
An Interpretation of Isabelle/HOL in HOL Light

Sean McLaughlin

Carnegie Mellon University

Abstract. We define an interpretation of the Isabelle/HOL logic in
HOL Light and its metalanguage, OCaml. Some aspects of the Isabelle
logic are not representable directly in the HOL Light object logic. The
interpretation thus takes the form of a set of elaboration rules, where
features of the Isabelle logic that cannot be represented directly are
elaborated to functors in OCaml. We demonstrate the effectiveness of
the interpretation via an implementation, translating a significant part
of the Isabelle standard library into HOL Light.

1 Introduction

The vast advances in computer technology of the last century facilitated
the construction of computer programs that could check logical proofs in
full detail. These programs, called proof assistants or interactive theorem

provers, were an extension of, and improvement upon, formal logical rea-
soning in the spirit of Russell and Whitehead [38] and Landau [19]. Such
proof assistants, from the pioneer DeBruijn’s Automath [5] to its modern
counterparts (e.g., Coq [4], HOL4 [11], HOL Light [17], Isabelle [28], Nuprl
[7], PVS [27]), seek fully foundational proofs of deep mathematical and
scientific problems. While the technical challenges of such developments
can be significant, many important theorems have been fully checked in
these systems. Some recent examples are the Four Color Theorem [10],
the Prime Number Theorem [2], and the Jordan Curve Theorem [13].

Unfortunately, each system has its own library of theorems. The ex-
tensive effort involved in constructing a proof in one system must be
duplicated to prove the theorem in another. For instance, the three ex-
amples cited above are all constructed in different proof assistants, and
as of this writing, none have been ported to another system. Indeed, little
infrastructure exists to support the sharing of proofs between proof as-
sistants. This dissonance is a serious concern for large verification efforts.
For example, the Flyspeck Project [12] seeks to formally prove the Kepler
Conjecture [14] in HOL Light. Recently, Nipkow verified an important al-
gorithm in the proof using Isabelle/HOL [25]. Researchers elsewhere are
working on other parts of the project using the Coq proof assistant. For

the Kepler Conjecture to exist as a single HOL Light theorem, there must
be a way to import the Isabelle and Coq developments.

This paper describes a mechanism and provides an implementation
for interpreting formulas and proofs of Isabelle/HOL in HOL Light. The
interpretation is interesting because Isabelle/HOL supports features not
found in ordinary higher order logic. These include axiomatic type classes

and constant overloading. We therefore do not attempt a direct transla-
tion into HOL Light logic. Instead, we elaborate Isabelle’s types, terms,
and proofs to functors in the HOL Light metalanguage, Objective Caml
(OCaml) [36]. We demonstrate the effectiveness of this interpretation via
an implementation, translating a significant portion of the Isabelle/HOL
standard library into HOL Light, including many proofs which rely on
overloading and axiomatic type classes.

A note on fonts: Isabelle text appears in sans serif font. OCaml key-
words appear in bold. OCaml identifiers, which are also HOL Light
inference rules and types, appear in small capital letters. Meta-
functions, such as tv which returns the free type variables of a term, are
in typewriter face.

2 Related work

There are two different approaches to the sharing of formal theories. In
one view, which we will call the trusting view, we interpret the logic of
one proof assistant in another, prove (on paper) some semantic properties
of the translation, verify that the axioms of the source system hold in
the target interpretation, and finally accept the interpreted formulas that
correspond to theorems in the source logic as theorems in the target logic.
No translation of proof objects is attempted or, indeed, is necessary. The
user of such a translation supposes the soundness of the source theorem
prover.

In the other view, which we call the skeptical view, a given proof
assistant is the final arbiter of correct reasoning. Relying on other sys-
tems, which are possibly unsound, is undesirable. Indeed, the very raison

d’être of the given assistant is to distill the essential axioms and to build
rich mathematical structures from these axioms alone. Trusting a large
body of computer code would be anathema. To import theorems we check
their proofs. There is no need to rely upon a model theory because the
proof theory of the target system will guarantee the correctness of the
translation.

2

Examples of the trusting view include [8, 23], which import formulas
of HOL and Isabelle/HOL, respectively, into Nuprl. Felty and Howe [9]
show how the connection described in [8] can be used in a larger example.
The skeptical outlook can be seen in [24, 35, 20]. Obua and Skalberg [26]
describe an analogue to our work in the opposite direction, translating
HOL Light proofs into Isabelle/HOL. There is also some related work
involving general translation infrastructure, which we discuss in section
7.

3 Isabelle/HOL in HOL Light

HOL Light is an interactive prover in the LCF style [33] based on Church’s
simple theory of types [6]. Isabelle is a logical framework for defining
logics [29]. The most well-developed instantiation is the interpretation of
higher-order logic, Isabelle/HOL. In addition, Isabelle is extended with
axiomatic type classes and constant overloading [37]1. Though the logics
are very similar, these additional features make the Isabelle logic more
expressive, in the sense that a single theorem in Isabelle/HOL corresponds
to a set of theorems in HOL Light. We thus appeal to the metalanguage
to support type classes and overloading.

Note that in the following exposition we give a syntax for Isabelle
that is convenient for our purposes. We do not present the actual concrete
syntax of Isabelle. We take similar liberties with the OCaml syntax.

3.1 Type class example

Reasoning with type classes can be seen as a generalization of polymor-
phism. In a logic with polymorphism we avoid constructing similar the-
orems at different types and instead simply instantiate a polymorphic
theorem at any type. In a logic with type classes we do the same, except
that we also assert axiomatic properties of the type. An example is the

1 Isabelle also includes a locale mechanism that extends the genericity of its reasoning
capabilities [3]. Locales are eliminated in the construction of proof terms in Isabelle,
however, and thus we needn’t account for them in our interpretation, where we work
directly with the proof terms.

3

class of partial orders.

axclass order [] =

[≤: α → α → bool]

[refl is x : α :: order ≤ x,

antisym is x ≤ y ∧ y ≤ x ⊃ x = y,

trans is x ≤ y ∧ y ≤ z ⊃ x ≤ z]

An axclass declaration consists of an Isabelle name (order), a list of an-
cestor classes, a list of constants that should be defined at that type, and
a list of named axioms that hold on the universe of α and the constants.
The syntax x : α :: order means x is a variable of type α where α is an
instance of the class order. A type is an instance of a class if the constants
of the class are defined on the type and satisfy the class axioms. More
generally, x : α :: [c1, . . . , cn] means that x is a variable of type α where
α is an instance of all of c1, . . . , cn. The collection [c1, . . . , cn] is called a
sort. In this case the class has no ancestors.

We can now prove theorems with free type variables α :: order. For
instance, we can prove the theorem called order eq refl :

∀x : α :: order. x = y ⊃ x ≤ y.

The proof term makes use of the class axioms.

To use theorems involving type classes, we must prove that concrete
types are instances of the class. We prove that such a concrete type sat-
isfies the class axioms, and then we instantiate the free type variables.

instance real :: [order] . . .

instance nat :: [order] . . .

∀x : real. x = y ⊃ x ≤ y

∀x : nat. x = y ⊃ x ≤ y

where the . . . stand for an Isabelle proof that the real, nat types satisfy
the axioms. Then we may instantiate order eq refl twice to get the spe-
cific theorems Since HOL Light does not have such capabilities, we use
the OCaml module system to emulate this behavior. The class order cor-
responds to an OCaml signature, while the Isabelle types real and nat

4

correspond to modules containing the HOL Light types real and nat.

signature Order =

sig

val α : type

val ≤: term

val refl : thm

val antisym : thm

val trans : thm

end

module Real =

struct

let α = real

let ≤: real le

let refl = real le refl

let antisym = real le antisym

let trans = real le trans

end

It is understood that real le is a predefined HOL Light constant, and
that real le refl, etc. are predefined theorems. We can assume a sim-
ilar definiton of a Nat module (though the HOL Light name of the type
of natural numbers is num).

The Isabelle proof of order eq refl becomes a functor, encapsulating
the reasoning involved.

functor Order eq refl(A : Order) =

struct

let thm = (proof involving A. ≤,A.refl, etc.)

end

To instantiate the proof, we apply the functor to a module containing
a type and the necessary constants and axioms on that type. Functor
application “replays” the proof on the new type. The applications followed
by projections evaluate to the HOL Light theorems

Order eq refl(Real).thm = ∀x : real. x = y ⊃ x ≤ y,

Order eq refl(Nat).thm = ∀x : num. x = y ⊃ x ≤ y.

4 Elaboration

The translation from Isabelle/HOL to HOL Light is a set of syntax-
directed elaboration rules. Many of the cases are routine. We give some
illustrative cases here. A complete list, along with a complete abstract
syntax for Isabelle/HOL and HOL Light, can be found in the the ap-
pendix.

5

Our judgments have the form Ctx ⊢ X ; Y , understood to mean “X
elaborates to Y in context Ctx,” where it is understood that Ctx and X
are input arguments and Y is an output argument. We define such a judg-
ment for each syntactic class of Isabelle/HOL. In the following sections
we explain the various contexts of the judgments and their elaboration
rules.

Note that we introduce judgments in their order of importance, and
thus some judgments of lesser interest will be used before they are defined.
The curious reader may consult the appendix for the full definitions of
the judgments.

4.1 The module system

While in fact Isabelle/HOL theorems are elaborated to OCaml functors,
for clarity of presentation we are taking some liberties with the notation.
In particular, we allow projections from functor applications. Such func-
tors are called applicative in the literature. This is in contrast to the gener-

ative functors of OCaml [16]. Because our modules save no state, such pro-
jections are unproblematic and have the same semantics in both views. We
can easily convert these functors to a generative form accepted by OCaml
by inventing a new module identifier M (which does not bind anything
seen so far in the environment), binding the functor application to that
name, and projecting directly from M . E.g. Order eq refl(A).thm
becomes

module X = Order eq refl(A)

X.thm

For clarity, we also use the keyword signature instead of OCaml’s mod-

ule type.
We assume that before elaboration begins, the following signatures

are defined. These represent HOL Light types, terms and theorems.

signature Type =

sig

val type : type

end

signature Term =

sig

val term : term

end

signature Thm =

sig

val thm : thm

end

Name mapping There is some amount of bookkeeping involved in map-
ping Isabelle identifiers to their OCaml counterparts. The details are

6

not interesting. We assume the existence of a function pxq mapping the
Isabelle identifier x to its counterpart. For example, porder eq reflq =
Order eq refl. In some cases pxq requires additional arguments. We
note such places explicitly. An example is type constructors that are in-
dexed in HOL Light by the sorts of their arguments.

An Isabelle theory is a sequence of declarations that introduce new
names into a global environment. To ease the notational burden of fre-
quently inventing new names, we extend the definition of pxq to gen-
erate a fresh name for the HOL Light counterpart of a declaration x,
that will thereafter be returned by pxq. For instance, when we elabo-
rate order eq refl, porder eq reflq generates the name Order eq refl and
from the point of that declaration on, porder eq reflq = Order eq refl.

4.2 Contexts

The elaborator manages a number of distinct contexts during elaboration.

∆ is a map from Isabelle type variables to OCaml functor arguments.
In the example above, ∆ would consist of the single pair 〈α,A〉, where α
is the type variable from the Isabelle theorem order eq refl and A is the
argument of the OCaml functor Order eq refl. The type variable α is
elaborated to A.type in the Order eq refl functor. We often look up
a block of type variables in ∆. Thus, ∆(α1, . . . , αk) = (T1, . . . , Tk) means
∆(α1) = T1, . . . ,∆(αk) = Tk.

Γ maps Isabelle term variables to types, and Isabelle proof variables to
Isabelle terms.

Σ As we wish to make no reference to a global data structure, Σ simply
maintains the state of the elaboration process, mapping Isabelle declara-
tions to their previously elaborated OCaml functors.

4.3 Functions

We assume the existence of a function tv which returns the free type
variables in a term with their sorts, and a predicate (A1, . . . , An) fresh

indicating that the names A1, . . . , An are new.

7

4.4 Classes

The elaboration of type classes are one of the the most interesting parts
of the translator. The Isabelle abstract syntax for a class is

axclass c < [c1, . . . , ck] = [con1, . . . , conl],

[name1 is axm1, . . . , namem is axmm]

where c is a new Isabelle class identifier, the ci are previously defined type
classes, the coni are constants, and the axmi are formulas representing
type class axioms referred to by namei. The evidence for a type τ being
an instance of the class c is a proof that τ has constants of all classes
c1, . . . , ck in addition to con1, . . . , conl and that those constants satisfy
the axioms of c1, . . . , ck in addition to axm1, . . . , axmm.

Σ ⊢axclass c < [c1, . . . , ck] = [con1, . . . , conl],

[name1 is axm1, . . . , namem is axmm] ;

signature pcq =

sig

include pc1q . . . include pckq

val pcon1q : term . . . val pconlq : term

val pname1q : thm . . . val pnamemq : thm

end, Σ

The include statements textually replace the pciq with their defini-
tions, thus capturing the semantics of the Isabelle class hierarchy. Note
how the formulas axmi are totally ignored. Here we make note of the
phase distinction between elaborating the Isabelle theories and using the
elaborated theorems. During the elaboration stage, the inability to spec-
ify the form of the axioms of a class is unproblematic. Both the signatures
and the concrete types are created directly from Isabelle declarations, and,
barring a bug in Isabelle, the concrete theorems match the declared class
axioms. After the elaboration, however, when attempting to use these the-
orems with new types not defined by Isabelle, it is the HOL Light user’s
responsibility to ensure the well-formedness of the theorems she supplies.
If the theorem supplied to a user-created module is not well-formed, a
run-time error occurs during the functor application.

8

4.5 Instance

In Isabelle, instance declarations allow theorems with type variables of a
class to be instantiated with concrete classes. The abstract syntax is

instance τ :: (〈α1, σ1〉 , . . . , 〈αn, σn〉) c = 〈[con1, . . . , conk], p〉

which means that type constructor τ , when given arguments of sort σi

is an instance of class c, where coni are the constants required by c, and
p is a proof that the axioms of c are satisfied by the type τ(α1, . . . , αn),
where αi has sort σi.

fresh(A1, . . . , Ak) ∆ = (〈α1, A1〉 , . . . , 〈αk, Ak〉)

∆, · ⊢ con1 ; c1 . . . ∆, · ⊢ conn ; cn

∆, · ⊢ p ; thm thm = (thm1 ∧ . . . ∧ thmm)

signature pcq =

sig

val pcon1q : term . . . val pconlq : term

val axm1 : thm . . . val axmm : thm

end

∈ Σ

A = pτ(σi, . . . , σn)q

Σ ⊢instance τ :: (〈α1, σ1〉 , . . . , 〈αn, σn〉) c = 〈[con1, . . . , conk], p〉 ;

functor A(A1 : pσ1q) . . . (Ak : pσnq) =

struct

let pcon1q = c1 . . . let pconkq = ck

let axm1 = thm1 . . . let axmm = thmm

end, Σ

To elaborate an instance, we begin by creating ∆ from the free sorted
type variables α. Then we translate the required constants and the proof
of the axioms. Finally, we look up the definition of the class to get the
signature identifiers for constants and axioms.

Note that the name of the generated functor depends on the sorts of
the instance declaration. This is inevitable. Consider the Isabelle product
type α×β. The generated functor for the type definition (see the appendix
for details) would be

functor p×q(A1 : Type)(A2 : Type) : Type = . . .

9

In Isabelle we can declare

instance × :: (〈α1, order〉 , 〈α2, order〉) order = . . .

where we use the lexicographic ordering from α1 and α2. The elaboration
of this instance declaration becomes

functor p×q(A1 : Order)(A2 : Order) : Order =

If p×q were not indexed by sorts, the first functor would be shadowed
by the second, and thus inaccessible. Since not all types are instances of
order, in such a situation it would be impossible to create product types
of unordered types.

4.6 Theorems

Theorems in Isabelle are a name together with a formula and a proof.
The abstract syntax is Thm(id, t, p). Because in general the free type
variables have nontrivial sorts, we abstract the type variables into functor
arguments of the appropriate signature.

tv(t) = (〈α1, σ1〉 , . . . , 〈αk, σk〉) fresh(A1, . . . , Ak)

∆ = (〈α1, A1〉 , . . . , 〈αk, Ak〉) ∆, · ⊢ p ; thm

Σ ⊢Thm(id, t, p) ;

functor pidq(A1 : pσ1q) . . . (Ak : pσkq) : Thm =

struct

val thm = thm

end, Σ

4.7 Types

As both Isabelle/HOL and HOL Light have their basis in classical higher
order logic, translating terms and proofs is straightforward. We include
the rules in the appendix for completeness. Translating types has one
complication, which is that a type variable corresponds to a functor ar-
gument instead of a specific HOL Light type. In order to make type trans-
lation syntax directed (in the sense that to translate a type constructor,
it is enough to translate its arguments) we elaborate types to module
variables. When the types themselves are needed, we simply project the
type component.

∆(α) = A

∆ ⊢ α :: σ ; A

10

∆ ⊢ τ1 ; A1 . . . ∆ ⊢ τk ; Ak

∆ ⊢ con(τ1, . . . , τk) ; pconq(A1) . . . (Ak)

This completes our overview of the elaboration rules. A complete list can
be found in the appendix.

5 Name mapping

The name map pxq from Isabelle identifiers to HOL Light identifiers
plays an important role in many of the elaboration judgments. Some dec-
larations, e.g., axioms, refer to HOL Light identifiers that are assumed
already to be mapped before the translation begins. In order for the user
to extend the translator without modifying the source code, we include
a simple specification language that allows a user to include these iden-
tifier maps in pxq. In addition, the systems have a number of types and
constants in common. The language allows a user to specify mappings
between them. This avoids creating a second copy of the type or constant
in HOL Light. For instance, both Isabelle/HOL and HOL Light have a
type of natural numbers nat and num respectively. They are both simi-
larly constructed from an axiom of infinity. Instead of having two separate
developments of the natural numbers in HOL Light, we can map one to
the other with the typemap declaration, followed by a number of thmmap

declarations mapping the peano axioms.

typemap : nat ; num

thmmap : Suc not zero ; not suc . . .

The complete language definition and description can be found at [1].

6 Implementation

While we feel the elaboration makes novel use of the OCaml module sys-
tem, the real contribution of this work is not theoretical, but practical.
We have a working implementation of the elaboration rules written in
Standard ML [22]. We have used the implementation to translate ap-
proximately 2000 theorems of the Isabelle/HOL standard library. While
this is only about a third of more than 6000 theorems in the library, we
foresee no difficulties in translating the rest. Already included in the first
2000 are all the difficulties of type classes, type definitions, and instances.
Most of the effort of translation goes into carefully defining the theory in
the given specification language and in proving the necessary HOL Light

11

theorems corresponding to an Isabelle theory. We expect the rest of the
library to be completed in the near future. The translated libraries and
the SML source code of the elaborator are available on the web at [1].
Users can download our libraries for experimentation.

7 Future Work

7.1 More libraries, more logics

The most natural direction for this work is to translate more libraries.
Indeed, we would like to import the rest of the standard library2 and
continue on to Avigad’s prime number theorem. We also intend to use the
implementation to translate the Isabelle portions of the Flyspeck project.
Nipkow’s algorithm verification relies on a reflection mechanism, whereby
an algorithm is verified formally, code is extracted, and the code is run
directly. There is no analogue to this mechanism in HOL Light, so this
too presents a challenge for future work.

We would also like to perform similar translations for more diverse
deductive systems. An interpretation of Coq will be essential for Flyspeck,
though the logics are so different that this will be a significant challenge.

7.2 Formalizing the translation in LF

As effective as it is in practice, the interpretation given is unsatisfying
in a number of ways. To begin, the elaboration of classes includes no
information about what formula the declared axioms should prove. This is
no oversight, as it would require OCaml to allow dependently typed terms.
We therefore do not discover an error when using the functors until run-
time. Given the length of time required to load a library into OCaml, this
is a significant disadvantage. The problem occurs both in the elaboration
phase when the HOL Light programmer must supply translations of the
Isabelle axioms and in the usage phase when instantiating functors at
concrete types. (cf. Section 4.4). HOL Light inference rule calls fail for
many reasons, for instance, when the supplied theorem does not have
exactly the right form. It would be much better to catch such errors at
compile-time.

Moreover, the interpretation given has no obvious metatheoretic prop-
erties. For one, there is not an obvious relationship between the formula of
an imported proof to the translation of the initial Isabelle/HOL formula.

2 What I call the standard library is the contents of the theories included in Main

12

We would hope, for example, that if a proof p of t elaborates to p′, then t
elaborates to concl(p′). Another such property is completeness. We be-
lieve that the translation is total in the sense that every Isabelle/HOL
theorem could be translated to an OCaml functor that, when run on any
“correctly” implemented type modules, would yield the desired theorem
instance. A formal proof of these facts, though, would involve reasoning
about the operational semantics of the OCaml module system in addition
to the logics involved. While we may convince ourselves on paper that our
reasoning is correct, the full details of the proof would be overwhelming.

These concerns can be addressed by modeling the translation in LF
[15], via the Twelf [30] implementation. Using the Twelf methodology,
and that generally espoused by the Logosphere Project [31], we could
formalize the Isabelle/HOL and HOL Light logics and give an operational
semantics to a subset of the OCaml module language. We could then hope
to prove theorems about the interpretation. An example of this kind of
formalization, from HOL to Nuprl, can be found in [32]. We intend to
follow a similar path with our Isabelle/HOL HOL Light translation and
to extend the work of [32] by generating the OCaml code directly from
Twelf.

8 Conclusion

The usefulness and importance of sharing libraries between proof assis-
tants is abundantly clear. As a step in this direction, we presented an in-
terpretation of the Isabelle/HOL logic in HOL Light and demonstrated its
effectiveness through an implementation that produces executable OCaml
functors. These functors construct HOL Light proofs. A significant part
of the Isabelle/HOL standard library was translated in this way. In addi-
tion we provide a specification language that allows the translator to be
extended easily to new theories. We hope that our work will be useful to
the formal mathematics community.

9 Acknowledgments

We would like to thank Frank Pfenning for his advice and support through-
out this work. John Reynolds, Tom Murphy, and William Lovas gave
helpful suggestions. Thanks also to the members of the Isabelle mailing
list who patiently answered many questions on the minutiae of Isabelle,
and to John Harrison for editing a draft of the paper. This work was
supported by NSF grant CCR-ITR-0325808.

13

References

1. http://www.cs.cmu.edu/˜seanmcl/projects/logosphere/isabelle-holl.

2. J. Avigad, K. Donnelly, D. Gray, and P. Raff. A formally verified proof of the
prime number theorem. To appear in the ACM Transactions on Computational
Logic.

3. C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. B. et al, editor,
Types for Proofs and Programs: International Workshop, 2003.

4. Y. Bertot and P. Castéran. CoqÁrt: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer, 2004.

5. N. G. d. Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus,
and Formalism, pages 589–606. Academic Press, 1980.

6. A. Church. A formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56–68, 1940.

7. R. Constable. Implementing Mathematics with The Nuprl Proof Development Sys-
tem. Prentice-Hall, 1986.

8. D. J. Howe. Importing mathematics from HOL into Nuprl. In J. Von Wright,
J. Grundy, and J. Harrison, editors, Ninth International Conference on Theo-
rem Proving in Higher Order Logics TPHOL, volume LNCS 1125, pages 267–282,
Turku, Finland, 1996. Springer Verlag.

9. A. P. Felty and D. J. Howe. Hybrid interactive theorem proving using Nuprl
and HOL. In Fourteenth International Conference on Automated Deduction, pages
351–365. Springer-Verlag Lecture Notes in Computer Science, 1997.

10. G. Gonthier. A computer-checked proof of the four colour theorem. Available on
the Web via http://research.microsoft.com/~gonthier/, 2005.

11. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

12. T. Hales. The Flyspeck Project fact sheet. Project description available at
http://www.math.pitt.edu/~thales/flyspeck/, 2005.

13. T. Hales. The Jordan Curve Theorem in HOL Light. Source code available at
http://www.math.pitt.edu/~thales/, 2005.

14. T. C. Hales. A proof of the the Kepler conjecture. Annals of Mathematics,
162:1065–1185, 2005.

15. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Pro-
ceedings of the Second Annual Symposium on Logic in Computer Science, pages
194–204, Ithaca, NY, 1987. IEEE Computer Society Press.

16. R. Harper and B. C. Pierce. Design issues in advanced module systems. In B. C.
Pierce, editor, Advanced Topics in Types and Programming Languages. MIT Press,
2005.

17. J. Harrison. HOL Light: A tutorial introduction. In Srivas and Camilleri [34],
pages 265–269.

18. W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic Press, 1998.

19. E. Landau. Grundlagen der Analysis. Leipzig, 1930. English translation by F.
Steinhardt: ‘Foundations of analysis: the arithmetic of whole, rational, irrational,
and complex numbers. A supplement to textbooks on the differential and integral
calculus’, published by Chelsea; 3rd edition 1966.

14

20. S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case
study combining CVC Lite and HOL Light. In A. Armando and A. Cimatti,
editors, Proceedings of the Third Workshop on Pragmatics of Decision Procedures
in Automated Reasoning, volume 144, pages 43–51, 2005.

21. T. F. Melham. Automating recursive type definitions in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Ver-
ification and Automated Theorem Proving, pages 341–386. Springer-Verlag, 1989.

22. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT
Press, 1990.

23. P. Naumov. Importing Isabelle formal mathematics into Nuprl. Technical Report
TR99-1734, Cornell University, 26, 1999.

24. P. Naumov, M.-O. Stehr, and J. Meseguer. The HOL/NuPRL proof translator - a
practical approach to formal interoperability. In Theorem Proving in Higher Order
Logics, 14th International Conference, volume 2152 of Lecture Notes in Computer
Science. Springer-Verlag, 2001.

25. T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: Tame Graphs. Technical report,
Institut für Informatik, TU München, Jan. 2006.

26. S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. submitted, 2006.
27. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In

D. Kapur, editor, 11th International Conference on Automated Deduction, volume
607 of Lecture Notes in Computer Science, pages 748–752, Saratoga, NY, 1992.
Springer-Verlag.

28. L. C. Paulson. Isabelle: a generic theorem prover, volume 828 of Lecture Notes in
Computer Science. Springer-Verlag, 1994. With contributions by Tobias Nipkow.

29. F. Pfenning. Logical frameworks. In Handbook of Automated Reasoning, pages
1063–1147. MIT Press, 2001.

30. F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framwe-
ork for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction, pages 202–206, 1999.

31. F. Pfenning, C. Schürmann, M. Kohlhase, N. Shankar, and S. Owre. The Lo-
gosphere Project. Project description available at http://www.logosphere.org,
2005.

32. C. Schürmann and M.-O. Stehr. An Executable Formalization of the HOL/NuPRL
Connection in Twelf. In 11th International Conference on Logic for Programming
Artificial Intelligence and Reasoning, 2005.

33. D. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science, 121:411–440, 1993. Annotated version of a 1969 manuscript.

34. M. Srivas and A. Camilleri, editors. Proceedings of the First International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

35. M.-O. Stehr, P. Naumov, and J. Meseguer. A proof-theoretic approach to the HOL-
NuPRL connection with applications to proof-translation. In WADT/CoFI’01,
2001.

36. P. Weis and X. Leroy. Le langage Caml. InterEditions, 1993. See also the CAML
Web page: http://pauillac.inria.fr/caml/.

37. M. Wenzel. Type Classes and Overloading in Higher-Order Logic. In E. Gunter
and A. Felty, editors, TPHOLs ’97, pages 307–322, Murray Hill, New Jersey, 1997.

38. A. N. Whitehead and B. Russell. Principia Mathematica (3 vols). Cambridge
University Press, 1910.

15

A HOL Light

A.1 Abstract syntax

The object logic of HOL Light consists of types, terms, and proofs, the
last of which is represented, á la LCF, as inference rules defined by Ocaml
functions. Types and terms are those of the simply typed lambda calculus.
We also introduce new constant and type definitions.

τ ::= α | con(τ1, . . . , τk) (type variables and constructors)

θ ::= · | (τ, τ ′), θ (type instantiation environments)

t ::= x | c | t t′ | λx : τ. t (terms)

thm ::= (theorems)

| assume t (initial sequent)

| spec t thm (universal instantiation)

| mp thm thm′ (modus ponens)

| gen t thm (universal generalization)

| disch t thm (deduction rule)

| inst type θ thm (type instantiation)

| new definition t (new constants def)

| new type definition (name, name) thm (new type def)

Examples of type constructors are bool with no arguments, and fun
with two.

In the clause for new constant definitions, t is a formula of the form
c = t′ where c is a fresh name and t′ is the defining term.

In the clause for new type definitions, the supplied names denote
new constants which will be defined as mapping to and from the new
type universe. There are analogous names in the Isabelle type definitions.
Indeed, the mechanics are the same. For the details of new type definitions
in HOL Light and Isabelle, see [21].

A.2 Operational semantics

For completeness, we give a brief operational semantics of the inference
rules. We use the symbol ⊢ to indicate theorem-hood in HOL Light. So
A1, . . . , Ak ⊢ A means that A is provable from the Ai using the inference
rules. We use the symbol x � y to indicate that x evaluates (in OCaml)

16

to y. Thus, if x is an OCaml identifier which evaluates to the HOL Light
theorem ctx ⊢ p, we write x � ctx ⊢ p.

x � t
assume x � t ⊢ t

x is an OCaml identifier whose value is the HOL Light term t. This rule
states that under the assumption t we can prove t. It is assumed that the
(HOL Light) type of t is bool.

x1 � t x2 � ctx ⊢ ∀x.p

spec x1 x2 � ctx ⊢ [t/x]p

Here the notation [t/x]p means a renaming meta-substitution of the
free occurrences of x with t in the theorem p.

x1 � ctx1 ⊢ a ⊃ b x2 � ctx2 ⊢ a
mp x1 x2 � ctx1 ∪ ctx2 ⊢ b

This is the rule of implication elimination, or modus ponens.

x1 � v x2 � ctx ⊢ p v 6∈ fv(ctx)

gen x1 x2 � ctx ⊢ ∀v. p

This is the universal generalization rule. If v is a variable not free in ctx
then we can generalize it to be universally quantified.

x1 � a x2 � ctx ⊢ b
disch x1 x2 � ctx − a ⊢ a ⊃ b

This is the deduction rule. If we can prove b, we can prove a ⊃ b without
the assumption a.

x1 � θ x2 � ctx ⊢ p

inst type x1 x2 � θ(ctx) ⊢ θ(p)

This rule instantiates the type variables in the theorem. θ is a list of
pairs, mapping type variables to new types. The definition of the substi-
tution is the obvious one.

x � c = t
new definition x � · ⊢ c = t

This rule defines a new constant, c with definition t. c must be un-
defined, and after successful evaluation makes c = t a new HOL Light
axiom.

17

x1 � con x2 � rep x3 � abs x4 � · ⊢ ∃v. p(v)

new type definition x1 (x2, x3) x4�

· ⊢ (∀a. abs(rep a) = a) ∧ (∀r. pr ⇐⇒ rep(abs r) = r)

This rule defines a new type constructor, con. abs, rep are names of
the functions giving a bijection with a subset p of an existing type. The
theorem proves that p is nonempty. Again, see [21] for details.

B Isabelle/HOL

B.1 Abstract syntax

The syntax of Isabelle/HOL3 is similar, though there are also classes and
sorts. Class identifiers are represented by the metavariable γ. Type vari-
ables α are classified by sorts σ. A sort is a collections of classes, and
represents the intersection of its elements. Instead of the LCF approach,
Isabelle stores proof terms. Thus the syntactic class of proofs look some-
what different. An Isabelle theory is a sequence of declarations (dec).

τ ::= α :: σ | c(τ1, . . . , τk) (sorted type variables and constructors)

t ::= x | c : τ | t t′ |λx : τ. t (terms)

p ::= (proof terms)

| x (proof variable)

| p t (universal instantiation)

| p p′ (modus ponens)

| Λt : τ. p (universal generalization)

| Λp : t. p′ (deduction rule)

| axm(id, t) (axiom with name id and formula t)

| thm(id, t) (theorem with name id and formula t)

dec ::= Axm(id, t) | Thm(id, t, pf) | def(id, c, τ, t) | typedef(id, rep, abs, pf)

| axclass(id, id list, id list, t list) | instance(id, τ, γ, pf)

3 Because Isabelle is a logical framework and HOL is a single instance, there is a
distinction in Isabelle between types and terms of the meta and object level. We
identify the levels for the translation, thus the absence of type prop, etc.

18

B.2 Semantics

Proof terms Proof terms can be interpreted as in the Curry-Howard
correspondence [18], where abstraction over a term variable represents
universal quantification and abstraction over a proof variable represents
implication introduction. Here, instead of Γ being a list of assumed the-
orems as in HOL Light, it is a map from proof variables to the formulas
they prove. Here Φ is the Isabelle store of axiom and previously proved
theorems. The judgment Φ,Γ ⊢ p : t should be read, “Given Isabelle store
Φ and context Γ , the proof term p is a proof of formula t.

Γ (x) = t

Φ, Γ ⊢ x : t

Φ, Γ ⊢ p : ∀x. q

Φ, Γ ⊢ p t : [t/x]q

Φ, Γ ⊢ p : a ⊃ b Φ, Γ ⊢ p′ : a

Φ, Γ ⊢ p p′ : b

Φ, (Γ, x : τ) ⊢ p : a

Φ, Γ ⊢ Λx : τ. p : ∀x. a

Φ, (Γ, x : a) ⊢ p′ : b

Φ, Γ ⊢ Λx : a. p′ : a ⊃ b

Φ(id) = t

Φ, Γ ⊢ axm(id, t) : t

Φ(id) = t

Φ, Γ ⊢ thm(id, t) : t

C Elaboration rules

Elaboration is syntax directed, based on the abstract syntax for Isabelle
given above.

19

C.1 Types

∆ ⊢ τ ; T

∆(α) = T

∆ ⊢ α :: σ ; T

∆ ⊢ τ1 ; A1 . . . ∆ ⊢ τk ; Ak

∆ ⊢ con(τ1, . . . , τk) ; pconq(A1) . . . (Ak)

C.2 Terms

∆,Γ ⊢ t ; t

Γ (x) = τ ∆ ⊢ τ ; A

∆,Γ ⊢ x ; x : A.typ

tv(τ) = (〈α1, σ1〉 , . . . , 〈αk, σk〉) ∆(α1, . . . , αn) = (A1, . . . , An)

∆,Γ ⊢ c : τ ; pcq(A1) . . . (An).term

∆,Γ ⊢ t1 ; t′
1

∆,Γ ⊢ t2 ; t′
2

∆,Γ ⊢ t1 t2 ; t′
1

t′
2

∆ ⊢ τ ; A ∆, (x : A.typ, Γ) ⊢ t ; t′

∆,Γ ⊢ λx : τ. t ; λx : A.typ. t′

C.3 Proofs

Γ ⊢ pf ; thm

Γ (x) = t Γ ⊢ t ; t′

Γ ⊢ x ; assume t′

∆,Γ ⊢ p ; thm Γ ⊢ t ; t′

Γ ⊢ p t ; spec t′ thm

Γ ⊢ p1 ; thm1 Γ ⊢ p2 ; thm2

Γ ⊢ p1 p2 ; mp thm1 thm2

20

∆ ⊢ τ ; T ∆, (x : T.typ, Γ) ⊢ p ; thm

Γ ⊢ Λx : τ. p ; gen (x : T.typ) thm

∆,Γ ⊢ t ; t′ ∆, (v : t′, Γ) ⊢ p ; p′

Γ ⊢ Λx : t. p ; disch t′ p′

tv(t) = (〈α1, σ1〉 , . . . , 〈αk, σk〉 ∆(α1, . . . , αk) = (A1, . . . , Ak)

Γ ⊢ axm(id, t) ; pidq(A1) . . . (An).thm

tv(t) = (〈α1, σ1〉 , . . . , 〈αk, σk〉) ∆(α1, . . . , αk) = (A1, . . . , Ak)

Γ ⊢ thm(id, t) ; pidq(A1) . . . (An).thm

C.4 Declarations

Σ ⊢ dec ; Σ′

tv(t) = (〈α1, σ1〉 , . . . , 〈αk, σk〉) fresh(A1, . . . , Ak)

Σ ⊢Axm(id, t) ;

module pidq(A1 : S1) . . . (Ak : Sk) : Thm =

struct

val thm = inst type [A1.typ/α1, . . . , Ak.typ/αk] thm

end, Σ

tv(t) = (〈α1, σ1〉 , . . . , 〈αk, σk〉) fresh(A1, . . . , Ak)

∆ = (〈α1, A1〉 , . . . , 〈αk, Ak〉) ∆, · ⊢ p ; thm

Σ ⊢Thm(id, t, p) ;

functor pidq(A1 : pσ1q) . . . (Ak : pσkq) : Thm =

struct

val thm = thm

end, Σ

21

fresh(A1, . . . , Ak)

tv(τ) = (〈α1, σ1〉 , . . . , 〈αk, σk〉) ∆, · ⊢ t ; t′

Σ ⊢def(id, c, τ, t) ;

functor pidq(A1 : pσ1q) . . . (Ak : pσkq) : Thm =

struct

let thm = new definition t′

end,

functor pcq(A1 : pσ1q) . . . (Ak : pσkq) : Term =

struct

let term = mk term(c, [A1.typ, . . . , Ak.typ])

end, Σ

Note that in this rule we make use of a new function x. This function is
analogous to pxq and for any Isabelle constant returns the corresponding
HOL Light constant name, rather than the corresponding module name.
Again, its details are uninteresting. The OCaml function mk term con-
structs HOL Light constants.

∆ = (〈α1, A1〉 , . . . , 〈αk, Ak〉) ∆, · ⊢ p ; thm

fresh(A1, . . . , Ak)

Σ ⊢typedef(id, con, (α1, . . . , αk), rep, abs, p) ;

functor pidq(A1 : pσ1q) . . . (Ak : pσkq) : Thm =

struct

let thm = new type definition (pabsq, prepq) thm

end,

module pconq(A1 : pσ1q) . . . (Ak : pσkq) : Type =

struct

let term = mk type(c, [A1.typ, . . . , Ak.typ])

end, Σ

22

Σ ⊢axclass c < [c1, . . . , ck] = [con1, . . . , conl],

[name1 is axm1, . . . , namem is axmm] ;

signature pcq =

sig

include pc1q . . . include pckq

val pcon1q : term . . . val pconlq : term

val pname1q : thm . . . val pnamemq : thm

end, Σ

fresh(A1, . . . , Ak) ∆ = (〈α1, A1〉 , . . . , 〈αk, Ak〉)

∆, · ⊢ con1 ; c1 . . . ∆, · ⊢ conn ; cn

∆, · ⊢ p ; thm thm = (thm1 ∧ . . . ∧ thmm)

signature pcq =

sig

val pcon1q : term . . . val pconlq : term

val axm1 : thm . . . val axmm : thm

end

∈ Σ

A = pτ(σi, . . . , σn)q

Σ ⊢instance τ :: (〈α1, σ1〉 , . . . , 〈αn, σn〉) c = 〈[con1, . . . , conk], p〉 ;

functor A(A1 : pσ1q) . . . (Ak : pσnq) =

struct

let pcon1q = c1 . . . let pconkq = ck

let axm1 = thm1 . . . let axmm = thmm

end, Σ

23

