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Abstract
The nominal approach to abstract syntax deals with the issues of bound

names and α-equivalence by considering constructions and properties that
are invariant with respect to permuting names. The use of permutations gives
rise to an attractively simple formalisation of common, but often technically
incorrect uses of structural recursion and induction for abstract syntax mod-
ulo α-equivalence. At the heart of this approach is the notion of finitely
supported mathematical objects. This paper explains the idea in as concrete
a way as possible and gives a new derivation within higher-order logic of
principles of α-structural recursion and induction for α-equivalence classes
from the ordinary versions of these principles for abstract syntax trees.
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1 Introduction

“They [previous approaches to operational semantics] do not in general
have any great claim to being syntax-directed in the sense of defining the
semantics of compound phrases in terms of the semantics of their compo-
nents.”

—GD Plotkin, A Structural Approach to Operational Semantics, p 21
(Aarhus, 1981; reprinted as [23, p 32])

The above quotation and the title of the work from which it comes indicate the
important role played by structural recursion and structural induction in program-
ming language semantics. These are the forms of recursion and induction that fit
the commonly used “algebraic” treatment of syntax. In this approach one specifies
the syntax of a language at the level of abstract syntax trees (ASTs) by giving an
algebraic signature. This consists of a collection of sorts s (one for each syntactic
category of the language), and a collection of constructors K (also called “oper-
ators” or “function symbols”). Each such K comes with an arity consisting of a
finite list (s1, . . . , sn) of sorts and with a result-sort s. Then the ASTs over the sig-
nature can be described by inductively generated terms t: if K has arity (s1, . . . , sn)
and result sort s, and if ti is a term of sort si for i = 1..n, then K (t1, . . . , tn) is a
term of sort s. One gets off the ground in this inductive definition with the n = 0
instance of the rule for forming terms covering the case of constants, C (and one
usually writes the term C () just as C ). Recursive definitions and inductive proofs
about programs following the structure of their ASTs are both clearer and less
prone to error than ones using non-structural methods. However, this treatment of
syntax does not take into account the fact that most languages that one deals with
in programming semantics involve binding constructors. In the presence of binders
many syntax-manipulating operations only make sense, or at least only have good
properties, when we operate on syntax at a level of abstraction represented not by
ASTs themselves, but by α-equivalence classes of ASTs.

It is true that this level of abstraction, which identifies terms differing only
in the names of bound entities, can be reconciled with an algebraic treatment of
syntax by using de Bruijn indexes [6]. The well-known disadvantage of this device
is that it necessitates a calculus of operations on de Bruijn indexes that does not
have much to do with our intuitive view of the structure of syntax. As a result there
can be a big “coding gap” between statements of results involving binding syntax
we would like to make and their de Bruijn versions; and (hence) it is easy to get
things wrong. For this reason, de Bruijn-style representations of syntax may be
more suitable for language implementations than for work on language semantics.

In any case, most of the work on semantics which is produced by humans rather
than by computers sticks with ordinary ASTs involving explicit bound names and
uses an informal approach to α-equivalence classes.1 This approach is signalled by

1This includes the metatheory of “higher-order abstract syntax” [19], where the questions we are
addressing are pushed up one meta-level to a single binding-form, λ-abstraction.
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a form of words such as “we identify expressions up to α-equivalence” and means
that: (a) occurrences of “t” now really mean its α-equivalence class “[t]α”; and
(b) if the representative t for the class [t]α is later used in some context where the
particular bound names of t clash in some way with those in the context, then t
will be changed to an α-variant whose bound names are fresh (i.e. are ones not
used in the current context). In other words it is assumed that the “Barendregt
variable convention” [2, Appendix C] is maintained dynamically. In the literature,
the ability to change bound names “on the fly” is usually justified by the assertion
that final results of constructions involving ASTs are independent of choice of
bound names. A fully formal treatment has to prove such independence results and
in this paper we examine ways, arising from the results of [13, 20], to reduce the
burden of such proofs.

However, proving that pre-existing functions respect α-equivalence is only part
of the story; in most cases a prior (or simultaneous) problem is to prove the exis-
tence of the required functions in the first place. To see why, consider the familiar
example of capture-avoiding substitution (x := t)t′ of a λ-term t for all free occur-
rences of a variable x in a λ-term t′. To bring out the issues with binders more
clearly, let us consider this operation not for the pure λ-calculus, but for an ap-
plied calculus that also has expressions for local recursive function declarations.
Thus the terms are either variables (x, f, y, . . .), applications (t1 t2), function ab-
stractions (λx.t), or local recursive function declarations of the form letrec f x =
t1 in t2. The leftmost occurrence of the variable f in letrec f x = t1 in t2 binds
all free occurrences of f in both t1 and t2; whereas the left-most occurrence of the
variable x only binds free occurrences of x in t1. A systematic way of specify-
ing such patterns of binding and the associated notion of α-equivalence is given in
Section 2.2; for the moment I assume the reader can supply a suitable definition of
α-equivalence for λ-terms involving such letrec-expressions.

How does one define capture-avoiding substitution for such terms up to α-
equivalence? In the vernacular of programming semantics, one might specify
(x := t)(−) by saying it has the following properties, where fv(t) indicates the
finite set of free variables of t.

(x := t)y =

{
t if y = x

y if y 6= x
(1)

(x := t)(t1 t2) = (x := t)t1 (x := t)t2 (2)

y /∈ fv(t) ∪ {x} ⇒ (x := t)λy. t1 = λy. (x := t)t1 (3)

y /∈ fv(t2) ∪ {f} & f, y /∈ fv(t) ∪ {x} ⇒
(x := t)letrec f y = t1 in t2 = letrec f y = (x := t)t1 in (x := t)t2 (4)

The condition on the equation in (3) should be familiar enough: there is no need to
say what happens when y occurs free in t or when y = x, since we are working “up
to α-equivalence” and can change λy. t1 to an α-variant satisfying these conditions.
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The same goes for the more complicated condition on the equation in (4): given
x and t, we can change letrec f y = t1 in t2 up to α-equivalence to ensure that f
and y are distinct variables not occurring free in t and not equal to x; but we can
also assume that y does not occur free in t2, since that term lies outside the binding
scope of y in the term letrec f y = t1 in t2.

To see what this specification of (x := t)(−) really amounts to, let us restore
the usually-invisible notation [t]α for the α-equivalence class of a term t. Writing Λ
for the set of terms and Λ/=α for its quotient by α-equivalence =α, then capture-
avoiding substitution of an α-equivalence class e for a variable x is a function
ŝx,e ∈ Λ/=α → Λ/=α. Every such function corresponds to a function sx,e ∈
Λ → Λ/=α respecting =α, i.e. satisfying

t1 =α t2 ⇒ sx,e(t1) = sx,e(t2) (5)

(enabling us to define ŝx,e([t]α) as [sx,e(t)]α). The requirements (1)–(4) mean that
we want sx,e to satisfy:

sx,e(y) =

{
e if y = x

[y]α if y 6= x
(6)

sx,e(t1 t2) = [t′1 t′2]α where sx,e(ti) = [t′i]α for i = 1, 2 (7)

y /∈ fv(e) ∪ {x} ⇒
sx,e(λy.t1) = [λy.t′1]α where sx,e(t1) = [t′1]α (8)

y /∈ fv(t2) ∪ {f} & f, y /∈ fv(e) ∪ {x} ⇒
sx,e(letrec f y = t1 in t2) = [letrec f y = t′1 in t′2]α
where sx,e(ti) = [t′i]α for i = 1, 2. (9)

The problem is not one of proving that a certain well-defined function sx,e respects
α-equivalence, but rather of proving that a function exists satisfying (5)—(9). Note
that (6)—(9) do not constitute a definition of sx,e(t) by recursion on the structure of
the AST t: even if we patch up the “where” conditions in clauses (7)–(9) by using
some enumeration of ASTs to make the choices t′i definite functions of sx,e(ti),
the fact still remains that clauses (8) and (9) and only specify what to do for certain
pairs (y, t1), rather than for all such pairs. Of course it is possible to complicate
the specification by saying what to do for λ- and letrec-terms that do not meet the
preconditions in (8) and (9), thereby arriving at a way of constructing sx,e(t) for
any t (either by giving up structural properties and using a less natural recursion
on the height of trees; or by fixing an enumeration of variables and using structural
recursion to define a more general operation of simultaneous substitution [27]). An
alternative approach, and one that works with the original simple specification, is
to construct functions by giving rule-based inductive definitions of their graphs,
with the rules encoding the required properties of the function. One then has to
prove (using rule-based induction) that the resulting relations are single-valued,
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total and respect =α. This is in principle a fully formal and widely applicable
approach to constructing functions like sx,e using tools that in any case are part
and parcel of structural operational semantics; but one that is extremely tedious to
carry out. It would be highly preferable to establish a recursion principle that goes
straight from definitions like (1)–(4) to the existence of the function (x := t)(−) ∈
Λ/=α → Λ/=α. We provide such a principle here for a general class of signatures
in which binding information can be declared. We call it α-structural recursion
and it comes with an associated induction principle, α-structural induction.

These recursion and induction principles for α-equivalence classes of ASTs
are simplifications and generalisations of the ones introduced by Gabbay and the
author in [13] as part of a new mathematical model of fresh names and name bind-
ing. That paper expresses its results in terms of an axiomatic set theory, based
on the classical Fraenkel-Mostowski permutation model of set theory. In my ex-
perience this formalism impedes the take up within computer science of the new
ideas contained in [13]. There is an essentially equivalent, but more concrete de-
scription of the model as standard sets equipped with some simple extra structure.
These so-called nominal sets are introduced in [20] and I will use them here to ex-
press α-structural recursion and induction within “ordinary mathematics”, or more
precisely, within Church’s higher-order logic [5].

How to read this paper

Having read the Introduction this far, impatient readers may wish to turn to The-
orem 25 to see the statement of the α-structural recursion principle for λ-calculus
with letrec-terms and how it is used to define (x := t)(−) ∈ Λ/=α → Λ/=α

satisfying (1)–(4). To understand the statement of this theorem, they must then
look up the definitions of “nominal set”, “finite support” and the freshness relation
(−) # (−) in Section 3. This recursion principle and the corresponding induc-
tion principle are generalised to arbitrary signatures with binding information in
Section 5. The particular way of specifying binding information that we use (via
nominal signatures [28]) is explained in Section 2. Section 4 gives a first, simple
version of the α-structural recursion and induction principles that are derived from
ordinary structural recursion/induction for ASTs by, roughly speaking, taking into
account an implicit parameterisation by name-permutations. The reduction of the
practically more useful principles of Section 5 to the simpler ones of Section 4 is
quite involved and is relegated to the Appendices. Section 6 contains an extended
example (on normalisation by evaluation for the simply-typed λ-calculus [3]) that
not only uses α-structural recursion and induction, but also shows off some of the
power of nominal sets and the notion of freshness of names that they support. The
final Section 7 assesses this paper’s “nominal” approach to abstract syntax in the
context of related work, both from a mathematical perspective and from the per-
spective of automated theorem proving.
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2 Nominal Syntax

The usual principles of structural recursion and induction are parameterised by an
algebraic signature that specifies the allowed constructors for forming abstract syn-
tax trees (ASTs) of each sort. In order to state principles of recursion and induction
for α-equivalence classes of ASTs, we need to fix a notion of signature that also
specifies the forms of binding that occur in the ASTs. As explained in the Intro-
duction, we stick with the usual “nominal” approach in which bound entities are
explicitly named. Any generalisation of the notion of algebraic signature to en-
compass constructors that bind names needs to specify how bound occurrences of
names in an AST are associated with a binding site further up the syntax tree. There
are a number of such mechanisms in the literature of varying degrees of general-
ity [10, 15, 17, 22, 28]. Here we will use the notion of nominal signature [28]. It
has the advantage of dealing with binding and α-equivalence independently of any
considerations to do with variables, substitution and β-equivalence: bound names
in a nominal signature may be of several different sorts and not just variables that
can be substituted for. In common with the other cited approaches, nominal signa-
tures only allow for constructors that bind a fixed number of names (and without
loss of much generality, we can take that number to be one). There are certainly
forms of binding occurring “in the wild” that do not fit comfortably into this frame-
work (for example, in the full version of F<: with records and pattern-matching
used in Part 2B of the “POPLMARK challenge” [1]). I believe that the notion of
α-structural recursion given here can be extended to cover more general forms of
statically scoped binding, such as those used by Pottier in his Cαml library [24];
but for simplicity’s sake I will stick with constructors binding a fixed number of
names.

2.1 Atoms

From a logical point of view (as opposed to a pragmatic one that also encompasses
issues of parsing and pretty-printing), the names we use for making localised bind-
ings in formal languages only need to be atomic, in the sense that the structure of
names (of the same kind) is immaterial compared with the distinctions between
names. Therefore we will use the term atom for such names. Throughout this pa-
per we fix two sets: the set A of all atoms and the set AS of all atom-sorts. We
also fix a function sort ∈ A → AS assigning sorts to atoms and assume that the
sets AS and Aa , {a ∈ A | sort(a) = a} for each a ∈ AS, are all countably
infinite.

2.2 Nominal signatures

A nominal signature Σ consists of a subset of the atom-sorts, ΣA ⊆ AS, a set
ΣD of data-sorts and a set ΣC of constructors. Each constructor K ∈ ΣC comes
with an arity σ and a result sort s ∈ ΣD, and we write K : σ → s to indicate this



8 Andrew Pitts

information. The arities σ of Σ are given as follows:

Atom-sorts: every atom-sort a ∈ ΣA is an arity.

Data-sorts: every data-sort s ∈ ΣD is an arity.

Unit arity: 1 is an arity.

Pair arities: if σ1 and σ2 are arities, then σ1 ∗ σ2 is an arity.

Atom-binding arities: if a ∈ ΣA and σ is an arity, then «a»σ is an arity.

The terms t over Σ of each arity are defined as follows, where we write t : σ to
indicate that t has arity σ.2

Atoms: If a ∈ Aa is an atom of sort a, then a : a.

Constructed terms: If K : σ → s is in ΣC and t : σ, then K t : s.

Unit: 〈〉 : 1 is the unique term of unit arity.

Pairs: If t1 : σ1 and t2 : σn, then 〈t1, t2〉 : σ1 ∗ σ2.

Atom-binding: If a ∈ Aa and t : σ, then «a»t : «a»σ.

We write Ar(Σ) for the set of all arities over a nominal signature Σ, T(Σ) for the
set of all terms over Σ, and ar ∈ T(Σ) → Ar(Σ) for the function assigning to
each term t the unique arity σ such that t : σ holds. For each σ ∈ Ar(Σ), we write
T(Σ)σ for the subset {t ∈ T(Σ) | ar(t) = σ} of terms of arity σ.

Example 1 (λ-calculus with letrec). Here is a nominal signature for the untyped
λ-calculus [2]. There is a single atom-sort v for variables, and a single data-sort t
for λ-terms.

atom-sorts data-sorts constructors
v t V : v → t

A : t ∗ t → t
L : «v»t → t

To illustrate the inter-mixing of the arity-formers for pairing and atom-binding
that is allowed in a nominal signature, consider augmenting λ-calculus with the
local recursive function declarations, letrec f x = t1 in t2, that were used in the
discussion of capture-avoiding substitution in the Introduction. Recall that free
occurrences of x in t1 are bound in letrec f x = t1 in t2; and free occurrences of
f in either of t1 or t2 are bound in the term. To get the effect of this we can add to
the above nominal signature a constructor

Letrec : «v»((«v»t) ∗ t) → t .

2Compared with [28, Definition 2.3] we only define ground terms, since we do not need to con-
sider variables ranging over terms here.
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So for example, the expression letrec f x = f x in f(λy.y) corresponds to the
nominal term

Letrec«f»〈«x»A〈V f,V x〉,A〈V f,L«y»V y〉〉

of arity t over this signature (where f, x, y ∈ Av).

Example 2 (π-calculus). Here is a nominal signature for the version of the Milner-
Parrow-Walker π-calculus given in [25, Definition 1.1.1]. There is an atom-sort
chan for channel names and a data-sort proc for process expressions; but there are
also auxiliary data-sorts gsum, for processes that are guarded sums, and pre, for
prefixed processes.

atom-sorts data-sorts constructors
chan proc Gsum : gsum → proc

gsum Par : proc ∗ proc → proc
pre Res : «chan»proc → proc

Rep : proc → proc
Zero : 1 → gsum
Pre : pre → gsum

Plus : gsum ∗ gsum → gsum
Out : (chan ∗ chan) ∗ proc → pre
In : chan ∗ «chan»proc → pre

Tau : proc → pre
Match : (chan ∗ chan) ∗ pre → pre

For example, the π-calculus process expression νx((xu.0+ yv.0)|x(z).zw.0) cor-
responds to the following nominal term of arity proc over this signature (where
x, u, y, v, z, w ∈ Achan):

Res«x»Par〈GsumPlus〈PreOut〈〈x, u〉,GsumZero〈〉〉,
PreOut〈〈y, v〉,GsumZero〈〉〉〉,

GsumPreIn〈x, «z»GsumPreOut〈〈z, w〉,GsumZero〈〉〉〉〉.

2.3 Ordinary structural recursion and induction

The terms over a nominal signature Σ are just the abstract syntax trees determined
by an ordinary signature associated with Σ whose sorts are the arities of Σ, whose
constructors are those of Σ, plus constructors for unit, pairs and atom-binding, and
with atoms regarded as particular constants. Consequently we can use ordinary
structural recursion to define functions on the set T(Σ) of terms over Σ; and we can
use ordinary structural induction to prove properties of those terms. The following
two theorems give versions of these principals that we use later. We regard their
proofs as standard and omit them.3

3Each theorem can be used to prove the other; and either of them can be proved using induction
for the natural numbers once one has fixed upon a particular construction of abstract syntax trees.
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Theorem 3 (structural recursion for nominal terms). Let Σ be a nominal sig-
nature. Suppose we are given sets Sσ, for each σ ∈ Ar(Σ), and elements

ga ∈ Aa → Sa (a ∈ ΣA)
gK ∈ Sσ → Ss ((K : σ → s) ∈ ΣC)
g1 ∈ S1

gσ1∗σ2 ∈ Sσ1 × Sσ2 → Sσ1∗σ2 (σ1, σ2 ∈ Ar(Σ))
g«a»σ ∈ Aa × Sσ → S«a»σ (a ∈ ΣA, σ ∈ Ar(Σ))

(We write X×Y for the cartesian product of two sets X and Y ; and write X → Y
for the set of functions from X to Y .) Then there is a unique family of functions
(ĝσ ∈ T(Σ)σ → Sσ | σ ∈ Ar(Σ)) satisfying the following properties

ĝ a = ga(a) (10)

ĝ(K t) = gK (ĝ t) (11)

ĝ〈〉 = g1 (12)

ĝ〈t1, t2〉 = gσ1∗σ2〈ĝ t1, ĝ t2〉 (13)

ĝ «a»t = g«a»σ(a, ĝ t) (14)

where we have abbreviated ĝσ(t) to ĝ t (since σ = ar(t) is determined by t).

Theorem 4 (structural induction for nominal terms). Let Σ be a nominal sig-
nature and S ⊆ T(Σ) a set of terms over Σ. To prove that S is the whole of T(Σ)
it suffices to show

(∀a ∈ ΣA, a ∈ Aa) a ∈ S (15)

(∀(K : σ → s) ∈ ΣC, t : σ) t ∈ S ⇒ K t ∈ S (16)

〈〉 ∈ S (17)

(∀(σi ∈ Ar(Σ), ti : σi | i = 1, 2)) t1 ∈ S & t2 ∈ S ⇒ 〈t1, t2〉 ∈ S (18)

(∀a ∈ ΣA, a ∈ Aa, σ ∈ Ar(Σ), t : σ) t ∈ S ⇒ «a»t ∈ S . (19)

2.4 α-Equivalence and α-terms

So far we have taken no account of the fact that atom-binding terms «a»t should be
identified up to renaming the bound atom a. Given a nominal signature Σ, the re-
lation of α-equivalence, t =α t′ : σ (where σ ∈ Ar(Σ) and t, t′ ∈ T(Σ)σ) makes
such identifications. It is inductively defined by the rules in Figure 1. They gener-
alise to terms over a nominal signature a version of the definition of α-equivalence
of λ-terms [16, p. 36] that is conveniently syntax-directed compared with the clas-
sic version [2, Definition 2.1.11]. It is easy to see that =α is reflexive, symmet-
ric and respects the various term-forming constructions for nominal syntax. Less
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(=α-1)
a ∈ ΣA a ∈ Aa

a =α a : a
(=α-2)

(K : σ → s) ∈ ΣC t =α t′ : σ

K t =α K t′ : s

(=α-3)
〈〉 =α 〈〉 : 1

(=α-4)
t1 =α t′1 : σ1 t2 =α t′2 : σ2

〈t1, t2〉 =α 〈t′1, t′2〉 : σ1 ∗ σ2

(=α-5)

a ∈ ΣA a, a′, a′′ ∈ Aa a′′ /∈ atm 〈a, t, a′, t′〉
t{a′′/a} =α t′{a′′/a′} : σ

«a»t =α «a′»t′ : «a»σ

In rule (=α-5), atm t indicates the finite set of atoms occurring in t; and t{a′/a}
indicates the term resulting from replacing all occurrences in t of the atom a by the
atom a′ (assumed to be of the same sort); both can defined by structural recursion
(Theorem 3):

atm a = {a}
atm(K t) = atm t

atm〈〉 = ∅
atm〈t1, t2〉 = atm t1 ∪ atm t2

atm «a»t = {a} ∪ atm t

a′′{a′/a} =

{
a′ if a′′ = a

a′′ if a′′ 6= a

(K t){a′/a} = K (t{a′/a})
〈〉{a′/a} = 〈〉

〈t1, t2〉{a′/a} = 〈t1{a′/a}, t2{a′/a}〉
(«a′′»t){a′/a} = «a′′{a′/a}»t{a′/a}

Figure 1: α-Equivalence of nominal terms

straightforward is the fact that =α is transitive. This can be proved in a number of
ways. My favourite way makes good use of the techniques we will be using later,
based on the action of atom-permutations on terms; see [20, Example 1].

Definition 5. For each σ ∈ Ar(Σ), we write Tα(Σ)σ for the quotient of T(Σ)σ

by the equivalence relation (−) =α (−) : σ. Thus the elements of Tα(Σ)σ are
α-equivalence classes of terms of arity σ; we write [t]α for the class of t and refer
to [t]α as an α-term of arity σ over the nominal signature Σ.

3 Finite Support

The crucial ingredient in the formulation of structural recursion and induction for
α-terms over a nominal signature is the notion of finite4 support. It gives a well-
behaved way, phrased in terms of atom-permutations, of expressing the fact that

4Both Gabbay [12] and Cheney [4] develop more general notions of “small” supports. As Ch-
eney’s work shows, such a generalisation is necessary for some techniques of classical model theory
to be applied; but finite supports suffice here.
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atoms are fresh for mathematical objects. It turns out to agree with the obvious
definition when the objects are finite data such as abstract syntax trees, but allows
us to deal with freshness for the not so obvious case of infinite sets and functions.
For example, the identity function on A “mentions” every atom in its graph; never-
theless, it has empty support and any atom is fresh for it.

3.1 Nominal sets

Let Perm denote the set of all (finite, sort-respecting) atom-permutations; by
definition, its elements are bijections π : A ↔ A such that {a ∈ A | π(a) 6= a}
is finite and sort(π(a)) = sort(a) for all a ∈ A. The operation of composing
bijections gives a binary operation π, π′ ∈ Perm 7→ π ◦ π′ ∈ Perm

(π ◦ π′)(a) , π(π′(a)) (a ∈ A)

that makes Perm into a group; we write ι for the identity atom-permutation and
π−1 for the inverse of π. Among the elements of Perm we single out trans-
positions (a a′) given by a pair of atoms of the same sort: (a a′) is the atom-
permutation mapping a to a′, mapping a′ to a and leaving all other atoms fixed. It
is a basic fact of group theory that every π ∈ Perm is equal to a finite composition
of such transpositions.

An action of Perm on a set X is a function Perm ×X → X , whose effect on
(π, x) ∈ Perm ×X we write as π · x (with X understood), and which is required
to have the properties: ι · x = x and π · (π′ · x) = (π ◦ π′) · x, for all x ∈ X
and π, π′ ∈ Perm . Given such an action and an element x ∈ X , we say that a set
A ⊆ A of atoms supports x if (a a′) · x = x holds for all atoms a and a′ (of the
same sort) that are not in A.

Definition 6. A nominal set is by definition a set X equipped with an action of
Perm such that every element x ∈ X is supported by some finite set of atoms.

If X is a nominal set and A1 and A2 are both finite sets of atoms supporting
x ∈ X , then it is the case that A1 ∩A2 also supports x. To see this, suppose that a
and a′ are atoms of the same sort not in A1 ∩ A2; we have to show (a a′) · x = x.
This is certainly the case if a = a′ (because (a a) = ι); and if a 6= a′, picking any
a′′ in the infinite set A−(A1∪A2∪{a, a′}), then (a a′) = (a a′′)◦(a′ a′′)◦(a a′′)
is a composition of transpositions each of which fixes x (since for each of the three
pairs of atoms, each element of the pair is either not in A1, or not in A2), so
itself fixes x, as required. It follows immediately from this intersection property of
finite supports that in a nominal set X , each element x ∈ X possesses a smallest
finite support, which we write as suppX(x), or just supp(x) if X is clear from the
context, and call the support of x in X .

Example 7. (i) Each set Aa of atoms of a particular sort a is a nominal set once
we endow it with the atom-permutation action given by π · a = π(a); as one
might expect, supp(a) = {a}. It is not hard to see that the disjoint union
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of nominal sets is again a nominal set. So since the set of all atoms is the
disjoint union of Aa as a ranges over atom-sorts, A is a nominal set with
atom-permutation action and support sets as for each individual Aa.

(ii) Let Σ be a nominal signature. Using Theorem 3 we can define an atom-
permutation action on the sets T(Σ)σ of terms over Σ of each arity σ ∈
Ar(Σ):

π · a , π(a)

π ·K t , K (π · t)
π · 〈〉 , 〈〉

π · 〈t1, t2〉 , 〈π · t1, π · t2〉
π · «a»t , «π · a»(π · t) .

Using Theorem 4 one can prove that this has the properties required of an
atom-permutation action, that a, a′ /∈ atm t ⇒ (a a′) · t = t, and that
a ∈ atm t & (a a′) · t = t ⇒ a = a′. From these facts it follows that
each T(Σ)σ is a nominal set, with supp(t) = atm t, the finite set of atoms
occurring in t.

(iii) Turning next to α-terms over Σ (Section 2.4), first note that the action of
atom-permutations on terms preserves α-equivalence: this is a consequence
of a general property (Theorem 12) of rule-based inductive definitions that
we will establish at the end of Section 3.2. Therefore we get a well-defined
action on α-terms by defining: π ·[t]α = [π ·t]α. For this action one finds that
Tα(Σ)σ is a nominal set with supp([t]α) = fa t, the finite set of free atoms
of any representative t of the class [t]α, defined (using Theorem 3) by:

fa a , {a}
fa(K t) , fa t

fa〈〉 , ∅
fa〈t1, t2〉 , fa t1 ∪ fa tn

fa «a»t , fa t− {a} .

(iv) Each set S becomes a nominal set, called the discrete nominal set on S,
when we endow it with the trivial action of atom-permutations, given by
π · s = s for each π ∈ Perm and s ∈ S; in this case the support of each
element is empty. In particular, we will regard the one-element set 1 = {()},
the set of booleans B = {true, false} and the set of natural numbers N =
{0, 1, 2, . . .} as nominal sets in this way.
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3.2 Products, functions and powersets

If X1 and X2 are nominal sets, then we get an action of atom-permutations on their
cartesian product X1 ×X2 by defining π · (x1, x2) to be (π · x1, π · x2), for each
(x1, x2) ∈ X1 ×X2. If Ai supports xi ∈ Xi for i = 1, 2, then it is not hard to see
that A1 ∪ A2 supports (x1, x2) ∈ X1 ×X2. Thus X1 ×X2 is also a nominal set.
Note that

supp((x1, x2)) = supp(x1) ∪ supp(x2) (20)

since we have already observed that supp(x1)∪supp(x2) supports (x1, x2), so that
supp((x1, x2)) ⊆ supp(x1) ∪ supp(x2); and conversely, if A supports (x1, x2)
then it also supports each xi, so that supp(xi) ⊆ supp((x1, x2)).

Turning next to functions, if X and Y are nominal sets, then we get an action
of atom-permutations on the set X → Y of all functions from X to Y by defining
π · f to be the function mapping each x ∈ X to π · (f(π−1 · x)) ∈ Y . If you
have not seen this definition before, it may look more complicated than expected;
however, note that it is equivalent to the requirement that function application be
respected by atom-permutations:

π · (f(x)) = (π · f)(π · x) . (21)

More precisely, the definition of the action on functions is forced by the require-
ment that X → Y together with the usual application function be the exponential
of X and Y in the cartesian closed category whose objects are sets equipped with
an atom-permutation action and whose morphisms are functions preserving the ac-
tion. Unlike the situation for cartesian product, not every element f ∈ X → Y
is necessarily finitely supported with respect to this action (see Example 9 below).
However, note that if f is supported by a finite set of atoms A, then π·f is supported
by {π(a) | a ∈ A}. Therefore the set

X →fs Y , {f ∈ X → Y | (∃finite A ⊆ A) A supports f}

of finitely supported functions from X to Y is closed under the atom-permutation
action and is a nominal set.

Given a nominal set X , we can use the usual bijection between subsets of X
and functions in X → B (where B = {true, false}) to transfer the action of atom-
permutations on X → B to one on subsets of X . From the definition of the action
of atom-permutations on functions and using the fact that the action on B is trivial
(see Example 7(iv)), one can calculate that this action sends π ∈ Perm and S ⊆ X
to the subset

π · S , {π · x | x ∈ S} .

Note that if S is supported by a set of atoms A with respect to this action, then π ·S
is supported by {π(a) | a ∈ A}. So the set

Pfs(X) , {S ⊆ X | (∃finite A ⊆ A) A supports S}

of finitely supported subsets of the nominal set X is closed under the atom-
permutation action on all subsets of X and hence is a nominal set.
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Example 8. Recall that the elements of Perm are bijections from A to itself that
respect sorts and leave fixed all but finitely many atoms. So each π ∈ Perm is in
particular a function A → A. Regarding A as a nominal set as in Example 7(i),
the action of atom-permutations on π qua function turns out to be the operation of
conjugation: π′ · π = π′ ◦ π ◦ (π′)−1. Hence the action of atom-permutations on
A → A restricts to an action on Perm . One can prove that the finite set {a ∈ A |
π(a) 6= a} supports π with respect to this action (and is in fact the smallest such
set); so Perm is a nominal set.

Example 9. Not every function between nominal sets is finitely supported. For
example, since the set A of atoms is countable, there are surjective functions in
N → A; but it is not hard to see that any f ∈ N →fs A must have a finite
image (which is in fact the support of f ). A more subtle example of a non-finitely-
supported function is any choice function5 for the set A of atoms, i.e. any function
choose ∈ (A →fs B) → A (where B = {true, false}) satisfying f(a) = true ⇒
f(choose(f)) = true, for all f ∈ A →fs B and a ∈ A. To see this, we suppose
that choose is supported by some finite set A ⊆ A and derive a contradiction. Let
f ∈ A → B be the function mapping a ∈ A to true if a /∈ A and to false if
a ∈ A. It is not hard to see that A supports f ; in particular f ∈ A →fs B and we
can apply choose to obtain an atom a0 , choose(f). Let a = sort(a0). Since
Aa is infinite and A ∪ {a0} is finite, there is some atom a1 ∈ Aa with a1 6= a0

and a1 /∈ A. Since a1 /∈ A, f(a1) = true by definition of f ; and so since choose
is a choice function, we also have f(choose(f)) = true. By definition of f and
a0 this means that a0 = choose(f) /∈ A. Since a0, a1 /∈ A and A supports both
choose and f , we have (a0 a1) · choose = choose and (a0 a1) · f = f . Thus by
(21), a1 = (a0 a1) · a0 = (a0 a1) · choose(f) = ((a0 a1) · choose)((a0 a1) · f) =
choose(f) = a0, contradicting the fact that we picked a1 to be different from a0

and completing the proof.

We note a property of support with respect to function application that we use
in what follows.

Lemma 10. If X and Y are nominal sets, f ∈ X →fs Y and x ∈ X , then
supp(f(x)) ⊆ supp(f) ∪ supp(x).

Proof. For all atoms a, a′ of the same sort, if a, a′ /∈ supp(f) ∪ supp(x) then
(a a′) · f = f and (a a′) ·x = x; so by (21) (a a′) · f x = ((a a′) · f)((a a′) ·x) =
f x. Thus supp(f) ∪ supp(x) supports f x and hence supp(f x) is contained in
this finite set.

A corollary of this is that for nominal sets X and Y , the operation of function
application appX,Y (f, x) , f x is an element of (X →fs Y )×X →fs Y ; indeed
appX,Y is supported by the empty set of atoms. Similarly, it is not hard to see

5It was the lack of finite support for choice functions that motivated the original construction of
the permutation model of set theory by Fraenkel and Mostowski.
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that currying, curX,Y,Z(f) , λx ∈ X.λy ∈ Y.f(x, y), determines an element
curX,Y,Z ∈ ((X × Y →fs Y ) →fs (X →fs (Y →fs Z))) with empty support. The
constantly true function trueX(x) , true and the equality function eqX(x, x′) ,
if x = x′ then true else false also determine elements trueX ∈ (X →fs B)
and eqX ∈ (X × X →fs B) with empty support. It is for these reasons that the
following general principle holds good.

Theorem 11 (finite support principle). Any function or relation that is defined
from finitely supported functions and relations using higher-order logic is itself
finitely supported.

Because of this, the collection of finitely supported functions and subsets of
nominal sets forms a very rich collection that is closed under the usual construc-
tions of informal mathematics.6 If we remain within pure higher-order logic over
ground types for numbers and booleans, then we only get elements with empty
support. However, if we add a ground type for the set A of atoms, a constant for
the function sort ∈ A → AS (taking AS to be a copy of N) and constants for
each atom, then the terms and formulas of higher-order logic describe functions
and subsets which may have non-empty, finite support. Such a “higher-order logic
with atoms” has been developed by Gabbay [12]. In this paper I stick with ordi-
nary higher-order logic: by considering all functions and subsets rather than just
finitely supported ones, one sometimes gets more information about a construction.
A good example of this is provided by a cornerstone of programming language se-
mantics, namely rule-based inductive definitions. Given a nominal set X , let R be
a finitely supported set of rules for defining a subset of X; more precisely, let R
be an element of the nominal set Pfs(Pfs(X) × X). As usual, a subset S ⊆ X is
closed under the rules in R if

(∀(H, c) ∈ R) H ⊆ S ⇒ c ∈ S

and the smallest such subset, ind(R), is given by the intersection of all such closed
subsets. If we worked systematically in “FM-HOL” [12], rather than using ar-
bitrary subsets of X , we would only consider finitely supported subsets that are
closed under the rules, and would replace ind(R) by

⋂
{S ∈ Pfs(X) | (∀(H, c) ∈

R) H ⊆ S ⇒ c ∈ S}. However these two subsets coincide, as the following
theorem shows.

Theorem 12 (finitely supported inductive definitions). Let X be a nominal set.
For any set of rules R ∈ Pfs(Pfs(X) × X), the subset ind(R) ⊆ X inductively
defined by R is a finitely supported subset of X; indeed supp(ind(R)) ⊆ supp(R).

Proof. Suppose a, a′ are atoms of the same sort that are not in the support of R.
We have to show that (a a′) · ind(R) = ind(R). It suffices to just show ind(R) ⊆

6The only exception being that the finite support property is not conserved by all uses of choice:
see Example 9.
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(a a′) · ind(R). (For applying (a a′) to both sides then gives the reverse inclusion.)
For this it suffices to show that (a a′) · ind(R) is closed under the rules in R, since
ind(R) is the smallest such subset. But if (H, c) ∈ R, then ((a a′) ·H, (a a′) · c)
is also a rule in R, because (a a′) · (H, c) ∈ (a a′) ·R = R since a, a′ /∈ supp(R).
So if H ⊆ (a a′) · ind(R), then (a a′) ·H ⊆ (a a′) · (a a′) · ind(R) = ind(R),
so (a a′) · c ∈ ind(R) since ind(R) is closed under the rule ((a a′) ·H, (a a′) · c);
and hence c = (a a′) · (a a′) · c ∈ (a a′) · ind(R).

In this paper we will confine ourselves to finitely supported finitary rules,
i.e. those R only containing (hypothesis, conclusion)-pairs (H, c) for which H
is a finite subset of X . Every finite subset of a nominal set is in particular a finitely
supported subset: clearly {x1, . . . , xn} is supported by supp(x1)∪· · ·∪supp(xn).
Furthermore the action of atom-permutations on subsets of X clearly sends finite
subsets to finite subsets. So the finite powerset Pfin(X) is a nominal set when
X is. For finitary rules we just have to check that R is a finitely supported sub-
set of the nominal set Pfin(X) × X to conclude from the above theorem that the
subset ind(R) it inductively defines is again finitely supported. For example, it
is not hard to see that the rule set given schematically in Figure 1 is a subset of
Pfin(T(Σ)×T(Σ))× (T(Σ)×T(Σ)) that is supported by the empty set of atoms.
Therefore by the theorem, the relation =α of α-equivalence is supported by the
empty set. So =α is preserved by all atom-transpositions and hence also by any
π ∈ Perm (since each π is a composition of transpositions):

t =α t′ : σ ⇒ π · t =α π · t′ : σ . (22)

We used this property in Example 7(iii) when discussing the nominal set structure
of Tα(Σ).

3.3 Nominal subsets and quotients

If X is a nominal set and S ∈ Pfs(X) is a finitely supported subset of it, then S is
not necessarily itself a nominal set, because for any x ∈ S and π ∈ Perm we have
no guarantee that π · x again lies in S. But if supp(S) = ∅, then (a a′) · S = S
for all atoms a, a′ of the same sort; and since each π ∈ Perm is the composition
of transpositions, in this case it follows that π · S = S. From this it is not hard to
see that the condition supp(S) = ∅ is equivalent to

(∀π ∈ Perm, x ∈ X) x ∈ S ⇒ π · x ∈ S . (23)

So when (23) holds the action of atom-permutations on elements of X restricts
to an action on S; and furthermore, the support of each x ∈ S is the same as its
support as an element of X . Therefore S is a nominal set. We call such an S a
nominal subset of X . (The term equivariant subset is also commonly used for
this.)

Another useful way of forming nominal sets is by taking quotients. If ∼ is an
equivalence relation on a nominal set X , then so long as ∼ is a nominal subset of
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X × X , the usual set X/∼ of equivalence classes inherits a well-defined atom-
permutation action, given by π · [x] = [π · x]. Furthermore, an equivalence class
is supported by any set of atoms that supports a representative of the class. So
X/∼ is a nominal set. The construction of the nominal set Tα(Σ)σ of α-terms (of
arity σ over a nominal signature Σ) from the nominal set T(Σ)σ is an example of
this construction, since we saw in (22) that α-equivalence is a nominal subset of
T(Σ)σ × T(Σ)σ.

3.4 Freshness

Given an element of a nominal set, most of the time we are interested not so much
in its support as in the (infinite) set of atoms that are not in its support. More
generally, if x ∈ X and y ∈ Y are elements of nominal sets, we write x # y when
suppX(x) ∩ suppY (y) = ∅ and say that x is fresh for y.

Lemma 13. Let X and Y be nominal sets. For any x ∈ X , y ∈ Y , π ∈ Perm ,
and atoms a, a′ ∈ A of the same sort,

π · ((a a′) · x) = (π(a) π(a′)) · (π · x) (24)

x # y ⇒ π · x # π · y . (25)

Proof. Equation (24) follows immediately from the fact that the atom-permutations
π ◦ (a a′) and (π(a) π(a′)) ◦ π are always equal.

Given a set of atoms A, recall from the previous section that we write π · A
for the set {π(a) | a ∈ A}. Note that since each permutation is in particular a
bijection, it is the case that π · (A∩A′) = π ·A∩ π ·A′. Therefore to prove (25) it
suffices to show that π · supp(x) = supp(π · x). But if A supports x, then for any
atoms a, a′ /∈ π · A (of the same sort), we have π−1(a), π−1(a′) /∈ A and hence
(π−1(a) π−1(a′)) · x = x. Applying π · (−) to both sides of this equation and
using (24), we get (a a′) · (π ·x) = π ·x. Thus π ·A supports π ·x when A supports
x. So

(∀π ∈ Perm)(∀x ∈ X) supp(π · x) ⊆ π · supp(x) .

Hence supp(x) = supp(π−1 · π · x) ⊆ π−1 · supp(π · x) and thus we also have
π · supp(x) ⊆ supp(π · x). So we do indeed have π · supp(x) = supp(π · x) and
hence also (25).

Recall that the set of atoms A is a nominal set as in Example 7(i). The follow-
ing simple property of finitely supported sets of atoms is extremely useful when
dealing with properties of fresh atoms; it subsumes [13, Proposition 4.10] and [20,
Proposition 4].

Theorem 14 (some/any theorem). Let S ∈ Pfs(A) be a set of atoms supported
by some finite set of atoms A. For each atom-sort a ∈ AS, the following are
equivalent:

(∀a ∈ Aa) a /∈ A ⇒ a ∈ S (26)

(∃a ∈ Aa) a /∈ A & a ∈ S . (27)
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Proof. Since Aa−A is infinite, it is in particular non-empty; thus (26) implies (27).
Conversely, suppose a ∈ Aa − A satisfies a # S. Given any other a′ ∈ Aa − A,
we have to show a′ # S; but (a a′) · S = S (since a, a′ /∈ A ⊇ supp(S)) and
hence a′ = (a a′) · a ∈ (a a′) · S = S.

Example 15. Recall from Example 7(ii) that in the nominal set T(Σ)σ of terms
of arity σ over a nominal signature Σ, the support of a term t is just the finite
set atm t of atoms that occur in t. Furthermore, if a′ /∈ atm t, then the terms
t{a′/a} (replace a by a′ throughout t) and (a a) · t (swap a and a′ throughout t)
are the same. Therefore the crucial rule (=α-5) in the definition of α-equivalence
of nominal terms can be rewritten as:

a ∈ ΣA a, a′, a′′ ∈ Aa a′′ # (a, t, a′, t′)
(a′′ a) · t =α (a′′ a′) · t′ : σ

«a»t =α «a′»t′ : «a»σ

In particular we have

«a»t =α «a′»t′ : «a»σ ⇔
(∃a′′ ∈ Aa) a′′ # (a, t, a′, t′) & (a a′′) · t =α (a′ a′′) · t′ : σ . (28)

Applying Theorem 14 to the set of atoms S = {a′′ ∈ Aa | (a a′′) ·t =α (a′ a′′) ·t′ :
σ}, which (by Lemma 13) is supported by A = supp(a, t, a′, t′), we get from (28)
a useful property of α-equivalence of atom-binding terms:

«a»t =α «a′»t′ : «a»σ ⇔
(∀a′′ ∈ Aa) a′′ # (a, t, a′, t′) ⇒ (a a′′) · t =α (a′ a′′) · t′ : σ . (29)

The next result provides a very general criterion for when a construction that
“picks a fresh atom” is independent of which fresh atom is chosen.

Theorem 16 (freshness theorem). Given an atom-sort a ∈ AS and a nominal set
X , if a finitely supported function h ∈ Aa →fs X satisfies

(∃a ∈ Aa) a # h & a # h(a) (30)

then there is a unique element fresh(h) ∈ X satisfying

(∀a ∈ Aa) a # h ⇒ h(a) = fresh(h) . (31)

Furthermore, supp(fresh(h)) ⊆ supp(h).

Proof. Given (30) we have to prove that h is constant on the non-empty set Aa −
supp(h). First note that by Theorem 14 (with S , {a ∈ Aa | a # h(a)} and
A , supp(h) ⊇ supp(S)), if (30) holds then

(∀a ∈ Aa) a # h ⇒ a # h(a) . (32)
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Suppose a, a′ ∈ Aa−supp(h). To see that h(a) = h(a′), without loss of generality
we may assume a 6= a′. By Lemma 10, a # h(a′) (since a # h and a # a′); and
a′ # h(a′) holds by (32). Hence

h(a′) = (a a′) · h(a′) since (a, a′) # h(a′)
= ((a a′) · h)((a a′) · a′) by (21)

= h((a a′) · a′) since (a, a′) # h

= h(a) .

So there is a unique element fresh(h) ∈ X satisfying (31). To see that it is sup-
ported by supp(h), if a, a′ are atoms (of the same sort) satisfying (a, a′) # h,
choosing any a′′ in the infinite set Aa− supp(h, a, a′), we have (a a′) · fresh(h) =
(a a′) · h(a′′) = ((a a′) · h)((a a′) · a′′) = h(a′′) = fresh(h). Thus supp(h)
supports fresh(h).

4 Recursion and Induction Principles for α-Terms

Recall from Definition 5 that Tα(Σ)σ denotes the set of α-terms of arity σ over a
nominal signature Σ; by definition these are α-equivalence classes [t]α of terms
t : σ. Elementary properties of the relation =α of α-equivalence yield the follow-
ing structural properties of α-terms; at the same time we introduce some concrete
syntax for α-terms mirroring the informal notation for α-equivalence classes men-
tioned in the Introduction.

Atoms: if a ∈ ΣA and e ∈ Tα(Σ)a, then there is a unique a ∈ Aa such that
e = [a]α. In this case we write e just as a.

Constructed α-terms: if s ∈ ΣD and e ∈ Tα(Σ)s, then there are unique (K :
σ → s) ∈ ΣC and e′ ∈ Tα(Σ)σ such that there exists t′ with e′ = [t′]α and
e = [K t′]α. In this case we write e as K e′.

Unit: Tα(Σ)1 contains a unique equivalence class, [〈〉]α, which we write as ().

Pairs: if σ1, σ2 ∈ Ar(Σ) and e ∈ Tα(Σ)σ1∗σ2 , then there are unique ei ∈ Tα(Σ)σi

for i = 1, 2 such that there exist ti with ei = [ti]α (i = 1, 2) and e =
[〈t1, t2〉]α. In this case we write e as (e1, e2).

Atom-binding: if a ∈ ΣA, σ ∈ Ar(Σ) and e ∈ Tα(Σ)«a»σ, then for each a ∈ Aa

with a # e (i.e. with a not a free atom of e—cf. Example 7(iii)), there is a
unique e′ ∈ Tα(Σ)σ such that there exists t′ with e′ = [t′]α and e = [«a»t′]α.
In this case we write e as a. e′ .

Using this notation we now give a first version of structural recursion for α-
terms over a nominal signature. Compared with Theorem 3, the principle uses
nominal sets rather than ordinary sets, and requires a common finite support for
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the collection of functions in its hypothesis. Furthermore, the function supplied
for each atom-binding arity must satisfy a freshness condition for binders (FCB)
saying, roughly, that for some sufficiently fresh choice of the atom being bound,
the result of the function can never contain that atom in its support. These con-
ditions ensure that there is a unique (finitely supported) arity-indexed family of
functions that is well-defined on α-equivalence classes and satisfies the required
recursion equations—for all sufficiently fresh bound atoms, in the case of the re-
cursion equation for binders.

Theorem 17 (first α-structural recursion theorem). Let Σ be a nominal signa-
ture. Suppose we are given an arity-indexed family of nominal sets (Xσ | σ ∈
Ar(Σ)) and elements

fa ∈ Aa →fs Xa (a ∈ ΣA)
fK ∈ Xσ →fs Xs ((K : σ →fs s) ∈ ΣC)
f1 ∈ X1

fσ1∗σ2 ∈ Xσ1 ×Xσ2 →fs Xσ1∗σ2 (σ1, σ2 ∈ Ar(Σ))
f«a»σ ∈ Aa ×Xσ →fs X«a»σ (a ∈ ΣA, σ ∈ Ar(Σ))

all of which are supported by a finite set of atoms A and satisfy the freshness
condition for binders (FCB): for each atom-binding arity «a»σ ∈ Ar(Σ), the
function f«a»σ satisfies

(∃a′ ∈ Aa) a′ /∈ A & (∀x ∈ Xσ) a′ # f«a»σ(a′, x) . (FCB)

Then there is a unique family of finitely supported functions (f̂σ ∈ Tα(Σ)σ →fs

Xσ | σ ∈ Ar(Σ)) with supp(f̂σ) ⊆ A and satisfying the following properties for
all a, e, e1, . . . , en of appropriate arity:

f̂a = fa(a) (33)

f̂(K e) = fK (f̂ e) (34)

f̂() = f1 (35)

f̂(e1, e2) = fσ1∗σ2(f̂ e1, f̂e2) (36)

a /∈ A ⇒ f̂(a. e) = f«a»σ(a, f̂e) (37)

where we have abbreviated f̂σ(e) to f̂ e and used the notation for α-terms intro-
duced above.

Proof. We can reduce the proof of the theorem to an application of Theorem 3,
taking advantage of the fact that we are working (informally) in higher-order logic.7

From the Ar(Σ)-indexed family of nominal sets Xσ we define another such family:
Sσ , Perm →fs Xσ (regarding Perm as a nominal set as in Example 8 and using

7In other words the theorem is reducible to primitive recursion at higher types.
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the →fs construct from Section 3.2). Now define elements ga, gK , g1, gσ1∗σ2 and
g«a»σ as in the statement of Theorem 3, as follows.

ga a , λπ ∈ Perm. fa(π(a))

gK s , λπ ∈ Perm. fK (s(π))

g1 , λπ ∈ Perm. f1

gσ1∗σ2(s1, s2) , λπ ∈ Perm. fσ1∗σ2(s1(π), s2(π))

g«a»σ(a, s) , λπ ∈ Perm. fresh(λa′ ∈ Aa. f«a»σ(a′, s(π ◦ (a a′))))

The crucial clause in this definition is the last one, where we are using the fresh
functional from Theorem 16 applied to the function h , λa′ ∈ Aa. f«a»σ(a′, s(π ◦
(a a′))). For this to make sense it has to be the case that h is finitely sup-
ported and satisfies condition (30) of that lemma; let us see why this is so. Since
supp(f«a»σ) ⊆ A by assumption, it follows that h is supported by the finite set
A ∪ supp(s, π, a). To see that (30) holds of h, let a′ be the atom whose exis-
tence is asserted by (FCB); thus a′ /∈ A and a′ # f«a»σ(a′, x) for any x ∈ Xσ.
For any other a′′ ∈ Aa − A, we have (a′ a′′) · f«a»σ = f«a»σ (since a′, a′′ /∈
supp(f«a»σ)); hence applying (a′ a′′) to a′ # f«a»σ(a′, x), from Lemma 13 we get
a′′ # f«a»σ(a′′, (a′ a′′) · x) for any x ∈ Xσ. Choosing a′′ to be in the infinite set
Aa− (A∪ supp(s, π, a)) and x = (a′ a′′) · s(π ◦ (a a′′)), we conclude that a′′ # h
and a′′ # f«a»σ(a′′, s(π ◦ (a a′′))) = h(a′′), as required for (30).

Applying Theorem 3 with this data, we get a family of functions

ĝσ ∈ T(Σ)σ → (Perm →fs Xσ)

satisfying the recursion equations (10)–(14) of that theorem. Next one proves that
these functions respect α-equivalence:

t1 =α t2 : σ ⇒ ĝσ t1 = ĝσ t2. (38)

This is done by induction over the derivation of t1 =α t2 : σ from the rules in
Figure 1; the induction step for rule (=α-5) uses the following property of ĝ, which
follows by induction on the structure of t, i.e. using Theorem 4:

(∀σ ∈ Ar(Σ), t : σ)(∀π, π′ ∈ Perm) ĝσ t (π ◦ π′) = ĝσ(π′ · t) π. (39)

In view of (38), the functions ĝσ induce functions f̂σ ∈ Tα(Σ)σ → Xσ given by
f̂σ[t]α , ĝσ t ι for any t : σ (recalling that ι stands for the identity permutation).
One proves that these functions f̂σ are all supported by A by first proving that
the functions ĝσ are so supported; the latter follows from the uniqueness part of
Theorem 3: if a, a′ are atoms of the same sort not in A, then one can show that
(a a′) · ĝσ satisfies the same recursion equations as ĝσ and hence is equal to that
function. The fact that the f̂σ satisfy the required recursion equations (33)–(37)
follows from the recursion equations (10)–(14) satisfied by the ĝσ. That concludes
the existence part of the proof of Theorem 17.
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For the uniqueness part, suppose functions f ′σ ∈ Tα(Σ)σ →fs Xσ are all sup-
ported by A and satisfy the recursion equations (33)–(37) for f̂σ. Define g′σ ∈
T(Σ)σ → Sσ by g′σ t π , f ′σ[π · t]α (σ ∈ Ar(Σ), t : σ, π ∈ Perm). One can show
that the g′σ satisfy the same recursion equations (10)–(14) from Theorem 3 as the
functions ĝσ; so by the uniqueness part of that theorem, g′σ = ĝσ. Therefore for all
t : σ, f ′σ[t]α = f ′σ[ι · t]α , g′σ t ι = ĝσ t ι , f̂σ[t]α; hence f ′σ = f̂σ.

Example 18 (length of an α-term). In [14, Section 3.3] Gordon and Melham give
the usual recursion scheme for defining the length of a λ-term, remark that it is not
a direct instance of the scheme developed in that paper (their Axiom 4) and embark
on a detour via simultaneous substitutions to define the length function. This dif-
ficulty is analysed by Norrish [18, Section 3] on the way to his improved version
of Gordon and Melham’s recursion scheme (discussed further in Example 27 and
Section 7). Pleasingly, the usual recursive definition of the length of a λ-term, or
more generally of an α-term over any nominal signature, is a very simple applica-
tion of the First α-Structural Recursion Theorem.8 Thus in Theorem 17 we take
Xσ to be the discrete nominal set N of natural numbers and

fa , λa ∈ Aa. 1

fK , λk ∈ N. k + 1

f1 , 0

fσ1∗σ2 , λ(k1, k2) ∈ N× N. k1 + k2

f«a»σ , λ(a, k) ∈ Aa × N. k + 1 .

These functions are all supported by A = ∅ and (FCB) holds trivially, because
a # k holds for any a ∈ A and k ∈ N. So the theorem gives us functions
f̂σ ∈ Tα(Σ)σ →fs N. Writing length e for f̂σ e, we have the expected properties of
a length function on α-terms:

length a = 1
length(K e) = length e + 1

length() = 0
length(e1, e2) = length e1 + length e2

length(a. e) = length e + 1 .

Note that the last clause holds for all a, because in (37) the condition “a /∈ A” is
vacuously true (since A = ∅).

Remark 19. In Theorem 17 we gave (FCB) as an existential statement. It is in fact
equivalent to the universal statement

(∀a′ ∈ Aa) a /∈ A ⇒ (∀x ∈ Xσ) a′ # f«a»σ(a′, x) .

8The same goes for Norrish’s stripc function, used to illustrate the limitations of Gordon and
Melham’s workaround for the length function [18, p. 247].
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This follows from the “some/any” Theorem 14 by taking S to be {a′ ∈ Aa | (∀x ∈
Xσ) a′ # f«a»σ(a′, x)} and checking that A supports S.

Remark 20 (primitive recursion). Theorem 17 gives a simple “iterative” form of
structural recursion for α-terms, rather than a more complicated “primitive recur-
sive” form with recursion equations

f̂a = fa(a)

f̂(K e) = fK (e, f̂e)

f̂() = f1

f̂(e1, e2) = fσ1∗σ2(e1, e2, f̂e1, f̂e2)

a /∈ A ⇒ f̂(a. e) = f«a»σ(a, e, f̂e) .

In fact this more general form can be deduced from the simple one given in the
theorem by adapting to our nominal setting a similar result for ordinary structural
recursion: defining X ′

σ , Tα(Σ)σ ×Xσ and functions

f ′a(a) , (a, fa(a))

f ′K (e, x) , (K e, fK (e, x))

f ′1 , ((), f1)

f ′σ1∗σ2
((e1, x1), (e2, x2)) , ((e1, e2), fσ1∗σ2(e1, e2, x1, , x2))

f ′«a»σ(a, e, x) , (a. e, f«a»σ(a, e, x))

we first apply Theorem 17 to get functions f̂ ′σ ∈ Tα(Σ)σ →fs Tα(Σ)σ × Xσ.
The uniqueness part of the theorem allows us to deduce that the first components
of these functions are all identity functions; it follows from this that the second
component of f̂ ′σ is a function f̂σ ∈ Tα(Σ)σ →fs Xσ satisfying the above scheme
of primitive recursion (and is the unique such).

The next theorem gives a version of structural induction for α-terms. Just as
Theorem 17 was derived from ordinary structural recursion (Theorem 3), we prove
this theorem as a corollary of ordinary structural induction (Theorem 4).

Theorem 21 (first α-structural induction theorem). Let Σ be a nominal signa-
ture. Suppose we are given a finitely supported set S ∈ Pfs(Tα(Σ)) of α-terms over
Σ. To prove that S is the whole of Tα(Σ), it suffices to show

(∀a ∈ ΣA, a ∈ Aa) a ∈ S (40)

(∀(K : σ → s) ∈ ΣC, e ∈ Tα(Σ)σ) e ∈ S ⇒ K e ∈ S (41)

() ∈ S (42)

(∀(σi ∈ Ar(Σ), ei ∈ Tα(Σ)σi | i = 1, 2))
e1 ∈ S & e2 ∈ S ⇒ (e1, e2) ∈ S (43)

(∀a ∈ ΣA, σ ∈ Ar(Σ))(∃a ∈ Aa) a # S &
(∀e ∈ Tα(Σ)σ) e ∈ S ⇒ a. e ∈ S . (44)
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Proof. Let S be the set of nominal terms over Σ whose α-equivalence classes lie
in S no matter how we permute the atoms occurring in the term:

S , {t ∈ T(Σ) | (∀π ∈ Perm) [π · t]α ∈ S} .

Clearly S = Tα(Σ) if S = T(Σ); and to prove the latter it suffices to check that S
satisfies conditions (15)–(19) of Theorem 4. The first four of these follow immedi-
ately from (40)–(43) respectively. So it just remains to show that (44) implies that
S satisfies condition (19). First note that by Theorem 14 applied to the set of atoms
{a ∈ Aa | (∀e ∈ Tα(Σ)σ) e ∈ S ⇒ a. e ∈ S}, which is supported by supp(S),
(44) is equivalent to

(∀a ∈ ΣA, σ ∈ Ar(Σ))(∀a ∈ Aa) a # S ⇒
(∀e ∈ Tα(Σ)σ) e ∈ S ⇒ a. e ∈ S . (45)

Given a ∈ Aa and t ∈ S, we have to prove that «a»t ∈ S, i.e. that [π · «a»t]α ∈ S
for any π ∈ Perm . Choosing any atom a′ in the infinite set Aa − supp(S, π, a, t),
we have

π · «a»t = «π(a)»(π · t)
=α «a′»((π · t){a′/π(a)}) by definition of =α (Section 2.4)

= «a′»((π(a) a′) · (π · t)) since a′ /∈ atm(π · t)
= «a′»(π′ · t) where π′ , (π(a) a′) ◦ π.

So [π · «a»t]α = a′. [π′ · t]α ∈ S by (45), since a′ # S (by choice of a′) and
[π′ · t]α ∈ S, because t ∈ S. So it is indeed the case that «a»t ∈ S when a ∈ Aa

and t ∈ S.

5 Second α-Structural Recursion & Induction Theorems

Theorem 17 is an “arity-directed” recursion principle for α-terms: one has to spec-
ify nominal sets Xσ for each arity σ, and give functions f(_) for atom-sorts, unit,
pair and atom-binding arities in addition to ones for constructors. Although this
gives flexibility over how to treat atom, unit, pair and atom-binding α-terms when
giving an α-structurally recursive definition of some functions, this flexibility is
often more of a hindrance than a help. In most cases one is primarily interested
in defining functions only on α-terms whose arities are data-sorts s ∈ ΣD, with
α-terms of other kinds of arity (atom-sorts, unit, pair and atom-binding arities)
playing an auxiliary role. For example, when Σ is the nominal signature for λ-
terms with local recursive function declarations (Example 1), to define the capture-
avoiding substitution function ŝx,e ∈ Tα(Σ)t →fs Tα(Σ)t discussed in the Intro-
duction, we should only have to specify finitely supported functions corresponding
to the right-hand sides of the defining equations (6)–(9), i.e. one function for each
of the signature’s four constructors V , A, L and Letrec. But as it stands, to define
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ŝx,e using Theorem 17 we have to work out suitable choices for Xσ and for the
functions fv, f1, fσ1∗σ2 , f«v»σ for any σ, σ1, σ2 ∈ Ar(Σ).

So we will develop a second, “sort-directed” version of α-structural recursion
in which one only has to give Xσ when σ = s is a data-sort, and only has to give
the functions f(_) for constructors. Here is the statement of the new form of the
recursion principle; the notations used in it are defined in Figure 2 and discussed
below.

Theorem 22 (second α-structural recursion theorem). Let Σ be a nominal sig-
nature. Suppose we are given a family of nominal sets X = (Xs | s ∈ ΣD) indexed
by the data-sorts of Σ, a finite set A of atoms, and functions

fK ∈ X(σ) →fs X(s) ((K : σ → s) ∈ ΣC)

all of which are supported by A and satisfy

(∃ā ∈ Aσ) ā # A & (∀x̄ ∈ X |σ|) ā ]σ x̄ ⇒ ā # fK (ā, x̄)σ . (FCBK )

Then there is a unique family of finitely supported functions (f̂s ∈ Tα(Σ)s →fs

Xs | s ∈ ΣD) with supp(f̂s) ⊆ A and satisfying

(∀ā ∈ Aσ) ā # A ⇒
(∀ē ∈ Tα(Σ)|σ|) ā ]σ ē ⇒ f̂s(K ā. ē) = fK (ā, f̂ |σ| ē)σ (46)

for each (K : σ → s) ∈ ΣC.

In this theorem we start with a family of nominal sets X = (Xs | s ∈ ΣD)
indexed by the data-sorts of the signature Σ and with a family of finitely supported
functions (fK | K ∈ ΣC) indexed by the constructors of Σ. The domain X(σ)

of fK is obtained from the arity σ of K by interpreting each atom-sort as the
corresponding nominal set of atoms (Example 7(i)), each data-sort as given by X ,
the unit arity as the one-element discrete nominal set (Example 7(iv)), pair arities
using products of nominal sets (Section 3.2), and atom-binding arities just using
product with nominal sets of atoms. The aim is to use this data to specify some
functions f̂s mapping α-terms e : s to elements f̂s e ∈ Xs by giving recursion
equations as in (46), with one (conditional) equation for each way of forming α-
terms of data-sort, i.e. for each constructor K : σ → s in Σ. The conditional
equation for K specifies the effect of f̂s not for arbitrary α-terms constructed with
K , but rather just for those of the form K ā. ē where ā # A and ā ]σ ē hold. Here
ā ∈ Aσ is a nested tuple of distinct atoms matching the binding occurrences of
atom-sorts in the arity σ; ē ∈ Tα(Σ)|σ| is a nested tuple of α-terms matching the
non-binding occurrences of atom-sorts and the occurrences of data-sorts in σ; and
the operation ā, ē 7→ ā. ē assembles these two nested tuples into an α-term of arity
σ, to which K can be applied to get a constructed α-term K ā. ē : s. The equation
in (46) is restricted by two conditions:
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σ X(σ) Aσ X |σ|

a ∈ ΣA Aa 1 Aa

s ∈ ΣD Xs 1 Xs

1 1 1 1

σ1 ∗ σ2 X(σ1) ×X(σ2) Aσ1 ⊗ Aσ2 X |σ1| ×X |σ2|

«a»σ1 Aa ×X(σ1) Aa ⊗ Aσ1 X |σ1|

The third column of the above table uses the separated product of nominal sets:
X ⊗ Y , {(x, y) ∈ X × Y | x # y} (with atom-permutation action the same as
for the product X × Y ).

σ (ā, x̄) ∈ Aσ ×X |σ| ā ]σ x̄ ∈ B (ā, x̄)σ ∈ X(σ)

a ∈ ΣA ((), a) true a

s ∈ ΣD ((), x) true x

1 ((), ()) true ()

σ1 ∗ σ2 ((ā1, ā2), (x̄1, x̄2)) ā1 ]σ1 x̄1 &
ā2 ]σ2 x̄2 &
ā1 # x̄2 &
ā2 # x̄1

((ā1, x̄1)σ1 , (ā2, x̄2)σ2)

«a»σ1 ((a, ā1), x̄1) ā1 ]σ x̄1 (a, (ā1, x̄1)σ)

σ (ā, ē) ∈ Aσ × Tα(Σ)|σ| ā. ē ∈ Tα(Σ)σ f̂ |σ| ē ∈ X |σ|

a ∈ ΣA ((), a) a a

s ∈ ΣD ((), e) e f̂s e

1 ((), ()) () ()

σ1 ∗ σ2 ((ā1, ā2), (ē1, ē2)) (ā1. ē1, ā2. ē2) (f̂ |σ1| ē1, f̂
|σ2| ē2)

«a»σ1 ((a, ā1), ē1) a. (ā1. ē1) f̂ |σ1| ē1

In the second column of the above table, Tα(Σ)|σ| indicates the construction X 7→
X |σ| from the first table applied to the data-sort indexed family X = (Tα(Σ)s | s ∈
ΣD).

Figure 2: Definitions used in Theorem 22
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– the first, ā # A, just requires that the atoms in ā do not occur in the common
finite support of the functions fK ;

– the second, ā ]σ ē, ensures that in addition to the atoms in ā being mutually
distinct (by virtue of the definition of Aσ), they avoid the support of the con-
stituents of ē in an appropriate way (the precise definition of “appropriate”
being given in Figure 2).

The theorem guarantees the unique existence of such functions on α-terms pro-
vided the functions fK satisfy the freshness condition on binders given by (FCBK ).
This asserts the existence of a nested tuple ā of distinct atoms that can appear in
binding positions in elements of X(σ) (i.e. ā ∈ Aσ) such that:

– the atoms are distinct from A, i.e. ā # A (they are also mutually distinct by
definition of Aσ);

– whenever x̄ is a nested tuple of atoms and X-elements that can appear in
non-binding positions in elements of X(σ) (i.e. x̄ ∈ X |σ|) for which ā is
suitably fresh, i.e. satisfying ā ]σ x̄,9 then assembling ā and x̄ into an el-
ement (ā, x̄)σ ∈ X(σ), fK maps this element to one in X(s) = Xs whose
support does not contain any of the atoms in ā (i.e. ā # fK (ā, x̄)σ).

The easiest way I know of proving Theorem 22 is to derive it from the follow-
ing “sort-directed” version of α-structural induction, which uses notations that are
defined in Figures 2 and 3, and which are discussed below.

Theorem 23 (second α-structural induction theorem). Let Σ be a nominal
signature. Suppose we are given a family of finitely supported subsets (Ss ∈
Pfs(Tα(Σ)s) | s ∈ ΣD) indexed by the data-sorts of Σ and all supported by a
finite set of atoms A. Then to prove that Ss is the whole of Tα(Σ)s for all s ∈ ΣD,
it suffices to show for each constructor (K : σ → s) ∈ ΣC that

(∃ā ∈ Aσ) ā # A &

(∀ē ∈ Tα(Σ)|σ|) ā ]σ ē & ē ∈ S|σ| ⇒ K ā. ē ∈ Ss . (IHK )

In this theorem we start with a family of subsets Ss ⊆ Tα(Σ)s of α-terms whose
arities are data-sorts and that are all supported by some finite set of atoms A. We
wish to prove that every t : s is in Ss (for all s ∈ ΣD). The theorem guarantees this
provided each constructor (K : σ → s) ∈ ΣC satisfies the induction hypothesis
given by (IHK ). This asserts the existence of a nested tuple ā of distinct atoms that
can appear in binding positions in α-terms of arity σ (i.e. ā ∈ Aσ) such that:

– the atoms are distinct from A, i.e. ā # A (they are also mutually distinct by
definition of Aσ);

9This relation ]σ , defined in Figure 2, is a subtlety of the freshness condition on binders that is
not apparent in the simpler First α-Structural Recursion Theorem.
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σ S|σ| ∈ Pfs(Tα(Σ)|σ|) Sσ ∈ Pfs(Tα(Σ)σ)
a ∈ ΣA Aa {a | a ∈ Aa}
s ∈ ΣD Ss Ss

1 1 {()}
σ1 ∗ σ2 S|σ1| × S|σ2| {(e1, e2) | e1 ∈ Sσ1 & e2 ∈ Sσ2}
«a»σ1 S|σ1| {a. e1 | a ∈ Aa − supp(Sσ1) & e1 ∈ Sσ1}

Figure 3: Definitions used in Theorem 23

– whenever ē is a nested tuple of α-terms that can appear in non-binding posi-
tions in an α-term of arity σ (i.e. ē ∈ Tα(Σ)|σ|) for which ā is suitably fresh,
i.e. satisfying ā ]σ ē, then assembling ā and ē into the α-term ā. ē : σ, the
constructed α-term K ā. ē must lie in the subset Ss.

The proof of Theorem 23 is given in Appendix A and the proof of Theorem 22
in Appendix B. In Sections 5.1 and 5.2 we explore what these principles look like
for particular nominal signatures, using the examples from Section 2.2.

Remark 24 (atom-abstraction and the initial algebra property). For each atom-
sort a ∈ AS and each nominal set X , let [Aa]X denote the set of equivalence
classes of pairs (a, x) ∈ Aa × X for the equivalence relation (a, x) ∼ (a′, x′)
given by

(∃a′′ ∈ Aa) a′′ # (a, x, a′, x′) & (a a′′) · x = (a′ a′′) · x′ . (47)

The relation ∼ is evidently reflexive and symmetric; to see that it is also transitive,
one first applies Theorem 14 with S = {a′′ ∈ Aa | (a a′′) · x = (a′ a′′) · x′} and
A = supp(a, x, a′, x′) to show that (a, x) ∼ (a′, x′) holds if and only if

(∀a′′ ∈ Aa) a′′ # (a, x, a, x′) ⇒ (a a′′) · x = (a′ a′′) · x′ . (48)

We write [a]x for the ∼-equivalence class of the pair (a, x) and call it an atom-
abstraction. It follows from Lemma 13 that ∼ is a nominal subset of Aa ×X . So
the quotient [Aa]X is a nominal set as in Section 3.3. One can calculate that the
support of each element [a]x of [Aa]X is supp(x)− {a}.

Using these atom-abstraction nominal sets, it is possible to give an initial alge-
bra characterisation of (Tα(Σ)s | s ∈ ΣD) that is equivalent to Theorem 22. Con-
sider the category whose objects are families of nominal sets X = (Xs | s ∈ ΣD)
indexed by the data-sorts of Σ, and whose morphisms f : X → X ′ are indexed
families f = (fs ∈ Xs →fs X ′

s | s ∈ ΣD) of functions with empty support
(i.e. functions that respect the action of all atom-permutations). The constructors
of Σ determine a functor FΣ from this category to itself, defined in Figure 4. An
FΣ-algebra is simply an object I equipped with a morphism i : FΣ I → I . Such
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Action of FΣ on objects:

(FΣ X)s ,
∑

(K :σ→s)∈ΣC

X [σ] = {(K , x) | (K : σ → s) ∈ ΣC & x ∈ X [σ]} .

Action of FΣ on morphisms:

(FΣ f)s(K , x) , (K , f [σ] x) .

σ X [σ] x ∈ X [σ] 7→ f [σ] x ∈ X ′[σ]

a ∈ ΣA Aa a 7→ a

s Ss x 7→ fs x

1 1 () 7→ ()

σ1 ∗ σ2 X [σ1] ×X [σ2] (x1, x2) 7→ (f [σ1] x1, f
[σ2] x2)

«a»σ1 [Aa](X [σ1]) [a]x1 7→ [a](f [σ1] x1)

Figure 4: Functor FΣ associated with a nominal signature Σ

an algebra is initial if for any other such algebra f : FΣ X → X , there is a unique
morphism f̂ : I → X so that

FΣ I
i //

FΣ f̂
��

I

f̂
��

FΣ X
f

// X

(49)

commutes, i.e. satisfying

(∀s ∈ ΣD)(∀(K : σ → s) ∈ ΣC)(∀x ∈ I [σ]) f̂s(is(K , x)) = fs(K , f̂ [σ] x) .

Standard category-theoretic results give that i is an isomorphism and that the initial
algebra (I, i) is unique up to isomorphism. Theorem 22 can be used to prove that
(Tα(Σ)s | s ∈ ΣD) is the (object part of) an initial FΣ-algebra. Conversely, one
can give a direct inductive construction of an initial FΣ-algebra and use the initial
algebra property (49) to deduce Theorem 22: see [13, Section 6].

5.1 Example: λ-calculus (with letrec)

Let Σ be the nominal signature from Example 1. Thus T(Σ)t is the set Λ of ab-
stract syntax trees for λ-calculus with letrec; and Tα(Σ)t is the quotient Λ/=α of



Alpha-Structural Recursion and Induction 31

that set by the usual notion of α-equivalence—in other words Tα(Σ)t is what is nor-
mally meant by the set of all (open or closed) untyped λ-terms with local recursive
function declarations. Suppose we are given a nominal set X and functions

fV ∈ Av →fs X (50)

fA ∈ X ×X →fs X (51)

fL ∈ Av ×X →fs X (52)

fLetrec ∈ Av × ((Av ×X)×X) →fs X (53)

all supported by a finite set of atoms A. Applying the definitions in Figure 2,
one finds that the conditions (FCBK ) for K = V ,A are equivalent to true, that
(FCBLam ) is equivalent to

(∃a ∈ Av) a /∈ A & (∀x ∈ X) a # fL(a, x) (54)

and that (FCBLetrec) is equivalent to

(∃a, a′ ∈ Av) a 6= a′ & a, a′ /∈ A & (∀x, x′ ∈ X) a′ # x ⇒
(a, a′) # fLetrec(a, ((a′, x′), x)) . (55)

So for this nominal signature, Theorem 22 gives us the following recursion prin-
ciple. We state it using the usual concrete syntax for λ-calculus and using the fact
(noted in Example 7(iii)) that the support of a term e ∈ Λ/=α is its finite set fv(e)
of free variables.

Theorem 25. Let Λ/=α be the nominal set of α-equivalence classes of λ-terms
with local recursive function declarations:

e ::= x | e e | λx.e | letrec xx = e in e

where the variables x are drawn from the nominal set Av of atoms of some fixed
sort v. Given any nominal set X and functions as in (50)–(53) all supported by
some finite set of atoms A and with fL and fLetrec satisfying (54) and (55), then
there is a unique function f̂ ∈ (Λ/=α →fs X) supported by A and satisfying

f̂(x) = fV (x) (56)

f̂(e1 e2) = fA(f̂ e1, f̂ e2) (57)

x /∈ A ⇒ f̂(λx.e) = fL(x, f̂ e) (58)

x, y /∈ A & x /∈ fv(e2) ∪ {y} ⇒
f̂(letrec y x = e1 in e2) = fLetrec(y, ((x, f̂ e1), f̂ e2)) . (59)
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Turning to the induction principle for this signature, if S ⊆ Λ/=α is a set of
terms supported by a finite set of atoms A, then (IHV ), (IHA), (IHL) and (IHLetrec)
are equivalent to

(∀x ∈ Av) x ∈ S (60)

(∀e1, e2 ∈ S) e1 e2 ∈ S (61)

(∃x ∈ Av) x /∈ A & (∀e ∈ S) λx. e ∈ S (62)

(∃x, y ∈ Av) x 6= y & x, y /∈ A &
(∀e1, e2 ∈ S) x /∈ fv(e2) ⇒ letrec y x = e1 in e2 ∈ S (63)

respectively. So for this signature Theorem 23 says that S contains all terms if it
satisfies (60)–(63).

Example 26 (capture-avoiding substitution). The example mentioned in the In-
troduction of capture-avoiding substitution of λ-terms, ŝx,e ∈ Λ/=α → Λ/=α, is
obtained from the above theorem by taking X to be the nominal set Λ/=α. Given
x ∈ Av and e ∈ X , then ŝx,e is given by f̂ where

fV (y) ,

{
e if y = x

y if y 6= x

fA(e1, e2) , e1 e2

fL(y, e1) , λy. e1

fLetrec(z, ((y, e1), e2)) , letrec z y = e1 in e2

A , fv(e) ∪ {x} .

Condition (54) is satisfied because, as noted in Example 7(iii), for each e1 ∈ X =
Λ/=α, supp(e1) is the finite set fv(e1) of free variables of e1; in particular we
have y # fLam(y, e1) = λy. e1 simply because y /∈ fv(λy. e1) = fv(e1) − {y}.
Similarly, condition (55) is satisfied because

fv(letrec z y = e1 in e2) = (fv(e1)− {y, z}) ∪ (fv(e2)− {z})

so that (y, z) # fLetrec(z, ((y, e1), e2)) = letrec z y = e1 in e2 provided y /∈
fv(e2). Note that fA, fL and fLetrec are all supported by the empty set of atoms,
whereas fV is supported by fv(e) ∪ {x}; so this is what we take for the com-
mon support A. Thus the conditions on the recursion equations in (58) and (59)
correspond precisely to the conditions in (8) and (9).

Example 27 (recursion with varying parameters). Norrish [18, p 245] considers
a variant of capture-avoiding substitution whose definition involves recursion with
varying parameters; it motivates the parametrised recursion principle he presents
in that paper. The α-structural recursion principles we have given here do not in-
volve extra parameters, let alone varying ones; nevertheless it is possible to derive
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parameterised versions from them. In the case of ordinary structural recursion,
one can derive a parameterised version from an unparameterised one by currying
parameters and defining maps into function sets using Theorem 3. In the pres-
ence of binders, one has to do something slightly more complicated, involving the
Freshness Theorem 16, to derive a parameterised (FCB) from the unparameterised
version of the condition.

Let us see how this works for Norrish’s example, using the nominal signature
for the pure λ-calculus obtained from Example 1 by deleting the Letrec construc-
tor.. Fixing on a pair of atoms x1, x2 ∈ Av, we seek a function s ∈ (Λ/=α) →fs

(Λ/=α) →fs (Λ/=α) satisfying for all y, e, e1, e2:

s(y)(e) =

{
e if y = x1

y if y 6= x1

(64)

s(e1 e2)(e) = (s(e1)(e)) (s(e2)(e)) (65)

y /∈ fv(e) ∪ {x1, x2} ⇒ s(λy. e1)(e) = λy. s(e1)(x2 e) (66)

Thus the same parameter e appears in each clause defining s(e1)(e) by recursion on
the structure of e1 except for clause (66), where the application term x2 e appears
instead. Such a function s can be obtained from Theorem 25 (restricted to pure
λ-terms) as s = f̂ if we take X to be the nominal set (Λ/=α) →fs (Λ/=α) and
use the functions

fV , λy ∈ Av.λe ∈ (Λ/=α). if y = x1 then e else y

fA , λ(ξ1, ξ2) ∈ X ×X. λe ∈ (Λ/=α). (ξ1 e) (ξ2 e)

fL , λ(y, ξ1) ∈ Av ×X.λe ∈ (Λ/=α). fresh(h(y, ξ1, e))

where the last clause uses Theorem 16 applied to the finitely supported function
h(y, ξ1, e) ∈ Av →fs (Λ/=α) that maps each y′ ∈ Av to

h(y, ξ1, e)(y′) , λy′. ((y y′) · ξ1)(x2 e)

This function is easily seen to satisfy the property (30) needed to apply the theorem.
All the above functions are supported by A , {x1, x2}. Properties (56) and (57)
of f̂ give (64) and (65) respectively. When y 6= x1, x2, property (58) gives us
f̂(λy. e1) = fL(y, f̂ e1) = fresh(h(y, f̂ e1, e)). So if y # (x1, x2, e), picking
any y′ # (x1, x2, e, e1, h), then by Theorem 16 we have fresh(h(y, f̂ e1, e)) =
h(y, f̂ e1, e)(y′) , λy′. ((y y′) · (f̂ e1))(x2 e) = λy′. (y y′) · (f̂ e1 (x2 e)). Hence
by definition of =α, f̂(λy. e1) = λy. f̂ e1 (x2 e), as required for (66).
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5.2 Example: π-calculus

Let Σ be the nominal signature from Example 2. Suppose we are given nominal
sets Xproc, Xgsum, Xpre and functions

fGsum ∈ Xgsum →fs Xproc

fPar ∈ Xproc ×Xproc →fs Xproc

fRes ∈ Achan ×Xproc →fs Xproc

fRep ∈ Xproc →fs Xproc

fZero ∈ 1 →fs Xgsum

fPre ∈ Xpre →fs Xgsum

fPlus ∈ Xgsum ×Xgsum →fs Xgsum

fOut ∈ (Achan × Achan)×Xproc →fs Xpre

fIn ∈ Achan × (Achan ×Xproc) →fs Xpre

fTau ∈ 1 →fs Xpre

fMatch ∈ (Achan × Achan)×Xpre →fs Xpre

all supported by a finite set of atoms A. The conditions (FCBRes ) and (FCBIn ) are
equivalent to

(∃a ∈ Achan) a /∈ A & (∀x ∈ Xproc) a # fRes(a, x) (67)

(∃a ∈ Achan) a /∈ A &
(∀a′ ∈ Achan)(∀x ∈ Xproc) a 6= a′ ⇒ a # fIn(a′, (a, x)) (68)

respectively; and conditions (FCBK ) for K 6= Res, In are all equivalent to true.
So if fRes and fIn satisfy (67) and (68), then by Theorem 22, there are unique
finitely supported functions f̂s ∈ Tα(Σ)s →fs Xs (for s = proc, gsum, pre) all
supported by A and satisfying for all e, e1, e2, a1, a2, a, a′ of suitable arity

f̂(K e) = fK (f̂ e) (K = Gsum,Rep,Pre) (69)

f̂(K (e1, e2)) = fK (f̂ e1, f̂ e2) (K = Par ,Plus) (70)

f̂(K ()) = fK () (K = Zero,Tau) (71)

f̂(K ((a1, a2), e)) = fK ((a1, a2), f̂ e) (K = Out ,Match) (72)

a /∈ A ⇒ f̂(Res a. e) = fRes(a, f̂ e) (73)

a /∈ A & a 6= a′ ⇒ f̂(In(a′, a. e)) = fIn(a′, (a, f̂ e)) (74)

where we have abbreviated f̂s(e) to f̂ e.
We leave the reader to work out what induction principle Theorem 23 gives for

this signature.
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6 Extended Example: Normalisation by Evaluation

One of the most important aspects of nominal sets is that they provide, via the
notion of finite support, a notion of freshness of names with respect to mathemat-
ical structures. This notion generalises the usual “not a free variable of” relation
from finite syntactical structures to infinite objects (sets, functions, . . . ) where
there is no obvious notion of free name. The theory comes into its own in sit-
uations where syntax and semantics have to be considered together and yet one
still needs a workable notion of fresh name. We give an example in this section
by treating normalisation by evaluation (NBE) for simply typed λ-calculus [3].
This produces βη-long normal forms for typed λ-terms by first taking their deno-
tational semantics in the standard, extensional functions model of the calculus over
a ground type of syntax trees and then composing with a reification function that
turns elements of the denotational model back into syntax (in normal form). When
reifying an extensional function into a λ-abstraction one wants to choose a fresh
name v for the λ-bound variable; but as the survey [8, p 157] eloquently puts it
when discussing an informal version of the reification function

“The problem is the “v fresh” condition; what exactly does it mean?
Unlike such conditions as “x does not occur free in E”, it is not even
locally checkable whether a variable is fresh; freshness is a global
property, defined with respect to a term that may not even be fully
constructed yet.”

As a result, treatments of NBE in the literature adopt some device for making
the current finite context of used names explicit and threading it through all the
mathematical definitions involved in the denotational and reification functions used
for NBE: see [8, section 3.3] and [9], for example. This tends to obscure the simple,
but informal idea behind reification. The authors of [8] go on to mention after
the above quote that “freshness” can be characterised rigorously in the framework
of [13]. The details are presented here for the first time, using nominal sets rather
than the FM-set theory of loc. cit. The point is not just that this setting provides a
rigorous explanation of “freshness” (since the formal approaches mentioned above
also do that), but that it allows us to retain the essential simplicity of an informal
account such as in [8, section 3.2].

6.1 Typed λ-terms and their βη-long normal forms

Rather than give a signature for raw λ-terms and then cut down to the well-typed
ones using typing contexts, we make do with a simpler, but less extensible10 treat-
ment using explicitly typed variables. Let

Ty , {τ ::= ι | τ .→ τ} (75)

10Such an approach is fine for simply-typed terms, but becomes unworkable for calculi with type
variables or dependent types.
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be the set of simple type symbols over a single ground type ι. We assume given
an injective function τ ∈ Ty 7→ vτ ∈ AS that codes the simple type symbols as
atom-sorts. We use atoms of sort vτ to stand for variables of type τ in the simply
typed λ-calculus. Note that when τ and τ ′ are different simple type symbols, vτ and
vτ ′ are different atom-sorts; so recalling the assumptions we made in section 2.1,
the sets of atoms Avτ and Avτ ′ are disjoint.

Consider the nominal signature ΣSTL with

atom-sorts data-sorts constructors
vτ tτ Vr τ : vτ → tτ

Apτ,τ ′ : tτ .→τ ′ ∗ tτ → tτ ′

Lmτ,τ ′ : «vτ »tτ ′ → tτ .→τ ′

as τ and τ ′ range over Ty . Thus the (nominal) set

Λ(τ) , Tα(ΣSTL)tτ (76)

of α-terms of arity tτ over ΣSTL is precisely the usual set of α-equivalence classes
of abstract syntax trees for λ-terms of simple type τ ∈ Ty , using variables that are
explicitly tagged with types.

Next we give a nominal signature ΣLNF for βη-long normal forms:

atom-sorts data-sorts constructors
vτ nτ Vτ : vτ → uτ

uτ Aτ,τ ′ : uτ
.→τ ′ ∗ nτ → uτ ′

Lτ,τ ′ : «vτ »nτ ′ → nτ
.→τ ′

I : uι → nι

where τ and τ ′ range over Ty . The (nominal) set

N(τ) , Tα(ΣLNF)nτ (77)

corresponds to the set of α-equivalence classes of abstract syntax trees for simply-
typed λ-terms of type τ in βη-long normal form, whereas

U(τ) , Tα(ΣLNF)uτ (78)

corresponds to the set of α-equivalence classes of neutral (or atomic) terms of type
τ ; see [8, p 155], for example.

Notation 28. From now on we will use the following concrete, overloaded, but
hopefully more familiar notations for α-terms over the signatures ΣSTL and ΣLNF.

• Typical elements of Avτ , Λ(τ), N(τ) and U(τ) will be written x, e, n and u
respectively.

• Vr τ x will be written just as x, Apτ,τ ′(e1, e2) as e1 e2, and Lmτ,τ ′ x. e as
λx : τ. e.
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• Vτ x will be written just as x, Aτ,τ ′(u, n) as u n, Lτ,τ ′ x. n as λx : τ. n and
I u just as u.

Every βη-long normal form and every neutral term can be regarded as a λ-
term of the corresponding type; indeed a very simple application of the second
α-structural recursion theorem for the nominal signature ΣLNF tells us that there
are functions

iτ ∈ N(τ) →fs Λ(τ) jτ ∈ U(τ) →fs Λ(τ) (79)

supported by the empty set of atoms and satisfying for all τ, τ ′ ∈ Ty and x, u, n of
suitable arity

jτ x = x

jτ ′(u n) = (jτ
.→τ ′ u)(iτ n)

iτ .→τ ′(λx : τ. n) = λx : τ. iτ ′ n

iι u = jι u .

We aim to use the technique of NBE [3] to define the normalisation function

normτ ∈ Λ(τ) →fs N(τ) (80)

with the following properties:

(∀τ ∈ Ty , e1, e2 ∈ Λ(τ)) e1 =βη e2 ⇒ normτ e1 = normτ e2 (81)

(∀τ ∈ Ty , n ∈ N(τ)) normτ (iτ n) = n (82)

(∀τ ∈ Ty , e ∈ Λ(τ)) iτ (normτ e) =βη e . (83)

Here =βη ⊆ Λ(τ) × Λ(τ) is the usual relation of βη-conversion between (α-
equivalence classes of) λ-terms of the same simple type τ . It is by definition the
smallest congruence relation satisfying

(∀τ, τ ′ ∈ Ty , x ∈ Avτ , e1 ∈ Λ(τ ′), e2 ∈ Λ(τ))
(λx : τ. e1)e2 =βη e1[x := e2] (84)

(∀τ, τ ′ ∈ Ty , e ∈ Λ(τ .→ τ ′), x ∈ Avτ ) x # e ⇒
e =βη λx : τ. e x . (85)

Here e1[x := e2] indicates the capture-avoiding substitution of e2 for all free oc-
currences of x in e1. It can be defined using the second α-structural recursion
theorem for the nominal signature ΣSTL much as in Example 26; instead we will
regard it as a special case of the simultaneous substitution functions defined in the
next section.

Once (81)–(83) are proved, then it follows that for every e ∈ Λ(τ) there is
a unique n ∈ N(τ) with e =βη iτ n; and, modulo some considerations about
computability, deciding βη-conversion is reduced to the decidable relation of α-
equivalence on T(ΣLNF)nτ by applying the normτ function. We aim to show how
to use α-structural recursion to define normτ ; and how to prove (81)–(83) using,
among other things, α-structural induction.
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τ ∈ Ty , e ∈ Λ(τ), σ ∈ Sub 7→ [e]σ ∈ Λ(τ):

[x]σ = σ x (86)

[e1 e2]σ = ([e1]σ)([e2]σ) (87)

x # σ ⇒ [λx : τ.e]σ = λx : τ.[e]σ (88)

τ ∈ Ty , e ∈ Λ(τ), ρ ∈ Env 7→ JeKρ ∈ D(τ):

JxKρ = ρ x (89)

Je1 e2Kρ = Je1Kρ (Je2Kρ) (90)

Jλx : τ.eKρ = λd ∈ D(τ). JeK(ρ{x 7→ d}) (91)

Figure 5: Substitution and denotation

6.2 Substitution

A (simultaneous) substitution σ is a function that maps atoms in Avτ to α-terms
in Λ(τ) (for any τ ∈ Ty) and that has the property that its domain

dom(σ) , {x ∈
⋃

τ∈Ty Avτ | σ x 6= x}

is a finite set. We let atom-permutations π ∈ Perm act on such functions in the
usual way (Section 3.2): the substitution π ·σ maps x ∈ Avτ to π · (ρ(π−1(x)) and
(therefore) has domain dom(π · σ) = π · dom(σ) = {π(x) | x ∈ dom(σ)}. It is
not hard to see that with respect to this action, each substitution σ is supported by
the finite set of atoms dom(σ)∪

⋃
x∈dom(σ) supp(σ x). Therefore the collection of

substitutions forms a nominal set that we write as Sub.
Given τ ∈ Ty , e ∈ Λ(τ) and σ ∈ Sub, we let [e]σ ∈ Λ(τ) denote the result

of carrying out on e the simultaneous, capture-avoiding substitution given by
σ. This is specified by the recursion equations (86)–(88) in Figure 5. For each
σ ∈ Sub, we can use the second α-structural recursion theorem for ΣSTL to define
the functions ([−]σ ∈ Λ(τ) →fs Λ(τ) | τ ∈ Ty) satisfying these equations, much
as in Example 26, but using supp(σ) as the common finite support A. (In particular,
in Theorem 22 the only non-trivial freshness condition on binders, (FCBLmτ,τ ′ ), is
easily verified.)

The identity substitution σ0 ∈ Sub maps each x ∈ Avτ to x ∈ Λ(τ). The
composition σ1;σ2 of σ1, σ2 ∈ Sub is the element of Sub that maps each x ∈ Avτ

to [σ1 x]σ2. These operations satisfy:

[e]σ0 = e (92)

[e](σ1;σ2) = [[e]σ1]σ2 . (93)
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Both properties can be proved easily by applying the second α-structural induction
principle (Theorem 23) for the nominal signature ΣSTL. For example, to prove (93),
for each σ1, σ2 ∈ Sub we take Stτ to be {e ∈ Λ(τ) | [e](σ1;σ2) = [[e]σ1]σ2},
which is supported by A = supp(σ1, σ2); then (IHVrτ ) and (IHApτ,τ ′ ) are easy to
verify, using (86) and (87) respectively; for (IHLmτ,τ ′ ), which is the statement

(∃x ∈ Avτ ) x /∈ A & (∀e ∈ Stτ ′ ) λx : τ. e ∈ Stτ .→τ ′ ,

we can choose any x in the infinite set Avτ −A (so that x # (σ1, σ2)): if e ∈ Stτ ′ ,
then

[λx : τ. e](σ1;σ2)
= [[λx : τ. e]σ1]σ2 by definition of σ1;σ2

= [λx : τ. [e]σ1]σ2 by (88), since x # σ1

= λx : τ. [[e]σ1]σ2 by (88), since x # σ2

= λx : τ. [e](σ1;σ2) since e ∈ Stτ ′

= [λx : τ. e](σ1;σ2) by (88), since x # (σ1;σ2) (because σ1;σ2 is

supported by supp(σ1) ∪ supp(σ2) ⊆ A)

and hence λx : τ. e ∈ Stτ .→τ ′ .
The single-variable substitution used in the definition of =βη in the previous

section can be defined as:

e1[x := e2] , [e1](σ0{x 7→ e2}) (94)

where in general the updated substitution σ{x 7→ e} ∈ Sub maps x ∈ Avτ to
e ∈ Λ(τ) and otherwise acts like σ ∈ Sub.

6.3 Denotation

We interpret each simple type τ ∈ Ty as a nominal set D(τ) as follows:

D(ι) , N(ι) (95)

D(τ .→ τ ′) , D(τ) →fs D(τ ′) . (96)

An environment ρ is a function that, for any τ ∈ Ty , maps the atoms in Avτ to
elements of D(τ). We let atom-permutations π ∈ Perm act on such functions in
the usual way (Section 3.2): the environment π ·ρ maps x ∈ Avτ to π · (ρ(π−1(x)).
Let Env be the nominal set of environments that are finitely supported with respect
to this action.

Given τ ∈ Ty , e ∈ Λ(τ) and ρ ∈ Env , we wish to define the denotation
JeKρ ∈ D(τ), satisfying equations (89)–(91) in Figure 5. It is clear from the form
of these equations that we should try to define JeKρ by α-structural recursion for
ΣSTL for all ρ simultaneously, because of the use of an updated environment in
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(91): ρ{x 7→ d} is by definition the function mapping x to d and otherwise acting
like ρ (and is finitely supported by supp(ρ) ∪ {x} ∪ supp(d)). So in Theorem 22
it seems that we should take Xtτ to be Env →fs D(τ) and use the functions

fVrτ , λx ∈ Avτ .λρ ∈ Env . ρ x (97)

fApτ,τ ′ , λ(ξ, ξ′) ∈ Xtτ .→τ ′ ×Xtτ .λρ ∈ Env . ξ ρ (ξ′ρ) (98)

fLmτ,τ ′ , λ(x, ξ′) ∈ Avτ ×Xtτ ′ .λρ ∈ Env .λd ∈ D(τ). ξ′(ρ{x 7→ d}) . (99)

These functions are all supported by A = ∅ and the only non-trivial freshness
condition on binders is (FCBLmτ,τ ′ ), which in view of Theorem 14 (the “some/any”
theorem) is the requirement that for all x ∈ Avτ and ξ ∈ Env →fs D(τ ′)

x # λρ ∈ Env .λd ∈ D(τ). ξ(ρ{x 7→ d}) . (100)

If we could prove that, then the theorem gives us functions f̂tτ ∈ Λ(τ) →fs

(Env →fs D(τ)) satisfying (46)—from which it follows that JeKρ , f̂tτ e ρ
satisfies (89)–(91). The problem is that (100) is not true for all elements ξ of
Env →fs D(τ ′)! We have to strengthen the “recursion hypothesis” by suitably
restricting the class of functions ξ that we consider.

This is the first time in this paper we have encountered a really non-trivial
“freshness condition on binders”. Equations (89)–(91) are typical of many such
definitions in denotational semantics; but why is it the case that the right-hand side
of equation (91) is independent of the choice of bound variable x on the left-hand
side? Compared with the similar question for equation (88) a few lines above it,
there seems no quick answer to this question. However, the freshness of x for
λρ ∈ Env .λd ∈ D(τ). JeK(ρ{x 7→ d}) does follow from two expected properties
of denotations:

1. The denotation of e with respect to an environment ρ only depends on the
value of ρ at the free variables of e.

2. The denotation of a permuted version π·e of e with respect to an environment
ρ is the denotation of e with respect to the composition ρ ◦ π.

It is possible to take account of these facts in advance when applying Theorem 22
to construct denotations.11 To do so we cut down to the following nominal subset
of Env →fs D(τ):

Xtτ , {ξ ∈ Env →fs D(τ) | Φ1(ξ) & Φ2(ξ)} (101)

where

Φ1(ξ) , (∃A ∈ Pfin(A))(∀τ ∈ Ty , x ∈ Avτ , d ∈ D(τ), ρ ∈ Env)
x /∈ A ⇒ ξ(ρ{x 7→ d}) = ξ ρ

(102)

Φ2(ξ) , (∀π ∈ Perm, ρ ∈ Env) (π · ξ) ρ = ξ(ρ ◦ π)} . (103)

11We are in effect carrying out a simultaneous inductive-recursive definition: see [7].
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The slightly elaborate form of Φ1 compared with property 1 above is needed to
show that the functions defined in (97)–(99) satisfy

Φ1(fVrτ x)
Φ1(ξ) & Φ1(ξ′) ⇒ Φ1(fApτ,τ ′ (ξ, ξ

′))

Φ1(ξ′) ⇒ Φ1(fLmτ,τ ′ (x, ξ′)) .

Similar properties hold for Φ2. Therefore fVrτ ∈ Avτ →fs Xtτ , fApτ,τ ′ ∈
Xtτ .→τ ′ × Xtτ →fs Xtτ ′ and fLmτ,τ ′ ∈ Avτ × Xtτ ′ →fs Xtτ .→τ ′ . Furthermore,
it is now the case that if x ∈ Avτ and ξ′ ∈ Xtτ ′ , then (100) holds. To see this, first
note that since Φ1(ξ′) holds, there is a finite set of atoms A such that

(∀τ ∈ Ty , x′ ∈ Avτ , d′ ∈ D(τ), ρ′ ∈ Env) x′ /∈ A ⇒
ξ′(ρ′{x′ 7→ d′}) = ξ′ρ′ . (104)

Choose any x′ in the infinite set Avτ −supp(x, ξ′, A). Hence x′ # λρ ∈ Env .λd ∈
D(τ). ξ′(ρ{x 7→ d}); and so applying the transposition (x x′) to this we get

x = (x x′) · x′

# (x x′) · λρ ∈ Env .λd ∈ D(τ).ξ′(ρ{x 7→ d})
= λρ ∈ Env .λd ∈ D(τ).((x x′) · ξ′)(ρ{x′ 7→ d})
= λρ ∈ Env .λd ∈ D(τ).ξ′(ρ{x′ 7→ d} ◦ (x x′)) because Φ2(ξ′) holds

= λρ ∈ Env .λd ∈ D(τ).ξ′(ρ{x 7→ d}{x′ 7→ ρ x}) because x′ 6= x

= λρ ∈ Env .λd ∈ D(τ).ξ′(ρ{x 7→ d}) by (104), since x′ /∈ A.

So (100) does indeed hold. Therefore we can apply Theorem 22 to these nominal
sets and functions to obtain f̂tτ ∈ Xtτ satisfying (46). Defining JeKρ , f̂tτ e ρ, we
get the required properties (89)–(91).

Denotations respect βη-conversion:

e1 =βη e2 ⇒ Je1K = Je2K . (105)

To see this it suffices to show that J−K = J−K is a congruence relation equating
β-convertible (84) and η-convertible (85) terms. Congruence is immediate from
the defining properties (89)–(91) of J−K. To see that J−K respects β-conversion
one has to show

Je′[x := e]Kρ = Je′K(ρ{x 7→ JeKρ}) (106)

and for η-conversion one has to show

x /∈ fv(e) ⇒ JeK(ρ{x 7→ d}) = JeKρ . (107)

These properties can be proved using the second α-structural induction principle
(Theorem 23) for ΣSTL, with the second one used in the proof of the first.12 For

12It might seem that (107) is a consequence of the property (102) that we built in to the construction
of J−K; but unfortunately that property only tells us that JeK(ρ{x 7→ d}) and JeKρ are equal when x
avoids some finite set of atoms, rather than the particular finite set supp(e).
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(107) one can use the subsets

Stτ , {e ∈ Λ(τ) | (∀x ∈ Avτ , ρ ∈ Env , d ∈ D(τ)) x # e ⇒
JeK(ρ{x 7→ d}) = JeKρ}

which are all supported by the empty set. Properties (89)–(91) of J−K allow one
to show that these subsets satisfy the induction hypotheses (IHVrτ ), (IHApτ,τ ′ ) and
(IHLmτ,ty′ ); hence by Theorem 23 each Stτ is the whole of Λ(τ) and (107) holds.

For (106), for each x ∈ Avτ and e ∈ Λ(τ) we apply Theorem 23 to the subsets

S′
tτ , {e′ ∈ Λ(τ) | (∀ρ ∈ Env) Je′[x := e]Kρ = Je′K(ρ{x 7→ JeKρ})}

which are all supported by A , {x} ∪ supp(e). To conclude that S′
tτ = Λ(τ)

we have to prove the these subsets S′
tτ satisfy the induction hypotheses (IHVrτ ),

(IHApτ,τ ′ ) and (IHLmτ,ty′ ). The first two follow easily from (89) and (90). For
(IHLmτ,ty′ ) we have to show (∃x′ ∈ Avτ ) x′ # (x, e) & (∀e′ ∈ Stτ ) λx′ : τ. e′ ∈
Stτ ; but choosing any x′ in the infinite set Avτ − supp(x, e), for each e′ ∈ S′

tτ and
ρ ∈ Env we have:

J(λx′ : τ. e′)[x := e]Kρ
= Jλx′ : τ. (e′[x := e])Kρ since x′ /∈ fv(x, e)
= λd ∈ D(τ). Je′[x := e]K(ρ{x′ 7→ d}) by (91)

= λd ∈ D(τ). Je′K(ρ{x′ 7→ d}{x 7→ JeK(ρ{x′ 7→ d})}) since e′ ∈ Stτ

= λd ∈ D(τ). Je′K(ρ{x′ 7→ d}{x 7→ JeKρ}) by (107), since x′ /∈ fv(e)
= λd ∈ D(τ). Je′K(ρ{x 7→ JeKρ}{x′ 7→ d} since x′ 6= x

= Jλx′ : τ. e′K(ρ{x 7→ JeKρ}) by (91)

so that λx′ : τ. e′ ∈ Stτ , as required.

6.4 Reification, reflection and normalisation

The reification function ↓τ ∈ D(τ) →fs N(τ) turns elements of the denotational
model into βη-long normal forms, whereas the reflection function ↑τ ∈ U(τ) →fs

D(τ) turns neutral terms into denotational elements. Both functions are defined
simultaneously by ordinary structural recursion for simple type symbols τ ∈ Ty
in Figure 6, where for clarity we have written α-terms over the signature ΣLNF

without the conventions introduced by Notation 28. The interesting part of the
definition in this figure is clause (109), where we make use of the fresh construct
from Theorem 16. To do so we have to check that the conditions of that theorem
are satisfied; but in this case that is easy: given f ∈ D(τ .→ τ ′), choosing any
atom x in the infinite set Avτ − supp(↓τ ′ , ↑τ , f),13 then the element

h , λx ∈ Avτ .Lτ,τ ′ x. ↓τ ′(f(↑τ (Vτ x)))
13In fact supp(↓τ ′ , ↑τ , f) = supp(f) because the reification and reflection functions turn out to

have empty support.
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τ ∈ Ty , d ∈ D(τ) 7→ ↓τ (d) ∈ N(τ):

↓ι(n) , n (108)

↓τ
.→τ ′(f) , fresh(λx ∈ Avτ .Lτ,τ ′ x. ↓τ ′(f(↑τ (Vτ x))) (109)

τ ∈ Ty , u ∈ U(τ) 7→ ↑τ (u) ∈ D(τ):

↑ι(u) , I u (110)

↑τ
.→τ ′(u) , λd ∈ D(τ). ↑τ ′(Aτ,τ ′(u, ↓τ (d))) (111)

Figure 6: Reification (↓τ ) and reflection (↑τ )

of Avτ →fs N(τ ′) satisfies x # h (by choice of x) and x # h(x) (because
x /∈ fv(Lτ,τ ′ x. n) for any n ∈ N(τ ′)); so we can form fresh(h) as in the theorem.

Definition 29. The initial environment ρ0 maps each x ∈ Avτ to ↑τ (Vτ x) ∈
D(τ), for all τ ∈ Ty . This has empty support (because the ↑τ functions do) and
hence in particular it is an element of the nominal set Env of finitely supported
environments. Using it, we define the normalisation function normτ ∈ Λ(τ) →fs

N(τ) by:

normτ (e) , ↓τ (JeKρ0) . (112)

Recall that we wish to show that normτ has the properties (81)–(83). Property
(81) follows immediately from (105). Property (82) is the first half of the following
result.

Lemma 30. For all τ ∈ Ty , n ∈ N(τ) and u ∈ U(τ)

↓τ (Jiτ nKρ0) = n (113)

Jjτ uKρ0 = ↑τ (u) . (114)

Proof. These properties can be proved by using the second α-structural induction
principle (Theorem 23) for ΣLNF to show that the subsets

Snτ , {n ∈ N(τ) | ↓τ (Jiτ nKρ0) = n}
Suτ , {u ∈ U(τ) | Jjτ uKρ0 = ↑τ (u)}

are equal to N(τ) and U(τ) respectively (for all τ ∈ Ty). Since these subsets are
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∼τ ⊆ D(τ)× Λ(τ):

n ∼ι e , (iι n =βη e)

f ∼τ
.→τ ′ e , (∀d1 ∈ D(τ), e1 ∈ Λ(τ)) d1 ∼τ e1 ⇒ f d ∼τ ′ Apτ,τ ′(e, e1)

∼ ⊆ Env × Sub:

ρ ∼ σ , (∀τ ∈ Ty , x ∈ Avτ ) ρ x ∼τ σ x

Figure 7: Logical relation

supported by the empty set of atoms one can take A = ∅ in the theorem and prove

(∀x ∈ Avτ ) Vτ x ∈ Suτ (IHVτ )

(∀u ∈ Suτ
.→τ ′ , n ∈ Snτ ) Aτ,τ ′(u, n) ∈ Suτ ′ (IHAτ,τ ′ )

(∃x ∈ Avτ )(∀n ∈ Snτ ′ ) Lτ,τ ′ x. n ∈ Snτ
.→τ ′ (IHLτ,τ ′ )

(∀u ∈ Suι) I u ∈ Suι . (IHI )

These nearly all follow directly from the definitions of iτ , jτ , ↓τ , ↑τ , J−K and ρ0.
The only tricky case is for (IHLτ,τ ′ ), because of the use of fresh in ↓τ

.→τ ′ . Picking
any atom x in Avτ , suppose n ∈ Snτ ′ . We wish to prove that Lτ,τ ′ x. n ∈ Snτ

.→τ ′ .
Note that x # Lτ,τ ′ x. n; so since J−K, iτ .→τ ′ and ρ0 have empty support, it is the
case that x # Jiτ .→τ ′(Lτ,τ ′ x. n)Kρ0 = Jλx : τ. iτ ′ nKρ0 = f , where f , λd ∈
D(τ). Jiτ ′ nK(ρ0{x 7→ d}). Hence

x # (λx′ ∈ Avτ .Lτ,τ ′ x
′. ↓τ ′(f(↑τ (Vτ x′))))

and therefore by definition of fresh in Theorem 16

↓τ
.→τ ′(Jiτ .→τ ′(Lτ,τ ′ x. n)Kρ0)

= fresh(λx′ ∈ Avτ .Lτ,τ ′ x
′. ↓τ ′(f(↑τ (Vτ x′))))

= Lτ,τ ′ x. ↓τ ′(f(↑τ (Vτ x)))
= Lτ,τ ′ x. ↓τ ′(Jiτ ′ nK(ρ0{x 7→ ↑τ (Vτ x)}))
= Lτ,τ ′ x. ↓τ ′(Jiτ ′ nKρ0) by definition of ρ0

= Lτ,τ ′ x. n since n ∈ Snτ ′

so that Lτ,τ ′ x. n is indeed an element of Snτ
.→τ ′ .

It just remains to prove that normτ has the property (83). For this we use a
logical relation ∼τ ⊆ D(τ) × Λ(τ) between elements of the denotational model
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and terms. It is defined by ordinary structural recursion for simple type symbols
τ ∈ Ty in Figure 7, which also extends the relation to one between (finitely sup-
ported) environments and substitutions.

Lemma 31 (fundamental property of ∼). For all τ ∈ Ty , e ∈ Λ(τ), ρ ∈ Env
and σ ∈ Sub

ρ ∼ σ ⇒ JeKρ ∼τ [e]σ . (115)

Proof. This can be proved by applying the second α-structural induction theorem
for the nominal signature ΣSTL to show that the subsets

Sτ , {e ∈ Λ(τ) | (∀ρ ∈ Env , σ ∈ Sub) ρ ∼ σ ⇒ JeKρ ∼τ [e]σ}

are equal to Λ(τ), for all τ ∈ Ty . Proving the induction hypotheses (IHVrτ ) and
(IHApτ,τ ′ ) is straightforward; and for (IHLmτ,τ ′ ) one first proves

d ∼τ e & e =βη e′ ⇒ d ∼τ e′ (116)

([λx. e]σ) e′ =βη [e](σ{x 7→ e′}) (117)

where σ{x 7→ e′} indicates an updated substitution mapping x to e′ and otherwise
acting like σ.

One can prove by ordinary structural induction for types τ ∈ Ty that

(∀τ ∈ Ty , u ∈ U(τ)) ↑τ (u) ∼τ jτ u (118)

(∀τ ∈ Ty , d ∈ D(τ), e ∈ Λ(τ)) d ∼τ e ⇒ iτ (↓τ (d)) =βη e . (119)

(Both properties are proved simultaneously, and one needs to make use of (116).)
Because of (118), the identity substitution σ0 ∈ Sub satisfies ρ0 ∼ σ0 . So by
Lemma 31 and (92) we have JeKρ0 ∼τ [e]σ0 = e, for all e ∈ Λ(τ). Thus (119)
gives iτ (↓τ (JeKρ0)) =βη e, i.e. iτ (normτ (e)) =βη e, as required for (83).

7 Assessment

7.1 Mathematical perspective

The results of this paper are directly inspired by my joint work with Gabbay on
“FM-set” theory [13] and by his PhD thesis [11]; in particular those works contain
structural recursion and induction principles for an inductively defined FM-set iso-
morphic to λ-terms modulo α-equivalence. Here I have taken an approach that is
both a bit more general and more concrete: more general, because the particular
signature for λ-terms has been replaced by an arbitrary nominal signature (a no-
tion which comes from joint work with Urban and Gabbay [28] and is developed
further in Cheney’s thesis [4]); and more concrete in two respects. First, the key
notion of (finite) support has been developed using nominal sets within the frame-
work of ordinary higher-order logic, rather than being axiomatised within FM-set
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theory; see Cheney [4, Chapter 3] for a more leisurely and generalised account of
the theory of nominal sets. Secondly, the recursion and induction principles devel-
oped here refer directly to α-terms, i.e. standard α-equivalence classes of abstract
syntax trees, rather than using an intial algebra that is merely isomorphic to the
set of α-terms; see Remark 24. This is also the approach taken by Norrish [18],
building on Gordon and Melham’s five axioms for α-equivalence [14]; and also
by Urban and Tasson [29]. Norrish’s recursion principle [18, Fig. 1] has side-
conditions requiring that the function being defined be well-behaved with respect
to variable-permutations and with respect to fresh name generation. In effect these
side-conditions build in just enough of the theory of nominal sets to yield a well-
defined and total function, while having to specify how binders with only fresh
names are mapped by the function. Along with Urban and Tasson [29], I prefer to
develop the theory of nominal sets in its own right and then give a simple-looking14

recursion principle within that theory. One advantage of such an approach is that
it makes it easier to identify and use properties of name freshness, such as The-
orem 16, independently of the recursion principle. We used Theorem 16 in the
reduction of Theorem 17 to Theorem 3, in the reduction of “varying parameters”
to “no parameters” (Example 27) and in the definition of the reification functions in
the extended example in Section 6; another good example of its use occurs (implic-
itly) in the denotational semantics of FreshML’s fresh expression [26, Section 3].

How easy is it to apply these principles of α-structural recursion and induction?
Just as for the work of Gordon-Melham, Norrish and Urban-Tasson [14, 18, 29], to
use them one does not have to change to an unfamiliar logic (we remain in higher-
order logic), or a new way of representing syntax (we use the familiar notion of α-
equivalence classes of abstract syntax trees). One does have to get used to thinking
in terms of permutations and finite support; and the latter is undoubtedly a subtle
concept at higher types. However, the relativisation from arbitrary mathematical
objects to finitely supported ones called for by this approach is made easier by
the fact (Theorem 11) that the finite support property is conserved by all the usual
constructs of higher-order logic except for uses of the axiom of choice. Thus if
some language of interest has been specified as the α-terms for a particular nominal
signature and one wishes to define a function on those α-terms specified by an
instance of the recursion scheme (46) in Theorem 22 (for suitable functions fK ),
then there are three tasks involved in applying the theorem to this data:

(I) Show that the sets Xs that one is mapping into have the structure of nominal
sets.

(II) Show that the functions fK are all supported by a single finite set of atoms
A.

(III) Show that each function fK satisfies the “freshness condition on binders”
(FCBK ).

14Once one gets used to the distinctive concepts of nominal sets, I believe that principles such as
Theorems 17, 22 and 25 are quite simple.
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Task (I) is usually carried out by showing how the Xs are built up from some stan-
dard nominal sets (such as those in Example 7) using the constructions described
in Sections 3.2 and 3.3. Task (II) might seem quite difficult, but in fact the Fi-
nite Support Principle (Theorem 11) usually reduces it to seeing how the fK are
constructed within higher-order logic. So really the main difficulty is task (III).
In some cases, such as the capture-avoiding substitution function in Example 26,
(FCBK ) is very easily checked. In other cases, such as in the definition of the de-
notation functions J−K in the extended example of Section 6, one has to work hard
to verify the freshness condition on binders.

Applying the α-structural induction principles is somewhat easier. For exam-
ple, for the second α-structural induction principle (Theorem 23) one still has the
analogues of the easy tasks (I) and (II); and then one just has to verify the induc-
tion hypothesis (IHK ) for each constructor K , which is in fact a more restricted
property than the corresponding induction hypothesis in an ordinary structural in-
duction for terms rather than α-terms.

7.2 Automated theorem proving perspective

Based on my experience with other formalisms, I claim that the use of permutations
and finitely supported objects advocated here is a simple, effective and yet rigor-
ous way of dealing with binders and α-equivalence in “paper-and-pencil” proofs
in programming language semantics. But how easy is it to provide computer sup-
port for reasoning with α-structural recursion and induction? Of the three types
(I–III) of task involved in applying these principles in any particular case that were
mentioned above, task (III) will require human-intervention; but in view of Theo-
rem 11, there is the possibility of automating tasks (I) and (II). One way of attempt-
ing that is to develop a new higher-order logic in which types only denote nominal
sets and that axiomatises properties of permutations and finite support; this is the
route taken by Gabbay with his FM-HOL [12]. The disadvantage of such a “new
logic” approach is that one does not have easy access to the legacy of already-
proved results in systems such as HOL4 and Isabelle/HOL. To what extent tasks
(I) and (II) can be automated within these “legacy” mechanised logics remains to
be seen. The work of Norrish [18] provides a starting point within the HOL4 sys-
tem; and Urban and Tasson [29] have already developed a theory equivalent to
nominal sets within Isabelle/HOL up to and including an induction principle (but
not yet a recursion principle) for the particular nominal signature for λ-terms.15 It
is to be hoped that these works will lead to an augmentation of the treatment of
data types withing HOL4 or Isabelle/HOL, allowing the user to declare a nominal
signature and then have the principles of α-structural recursion and induction for
that signature proved and ready to be applied.16

15Their proof of validity of the induction principle follows a different route from the one used here
to prove the α-structural recursion and induction principles.

16How best in such a package to deal with the relativisation to nominal sets is certainly an issue;
Urban and Tasson report that Isabelle’s axiomatic type classes are helpful in this respect.
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A Proof of Second α-Structural Induction Theorem

Given a nominal signature Σ, we prove the second α-structural induction principle
(Theorem 23) as a corollary of the first one, Theorem 21. To do so we must first
develop some properties of the operation ā ∈ Aσ, ē ∈ Tα(Σ)|σ| 7→ ā. ē ∈ Tα(Σ)σ

and the relation ]σ ⊆ Aσ × Tα(Σ)|σ| defined in Figure 2.

Lemma 32. If ā ∈ Aσ, ē ∈ Tα(Σ)|σ| and ā ]σ ē, then supp(ā. ē) = supp(ē) −
supp(ā).

Proof. This can be proved by ordinary structural recursion for arities. The induc-
tion step for pair arities uses the fact (20) that the support of a pair is the union
of the supports of its two components. The induction step for atom-binding arities
uses the fact, noted in Example 7(iii), that the support of an α-term is its finite set
of free atoms (so that in particular supp(a. e) = supp(e)− {a}).

Lemma 33. Let (Ss ∈ Pfs(Tα(Σ)s) | s ∈ ΣD) be a family of finitely supported
subsets of α-terms indexed by the data-sorts of Σ. Extend this to arity-indexed
families

(Sσ ∈ Pfs(Tα(Σ)σ) | σ ∈ Ar(Σ))

(S|σ| ∈ Pfs(Tα(Σ)|σ|) | σ ∈ Ar(Σ))

as in Figure 3. Then for any finite set A of atoms, each element of Sσ is of the form
ā. ē for some ā ∈ Aσ and ē ∈ S|σ| satisfying ā # A and ā ]σ ē.

Proof. This can be proved by ordinary structural induction for arities, for all A
simultaneously. The induction steps when σ = a ∈ ΣA, σ = s ∈ ΣD and σ = 1
are trivial.

Case σ = σ1 ∗ σ2. By definition of Sσ, each e ∈ Sσ is of the form e = (e1, e2)
with ei ∈ Sσi for i = 1, 2. Given A, by induction hypothesis for σ1 applied to
the finite set of atoms A ∪ supp(e2), we can find ā1 ∈ Aσ1 and ē1 ∈ S|σ1| with
e1 = ā1. ē1, ā1 # (A, e2) and ā1 ]σ1 ē1. Then by induction hypothesis for σ2,
we can find ā2 ∈ Aσ2 and ē2 ∈ S|σ2| with e2 = ā2. ē2, ā2 # (A, ā1, ē1) and
ā2 ]σ2 ē2. Since ā1 # ā2, we have (ā1, ā2) ∈ Aσ1 ⊗Aσ2 = Aσ. So e = (e1, e2) =
(ā1, ā2). (ē1, ē2) with (ā1, ā2) # A and (ē1, ē2) ∈ S|σ1| × S|σ2| = S|σ|. So it just
remains to show (ā1, ā2) ]σ (ē1, ē2). For this, since āi ]σi ēi (i = 1, 2) and ā2 # ē1

hold by construction, we just need to prove that ā1 # ē2. We chose ā1 to have its
support disjoint from supp(e2), which by Lemma 32 is supp(ē2)−supp(ā2); since
supp(ā1) is also disjoint from supp(ā2), it follows that supp(ā1) ∩ supp(ē2) = ∅,
i.e. ā1 # ē2, as required.
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Case σ = «a»σ1. By definition of Sσ, each e ∈ Sσ is of the form e = a. e1 with
a ∈ Aa − supp(Sσ1) and e1 ∈ Sσ1 . Given A, choosing any atom a′ in the infinite
set Aa − supp(A, a, e1), it follows from the characterisation of α-equivalence in
(28) that e = a′. e′1 where e′1 , (a a′) · e1 ∈ (a a′) · Sσ1 = Sσ1 , since a, a′ # Sσ1 .
Then by induction hypothesis for σ1 applied to the finite set of atoms A∪{a′}, we
can find ā1 ∈ Aσ1 and ē1 ∈ S|σ1| with e′1 = ā1. ē1, ā1 # (A, a′) and ā1 ]σ1 ē1.
since a′ # ā1, we have (a′, ā1) ∈ Aa ⊗ Aσ1 = Aσ. So e = a′. e′1 = (a′, ā1). ē1

with (a′, ā1) # A, ē1 ∈ S|σ1| = S|σ| and (a′, ā1) ]σ ē1.

To prove Theorem 23 we also need to see that its induction hypotheses (IHK )
are equivalent to ones that universally rather than existentially quantify over suit-
ably fresh nested tuples ā of atoms. To do so we make use of the following gener-
alisation of permutations that transpose a pair of atoms.

Definition 34 (vector-transpositions). Let Σ be a nominal signature and σ ∈
Ar(Σ) an arity over the signature. Let the nominal set Aσ of nested tuples of
distinct atoms be defined as in Figure 2. For each pair of elements ā, ā′ ∈ Aσ

with ā # ā′, let τā,ā′ ∈ Perm be the atom-permutation that transposes the atoms
at corresponding positions in the nested tuples ā and ā′. More formally, τā,ā′ is
defined by ordinary structural recursion on the arity σ as follows:

σ (ā, ā′) ∈ Aσ ⊗ Aσ 7→ τā,ā′ ∈ Perm
a ∈ ΣA ((), ()) 7→ ι
s ∈ ΣD ((), ()) 7→ ι

1 ((), ()) 7→ ι
σ1 ∗ σ2 ((ā1, ā2), (ā′1, ā

′
2)) 7→ τā1,ā′1

◦ τā2,ā′2
«a»σ1 ((a, ā1), (a′, ā′1)) 7→ (a a′) ◦ τā1,ā′1

Although the clauses defining τā,ā′ make sense for any pair ā, ā′, we restrict to
pairs satisfying ā # ā′ to ensure that τā,ā′ enjoys many properties of single-atom
transpositions, (a a′). In particular one can easily prove by ordinary structural
induction for arities that:

π ◦ τā,ā′ ◦ π−1 = τ(π·ā),(π·ā′) (any π ∈ Perm) (120)

supp(τā,ā′) ⊆ supp(ā) ∪ supp(ā′) (121)

τā,ā′ = τā′,ā (122)

τā,ā′ ◦ τā,ā′ = ι (123)

τā,ā′ · ā = ā′ . (124)

Part (ii) of the following result generalises the “some/any” Theorem 14 from single
atoms to elements of Aσ.

Lemma 35. (i) For all finite sets of atoms A, there is some ā ∈ Aσ with ā # A.
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(ii) For all finitely supported subsets S ∈ Pfs(Aσ), if S is supported by the finite
set of atoms A, then the following statements are equivalent.

(∀ā ∈ Aσ) ā # A ⇒ ā ∈ S (125)

(∃ā ∈ Aσ) ā # A & ā ∈ S . (126)

Proof. Part (i) follows easily by ordinary structural induction for arities σ ∈ Ar(Σ).
For part (ii), first note that in view of part (i), one just has to show that (126) im-
plies (125). Suppose ā ∈ Aσ satisfies ā # A & ā ∈ S. Given any other ā′ ∈ Aσ

with ā′ # A, we have to show ā′ ∈ S. We can use part (i) to find ā′′ ∈ Aσ with
ā′′ # (A, ā, ā′) and then use the vector-transpositions of Definition 34 to define
π , τā′,ā′′ ◦τā,ā′′ ∈ Perm .17 By (124), we have π · ā = ā′; and because by (121) π
is supported by supp(ā, ā′, ā′′), which is disjoint from A and hence from supp(S),
we have π · S = S. So applying π to ā ∈ S we get ā′ ∈ S, as required.

The following result generalises the characterisation of α-equivalence men-
tioned in Example 15. Note that in view of the previous lemma, the right-hand
side of the bi-implication in (127) could be replaced by (∀ā′′ ∈ Aσ) ā′′ # A ⇒
τā,ā′′ · ē = τā′,ā′′ · ē′ ∈ Tα(Σ)|σ|.

Lemma 36. Suppose ā, ā′ ∈ Aσ and ē, ē′ ∈ Tα(Σ)|σ| satisfy ā ]σ ē and ā′ ]σ ē′. If
A is a finite set of atoms supporting (ā, ā′, ē, ē′), then

ā. ē = ā′. ē′ ∈ Tα(Σ)σ ⇔
(∃ā′′ ∈ Aσ) ā′′ # A & τā,ā′′ · ē = τā′,ā′′ · ē′ ∈ Tα(Σ)|σ| . (127)

Proof. This can be proved by ordinary structural induction for arities σ. The induc-
tion step for atom-binding arities uses the corresponding property (28) of =α.

We can now complete the proof of Theorem 23. We are given subsets (Ss ∈
Pfs(Tα(Σ)s) | s ∈ ΣD) supported by the finite set of atoms A and satisfying (IHK )
for each K ∈ ΣC. Define (Sσ ∈ Pfs(Tα(Σ)σ) | σ ∈ Ar(Σ)) as in the right-
hand column in Figure 3. It is not hard to see that all of these subsets are also
supported by A and hence so is their union S ,

⋃
σ∈Ar(Σ) Sσ. If S = Tα(Σ),

then Ss = Tα(Σ)s for each s ∈ ΣD; and to prove S = Tα(Σ) we just have to
prove that this S satisfies the conditions (40)–(44) of Theorem 21. Conditions
(40) and (42)–(44) are immediate from the definition of (Sσ | σ ∈ Ar(Σ)) in
Figure 3. For condition (41), given (K : σ → s) ∈ ΣC and e ∈ Sσ, we have
to show that K e ∈ Ss. First note that by applying Lemma 35(ii) to the subset
{ā ∈ Aσ | (∀ē ∈ Tα(Σ)|σ|) ā ]σ ē & ē ∈ S|σ| ⇒ K ā. ē ∈ Ss}, which is
supported by A, to see that (IHK ) is equivalent to

(∀ā ∈ Aσ) ā # A ⇒ (∀ē ∈ Tα(Σ)|σ|) ā ]σ ē & ē ∈ S|σ| ⇒
K ā. ē ∈ Ss . (128)

17Since it may not be the case that ā # ā′, we cannot use τā,ā′ ; so (unlike in the proof of
Theorem 14) we resort to swapping via an intermediate, fresh ā′′.
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By Lemma 33, e = ā. ē with ā ∈ Aσ, ē ∈ S|σ|, ā # A and ā ]σ ē; so (128)
gives K e ∈ Ss. Thus we can indeed apply Theorem 21 to conclude that S is the
whole of Tα(Σ) and hence in particular that each Ss is equal to the whole of Tα(Σ)s,
completing the proof of Theorem 23.

B Proof of Second α-Structural Recursion Theorem

We will establish the second α-structural recursion principle (Theorem 22) via a
common strategy for reducing recursion to induction: we first construct relations
(using a rule-based inductive definition) that would be the graphs of the required
functions f̂s were they single-valued and total relations—and then prove they are
so by applying Theorem 23. A further application of Theorem 23 is needed to
show that the functions f̂s are unique with the stated properties.

So suppose we are given a family of nominal sets X = (Xs | s ∈ ΣD) indexed
by the data-sorts of a nominal signature Σ, and functions (fK ∈ X(σ) →fs X(s) |
(K : σ → s) ∈ ΣC) all of which are supported by a finite set A of atoms and
satisfy (FCBK ).

Existence of the functions f̂s ∈ Tα(Σ)s →fs Xs

Consider the subsets Fs ⊆ Tα(Σ)s ×Xs (for s ∈ ΣD) that are inductively defined
by the following rule

K : σ → s ā ∈ Aσ ē ∈ Tα(Σ)|σ|

ā # A ā ]σ ē (ē, x̄) ∈ F |σ| ā ]σ x̄

(K ā. ē, fK (ā, x̄)σ) ∈ Fs
(129)

where F |σ| ⊆ Tα(Σ)|σ| × X |σ| is defined from any family (Fs ⊆ Tα(Σ)s × Xs |
s ∈ ΣD) by ordinary recursion on the structure of arities as follows.

σ F |σ| ⊆ Tα(Σ)|σ| ×X |σ|

a ∈ ΣA {(a, a) | a ∈ Aa}
s ∈ ΣD Fs

1 {((), ())}
σ1 ∗ σ2 {((ē1, ē2), (x̄1, x̄2)) | (ē1, x̄1) ∈ F |σ1| &

(ē2, x̄2) ∈ F |σ2|}
«a»σ1 F |σ1|

It is not hard to see that the set of rules determined by (129) is supported by A.
Hence by Theorem 12, so are all the subsets Fs (and the subsets F |σ| defined from
them). For the existence part of Theorem 22 it suffices to show that each Fs is the
graph of a function f̂s from Tα(Σ)s to Xs. For then:

– each f̂s and the functions f̂ |σ| defined from them as in Figure 2 are supported
by A, because Fs is;
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– the graphs of the functions f̂ |σ| are the relations F |σ|, because of the above
definition of F |σ|;

– if ā # A and ā ]σ ē, then ā ]σ f̂ |σ|ē, because of the definition of f̂ |σ|;

– hence (f̂s | s ∈ ΣD) satisfies the recursion property (46): for if ā #
A and ā ]σ ē, then x̄ , f̂ |σ|ē satisfies (ē, x̄) ∈ F |σ| and ā ]σ x̄; so
(K ā. ē, fK (ā, x̄)σ) ∈ Fs by rule (129) and hence f̂s(K ā. ē) = fK (ā, x̄)σ =
fK (ā, f̂ |σ|ē)σ.

To prove that each Fs is the graph of a function, i.e. that

Ss , {e ∈ Tα(Σ)s | (∃!x ∈ Xs) (e, x) ∈ Fs}

is the whole of Tα(Σ)s, we apply Theorem 23. Note that from the way it is defined,
each Ss is supported by A, because Fs is. So we just have to prove that (Ss | s ∈
ΣD) satisfies (IHK ) for each (K : σ → s) ∈ ΣC. By Lemma 35(i), there is some
ā ∈ Aσ with ā # A. We prove (IHK ) for this ā by showing that for each ē ∈ S|σ|

with ā ]σ ē it is the case that K ā. ē ∈ Ss.
First note that by the definitions of S|σ| from (Ss | s ∈ ΣD) (in Figure 3) and

F |σ| from (Fs | s ∈ ΣD), we have

(∀ē ∈ Tα(Σ)|σ|) ē ∈ S|σ| ⇒ (∃! x̄ ∈ X |σ|) (ē, x̄) ∈ F |σ| . (130)

In particular it follows that if ē ∈ S|σ| and (ē, x̄) ∈ F |σ|, then supp(x̄) ⊆ A ∪
supp(ē) (since A supports F |σ|); and this in turn implies (by induction on the
structure of arities σ) that

(∀ā ∈ Aσ, ē ∈ Tα(Σ)|σ|, x̄ ∈ X |σ|) ā ]σ ē & ē ∈ S|σ| & (ē, x̄) ∈ F |σ| ⇒
ā ]σ x̄ . (131)

So by rule (129), if ē ∈ S|σ| with ā ]σ ē, then there is some x̄ ∈ X |σ| with
(K ā. ē, fK (ē, x̄)σ) ∈ Fs. Thus to see that K ā. ē ∈ Ss, it just remains to show
that if (K ā. ē, x) ∈ Fs, then x = fK (ē, x̄)σ. But if (K ā. ē, x) ∈ Fs holds, it must
have been deduced by an application of rule (129) to

ā′ # A & ā′ ]σ ē′ & (ē′, x̄′) ∈ F |σ| & ā′ ]σ x̄′

with K ā. ē = K ā′. ē′ and x = fK (ā′, x̄′)σ. So ā. ē = ā′. ē′ and by Lemma 36,
τā,ā′′ ·ē = τā′,ā′′ ·ē′, for some ā′′ # (A, ā, ē, ā′, ē′). By (121), the atom-permutations
τā,ā′′ and τā′,ā′′ have their support disjoint from A and hence from the support of
F |σ| and S|σ|. Therefore

(τā,ā′′ · ē, τā,ā′′ · x̄) = τā,ā′′ · (ē, x̄) ∈ τā,ā′′ · F |σ| = F |σ| ,

(τā′,ā′′ · ē′, τā′,ā′′ · x̄′) = τā′,ā′′ · (ē′, x̄′) ∈ τā′,ā′′ · F |σ| = F |σ| ,

τā′,ā′′ · ē′ = τā,ā′′ · ē ∈ τā,ā′′ · S|σ| = S|σ|
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and hence by (130), τā,ā′′ ·x̄ = τā′,ā′′ ·x̄′. Note that from (FCBK ), by Lemma 35(ii)
we have

(∀ā ∈ Aσ) ā # A ⇒ (∀x̄ ∈ X |σ|) ā ]σ x̄ ⇒ ā # fK (ā, x̄)σ . (132)

So we have ā # fK (ā, x̄)σ and ā′ # fK (ā′, x̄′)σ; and by choice of ā′′ we also
have ā′′ # (fK (ā, x̄)σ, fK (ā′, x̄′)σ). Since the atom-permutations τā,ā′′ and τā′,ā′′

have their supports in A and hence disjoint from fK , fK (ā, x̄)σ and fK (ā′, x̄′)σ,
we have

fK (ā, x̄)σ = τā,ā′′ · fK (ā, x̄)σ = fK (τā,ā′′ · ā, τā,ā′′ · x̄)σ

fK (ā′, x̄′)σ = τā′,ā′′ · fK (ā′, x̄′)σ = fK (τā′,ā′′ · ā′, τā′,ā′′ · x̄′)σ .

From above τā,ā′′ · ē = τā′,ā′′ · ē′; and by (124), τā,ā′′ · ā = ā′′ = τā′,ā′′ · ā′. So
fK (ā, x̄)σ = fK (ā′, x̄′)σ = x, as required.

Uniqueness of the functions f̂s ∈ Tα(Σ)s →fs Xs

Suppose (f̂ ′s ∈ Tα(Σ)s →fs Xs | s ∈ ΣD) is also supported by A and satisfies
property (46). To see that f̂ ′s = f̂s if suffices to show that Ss , {e ∈ Tα(Σ)s |
f̂s e = f̂ ′s e} is the whole of Tα(Σ) for each s ∈ ΣD. This follows almost immedi-
ately by Theorem 23; one just has to check that the subsets S|σ| defined from this
(Ss | s ∈ ΣD) satisfy S|σ| ⊆ {ē ∈ Tα(Σ)|σ| | f̂ |σ| ē = f̂ ′|σ| ē}.
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