the (eventual) design improve- 
ment desired in the particular case while avoiding build- 
ing into  the transformation constraints  on  its application. 
Such constraints may sometimes be  worthwhile, but  they 
will make  the transformation  less local by requiring 
examination of a  larger part of the logic. 

Technology-specijic information 
The technology file allows some generic transformations 
to apply at all levels of the  synthesis process by testing 
the function of a  box to which a transform is to  apply, 
rather  than its box  type (which may be  a hardware 
primitive). For  instance, though it may be necessary  to 
apply  a double  inverter removal at all three  levels,  the 
same  transform can  be  used to  do this for NOT, NAND, 

NOR, and various hardware primitives.  A  more  ambitious 
use of the technology file would be  in  hardware genera- 
tion.  For  example, a four-way NAND with one  input 
receiving an off-chip signal could  be  translated  by  looking 
in the technology file for a primitive in the target  technol- 
ogy implementing  that function.  It  appears  that some 
transformations with specific hardware information built 
in,  such  as clock  distribution tree generation, will always 
be necessary. 

Future  work 
Our plans  include further  analysis of the  results of our 
experiments  to determine  what  improvements  should  be 
made to our system. We  will also look at more  ambitious 
chips-chips that  have required minimization or that  have 
caused long  path  problems when implemented  manually. 
We hope to arrive at a set of measures and  transforma- 
tions  that will provide acceptable implementations for a 
large class of examples. In  addition, we  will explore  the 
following: 

0 multi-chip synthesis-starting with a functional specifi- 
cation  that requires several  chips, developing additional 
measures  and transformations that will trade  resources 
across  chip boundaries. 
engineering changes-examining how such a synthesis 
system could  respond to engineering changes  where 
minimum, local changes  are highly desirable. 
transformation specification-looking at how  transfor- 
mations could  be described  at a high level and compiled 
for efficient application. 
transformation  correctness-considering what proper- 
ties of transformations (such as function-preservation) 
should  be proved  and demonstrating  how such proofs 
can  be accomplished. 

Summary 
We are in the  process of exploring  what we believe is a 
new approach  to  the old problem of logic synthesis  and 
are encouraged  by our initial experiments.  We have built 
an experimental synthesis system and  used it to synthe- 
size  several  masterslice  chips. In  the  cases in which we 
were able  to  compare our results with previous manual 
implementations, we found that  the automatically  pro- 
duced ones required 0% to 15% more logic. The results 
are similar when  comparing  numbers of signals or num- 279 
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bers of connections. We have  also  used  our system to 
remap implemented chips  into a new  technology, while 
preserving their inputJoutput  behavior.  We  plan to  per- 
form  further  experiments,  to study the remaining differ- 
ences  between  the  automatic  and manual  implementa- 
tions,  and  to  improve  the  competence of our experimental 
system. Our hope  is  that computationally  manageable 
techniques  based on local  transformations can be applied 
to improve naive implementations to  acceptable  ones. 
This could greatly shorten  processor  development  and 
validation  times. 

Acknowledgments 
We would like to  thank William van Loo and  James 
Zeigler for many  helpful  discussions on masterslice  chip 
design, and  James Gilkinson for the benefit of his  experi- 
ence in remapping. Also,  John Gerbi, Thomas Wanuga, 
and Alan Stern  have  made valuable contributions  to  the 
design and implementation of the  experimental synthesis 
system. 

References 
1. M. A. Breuer, Ed., Design  Automation of Digital Systems, 

Prentice-Hall, Inc., Englewood  Cliffs, NJ, 1972. 
2. D. L. Dietmeyer, Logic  Design of Digital Systems, Allyn 

and Bacon, Boston, 1978. 
3.  J. R. Duley, “DDL-A Digital  Design Language,” Ph.D. 

Thesis, University of Wisconsin, Madison, W I ,  1968. 
4. J. R. h l e y  and D. L. Dietmeyer, “Translation of a DDL 

Digital System Specification to Boolean Equations,” IEEE 
Trans.  Computers C-18, 305-320 (1%9). 

5 .  J. A. Daninger,  “The Description, Simulation, and Auto- 
matic Implementation of Digital Computer Processors,” 
Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 
1969. 

6. T. D. Friedman and S. C. Yang, “Methods used in an 
Automatic Logic Design Generator (ALERT),” IEEE Trans. 
Computers C-18, 593-614 (1%9). 

7. T. D. Friedman and S. C. Yang, “Quality of Designs from an 
Automatic Logic Generator (ALERT),” Proceedings of the 
Seventh  Design  Automation  Conference, San Francisco, 

8. H. Schorr, “Toward the Automatic Analysis and Synthesis 
of Digital Systems,” Ph.D. Thesis, Princeton University, 
Princeton, NJ, 1%2. 

9. C. K. Mesztenyi, “Computer Design Language Simulation 
and Boolean Translation,” Technical Report 68-72, Comput- 
er Science Department, University of Maryland, College 
Park, MD, 1968. 

CA, 1970, pp. 71-89. 

10. F.  J. Hill and G. R.  Peterson, Digital  Systems:  Hardware 
Organization  and  Control, John Wiley & Sons, Inc., New 
York, 1973. 

11 .  M. Barbacci, “Automated Exploration of the Design Space 
for Register Transfer Systems,” Ph.D. Thesis, Carnegie- 
Mellon University, Pittsburgh, PA, 1973. 

12. D. E. Thomas, “The Design  and Analysis of an Automated 
Design Style Selector,” Ph.D. Thesis, Carnegie-Mellon Uni- 
versity, Pittsburgh, PA, 1977. 

13. E. A. Snow, “Automation of Module Set Independent 
Register-Transfer Level Design,” Ph.D.  Thesis, Carnegie- 
Mellon University, Pittsburgh, PA, 1978. 

14. L.  J. Hafer and A. C. Parker, “Register-Transfer Level 
Digital  Design Automation: The Allocation Process,” Pro- 
ceedings of the  Fifteenth  Design  Automation  Conference, 
Las Vegas, NV, 1978, pp. 213-219. 

15. A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. 
Hafer, G. Leive,  and J. Kim, “The CMU  Design Automa- 
tion System-An Example of Automated Data Path De- 
sign,” Proceedings of the  Sixteenth  Design  Automation 
Conference, San Diego, CA, 1979, pp. 73-80. 

16. S. Nakamura, S. Murai, C. Tanaka, M. Terai, H. Fujiwara, 
and K. Kinoshita, “LORES-Logic Reorganization Sys- 
tem,” Proceedings of the  Fifteenth  Design  Automation 
Conference, Las Vegas, NV, 1978, pp. 250-260. 

17. J. A. Darringer and W. H. Joyner, “A New Approach to 
Logic Synthesis,” Proceedings of the  Seventeenth  Design 
Automation  Conference, Minneapolis, MN, 1980, pp. 543- 
549. 

18. J. A. Daninger, W. H. Joyner, L. Berman, and L. Trevill- 
yan, “Experiments in Logic Synthesis,” Proceedings of the 

ZCCC80, Port Chester, NY, 1980, pp. 234-237A. 
IEEE International  Conference on Circuits  and  Computers 

19. F. E. Allen, J. L. Carter, J. Fabri, J. Ferrante, W. H. 
Harrison, P. G. Loewner, and L. H. Trevillyan, “The 
Experimental Compiling System,” ZBMJ.  Res.  Develop. 24, 

20. G. L. Parasch and  R. L. Price, “Development and Applica- 
tion of a Designer Oriented Cyclic Simulator,” Proceedings 
of the Thirteenth  Design  Automation  Conference, San Fran- 
cisco, CA, 1976, pp. 48-53. 

21. Y. Chu, “An ALGOL-like Computer Design Language,” 
Commun.  ACM 8, 607-615 (1%5). 

22. C .  L. Berman, “On Logic Comparison,” Proceedings of the 
Eighteenth  Design  Automation  Conference, Nashville, TN, 
1981 (to appear). Also Research  Report  RC5342, IBM 
Thomas J. Watson Research Center, Yorktown Heights, 
NY, 1980. 

695-715 (1980). 

Received August  22, 1980;  revised  January 15, 1981 

The authors are located   a t   the  IBM Thomas  .I. Watson 
Research  Center,   Yorktown  Heights,   New  York  10598. 

280 

JOHN A. DARRINGER ET AL. IBM J. RES.  DEVELOP. VOL. 25 NO. 4 JULY 1981 


