
John A. Darringer
William H. Joyner, Jr.
C. Leonard Berman
Louise Trevillyan

Logic Synthesis Through Local Transformations

A logic designer today faces a growing number of design requirements and technology restrictions, brought about by
increases in circuit density and processor complexity. At the same time, the cost of engineering changes has made the
correctness of chip implementations more important, and minimization of circuit count less so. These factors underscore
the need for increased automation of logic design. This paper describes an experimental system for synthesizing
synchronous combinational logic. It allows a designer to start with a naive implementation produced automatically from
a functional specification, evaluate it with respect to these many factors, and incrementally improve this implementation
by applying local transformations until it is acceptable for manufacture. The use of simple local transformations in this
system ensures correct implementations, isolates technology-specac data, and will allow the total process to be applied
to larger, VLSI designs. The system has been used to synthesize masterslice chip implementations from functional
specacations, and to remap implemented masterslice chips from one technology to another while preserving their
functional behavior.

Introduction
The goal of generating an acceptable, technology-specific
hardware implementation from a functional specification
is not a new one, and it has received much attention in the
past. The nature of this problem depends on the level of
the functional description, the set of implementation
primitives, and the criteria of acceptability. Early work
centered on developing algorithms for translating a bool-
ean function into a minimum two-level network of bool-
ean primitives. Extensions were developed for handling
limited circuit fan-in and alternative cost functions [1, 21.
But because these algorithms search for minimal imple-
mentations they require time exponential in the number
of circuits and thus cannot be used on most actual
designs.

Other efforts have attempted to raise the level of
specification. The DDL work at Wisconsin [2-41, APDL
at Carnegie-Mellon University [5], and ALERT at IBM
[6] all began with behavioral specifications and produced
technology-independent implementations at the level of
boolean equations. The results were usually more expen-

sive than manual implementations and did not take ad-
vantage of the target technology. For example, the
ALERT system was validated on an existing design, the
IBM 1800, and the implementation produced required
160% more gates than the manual design [7].

Attempts have been made to produce more efficient
logic and to give the designer more control over the
implementation [8-lo]. This control has resulted in speci-
fication language constraints, so that the specification is
at a fairly low level and in closer correspondence with the
implementation. This necessarily decreases the advan-
tage of an automated approach, bringing it closer to a
system for logic entry than for logic synthesis.

Several tools have been developed at Carnegie-Mellon
University to support the early part of the design cycle
[ll-141. In one experiment [15] the CMU-DA (Carnegie-
Mellon University-Design Automation) system was used
to implement the data path portion of a Digital Equipment
Corporation (DEC) PDP3/E. It began with a functional

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.

272
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

JOHN A. DARRINGER ET AL IBM I. RES. DEVELOP. 0 VOL. 25 0 NO. 4 0 JULY 1981

description of the machine and produced an implementa-
tion in two technologies of the registers, register opera-
tors, and their interconnections, but not the control logic
to sequence the register transfers. When the target tech-
nology was TTL series modules the implementation re-
quired 30% more modules than the DEC implementation.
With CMOS standard cells it required 150% more area
than an existing Intersil chip.

There has also been recent work in logic remapping,
transforming existing implementations from one technol-
ogy to another. A group in Japan has described a system
to help a designer translate an existing small- or medium-
scale integration implementation into large-scale integra-
tion [16].

Our approach focuses on the control portion of syn-
chronous machines, since that design is more error-prone
than data path design. Thus we assume that all memory
elements of the final implementation are identified in the
specification; the goal is to generate the combinational
logic that computes, on each clock cycle, new values of
outputs and memory elements from inputs and the old
values of the memories. Also we are focusing on produc-
ing random logic implementations, initially for master-
slice chip implementations, instead of generating micro-
code for a control processor or using a programmable
logic array. Our initial experiments have been with logic
for single chips, so that chip interface information (inputs,
outputs, polarities, sendedreceiver requirements) was
assumed to be specified. The implementations produced
by our system are composed of primitives selected from a
specified set, connected to satisfy given performance
requirements and technology restrictions, and ready to be
placed on a masterslice chip.

In a previous paper [17] we described our approach to
this form of synthesis; the present paper is an expansion
on work reported in [18]. We are not proposing a com-
pletely automatic replacement for the manual design
process. Instead, we envision an interactive system in
which the user operates on a logic design at three levels of
abstraction. He begins with an initial implementation
generated in a straightforward manner from the specifica-
tion. He can simplify the implementation at this level,
and, when satisfied, can move to the next level. He does
this by applying transformations, either locally or global-
ly, to achieve the simplification or refinement. By being
able to operate on the implementation at several levels,
the user can often make a small change at one level that
will cause a larger simplification at a lower level. By
limiting the user to directing function-preserving transfor-
mations, we can ensure that in all cases the implementa-
tion produced will be functionally equivalent to the
specified behavior.

“Timing
“Interface

TRANSLATE

1

Data
base

I I
I
I

TRANSFORMS

coaching

Figure 1 The logic synthesis system.

Detailed
implementation I

The use of transformations and levels of abstraction
allows a modified form of this scenario to be used in
remapping designs from one technology to another. “Re-
mapping” usually refers to the one-to-one substitution of
new technology primitives for old technology primitives.
Our approach is different: We first transform technology-
specific primitives to ones at a higher technology-inde-
pendent level. To this intermediate-level representation
we can apply the synthesis transformations to produce an
implementation in a different target technology with the
benefit of simplification at several levels.

Both logic synthesis and remapping are problems of
finding feasible (not optimal) implementations: networks
of primitive boxes that satisfy a large number of con-
straints. In addition to gate and I/O pin limitations, there
are timing constraints, a restricted library of primitives,
driver requirements, clock distribution rules, fan-in and
fan-out constraints, and rules for testability. Since we
hope to apply our techniques to VLSI chips, we are
attempting to limit our transformations to local changes
that do not require time or space exponential in the
number of circuits.

An experimental system for logic synthesis and re-
mapping
The organization of the logic synthesis system is shown in
Fig. 1. Its inputs are the register transfer specification,
the interface constraints, and a technology file which
characterizes the target technology. The output is a
detailed implementation in terms of the primitives of the
target technology, which is submitted to placement and
wiring programs for physical design. Some timing or
other physical problems may not be detectable before
placement and wiring. In this case the synthesis process 273

JOHN A. DARRINGER ET AL. IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981

Specification

Simple translation

AND/OR AND/OR simplification
level Common subexpression elimination

Constant propagation

NAND(NOR) Common subexpression elimination
level Sendedreceiver insertion

User coaching (optional)

NAND(N0R) Simplification

Hardware Common subexpression elimination
level Technology-specific simplifications

Timing adjustments
Fan-out adiustments

I
Implementation

Figure 2 The scenario of synthesis.

is repeated with a revised specification or modified con-
straints until an acceptable implementation is achieved.

An important requirement of our approach is that the
data base be capable of representing the implementation
at different levels of abstraction. Our system to support
logic synthesis makes use of a graph-like internal data
structure for storing the implementation as it progresses
from the higher-level description to its final form, and all
transformations operate on this graph. There is a single
organizational component: the “box.” A box has input
and output terminals which are connected .by wires to
other boxes. Each box also has a type, which may be a
primitive or may reference a definition in terms of other
boxes. Thus a hierarchy of boxes can be used, and an
instance of a high-level box such as a parity box can be
treated as a single box or expanded into its next-level
implementation when that is desirable.

The logic synthesis data base is implemented using a
system originally developed for use in an experimental
compiler project within IBM Research [19]. It is made up
of two groups of tables. The first group describes the
technology being used; it is created from a technology file
containing for each box type information such as name,
function, and number and names of input and output pins.
These data are created in batch mode and read during
initialization of the interactive system.

The second group of tables contains the representation
of the logic created by the interactive system. This group
consists of a box table, a signal table, and a set of

274 auxiliary tables which describe the relationship between

JOHN A. DARRINGER ET AL.

the boxes and the signals. There is some intentional
redundancy in the data; each box has a complete list of
input and output signals, and each signal has a source and
a list of sinks. Every box table entry contains type
information which provides a link to the technology
group. This allows programs to get technology informa-
tion about a specific box.

Transformations communicate with the data base
through a layer of functions which perform all data
addition, retrieval, and deletion. These functions provide
the transformations with the ability to traverse a chip by
following signal paths, or by visiting each box. They
make it easy to remove boxes and reconnect their input/
output signals, to move connections from one box to
another, to insert boxes on signal paths, etc. The func-
tions provide a conceptual view of the data base which
remains stable even when the data base implementation is
altered. The table structure representing this view can be
significantly changed with a minimal impact on the pro-
cessing programs.

The use of data abstraction, of a data base system
which allows one to easily define a data base, and of
modular implementation of data structures made it possi-
ble for us to quickly bring up a usable support system for
the transformations. As we learned more about the re-
quirements of the transformations, we were able to
change the data base completely, to add and remove data
fields, to change individual data structures, and to con-
centrate efforts in performance improvement in areas
where experience indicated that better performance was
required. In all cases, only modifications to the data
management programs were required to accomplish these
changes; the programs which use the data manager were
completely unaffected.

The interactive design of the logic synthesis system not
only allows the user to control the transform application,
but also permits him to invoke programs that aid in his
decisions. A BACKTRACE facility displays the cone of
influence of a signal or box, showing graphically the logic
producing a signal from registers or chip inputs. MEASURE

lists, for a design, the number of boxes, signals, connec-
tions, inputs, outputs, cells, number of boxes of each
type. SEGMENT lists, for each chip output and register, the
number and names of the chip inputs and other registers
influencing it, the depth of the tree with those leaves, and
the number of boxes in it. PRINTBOX lists all boxes of a
design and their inputs and outputs, and PRINTREF lists all
signals of a design with their sources and sinks. Individual
boxes and signals can also be listed in this way. Facilities
also exist for producing logic diagrams from a design in
the data base.

IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981

Expansion and compression commands allow the user
to expand a box by replacing it with its more primitive
components from a box type definition, and to identify a
group of boxes and form a new type of them, replacing
the group with a single box. Expansion permits hierarchi-
cal development, and compression can be used to parti-
tion a design into smaller parts.

The system will accept input in two languages. All of
the examples were described in a flowchart-like language,
similar to that in [20], allowing GOTOs, assignments to
registers and signals, decisions based on the values of
registers, computed GOTOS based on values of a group of
signals, etc. Parallelism is described in this language by
multiple GOTO statements which branch to several actions
at the same time. We are also experimenting with a
language, similar to CDL (Computer Design Language)
1211, that more closely models the internal form of the
data base. In addition, it allows convenient description of
hardware hierarchy. This aids in the input of box type
descriptions which are later to be expanded a hierarchical
way, such as a parity function or a decoder.

The synthesis scenario
Though there has been some variation in the synthesis
process as the system has been developed and has been
applied to more examples, a fairly standard sequence of
steps has emerged. Figure 2 shows the three levels of
description common to our experiments: the initial AND/

OR/NOT level, a NAND or NOR level (depending on the
target technology), and a hardware level in which the
types of the boxes are books or primitives of the target
technology. At every level the implementation is a net-
work of boxes connected by signals. Our objective in
devising this scenario was to find a set of transformations
and a sequence for applying them such that the original
functional specification could be transformed by a se-
quence of small steps into an acceptable implementation.
The transformations at the AND/OR level are local, text-
book simplifications of boolean expressions; most of
them reduce the number of boxes, but they do not
produce a normal form. The NAND and NOR transforms
are similar, and required more work because there was

. less of a foundation on which to build. The hardware
transformations were developed after considerable time
was spent with chip designers to understand the technolo-
gies and the motivation for the many design decisions.
Transformations are used not only to simplify the imple-
mentation at each level according to appropriate mea-
sures but also to move the implementation from one level
to the next. The transformations are local in that they
replace a small subgraph of the network (usually five or
fewer boxes) with another subgraph which is functionally
equivalent but simpler according to some measure.

IBM 1. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981

~

275

JOHN A. DARRINGER ET AL.

The initial implementation at the AND/OR level is pro-
duced by merely replacing specification language con-
structs with their equivalent AND/OR implementations.
Methods for this translation have been described in [3, 51.
At this first level the boxes are of types such as AND, OR,
NOT, PARITY, EQ, XOR, DECODE, or REGISTER. Simple local
transformations are applied to reduce the number of
boxes. Some of the particular transformations used are
listed as follows:

NOT(NOT(a)) + a

AND@, NOT(U)) + 0

OR(U, NOT(a)) j 1

OR(a, AND(NOT(a), b)) * OR(a, b)

XOR(PARITY(U,, . . ., a,,), b) .$ PARITY(U,, . . ., a,,, b)

AND(U, 1) j a

OR(a, 1) I$ 1

The last two simplifications are examples of a more
general constant propagation that is performed. These
transformations may leave fragments of logic disconnect-
ed. We clean up this disconnected logic in a manner
similar to the way compilers perform dead-code elimina-
tion. Another technique from optimizing compilers, com-
mon subexpression elimination, is also applied here and
at other points in the synthesis process to further reduce
the size of the implementation. The expansion of “high-
level” boxes such as panty and decoders was done here
in some of the experiments and was postponed to the
hardware level in others. The interactive nature of the
system allows this flexibility, which is useful if technolo-
gy rules require that certain constructs be used for these
functions. However, in most cases our simplification
rules at the AND/OR and the NOR or NAND levels were
powerful enough so that textbook expansions of DECODE,
XOR, etc. in terms of AND/OR gates reduced to efficient
technology-specific logic.

Next the AND, OR, NOT, and most other operators of the
initial description are replaced by their NAND or NOR

implementations. The target technologies in our experi-
ments were either NAND- or NOR-based, and this deter-
mined the primitive selected for this level. The NANDs or
NORS are “idealized,” however, in that they have no fan-
in or fan-out restrictions. The transition to these primi-
tives is accomplished naively by local transformations,
and may introduce unnecessary double NANDs or NORs,
which will be eliminated later. Also at this point, the chip
interface information is used to place generic (i.e., not
technology-specific) senders and receivers on the chip
inputs and primary outputs, and to insert inverters where
necessary to ensure the correct signal polarities.

NANDL:

- c -6

NAND3:

d - c d

NAND4:

b

Figure 3 The NAND transformations.

Simplifying transformations are now applied to each
signal in the network at this level. These transformations
attempt to reduce the number of boxes of the implementa-
tion without increasing the number of connections. To
accomplish this, the transformations must check the fan-
out of the various signals involved, since this will affect
the number of boxes and signals actually removed. The
transformations are applied repeatedly throughout the
network until no more apply. Figure 3 illustrates the
NAND transformations used in our experiments; the NOR
transformations are identical except for the operator.
Each transformation has an associated condition that
determines if the replacement will simplify the implemen-
tation by reducing boxes or connections. These condi-
tions depend on the fan-out of the intermediate signals
and on whether the target technology is assumed to have
dual-rail output. For example, NAND3 is only profitable in
certain cases. It does not appear to reduce the box or
connection count, but if dual-rail outputs are assumed,
the single-input NAND on the right-hand side is “free” and
disappears after hardware generation. NANDS is the dual
of N A N D ~ , but the two do not cycle because of restrictions
on their application. Though NAND5 and NAND6 appear to
increase box count, they decrease connections and leave

276 box count the same if dual-rail is assumed.

Pd
l e

NAND7A:

NAND7B:

=h

NAND7C:

=h

In the transition to the hardware level, the NAND or NOR
gates and generic registers are replaced by technology-
specific primitives. Single primitives or macros are select-
ed to match the fan-in of the actual primitives with that of
the “idealized” boxes. Also the number of control and
data lines of the idealized registers might exceed those
normally available, necessitating the generation of addi-
tional logic. At this point the implementation is in terms
of primitives used by the engineers in their implementa-
tions, but because transformations have been made local-
ly there may be some violations of timing, fan-out, and
other technology restrictions.

The simplifying transformations at the hardware level
are of two sorts. Some are simplifications similar to those
at the previous levels, such as eliminating the equivalent
of double NOTS, which may occur as a result of expanding
higher-level boxes. Others attempt to take advantage of
the particular technology. For example, flip-flops may
provide an output and its complement, allowing some
inverters to be removed at this level. Also, because of
combination flip-flop-receiver books available, some re-
ceivers may be eliminated. Wired or dotted ANDs or ORs

can be introduced to reduce cell count where possible.
Some technologies may be dual-rail, having both phases

JOHN A. DARRINGER ET AL. IBM J. RES. DEVELOP. e VOL. 25 e NO. 4 JULY 1981

available at every gate; this makes possible simplifica-
tions not possible with the technology-independent earli-
er levels. Other technology-specific transformations ap-
plied at this level distribute clock signals to flip-flops
according to the technology rules, eliminate long and
short paths between flip-flops (assuming a unit gate delay
and technology-specific guidelines), and adjust fan-out by
repowering signals.

Several of the transforms at the three levels are analo-
gous, differing only in the types of boxes to which they
apply, so that simplifications not made at one level would
be caught later. This may appear redundant; however, the
application of transforms as early as possible reduces the
size of the implementation and helps prevent a greater
explosion in size when, for example, conversion to
NANDS takes place. Though the same implementation
might be produced without the NAND simplifications, they
are included for efficiency.

The expansion of boxes in terms of more primitive
gates was first done only at the hardware level. However,
in successive experiments it was found that expansions at
other levels were sometimes desirable. For example, if a
counter could be expanded in terms of ANDS and ORS, the
same expansion could be used for various technologies.
The expansion transform therefore was extended to per-
mit selective expansion of box types at various levels.

Synthesis experiments
The synthesis system has been used to create several chip
implementations in two different technologies. In some
cases, an engineer had implemented the same chip, and
we were able to compare the automated design with that
of the engineer. In other cases no implementation had
been previously attempted.

The first experiments with the logic synthesis system
were attempts to produce implementations for chips from
existing processors that had been specified functionally
and implemented by engineers. The existence of the
engineers’ implementations permitted comparison of de-
signs and a study of the differences between manual
designs and those produced automatically. Each of the
experiments was carried out automatically, although the
particular sequence of transformations was the result of
much experimentation.

Experiment I
For our first experiment we selected a straightforward
chip that had already been manually designed. The speci-
fication described seven registers totaling 24 bits, two
parity operators, and the conditions for the data transfers.
The target technology was a TTL masterslice that provid-

IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981

ed 96 I/O pins and 704 cells (divided between three- and
four-input NAND gates) on each chip. In addition to the
NAND gates, there are a number of macros such as
receivers, senders, and flip-flops that are implemented
with these NAND gates. Restrictions on the use of the
primitives available, such as fan-in and fan-out require-
ments, timing constraints, clocking and powering rules,
were described in the technology file or in some cases
built into the transformations. In this experiment EQ,

XOR, PARITY, and other high-level boxes were not ex-
panded until the hardware level.

In examining the implementation after the NAND trans-
formations were applied, it was noticed that further
improvements could be made. In particular, a reduction
in fan-out of a signal by repowering its source would
allow a transformation to apply and eventually reduce the
size of the implementation. The system allows repower-
ing and some other transformations to be applied to
particular signals, rather than across the whole implemen-
tation, as a form of user “coaching.” In this instance
coaching saved only four boxes, but resulted in an
implementation slightly better than the manual design.

The first experiment resulted in a synthesized imple-
mentation that was remarkably similar to the manual one.
In fact, it required four fewer cells, five fewer connec-
tions, and four shorter paths than the engineer’s imple-
mentation. The similarity, however, was not such a
surprise since we had used this example in the design of
our system, and since we had worked so closely with the
chip’s designer.

Experiment 2
In the second experiment the same sequence of transfor-
mations was applied to a more complex chip. The chip
specification contained 13 register bits, a three-bit
counter, a five-bit counter, two parity operators, and
more complex conditions controlling the data transfers.
The target technology was the same as in the first
experiment. This time there was virtually no contact with
the engineer who designed the chip.

While we tried to use the same scenario, we did make
two changes. There was no coaching in this experiment
and counters were handled differently from the EQ and
PARITY in the first experiment. We found that it is better
to expand the counters at the AND/OR level than at the
hardware level. This exposes the expanded counter to all
subsequent simplifications and allows one definition to be
used for different technologies. The expansion transfor-
mation therefore has been extended to permit expansion
of a nonprimitive box at any level. 277

JOHN A. DARRINGER ET AL.

Replace NORs with NANDs
(N A N D S ~ ~ ~ ~ N O R S)

t
Replace hardware books

with NANDS (or NORS)
and generic registers

Remove clocks

t
Technology I

NAND(N0R) simplification
Common subexpression elimination
Sendedreceiver insertion

Hardware simplification
Common subexpression elimination
Technology-specific simplifications
Timing adjustments
Fan-out adjustments

I
Technology 2

Figure 4 The scenario for remapping.

The synthesis of the second chip resulted in an imple-
mentation with 15% more cells and 20% more connec-
tions than the manual implementation. We are currently
analyzing these results to understand why our implemen-
tation is more complex.

Experiment 3
The third experiment was an attempt to synthesize anoth-
er complex chip in a different technology. This third chip
specification described 28 register bits, three parity oper-
ators, four decoders, seven comparators, and even more
complex control logic. The target technology was an ECL
masterslice. In addition to a new set of technology rules
and restrictions, this meant that the basic primitive was a
NOR and that each primitive had “dual-rail outputs”; that
is, it provided both polarities of its output. The synthesis
scenario was adapted to this technology and changed
slightly, but the three levels of implementation were
maintained. The decoders and comparators were expand-
ed at the AND/OR level and the AND/OR transformations
remained unchanged. Common subexpression elimina-
tion was applied more often at this level and throughout
the scenario.

The NAND level became the NOR level because of the
new technology. This required a new transformation to
translate the AND/OR primitives into NORS, and a set of
NOR simplification transformations. These were originally
just the NAND transformations with the NANDs converted
to NORS, but we later realized that with dual-rail outputs,
an apparent box saving at the NOR level might not be a
saving at the hardware level, and that the transformation
might increase fan-in or number of connections. Thus
different fan-out restrictions were used in the NOR trans-
forms. The technology-specific transformations had to be
rewritten for the new technology, and some new ones
were added, such as the one to eliminate inverters.

This experiment resulted in an implementation with 5%
278 more gates than the manual one. We are trying to account

for this additional logic and determine if it could be
eliminated through local transformations.

The remapping scenario
The logic synthesis system has been used to remap chips
from one technology to another. Our approach to remap-
ping is not to attempt a one-to-one mapping of hardware
primitives, but first to abstract from the hardware level to
the technology-independent NAND or NOR level, with
generic registers, drivers, and receivers. The NANDS (or
NORs) can be mapped to NORS (or NANDS) in a straightfor-
ward way, and the NANDINOR and hardware parts of the
synthesis scenario can be applied to produce an imple-
mentation in the target technology. This required two
new transformations, one that transformed primitives at
the hardware level back to the NAND level, and a second
that transformed the NAND implementation into a NOR
one, while preserving the chip inputloutput behavior.
This approach is better than the straightforward replace-
ment of old technology primitives by new ones, since it
exposes the remapped implementation to the simplifica-
tions at the NOR level and at the hardware level. Figure 4
outlines the remapping scenario.

Remapping experiments
The first experiment performed was to transform a chip
implementation from a TTL masterslice to an ECL mas-
terslice. The chips were of comparable capacity and this
chip-to-chip remapping was possible. Since this chip
conversion had not been performed manually we could
not make an objective comparison. We did check that the
inputloutput behavior was preserved and showed the
implementation to an experienced engineer, who found
no serious problems.

Chip-to-chip remapping is rare. Usually a new technol-
ogy will have a different density and number of pins. This
could require a merging of several chips from the initial
implementation and a partitioning of that remapped,
larger function into the chips of the target technology.

Observations

Comparing implementations
One of the problems that confronts us is the difficulty of
evaluating the result of the synthesis process. In our work
to date, this evaluation has meant a comparison between
our generated implementation and a manually produced
implementation. There are two aspects to the compari-
sons that we must perform. One is the problem of
determining functional equivalence between the two im-
plementations. The other is to furnish a response to the
ill-posed question: “How do these implementations dif-
fer?”

JOHN A. DARRINGER ET AL. 1BM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981

Functional equivalence in its full generality is the
problem of boolean equivalence and is known to be co-
NP complete. This implies that at our present level of
understanding it is not possible to devise a program which
will efficiently, in all cases, decide equivalence between
two implementations. In our case, the problem is often
complicated by “don’t care” conditions-certain combi-
nations of inputs may be known not to occur. We cannot
solve the functional equivalence problem, but we are
exploring heuristics which may offer significant speed-up
on a large class of implementations. A report on this work
is in preparation [22].

Even when two implementations are functionally
equivalent, we are still interested in their structural
similarity. This form of comparison permits us to evaluate
a stylistic difference between our implementation and that
produced by an engineer. This is necessary for discover-
ing new heuristics. For this form of comparison we are
considering formalizing the notion of “distance” between
two implementations, following an analogy to the spelling
correction problem.

Completeness and coaching
A desirable property of a set of transformations is com-
pleteness-it should be possible to reach any NAND

realization of a boolean function from any other by
application of the transformations. Our set of NAND

transformations does not have this property. Any set of
transformations complete in this sense must allow appli-
cation of transformations in the reverse direction, and
this would prevent an automatic application of transfor-
mations throughout a design from terminating. What
seems desirable is a complete set of bidirectional transfor-
mations, with a set of preferred (e .g . , box-reducing)
directions, yielding a set which terminates with a “good”
implementation. The reverse directions would also be
available, but only in a user “coaching” mode-they
could be invoked on particular parts of the design.

The desire to avoid user-invoked transformations leads
to the development of more complicated criteria under
which a transformation is to be applied. For example, the
coaching described in the first experiment invoked a
transformation which would, if applied uniformly, in-
crease the number of boxes in the design. Allowing it to
be applied at a particular place by the user has the
advantage of providing the (eventual) design improve-
ment desired in the particular case while avoiding build-
ing into the transformation constraints on its application.
Such constraints may sometimes be worthwhile, but they
will make the transformation less local by requiring
examination of a larger part of the logic.

Technology-specijic information
The technology file allows some generic transformations
to apply at all levels of the synthesis process by testing
the function of a box to which a transform is to apply,
rather than its box type (which may be a hardware
primitive). For instance, though it may be necessary to
apply a double inverter removal at all three levels, the
same transform can be used to do this for NOT, NAND,

NOR, and various hardware primitives. A more ambitious
use of the technology file would be in hardware genera-
tion. For example, a four-way NAND with one input
receiving an off-chip signal could be translated by looking
in the technology file for a primitive in the target technol-
ogy implementing that function. It appears that some
transformations with specific hardware information built
in, such as clock distribution tree generation, will always
be necessary.

Future work
Our plans include further analysis of the results of our
experiments to determine what improvements should be
made to our system. We will also look at more ambitious
chips-chips that have required minimization or that have
caused long path problems when implemented manually.
We hope to arrive at a set of measures and transforma-
tions that will provide acceptable implementations for a
large class of examples. In addition, we will explore the
following:

0 multi-chip synthesis-starting with a functional specifi-
cation that requires several chips, developing additional
measures and transformations that will trade resources
across chip boundaries.
engineering changes-examining how such a synthesis
system could respond to engineering changes where
minimum, local changes are highly desirable.
transformation specification-looking at how transfor-
mations could be described at a high level and compiled
for efficient application.
transformation correctness-considering what proper-
ties of transformations (such as function-preservation)
should be proved and demonstrating how such proofs
can be accomplished.

Summary
We are in the process of exploring what we believe is a
new approach to the old problem of logic synthesis and
are encouraged by our initial experiments. We have built
an experimental synthesis system and used it to synthe-
size several masterslice chips. In the cases in which we
were able to compare our results with previous manual
implementations, we found that the automatically pro-
duced ones required 0% to 15% more logic. The results
are similar when comparing numbers of signals or num- 279

JOHN A. DARRINGER ET AL. IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981

bers of connections. We have also used our system to
remap implemented chips into a new technology, while
preserving their inputJoutput behavior. We plan to per-
form further experiments, to study the remaining differ-
ences between the automatic and manual implementa-
tions, and to improve the competence of our experimental
system. Our hope is that computationally manageable
techniques based on local transformations can be applied
to improve naive implementations to acceptable ones.
This could greatly shorten processor development and
validation times.

Acknowledgments
We would like to thank William van Loo and James
Zeigler for many helpful discussions on masterslice chip
design, and James Gilkinson for the benefit of his experi-
ence in remapping. Also, John Gerbi, Thomas Wanuga,
and Alan Stern have made valuable contributions to the
design and implementation of the experimental synthesis
system.

References
1. M. A. Breuer, Ed., Design Automation of Digital Systems,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972.
2. D. L. Dietmeyer, Logic Design of Digital Systems, Allyn

and Bacon, Boston, 1978.
3. J. R. Duley, “DDL-A Digital Design Language,” Ph.D.

Thesis, University of Wisconsin, Madison, W I , 1968.
4. J. R. h l e y and D. L. Dietmeyer, “Translation of a DDL

Digital System Specification to Boolean Equations,” IEEE
Trans. Computers C-18, 305-320 (1%9).

5 . J. A. Daninger, “The Description, Simulation, and Auto-
matic Implementation of Digital Computer Processors,”
Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA,
1969.

6. T. D. Friedman and S. C. Yang, “Methods used in an
Automatic Logic Design Generator (ALERT),” IEEE Trans.
Computers C-18, 593-614 (1%9).

7. T. D. Friedman and S. C. Yang, “Quality of Designs from an
Automatic Logic Generator (ALERT),” Proceedings of the
Seventh Design Automation Conference, San Francisco,

8. H. Schorr, “Toward the Automatic Analysis and Synthesis
of Digital Systems,” Ph.D. Thesis, Princeton University,
Princeton, NJ, 1%2.

9. C. K. Mesztenyi, “Computer Design Language Simulation
and Boolean Translation,” Technical Report 68-72, Comput-
er Science Department, University of Maryland, College
Park, MD, 1968.

CA, 1970, pp. 71-89.

10. F. J. Hill and G. R. Peterson, Digital Systems: Hardware
Organization and Control, John Wiley & Sons, Inc., New
York, 1973.

11 . M. Barbacci, “Automated Exploration of the Design Space
for Register Transfer Systems,” Ph.D. Thesis, Carnegie-
Mellon University, Pittsburgh, PA, 1973.

12. D. E. Thomas, “The Design and Analysis of an Automated
Design Style Selector,” Ph.D. Thesis, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1977.

13. E. A. Snow, “Automation of Module Set Independent
Register-Transfer Level Design,” Ph.D. Thesis, Carnegie-
Mellon University, Pittsburgh, PA, 1978.

14. L. J. Hafer and A. C. Parker, “Register-Transfer Level
Digital Design Automation: The Allocation Process,” Pro-
ceedings of the Fifteenth Design Automation Conference,
Las Vegas, NV, 1978, pp. 213-219.

15. A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L.
Hafer, G. Leive, and J. Kim, “The CMU Design Automa-
tion System-An Example of Automated Data Path De-
sign,” Proceedings of the Sixteenth Design Automation
Conference, San Diego, CA, 1979, pp. 73-80.

16. S. Nakamura, S. Murai, C. Tanaka, M. Terai, H. Fujiwara,
and K. Kinoshita, “LORES-Logic Reorganization Sys-
tem,” Proceedings of the Fifteenth Design Automation
Conference, Las Vegas, NV, 1978, pp. 250-260.

17. J. A. Darringer and W. H. Joyner, “A New Approach to
Logic Synthesis,” Proceedings of the Seventeenth Design
Automation Conference, Minneapolis, MN, 1980, pp. 543-
549.

18. J. A. Daninger, W. H. Joyner, L. Berman, and L. Trevill-
yan, “Experiments in Logic Synthesis,” Proceedings of the

ZCCC80, Port Chester, NY, 1980, pp. 234-237A.
IEEE International Conference on Circuits and Computers

19. F. E. Allen, J. L. Carter, J. Fabri, J. Ferrante, W. H.
Harrison, P. G. Loewner, and L. H. Trevillyan, “The
Experimental Compiling System,” ZBMJ. Res. Develop. 24,

20. G. L. Parasch and R. L. Price, “Development and Applica-
tion of a Designer Oriented Cyclic Simulator,” Proceedings
of the Thirteenth Design Automation Conference, San Fran-
cisco, CA, 1976, pp. 48-53.

21. Y. Chu, “An ALGOL-like Computer Design Language,”
Commun. ACM 8, 607-615 (1%5).

22. C . L. Berman, “On Logic Comparison,” Proceedings of the
Eighteenth Design Automation Conference, Nashville, TN,
1981 (to appear). Also Research Report RC5342, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1980.

695-715 (1980).

Received August 22, 1980; revised January 15, 1981

The authors are located a t the IBM Thomas .I. Watson
Research Center, Yorktown Heights, New York 10598.

280

JOHN A. DARRINGER ET AL. IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981

