

Technical Report: ALR-2005-017

September 2005

Proceedings

International Workshop on
Software Product Line Testing

September 26, 2005
Rennes, France

Co-located with SPLC 2005 -
9th International Software Product Line Conference

Birgit Geppert, Charles Krueger, Tim Trew
(Eds.)

The Avaya Labs Research Technical Report series is available online at:
http://www.research.avayalabs.com/techreport.html

ALR-2005-017

Copyright © 2005 Avaya Inc., All rights reserved.

i

Preface

One year ago, as we prepared for the first SPLiT workshop, we were not sure what to
expect. We knew that testing played a critical role in software product line engineering
and that it wasn’t receiving nearly as much attention as the role of development. We knew
that if development increased its production output by a factor of 10 but testing didn’t, the
bottleneck simply moved one step downstream in the engineering process. The organizers
all had their opinions and experiences to draw on, but we weren’t sure what message to
expect from the broader community.

A clear theme emerged from SPLiT 2004. Indeed, it was one of the themes that
reverberated in the halls of SPLC 2004 long after the workshops were over and engineers
had turned their attention to the conference. It was one of the key contributions that
emerged from the overall SPLC 2004 conference.

The clear message from SPLiT 2004 was that the inherent complexity and
combinatorics associated with product lines can easily become intractable and overwhelm
even a highly sophisticated and automated test organization. The problem of testing a
software product line cannot be solved solely from inside the test organization, but rather
must be consider well upstream in the definition, architecture, design, and imp lementation
of a product line. While generality and broad scope may appear attractive to the
development organization, they must be constrained to within practical limits for the test
organization and the overall product line effort to be succes sful.

With SPLiT 2005, we carry forward the momentum and build on the foundation of
SPLiT 2004. The core theme starting off will be on methods, tools, and techniques to
effectively constrain the complexity and combinatorics of software product line testing.
But beyond that, as we prepare for SPLiT 2005, we are not sure what to expect…

The SPLiT Organizers September 2005

Birgit Geppert
Charles Krueger
Tim Trew

ii

Organization

SPLiT is co-located with SPLC Europe 2005, the 9th International Software Product Line
Conference, and held in Rennes, France, September 26.

Workshop Chairs:

• Birgit Geppert
Avaya Labs, Basking Ridge, NJ, USA
bgeppert@research.avayalabs.com

• Charles Krueger
BigLever Software, Austin, TX, USA
ckrueger@biglever.com

• Tim Trew
Philips Research, Eindhoven, The Netherlands
tim.trew@philips.com

Program Committee:

• Hira Agrawal, Telcordia, USA
• Günter W. Böckle, Siemens AG, Germany
• Paul Clements, SEI, USA
• Krzysztof Czarnecki, University of Waterloo, Canada
• Claudia Fritsch, Bosch, Germany
• Jean Hartman, Microsoft, USA
• Peter Knauber, University of Applied Science Mannheim, Germany
• John Linn, Texas Instruments, USA
• John McGregor, Clemson University, USA
• Frank Rößler, Avaya Labs, USA

iii

Table of Contents

Keynote

Reasoning about the Testability of Product Line Components ..1
John D. McGregor

Accepted Papers

Executing Reusable System Tests for the Applications Derived from Software Product
Lines ...8

Erika Olimpiew, Hassan Gomaa

Composing Unit Tests ...16
Markus Gälli, Orla Greevy, Oscar Nierstrasz

Towards Testing Response Time of Instances of a web-based Product Line23
Dharmalingam Ganesan, Ulrich Maurer, Michael Ochs, Björn Snoek,
Martin Verlage

Product Line Testing and Product Line Development —Variations on a Common Theme35
Peter Knauber, William Hetrick

Presentations

SPLiT - Introduction..41
Birgit Geppert, Charles Krueger, Tim Trew

Composing Unit Tests ...46
Markus Gälli, Orla Greevy, Oscar Nierstrasz

Towards Testing Response Time of Instances of a web-based Product Line50
Dharmalingam Ganesan, Ulrich Maurer, Michael Ochs, Björn Snoek,
Martin Verlage

Product Line Testing and Product Line Development —Variations on a Common Theme58
Peter Knauber, William Hetrick

Managing the complexity of your test space: challenges, ideas, solutions...................................61
Birgit Geppert, Charles Krueger, Tim Trew

Reasoning about the Testability of Product Line Components ..65
John D. McGregor

Supplementary Material

Guidelines for Discussion...76

iv

Reasoning about the Testability of Product Line Components

John D. McGregor

Clemson University
johnmc@cs.clemson.edu

Abstract. The testability of a software component is the ability of the software to reveal its faults. In the
development of high reliability systems, testability is an important quality attribute for guiding
architecture decisions. The reuse of assets in a software product line propagates defects as readily as
correct code. The strategic levels of reuse in a product line produce a high level of inter-dependency
among the products in the product line that support this propagation. The increased frequency with
which product line components are executed and the range of inputs over which they operate influence
the amount of testing required to achieve specific levels of reliability. In this paper we begin the
definition of a reasoning framework for testability by considering the characteristics of a product line
that influence our view of how testable a component is. Keywords: testability, reachability, software
product line

Introduction

Many software product lines include improved quality as one of their goals, but improved with respect to
what benchmark? The average customer’s satisfaction with the product they purchased can be very
different from the organization’s satisfaction with the aggregate of all the products they sell. Even a small
increase in product failures can result in increased help desk costs and increased liability particularly when
a strategic level of reuse of core assets is achieved.

The testing activities in a product line can make an important contribution to achieving quality goals.
The unique environment of a product line places equally unique requirements on the testing process. The
strategic levels of reuse of assets achieved in a product line can counterbalance the desire for increased
quality unless the quality requirements on the core assets are sufficiently stringent.

The testability of the product line constrains the degree to which defects can be identified using testing.
Testability is often overlooked as a quality attribute of the architecture because it is not a quality directly
visible to users. Testability, buildability and other production-related qualities are often critical to meeting
the goals of the product line organization [Chastek 02]. We consider how to reason about architecture
alternatives in terms of their testability.

Voas et al defines testability of a program P to be a prediction of the probability of software failure
occurring if the software were to contain a fault, given that software execution is with respect to a particular
input distribution [Voas, 95]. This definition relates testability to our ability is to make the software fail and
to the context within which the software is operated. Other definitions of testability [Kansomkeat 05] relate
testability is related to having visibility into the software, being able to control the software, and being able
to detect failures. Finally, testability is related to the size or complexity of the system as it relates to the
effort needed to implement test criteria [Birgisson et al. 1999].

Testability is a requisite quality attribute in product line software if we intend to maintain or improve the
level of aggregate quality. However, increases in testability can negatively affect other important qualities
such as encapsulation. In this paper we argue that higher levels of testability for assets are required in a
product line than in “one off” product development and we illustrate some of the trade offs when this is
attempted.

The remainder of this paper is organized as follows. In the next section we put testability into the context
of a product line to illustrate the problem we see. We then briefly present techniques for increasing
testability. We then present a reasoning framework for the testability quality attribute for use in making
architectural decisions. Finally we map out our future work in this area.

- 1 -

Testability in the Product Line Context

There are two characteristics that illustrate the importance of testability of the software in a software
product line. The strategic levels of reuse achieved in a product line result in a very large number of
executions of a component relative to its use in a one-off system. The component is also exposed to more
different contexts in a product line than in a one-off system where it is only placed in the context of the one
system. In this section we explore the ramifications of these characteristics.

Consider that in custom development of certain types of systems, only one copy of the system ever
exists so only one copy of its components exists. For example, the ground station designed to control a
communication satellite. It is executed the number of times required by the algorithm. When executed, it
processes a set of inputs. The component is executed over some set of data that is a subset of the total
possible input. Although the data varies over time, it has a single user on a single hardware configuration;
the data has a fairly consistent variation. After the initial plateau of finding defects, new defects are usually
discovered only when the hardware or operating system is upgraded. Testing is a relatively straight-forward
process with a fairly narrow range of test cases.

In consumer product development, multiple copies of a product exist and therefore multiple copies of a
given component. For example, tax preparation software. A given component will see a somewhat different
profile of input data from one copy of the system to another because of differences between users. Both the
hardware and system software may vary. We will expect to see a wider range of defects exposed than in the
custom product. Testers must select data over a wider range or run tests with multiple configurations.

In product line development, a component is used, not only in multiple copies of the same product on
different hardware, but also in multiple different products. For example, the core asset base for a product
line of cell phones. If we make the logical assumption that the total sales of products in the product line
exceeds the sales for the single consumer product, the number of executions that all the instantiations of a
component accumulate over time is probably much higher.

For a given component, if it is implemented in a single-product, custom development effort, we will
assume that a component C is executed x times for a specified time period. In development where multiple
copies of the product are deployed the same component will now be executed xnc * times in a specified
time period, nc is the number of copies. In product line development, the same component will now be

executed
=

np

i
ii xnc

1

)*(times in the same time period, where np is the number of products, inc is the

number of copies of each product, and ix is the number of executions for a given product.

In the above scenario, assume that the probability of a defect in the component causing a failure

is)(dP . Obviously the number of failures observed in the product line scenario will likely be greater than

the other two scenarios as long as)(dP remains constant. The expected number of failures1 can be stated

as:

expectedNumFailures
=

=
np

i
ii xncdP

1

)*(*)(

In product line development, a component is used in multiple products. These products may have
different levels of certain quality attributes and different types of users. We expect that the range of input
data presented to a component will vary from one product context to another. Therefore,)(dP does not

remain constant, it varies from product to product. If we assume that when a failure occurs in one product,
its failure is known to the organization, the number of failures can now be stated as:

expectedNumFailures)*(*)(
1=

=
np

i
iii xncdP

This argument leads to the conclusion that traditional rules of thumb used by testers and developers
about the levels of testing to which a component should be subjected will not be adequate for a software

1 We assume that execution of a defect leads to a failure.

- 2 -

product line environment. The increased number of executions raises the likelihood that defects will be
exposed in the field unless the test coverage levels for in-house testing are raised correspondingly.

This is not to say that individual users will see a decline in reliability. Rather, the increased failures will
be experienced as an aggregate over the product line. Help desks and bug reporting facilities will feel the
effects. The weight of this increase in total failures may result in pressures, if not orders, to recall and fix
products.

)(dPi can be lowered by removing more defects before system deployment. Test coverage may be

improved by a judicious increase in the selection and number of test cases that are executed. This may not
be sufficient for some circumstances. If the products have low testability it may not be possible to greatly
increase the defect finding power of our testing. The defects may result from minor variations that are not
externally visible. Therefore, we will focus on achieving higher levels of testability.

Increasing testability

Before presenting the reasoning framework, we consider ways to increase the testability of software. The
techniques that can be used depend on the form of the software. Since it affords the widest scope for
discussion, we will assume that we have access to the source code and can build the software. We will
briefly discuss the case where object code only is available.

The definitions for testability presented earlier relate to the ability to observe the internal state of the
software under test and to control that state in order to begin tests at various points in the software’s state
machine. Therefore, to increase testability, the observability of the software and/or its controllability must
be improved. Some definitions also discuss being able to detect the failures. We will address this by
assuming that the test suite for a piece of software is selected using a specific criteria. This criterion will be
selected to be compatible with the form of the software, source or object, and the techniques used to
provide access [Nikora 03].

An architect has several choices for enhancing the testability of components.
1. The architect may allow general access from outside the module to specific elements within the

component via either direct memory access or via accessor methods.
2. The architect can provide a test interface to a component that provides accessor methods for variables

within the module. The interface makes it easier to check for unauthorized use of the test interface by
any but the test harness or to set permissions for access to the interface. The test interface allows outside
code a means to reach certain variables. This increases the visibility of the software under test to the test
code.

3. Another approach is to build the test cases into the software under test. This has been practiced by some
object-oriented software designers. This, however, is not a good practice particularly when the software
is operating in a resource constrained context.

In the next section we discuss a reasoning framework for making testability decisions at the architecture
level.

Testability reasoning framework

Bass et al have outlined the requirements for a framework for reasoning about quality attributes of
architectures [Bass 05]. Each framework is based on an analytic theory that allows exacting comparisons
between design alternatives. We will use their outline as the basis for sketching a possible reasoning
framework for the testability of components defined by a product line architecture. The headings used in
this section come from the Bass outline.

We will focus on the common ground among the definitions of testability by focusing on visibility and
controllability. Even more basically, we will be concerned with whether the structure of the software allows
the successful implementation of whatever test criteria is selected.

- 3 -

Problem description

The proportionately larger number of executions to which much of software product line code is subjected
requires improved testing to maintain the same level of aggregate quality. This need for improved testing
can be partially addressed by setting more complete test criteria that add test cases to cover more values
within the expected range of inputs. However, significant portions of the component’s behavior may be
untestable if high levels of encapsulation are achieved. There is a need to have highly testable products.

Unlike most other quality attributes, the architect must consider software that is not part of the product
being architected when evaluating for testability. A component is usually harnessed into a test framework
for unit testing. The architect must plan how that harness will interact with the software under test.

The following general scenarios, which also follow a structure specified by [Bass 05], partially describe
the problem:

S1:
Stimulus – A component is checked in for unit testing.
Source of stimulus – The component developer
Environment – In the component development phase with limited amount of component integration
occurring.
Artifact – The component under test, the test harness, and the test cases
Response – Test cases are selected to the limit allowed by the testability of the component
Response measure – The extent to which chosen test criteria can be achieved

S2:
Stimulus – A subsystem is successfully built prior to integration testing.
Source of stimulus – An integration team member
Environment – sufficient components have passed unit test and have been integrated
Artifact – The subsystem under test, the test harness, and the test cases
Response – test cases are selected to the limit allowed by the testability of the component
Response measure - The extent to which chosen test criteria can be achieved

Analytic theory

Testability is based on two attributes: visibility and controllability. To validate test results, it must be
possible to see the current value of a variable in order to compare it with the expected value. To conduct the
widest range of tests possible it must be possible to set the value of a variable to establish a starting point
for the test. The analytic theory relates the degree to which these two attributes can be accessed to the
testability of the software.

There are several theories that have been developed for testability. Most require completed code before
evaluating the testability and many require measurements taken during execution of the code. Voas has
perhaps the most comprehensive approach that computes probabilities of a statement being reached by a
test case, the probability of a fault being introduced by mutants, the probability of that fault causing a
failure. However, this technique, like many others, can not be applied at the architecture level. Voas also
has defined an architectural level measure Domain to Range Ratio (DRR) [Voas and Miller 95]. There are
some problems with fault masking with this measure.

An alternative theory for estimating testability is to compute the average module size [Hatton 97].
Fenton et al show that this relationship is very complex [Fenton et al 99]. Fenton et al argue that there is a
relationship between testability and the amount of testing needed. This relationship is not sufficiently well
understood to include in our analytic theory.

We propose an approach that, while less exact, uses a form of reachability analysis to obtain direct
measures of visibility and controllability. This analysis uses module specifications and their state machine
specification to provide measures of visibility and control. Like code-level reachability analysis this
analysis constructs graphs (actually Labeled Transition Systems) that consider all possible paths from an
origin through the state space defined by the architecture specification. This theory lends itself to

- 4 -

component-based development since it is a compositional technique. The compositionality reduces the state
space and thereby increases the size of components that can be analyzed.

We are interested in finding those counter examples where a state can not be reached rather than the
ones identified by the analysis. Those states which can not be reached indicate areas that would be hidden
from test cases.

The architect must consider that some defect types will defy discovery more than others. This is
translated into a concern about how easy it is to fulfill test criteria. For example, event-based test criteria
are more difficult to apply than time-based [Lindstrom 00]. This makes the software inherently less
testable. The architect makes choices, e.g. to use events or not, that make one test criteria more desirable
than others. While this is difficult to quantify at this point, it is nevertheless an important result of the
architecture analysis process.

Analytic constraints

The major constraint on the reachability analysis is the potential for state explosion in the reachability
graph. There are several techniques, some of which are being investigated in model checking research,
which can be used to address this issue based on a number of factors. Giannakopoulou et al discuss
techniques for reducing the state explosion problem.

The state explosion problem varies as the level of software under test moves from component-level
testing to system-level. The larger the piece of software under test, the larger the state space. By focusing
on testability of components rather than whole systems, we minimize the affect of this constraint as well as
testing earlier in the development process.

A second constraint on the reachability analysis, is that most techniques for this type of analysis are
static. The theory is not effective for dynamic designs such as reflective, or self-modifying, code. Some
work is seeking to extend the techniques to dynamic actions such as dynamic class loading [Rountev 01].

The major constraint in a software product line the major constraint is the need to accommodate
variability. Most of the techniques by which variability is provided in an architecture break up the
architecture. It is across interfaces such as this that most problems arise with static analysis techniques.

Model representation

There is a variety of reachability tools available depending upon the form of the system to be analyzed.
There are tools for many programming languages and some architecture description languages. For
example, Tracta provides a compositional reachability analysis for the Darwin ADL [Giannakopoulou, 99].

Most of the tools use a graph-based representation. The graphs are directed with edges running from a
program point to a specified statement such as an attribute definition or use. Each node represents a
program state. The Tracta implementation uses Labeled Transition Systems (LTS) as the representation for
the reachability output [Cheung 99].

Interpretation

The components and connectors in the architecture description of the component are translated into the
links and nodes of a reachability graph. Each node represents a particular state configuration for the
component. Each link is the method invocation that would transform the system into that state. Each node
is connected to possible states of the components to which they are attached.

Evaluation procedure

For the purposes of evaluating testability, a reachability analysis is conducted on the component under test.
The analysis is conducted between the point at which test cases will be applied to the component – some
interface - and the interior structure of the component where sub-components are defined. The analysis will
identify all attributes, the substructure of the component, which can be reached from the component’s

- 5 -

interfaces. The analysis will then identify those states that can not be reached due to attributes that can not
be accessed.

The analysis can be conducted for each architecture design option for a component. Then the analysis
results for the design alternatives are used to rank each design as to testability. These results are integrated
with the other quality attribute analyses to make the architecture decision.

Designing for Testability

Testability can be viewed as having a negative impact of design quality overall. For example, increasing
visibility of attributes decreases the information hiding quality of the design and may threaten the
modularity of the design. Reporting 100% visibility for the attributes in a piece of software under test
would seem to completely defeat information hiding. However, if that level of testability is gained by
adding a separate test interface that gives explicit access to attributes, the impact on information hiding is
controlled and focused in a single interface. Tool support can be provided to ensure that inappropriate – any
production code using the test interface – uses of the test interface are identified and removed. However,
the test interface, and its implementation, increases the size of the executable. This has a negative impact
on resource-constrained devices such as embedded systems or wireless sensor networks.

There may be process-oriented solutions to this problem such as having the test interface present in the
code during testing but removed during product building. There are obvious problems with this proposal as
well.

Summary

This brief introduction is a request for input. We welcome suggestions for alternative analytic theories
about testability and for additional architectural tactics for ensuring high levels of testability in a product
line architecture. Our research will progress into specific techniques for specified domains. One particular
target is resource constrained real-time, embedded devices such as braking assemblies for vehicles.

We have argued that components developed in a software product line need increased testability because
they need increased test coverage. Otherwise the product line organization will experience an increase in
problem reports and product failures. Beginning with the testability of the architecture is an essential first
step.

References

Birgisson, R., Mellin, J. and Andler, S. Bounds on Test Effort for Event-Triggered Real-Time Systems, The
6th International Conference on Real-Time Computing Systems and Applications (RTCSA'99), 1999.

Gary J. Chastek and John D. McGregor. Guidelines for Developing a Product Line Production Plan,
CMU/SEI-2002-TR-006.

Shing Chi Cheung and Jeff Kramer. Checking safety properties using compositional reachability analysis,
ACM Transactions on Software Engineering and Methodology (TOSEM), Volume 8 , Issue 1 (January
1999).

Norman E. Fenton and Martin Neil. A Critique of Software Defect Prediction Models, IEEE Transactions
on Software Engineering, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999.

D. Giannakopoulou, J. Kramer, and S.C. Cheung, “Analysing the Behaviour of Distributed Systems using
Tracta,” Journal of Automated Software Engineering, special issue on Automated Analysis of Software,
vol. 6(1), pp. 7-35, January 1999. R. Cleaveland and D. Jackson, Eds.

- 6 -

L. Hatton, “Re-examining the Fault Density-Component Size Connection,” IEEE Software, vol. 14, no. 2,
pp. 89-98, Mar./Apr. 1997.

Birgitta Lindstrom. Methods for Increasing Software Testability. MS Thesis, University of Skovde, 2000.

Supaporn Kansomkeat, Jeff Offutt, Wanchai Rivepiboon. INCREASING CLASS COMPONENT
TESTABILITY, Proceedings of the 23rd IASTED, 2005.

Allen P. Nikora, Raphael R. Some, and Yuval Tamir. Increasing Software Testability with Standard Access
and Control Interfaces, ISSRE 2003.

A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java based on annotated constraints. In
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 43–55, Oct. 2001.

J. M. Voas. Software Testability Measurement for Assertion Placement and Fault Localization, in M.
Ducasse (ed.), (AADEBUG) 2nd International Workshop on Automated and Algorithmic Debugging,
IRISA-CNRS, pp. 133 – 144, 1995.

J. M. Voas and Keith W. Miller. Software testability: the new verification. IEEE Software, 12(3): 17-28,
May 1995.

- 7 -

Reusable System Tests for Applications Derived from
Software Product Lines

Erika Mir Olimpiew and Hassan Gomaa

Dept. of Information and Software Engineering
George Mason University

4400 University Dr. MS 4A4
Fairfax, VA, 22030

eolimpie@gmu.edu, hgomaa@gmu.edu

Abstract. This paper describes a system testing process for software product lines and
applications derived from these product lines. System testing concepts introduced
previously, such as the creation of test item, test design and test procedure specification
are fitted into the SPL engineering and application engineering processes of an SPL. By
this means, both the application and reusable system tests are derived by selecting the
required features for the application.

1 Introduction

This paper describes a system testing process for software product lines and applications
derived from these product lines. This research builds on previous research on SPL testing
but differs because it describes how a testing process fits into the SPL engineering and
application engineering processes of an SPL. Model-based testing for SPLs was
introduced in [1]. This paper describes the role of the system test item, test design, and
test procedure specification documents in the SPL engineering processes.

Section 2 describes related work on SPLs and SPL-based testing techniques. Section 3
describes a testing process for single systems, and section 4 describes how that process is
extended for a SPL.

2 Related Work

2.1 Software Product Lines

Software product line development consists of SPL engineering and application
engineering (Figure 1). SPL engineering is the development of requirements, analysis and
design models for a family of systems that comprise the application domain. A family of

- 8 -

systems [2], or product line, is a collection of systems that have so much in common that it
is worthwhile to study and analyze the common features before analyzing the features that
differentiate the systems. Several software product line development methods have been
investigated by [3-9].

During application engineering, the software product line models are adapted to derive
a given software application, which includes all the common features and selected
optional and alternative features. An executable application may also be constructed, by
generating, or selecting implemented components associated with a selected feature, or by
customizing a product line framework to enable or disable functions depending on
whether or not a feature is selected.

Fig. 1 SPL Engineering and Application Engineering Processes

2.2 SPL-based Testing Techniques

Using SPL based testing techniques, reusable tests are created from the SPL functional
requirements, which can be customized to test the applications derived from SPLs.
McGregor [10] discussed abstract and combinatorial tests for SPLs. Kamsties et al [11]
described three methods to create tests from SPL use case requirements using
parameterization, fragmentation and segmentation techniques, and described how to apply
these tests with a use case based coverage criterion. Bertolino et al [12] extended the
category partition testing strategy for product line use cases. Nebut et al [13] described
how to instantiate use case contracts for an application derived from a SPL, how to apply
some testing coverage criteria based on these contracts, and also described a robustness

- 9 -

testing strategy. Geppert et al [14] investigated the problem of defining and managing the
relationship between a feature model and tests using a decision model.

3 Testing Process for Single Systems

IEEE standard 829-1998 [15] describes test item, test design and test procedure
specification documents for system testing a single system. A test item specification
describes a test case, which contains a test objective, inputs, outputs and test case
dependencies. A test design specification describes a testing strategy, the functions that
will be tested, and the relationship between the functions and tests. A test procedure
specification describes the procedure for executing the tests.

Model-based testing for single systems is described in [1] and summarized here.
Model-based testing is an approach whereby test cases for a system are created from the
models of the software system rather than from the software system itself.

A system test template is constructed from an interaction diagram that describes a use
case scenario. The input and output messages in the sequence diagram become test steps
in the system test template. The message parameters and system state variables become
test parameters. The use case precondition becomes part of the template, and describes
part of the system state. A test condition and postcondition are also added to the template
to specify constraints on the values of input variables and to describe expected output
values. A test template can be used to generate the specific data values for a test item
specification, by substituting the data values that satisfy a test template’s test condition
into the test parameters.

The test design specification describes one or more functional testing strategies and a
traceability matrix. A testing strategy is a rule that guides test template selection and / or
the generation of test items from these templates. A traceability matrix shows the
relationships between use cases and test templates.

The test procedure specification includes descriptions of a test execution model and a
test harness. A test execution model describes the order in which tests can be executed.
This order is determined by examining the use case scenario dependencies. Use case
scenario A depends on use case scenario B if the postcondition of B is part of a
precondition of A. The precondition and postcondition constraints are described in the test
template associated with the use case scenario.

A test harness executes test items generated from the test template. A test item is
executed if its test condition can be enabled, given the current system state. If multiple test
conditions are enabled during test selection, only one of the test items is chosen for
execution. The actual results are then compared with the expected results to determine if
the test passed or failed.

- 10 -

4 SPL testing process

This section describes how the testing process for single systems is expanded to
address the software product line processes of a SPL. Product line test cases are developed
during product line engineering. The test cases are feature based, such that there are
common test cases, which are used to test all members of the product line, and variable
test cases, which are used to test some of the applications. Application derivation is
feature-driven, so that the application is derived from the product line architecture and
components by selecting the appropriate features. The same feature selection is used to
derive and reuse the application test cases from the product line test suite. The test
derivation process is shown in Figure 2.

The product line testing approach is model-based [1], such that the product line test
cases are determined from models of the product line. In this research, the models are
developed using the PLUS (Product Line UML based Software engineering) method,
which depicts multiple-view models using the UML notation [6]. However the testing
approach could be used with any model based product line method.

Fig. 2 Test derivation process

4.1 SPL engineering

4.1.1 Testing process

- 11 -

The test templates, test item, test design and test procedure specifications are developed
during SPL engineering, then selected and customized during application engineering.
Some system testing of the system core may also be carried out during SPL engineering.
Depending on the SPL development method, it may be necessary to build stubs to
simulate the components that correspond to variable features.

4.1.2 Test templates and test item specifications

The use case model is the starting point for the creation of test item specifications. With
the use case modeling approach, the functional requirements of the system are described
in terms of actors and use cases. A use case in a single system contains one or more
scenarios, a main scenario and usually several alternative scenarios. A main scenario
describes a sequence of interactions between one or more actors and the system. The
alternative scenarios describe a sequence of inputs and actions that differ from a typical
use of the system, such as for error handling. Each use case scenario can in turn be
described with an interaction diagram that shows the sequence of interactions between the
use case actors and the system.

 The use cases of a product line are categorized as kernel, optional or alternative, and
correspond to common, optional and alternative features in the SPL feature model [6].
These use cases may also contain variation points, which describe locations in the use
case description where optional and alternative parameters, inputs and actions may be
inserted or enabled when an optional or alternative feature is selected for an application
derived from the product line [6].

As in the single system testing method, each use case scenario is refined into a test
template that contains a precondition, test condition and a postcondition. The test
templates of a SPL contain an additional section for feature conditions. A feature
condition is a Boolean variable that is set to true when the corresponding feature is
selected for an application derived from the SPL. Test items are generated from test
templates that are selected for an application derived from an SPL.

4.1.3 Test design

The test design specification for a software product line includes an additional section for
a SPL-based testing strategy, which describes feature combinations, or specific target
applications to test. Single system testing strategies are applied to each target application.
Further, the traceability matrix section is extended to describe the relationships between
the features in the feature model to the use cases and test templates.

4.1.4 Test execution model

As in the single system testing method, an interaction reference is created for each test
template. Test templates are grouped by use cases into other interaction references. A test

- 12 -

template that is associated with one or more variable features in the feature model
contains feature conditions. In the interaction overview diagram, these feature conditions
are depicted in a constraint of the decision node guarding the test template.

4.1.5 Test harness

The test harness for an SPL is similar to that of a single system. It can be implemented
as the driver program described in [16] and customized for each application derived from
the SPL.

4.2 Application engineering

4.2.1 Testing process

Application derivation and application test case generation are both feature driven. A
target application is configured during application engineering and, at the same time, the
test templates for this application are selected. The test design and test procedure
specifications are customized, and test item specifications are generated from the selected
templates according to the single-system testing strategies described in the test design
specification.

4.2.2 Test templates and test item specifications

A system test template with no feature conditions is always selected for each application
derived from the SPL. If a system test template contains one or more feature conditions, it
is selected when all of the features associated with the feature conditions are also selected
for the target application. The selected test templates become part of the application’s test
template suite.

4.2.3 Test design

Test items are generated from each test template of the application’s test template suite
according to the single-system testing strategies described in the test design specification.

4.2.4 Test execution model

The test execution model is also customized for a target application, by enabling the
feature conditions that correspond to the selected features, and disabling feature
conditions for the unselected features. Disabling a feature condition in a test template
prevents the selection and execution of test items associated with the test template.

- 13 -

4.2.5 Test harness

The test harness is also customized for the target application, by disabling references to
test templates that are not included in the application’s test template suite.

5. Conclusions

This paper has described how the testing process for a single system can be expanded
to address the SPL engineering and application engineering processes of a SPL. The test
item, test design and test procedure documents of an IEEE standard are extended for SPLs
during SPL engineering, and then customized for a target application during application
engineering.

Future work will map test templates to an executable specification language and test
generator tool such as described in [17] in order to automatically generate test items and
test sequences for the target applications of a SPL. Then, test items will be mapped to tests
that can be executed against the target applications of the SPL. Future work will also
experiment with separation of concerns techniques for certain types of variable features.
Separation of concerns techniques can be used to reduce redundancy and maintenance
effort of the test template suite of a SPL.

6. References

1. Olimpiew, E.M. and H. Gomaa. Model-based Testing For Applications Derived
from Software Product Lines. in Advances in Model-based Testing. 2005. St.
Louis, Missouri.

2. Parnas, D.L. Designing Software for Ease of Extension and Contraction. in 3rd
International Conference on Software Engineering. 1978. Atlanta, Georgia,
United States.

3. Kang, K.C., et al., FORM: A feature-oriented reuse method with domain-specific
reference architectures. Annals of Software Engineering, 1998. 5: p. 143-168.

4. Weiss, D.M. and C.T.R. Lai, Software Product-Line Engineering: A Family-
Based Software Development Process. 1999, Reading, MA: Addison-Wesley.

5. Clements, P. and L. Northrop, Software Product Lines Practices and Patterns.
SEI Series in Software Engineering. 2002, Boston, MA: Addison-Wesley.

6. Gomaa, H., Designing Software Product Lines with UML: From Use Cases to
Pattern-based Software Architectures. The Addison-Wesley Object Technology
Series. 2005: Addison-Wesley Professional.

- 14 -

7. Gomaa, H. and D.L. Webber. Modeling Adaptive and Evolvable Software
Product Lines Using the Variation Point Model. in Hawaii International
Conference on System Sciences. 2004. Big Island, Hawaii.

8. Gomaa, H. and M. Saleh. Software Product Line Engineering for Web Services
and UML. in IEEE International Conference on Computer Systems and
Applications. 2005. Cairo, Egypt.

9. Saleh, M. and H. Gomaa. Separation of Concerns in Software Product Line
Engineering. in Workshop on the Modeling and Analysis of Concerns in Software
Product Line Engineering. 2005. St. Louis, Missouri.

10. McGregor, J.D., Testing a Software Product Line. 2001, SEI.
11. Kamsties, E., et al. Testing Variabilities in Use Case Models. in Software

Product-Family Engineering: 5th International Workshop. 2003. Siena, Italy.
12. Bertolino, A. and S. Gnesi. PLUTO: A Test Methodology for Product Families.

in Software Product-Family Engineering: 5th International Workshop. 2003.
Siena, Italy.

13. Nebut, C., et al. A Requirement-Based Approach to Test Product Families. in
Software Product-Family Engineering: 5th International Workshop. 2003. Siena,
Italy.

14. Geppert, B., J. Li, F. Robler, and D. M. Weiss. Towards Generating Acceptance
Tests for Product Lines. in 8th International Conference on Software Reuse.
2004. Madrid, Spain: Springer-Verlag.

15. IEEE, IEEE standard for software test documentation, in IEEE Std 829-1998.
1998.

16. Ben Potter, Jane Sinclair, and D. Till, Chapter 11: From specification to
program: operation decomposition, in An Introduction to Formal Specification
and Z. 1996, Prentice Hall. p. 282-284.

17. Wolfgang Grieskamp, Nikolai Tillmann, and M. Veanes, Instrumenting
scenarios in a model-driven development environment. Information and Software
Technology, 2004. 46: p. 1027-1036.

- 15 -

Composing Unit Tests�

Markus Gälli, Orla Greevy, and Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
{gaelli,greevy,oscar}@iam.unibe.ch

Abstract. If we were to apply the testing techniques of object-oriented
systems prescribed by the XUnit framework to a car factory, the result
would be an inefficient process: A tire would be created, quality assured
and then thrown away, only to be recreated later to test the functionality
of the whole car.

XUnit makes it difficult to reuse intermediate results of low level unit
tests. As a consequence a higher level unit test is forced to recreate
test scenarios which were already created by lower level unit tests. This
duplicated testing effort is time-consuming both for setting up new sce-
narios and for running the tests. To address this problem we suggest
a semi-automatic approach to compose tests. First we describe how we
can detect candidates of composable test cases by partially ordering their
sets of covered method signatures, then we present techniques to refactor
unit tests accordingly.

Keywords: Unit testing, factories, XUnit, composition

1 Introduction

A software product line is defined as a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs
of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way.
XUnit [BG98] in its various forms is a widely-used open-source unit test-
ing framework. It has been ported to most object-oriented programming
languages and is integrated in many common IDEs such as Eclipse.
We claim that units under test can not only be single methods or classes
but also whole software components of a software product line. By al-
lowing the unit test to deliver the tested core asset as a return value, we
can reuse the tested core asset in assembling a test for a composed asset
in order to facilitate scenario creation and to reduce testing time.
The XUnit framework does not allow low level unit tests themselves to
be composed into higher level unit tests - whereas low level functionality
is composed out of lower level functionality.

� We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “A Unified Approach to Composition and Extensibility” (SNF
Project No. 200020-105091/1, Oct. 2004 - Sept. 2006)

- 16 -

This makes the set up of test scenarios an unnecessary tedious task and
leads to unnecessary long testing times. Our hypothesis is that a majority
of unit tests can be refactored into composed test cases.
We will explain our approach with an illustrating example of a simplified
university administration system, which consists of the following four
XUnit test cases:
– PersonTest�testNew tests if the roles of a person are defined.
– PersonTest�testName tests if the name of a person was assigned cor-

rectly.
– UniversityTest�testAddPerson tests if the university knows a person

after the person has been added to it.
– PersonTest�testBecomeProfessorIn tests if some person, after having

been added as a professor, also has this role.
In Figure 1 one can see, that all methods called in UniversityTest�testAddPerson

are also called in PersonTest�testBecomeProfesssorIn, but that neither the
methods called in test case PersonTest�testNew nor in test case PersonTest�testName

are also called completely in any other test case.

UniversityTest

University class

name(...)

Person class University

testAddPerson

addPerson(...)

name(...)
new

persons

assert(aUni persons includes(aPerson))

PersonTest

University class

Professor class

name(...)

Person class

becomeProfessorIn(...)
new

Person University
testBecomeProfessorIn

addPerson(...)

name(...)
new

professors

persons

addRole()

assert(aUni professors includes(aPerson))

PersonTest Person class

testName
name(...) new

assert(person name = aName)
name

PersonTest Person class

testNew new

assert(person roles notNil) roles

Fig. 1. The test for #becomeProfessorIn: covers the test for #addPerson:. The test for
#new overlaps with the test for #name. Intersecting signatures are displayed gray.

2 Approach

We first present a technique to identify comparable test cases of existing
test suites by sorting their sets of covered method signatures and then
introduce two refactorings to tune these comparable tests.

- 17 -

2.1 Identifying Redundant Test Cases with Coverage Sets

We say that unit test A partially covers unit test B (A ⊇ B), if only up
to tolerance method signatures covered by B are not included in the set
of method signatures covered by A (1). We say that unit test A overlaps
B (A ≡ B), if A partially covers B and B partially covers A (2). We say
that two unit tests A and B are comparable if at least either one partially
covers the other.

A ⊇ B ⇔ |Signatures(B) \ Signatures(A)| <= tolerance|tolerance ∈ ℵ(1)
A ≡ B ⇔ A ⊇ B ∧ B ⊇ A(2)

.
Based on this partial order we developed the following algorithm to iden-
tify comparable test cases, which are candidates for refactoring:
First we instrument the code and obtain traces of method calls that are
invoked during the execution of the tests. Then we extract and store the
set of method signatures of each test into an InstrumentedTestCase object.
We sort all this InstrumentedTestCase objects according to the cardinality
of the sets starting with the smallest. For each InstrumentedTestCase we
detect the first covered test, that is both bigger than it and includes its
method signatures tolerating tolerance methods not to be included in
the bigger one. If we find one, we move the partially covered one into the
covering one. If we find that both partially cover each other, we merge
these two tests, building an equivalence relation between them. For our
example using a tolerance 2 of we end up with a partial order of our
tests depicted in Figure 2.

PersonTest>>testBecomeProfessorIn

UniversityTest>>testAddPerson
Legend: A B means A covers B

PersonTest>>testNew PersonTest>>testName

Fig. 2. A sample test hierarchy based on coverage sets.

2.2 Refactoring comparable test cases

Having identified comparable tests forming a partial order, we can refac-
tor them: We start again with the smallest test case and try to include
it into its next smallest comparable test case with either of the following
two refactorings:

- 18 -

– Abstract assertions: Move the assertion from the test into a post
condition of the method under test. In our toy example the asser-
tions are already abstract enough to work directly as post condi-
tions of the method under test. We thus could move the includes

assertion of the UniversityTest�testAddPerson into a post condition of
University�addPerson itself. Otherwise one can try to convert the con-
crete assertion of the unit test into an abstract assertion serving then
as the post condition.

– Publish Test Result: If an object created by a low level test can be
immediately used as parameter or receiver for the method under test
of a higher level test, we can directly call the low level test from our
higher level test, eliminating the need to run the low level test stan-
dalone and to recreate the scenario. This is certainly only possible,
if the test framework allows us to let the tests return objects. In
JUnit Version 4.0 all tests have to be void, thus this kind of easy
test composition would not be possible there.

Person class University class

name(...)

Person class Person

testBecomeProfessorIn

name(...)
new

assert(aUni professors includes(aPerson))

becomeProfessorIn(...)

name(...)

assert(person name = aName)

assert(person roles notNil)

new

University

addPerson(...)

persons

addRole()

Professor class

Fig. 3. The tests refactored. Only one test has to be run now, instead of four, as it
captures all former subtests in post-conditions.

3 Status and Future Work

Having analyzed [GLNW04] the partial order of the unit tests of Code-
Crawler, a code visualization tool, [Lan03] using a tolerance=0, the re-
sulting graph looked like seen in Figure 4. Observing the three right
subgraphs formed by the test covering relationship one can see that a

- 19 -

surprising high number of these tests are comparable, but we have not
yet refactored them.

Fig. 4. The coverage hierarchy of the Code Crawler tests visualized with Code Crawler.

In [GLNW04] we automatically detected several covering relationships
between unit tests like in the following interesting two examples (the
former ist always covering the later):
– LoaderTest�testConvertXMIToCDIF

(LoaderTest�testLoadXMI)
– SystemHistoryTest�testAddVersionNamedCollection

(SystemHistoryTest�testAddVersionNamed)
A possible refactoring suggested by the first covering relationship is to
test the loader of some XMI data structure and, letting the test giving
back the XMI structure, reusing the structure to convert it to another
structure called CDIF in the covering test.
The second covering relationship indicates an n-to-1 relationship between
addVersionNamedCollection and addVersionNamed, where reusing the result
of addVersionNamed or changing the concrete assertion of addVersionNamed

into some post condition can lead to a composed unit test.
We plan to refactor a big case study after having analysed it with our
approach and show that we can efficiently reduce testing time and pro-
vide reusable tests. With this case study we want to answer the following
questions:
– How much can we speed up the execution of the test suite?
– Can we decide automatically between several refactorings?
– Can we use our partial ordering of coverage to give us a hint, if a

refactoring was successful and all former tests are still run?
– How can we prioritize our tests in an efficient way so that atoms are

only run within their calling tests but not stand alone?

4 Related Work

In previous work we showed that failing unit tests are presented in a ran-
dom order, whereas they could be presented in a meaningful order using

- 20 -

the partial order of covered method signatures. [GLNW04] We also de-
fined a taxonomy of unit tests [GLN05], where we manually categorized
more than 1000 unit tests of Squeak, an open source object oriented de-
velopment system. Our results from this large case study show that most
unit tests are either atoms, which we call one-method tests, or compos-
able out of these one-method-tests. In [GND04] we suggested a Smalltalk
browser where one can integrate tests with the methods under test and
where tests are stored as factory methods on the class side of the re-
turned object. Liebermann and Hewitt also tightly integrate testing and
programming in [LH80] and reuse tests.
McGregor [McG01] suggested a way to compose partial tests along vari-
ation points.
Edwards also underlined the importance of examples [Edw04].
Test case prioritization [RUCH99] has been successfully used in the past
to increase the likelihood that failures will occur early in test runs. The
tests are prioritized using different criteria, the criterion which most
closely matched our approach was total function coverage [EMR00]. Here
a program is instrumented, and, for any test case, the number of func-
tions in the program that were exercised by this test case is determined.
The test cases are then prioritized according to the total number of
functions they cover by sorting them in order of total function coverage
achieved, starting with the highest.

5 Conclusion

We have presented a partial order using sets of covered method signatures
to detect comparable test cases. We have introduced two refactorings
which can be applied to some of these comparable test cases in order to
reduce testing time and increase reuse of test scenarios. We have given
first evidence that relevant portions of test cases do partially cover each
other, and that results obtained by the partial order are semantically
meaningful. We have not yet applied our approach to a big case study.

References

[BG98] Kent Beck and Erich Gamma. Test infected: Programmers love
writing tests. Java Report, 3(7):51–56, 1998.

[Edw04] Jonathan Edwards. Example centric programming. In OOPSLA
04: Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications,
pages 124–124. ACM Press, 2004.

[EMR00] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rother-
mel. Prioritizing test cases for regression testing. In International
Symposium on Software Testing and Analysis, pages 102–112. ACM
Press, 2000.

- 21 -

[GLN05] Markus Gälli, Michele Lanza, and Oscar Nierstrasz. Towards a
Taxonomy of SUnit Tests. In Proceedings of ESUG Research Track
2005, September 2005. To appear.

[GLNW04] Markus Gälli, Michele Lanza, Oscar Nierstrasz, and Roel Wuyts.
Ordering broken unit tests for focused debugging. In 20th Inter-
national Conference on Software Maintenance (ICSM 2004), pages
114–123, 2004.

[GND04] Markus Gälli, Oscar Nierstrasz, and Stéphane Ducasse. One-
method commands: Linking methods and their tests, October 2004.
OOPSLA Workshop on Revival of Dynamic Languages.

[Lan03] Michele Lanza. Codecrawler — lessons learned in building a soft-
ware visualization tool. In Proceedings of CSMR 2003, pages 409–
418. IEEE Press, 2003.

[LH80] Henry Lieberman and Carl Hewitt. A session with tinker: Inter-
leaving program testing with program writing. In LISP Conference,
pages 80–99, 1980.

[McG01] John D. McGregor. Testing a software product line. Technical
report, Carnegie Mellon University, 2001.

[RUCH99] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and
Mary Jean Harrold. Test case prioritization: An empirical study.
In Proceedings ICSM 1999, pages 179–188, September 1999.

- 22 -

Towards Testing Response Time
of Instances of a web-based Product Line

Dharmalingam Ganesan1, Ulrich Maurer 2, Michael Ochs1, Björn Snoek1,
Martin Verlage2

1 Fraunhofer Institute for Experimental Software Engineering
Sauerwiesen 6

67661 Kaiserslautern, Germany
{ganesan, ochs, snoek}@iese.fhg.de

2 market maker Software AG
Karl-Marx-Str. 13

67655 Kaiserslautern, Germany
{u.maurer, m.verlage}@market-maker.de

Abstract. Instances of a product line share code, but might differ in the non-
functional quality attributes (e.g., response time and load). This difference is ei-
ther because of the requirements on the instances of a product line or being in-
fluenced by the architecture decision to achieve high reuse. Hence, testing these
non-functional qualities attributes is equally important as their functional coun-
terparts. This paper describes our on-going work aimed to realize an environ-
ment for testing the response time and load of a product line, in the domain of
stock market. The major components of this environment are a) selective injec-
tion of code (using byte code instrumentation technology), b) generation of load
and c) support for visualization of response time. We discuss the challenges and
the need for such an environment in the context of product lines and then dis-
cuss the current results of using the proposed approach on an instance of a
product line.

1 Introduction

The instances of a product line may differ in the non-functional properties. For exam-
ple, in case of a portal framework for stock market information, they vary with respect
to load and response time. The load is measured in number of accesses to a web server
within a given time frame; here, some instances must fulfill hundreds of requests per
minute, others are developed for only a few accesses per hour. Response time to a
request lies between a required minimum latency of 250 milliseconds to a few seconds.
While there has been substantial advancement in methods and tools for functional
testing (e.g., [6], [11], [12], [14], [15]) the testing of non-functional quality attributes
(e.g., load and response time) is often still ad-hoc [5] [13].

- 23 -

Product instances share code which, in our opinion, has to be evaluated in certain
contexts. The reference architecture is not a manifest. It contains definition of generic
and flexible structures. For example, in our product line, one may instantiate multiple
instances of one component in order to address issues of throughout or availability.
Hence, non-functional quality attributes, especially performance, cannot be tested
without instantiation of the generic components in the reference architecture. The
main idea presented here is, that for testing non-functional aspects of a component,
they have to be instantiated given a specific context and measuring non-functional
properties of the product instance has to take into account the configured and tailored
components . In this paper, we report about an approach developed for and validated
in a specific context, namely the testing of performance of components within a web
product line for displaying stock market data (see [1] and [2] for details). The system is
developed mostly in Java and consists of a number of components that are integrated
by a standard framework.

Web-based applications must respond to the user requests within acceptable time
limits even under heavy load. A typical limit for an information portal determined by
usability studies is six seconds within the system has to give response. This demands
an environment which helps developers to test quality attributes systematically. In our
case, the major problem is located in the fact that there is no architectural bottleneck;
the architecture was designed scalable and fast. Asynchronous communication by
message sending is employed to achieve high performance (see [2] for details). Never-
theless, from time to time one observes an unusual long response time to requests.
General profiling tools do not fit because they slow down the whole system as they
measure each object or class. A more focused approach is needed which concentrates
on hotspots identified and does not bias the overall performance, hence allowing for
performance tests even in a system running in production. During the initial design of
architecture, such an approach was not considered. It was added after the need for
non-functional attribute testing was identified.

Determing non-functional behavior of configurable components is not meaningful
when just analyzing the generic component itself. Some configuration parameters do
impact timing, for example and most obvious, the log level. Also, the instantiation of
the reference architecture for a particular product instance does have an impact, too.
For example, it does matter, whether a small scale service runs on a single computer, or
whether a large-scale product instance runs on a networked set of computers adding
communication latency to each request processed. We believe that testing non-
functional behavior of a product line has to be performed by testing product instances
in specific contexts, which might be at runtime, too.

The performance measurement has to conform to the following principles:
(1) The approach must not affect the runtime behavior above a limit of a few milli-

seconds per request. (2) The instrumentation of the code must be performed after the
build of a version has finished; it is not acceptable to include measurement code in the
system source code. (3) The subject to measurement might change, because a) new
problem areas are identified, or b) more detailed analysis of system parts is necessary.
(4) The method of measuring performance is allowed to change. (5) In addition to pure

- 24 -

timing information context data should be provided for interpreting performance num-
bers; the actual configuration of the component must be captured.

Early in the project an approach was identified which fulfilled the requirements. The
general term for this approach is “byte code injection”: an existing Java archive (i.e.,
JAR file) is taken and code is added. Existing methods are moved and new methods
substitute them. The main advantage is that the external JARs can still use the injected
JARs as in the past without any changes. For that we used the system developed in
the open-source project JRat [3], which is based on BCEL [4]. We gained the following
benefits: (1) The application code and its test code can be clearly separated. (2) Third
party applications whose source code is not available can be tested as well. (3) Exist-
ing open source solutions like the tool JRat or the framework BCEL could be used.

In principal, byte code instrumentation is similar to aspect-oriented programming.
But at the implementation-level, byte code instrumentation offers more flexibility than
aspects .On top of JRat we developed a framework which allows performance meas-
urement of asynchronously communicating comp onents. The approach consists of
the following elements: (1) Load generation. (2) Enhancements of the code to make
requests traceable. (3) Selective code injection.

System load is produced with our prototype called i*Test. Using i*Test, the testers
apply load to the system and then measure response time automatically using our
proposed environment. For each product instance a number of scenarios is defined
which represent patterns of usage. A scenario is a test plan which consists of several
threads to drive the tests, a list of requests (“click path”) as well as methods to check
the response from a functional perspective. Variability is not addressed in the test
plans.

Some of the challenges in testing the response time of instances of product lines
are as follows:
1. How to collect response time of multi-threaded programs under different loads?
2. How to locate the bottleneck quickly?
3. How to monitor changes to a single product instance in order to check whether the

change does not decrease performance of this particular product instance and all
other product instances?

4. How to establish the relationship between product line architecture patterns and its
influence on the response time and load?
In this work, we discuss the above challenges by employing an existing approach

of byte code injection. Consequently, this paper illustrates the benefits of byte code
injection as well as discusses a validation of the approach in a larger setting.

The remaining paper is structured as follows: section 2 describes the context of the
work. In section 3 our process model for collecting response time is described. After-
wards, the load testing is briefly explained in section 4. Finally, in section 5, the current
results and next steps are outlined.

- 25 -

2. Context of the Work

market maker and i*ProductLine

market maker Software AG [7] is a small software and service company based in
Kaiserslautern, Germany. Starting from the early 1990s, it has developed software for
the management and visualization of stock market data. In 1999, market maker decided
to establish a new product family, which uses Internet technology to deliver services
to their customers. The first product instances were delivered in 2000.

i*ProductLine consolidates a number of different sources of financial data content
and delivers this data in various output formats to diverse interfaces, including Web,
Web Services and specialized interfaces to client systems. This leads straight forward
to a three layered architecture: The data sources layer, the front end and – as a con-
nector – the system kernel. Figure 1 shows the architecture of i*productLine.

MERGER

Web Server
incl. Servlet

Engine

Rendering

Session Management

Java
Wrapper

Legacy Application
pm/pp

chicago

Application
Layer

News
Main
Data

Portfolio
Watchlist

Alerting

Data
Layer

Search

Filter & List

Permissioning

Aggregation

Batch
Production

Accessor
Fremddaten

Real-Time Data Feed

Caching

Charts

Pages
Computation of
Key Indicators

Historical Quotes Foreign Data

Java RMI
Interface

C
om

ponent
M

anagem
ent

User
Data

Life
-C

ycle
-M

gm
t

B
illing

M
onitoring

Figure 1: Logical View of i*productLine

The system kernel is called MERGER (see dashed line in Figure 1). It consists of
several components. They can be instantiated multiple times to achieve redundancy
and scalability. Communication between the kernel components follows a standardized
pattern and uses request flow mechanisms provided by the kernel. The kernel receives
requests from the Front Ends. It sends parallel subrequests to the involved data
sources and returns the compound response. It makes sure that the user permissions
are obeyed. For example only those markets are displayed that are defined in the client
contract.

- 26 -

We have chosen the MERGER kernel as the location for testing the response time
of i*ProductLine, because all requests initiated by a user from the web-interface must
enter and leave this kernel.

Performance Issues

Servlets are expected to respond to a request within a range of a few hundred millisec-
onds, excluding overhead caused by slow lines. Consequently, performance is meas-
ured first at the interface to the merger kernel. During black-box tests of the production
system one could observe occasionally that some requests had an unusual long re-
sponse time (e.g., several seconds). The standard system parameters like CPU load,
paging activity, or network interface load did not show reasons for that behavior. A
more detailed look into the system and the performance of single methods was needed
to identify the performance bottleneck(s).

At best, performance tests running the scenarios would run on the production sys-
tem. Performing the tests in a laboratory setting would have the following drawbacks:
(1) The system configuration comprises a number of distributed components running
on expensive hardware. (2) A laboratory setting seldom exactly rebuilds the real envi-
ronment. Line speed, network capacity, exact order of requests, or concurrent use of
the CPU are hard to control.

Difficulty to performance analysis is added by the fact, that the product instances
are configured and call flow is dynamically arranged by a middleware which bypasses
inactive copies of identical components (in the case of component failure) and distrib-
utes load to equal services. In our opinion, it is hard to put measurement routines
explicitly into the code because due to the configuration of the comp onent one cannot
be sure whether the code is executed in the sense one wants it; moreover configura-
tion may disable essential parts of the measurement activities.

Terminology

In the remainder of the paper we will use the following terms for explaining our ap-
proach:

Product line implements a generic set of product instances.. It consists of a refer-
ence architecture and core assets (or comp onents).

Product instance is a specific service, tailored and configured for a customer.
Scenario is a set of usage patterns which describe the way how users interact with

a product instance. A usage pattern is described by request/response pairs which are
sent between user and web server.

Test plan is an implementation of a scenario.

- 27 -

3. Process Model

Traditional performance analysis steps include: (1) Instrumentation: The object code
of the product instance is instrumented and during execution the instrumentation
hooks record the performance data. (2) Data Extraction: After performance data is re-
corded from one or more scenario executions, data relevant to specific code elements
(classes, methods) is extracted. (3) Data Analysis: Data is analyzed to extract bottle-
necks. (4) Optimization: Areas of poor performance are identified and plans are made
for improvements.

Here, we focus on the problem of obtaining measurement data for the purpose of
locating bottlenecks. Figure 2 shows the process model for performance analysis.

Figure 2: Different steps in performance analysis

Step 1: Key class identification
Since our approach uses byte code injection for collecting response time, it is impor-
tant that we reduce the overhead associated with additional byte code. Therefore, a
few classes called key classes are instrumented instead of the complete system. These
key classes are identified by the developers of the system. In fact, due to product line
development and build-in abstractions the number of key classes is fairly low. In the
following example, it is just one key class that is target to instrumentation.

In the case of MERGER, an expert selected a Java class called TemplateComponent
responsible for handling various types of requests from the users. The class Tem-
plateComponent contains two methods namely the sendRequest and the getAnswer.
sendRequest is called whenever a new request is initiated by the user. In MERGER,
every request is identified by request_id, which is a unique identifier. The sendRe-
quest method delegates a request to other classes of MERGER based on its argu-
ments. When a request is processed, the getAnswer method will be called. Because of
the request_id within the arguments of getAnswer we know the connection to the
corresponding sendRequest method.

- 28 -

public class TemplateComponent {
public void sendRequest(Arg1, …, Argn) {

/* Analyse arguments and delegate requests to
other classes */

}
public Answer getAnswer(Arg1, …, Argn) {
/* When the answer is ready for a request, this

method will be called */
}

}

Step 2: Byte code Instrumentation
In this step, the key classes from step 1 are instrumented using JRat. For every
method, JRat introduces a wrapper method that first invokes the JRat comp onents and
then calls the “real” method. This way, the rest of the system is not affected when a
set of particular classes is instrumented. Basically, JRat records the starting and finis h-
ing time of a method. Every method has an associated handler object that implements
the MethodHandler interface:

public interface MethodHandler {
 void onMethodStart (Object obj, Object[] params);
 void onMethodFinish (Object obj, Object[]
 params, Object ret, long dur, boolean suc);
 void onMethodError (Object obj, Object[] params,
Throwable thro);
}

In the earlier phase of this work, we found out that the existing logging mechanism
within JRat is not sufficient for logging arguments of methods. To support this func-
tionality we implemented a new component which implements the JRat interface called
MethodHandler and integrated it. This enhancement neither affects the existing archi-
tecture nor the API of other components. Unfortunately, we found out that the params
argument within the above methods is never set to the expected value. To fix this, we
enhanced the instrumentation comp onent of JRat to log the arguments of the methods.
To introduce this new feature into JRat, the following tasks were performed: (1) Locate
the instrumentation comp onent within the JRat architecture. (2) Identify the important
interfaces of JRat.

Using our new component, we logged the arguments of the methods sendRequest
and getAnswer (see TemplateComponent class) together with the current system time
in milliseconds to a database. Based on the request_id, it is possible to find the two
method calls of sendRequest and getAnswer that belong to the particular request.

- 29 -

Step 3: Send Requests to MERGER
When the code runs productive, the requests are web traffic. Additional requests are
generated by running test plans which are also used during system integration. These
test plans implement scenarios for the specific product instance and typically put load
on the system parts configured or implemented for that particular product instance. In
the case the tester already has an idea about the problem area, he even may put addi-
tional requests by own scripts or by hand. The System expert has knowledge about
the scenarios that invoke the instrumented classes (see Step 2), and hence, the re-
sponse time was logged into the database as shown in Figure 3. The first column de-
notes the name of the service that the user has requested with the corresponding
request id (column number five), whereas the fourth column tells us the class that has
been used to provide the service.

demon_chart sendRequest 1101812293865 WpidRequest 113002
demon_chart answer 1101812294166 WpidRequest 113002 301
demon_chart sendRequest 1101812294176 LivedatenAtRequest 114002
demon_chart answer 1101812294807 LivedatenAtRequest 114002 631
demon_chart sendRequest 1101812294827 MMResultRequest 115002
demon_chart answer 1101812295177 MMResultRequest 115002 350
demon_chart sendRequest 1101812296089 WpidRequest 116002
demon_chart answer 1101812296109 WpidRequest 116002 20

ID Duration
[millisec]

Service Method StartingTime in
Millis

Class that provides
the Service

Figure 3: Collected response time data

Step 4: Analyzing the response time
Figure 4 shows the average of all requests out of one service, that calls the same class
will be calculated and visualized as one bar within a chart. If, for example, a class xy-
Class is used by a service xyService several times then the response time of each us-
age will be used to calculate the average. The average value is shown as a bar of the
chart. This provides the expert the needed Information to find bottlenecks or other
performance problems. The red line within the chart shows the average duration of all
requests that the system has answered within the testing-period.

5 5

2 0 3

7 6
7 0

2 5 0

3 3 0

347

7 0

90

2 6
30

305

7 0

203

1 4 4

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

Figure 4: Average response time per class and service for each request

In the beginning of our work, the response time for various requests was collected
with only one user at a time. The reason was, to identify those requests whose re-
sponse time is not satisfactory without any load. Before we started tracing the portion
of source code for potential bottlenecks, we also had to identify the requests whose

- 30 -

response time is affected by load. The next section explains how we applied load to
MERGER.

4. Load Testing

In order to stress the production system, load testing was performed to detect un-
wanted behavior of the i*ProductLine using our prototype i*Test. The demands on
the load testing utility are as follows: (1) The utility should focus on the Web Front
End. (2) The specification of a load test should be very simple. (3) Single tests should
be performed multiple times in sequence as well as in parallel. (4) The parallel execution
of tests must be parameterizable, so that parallel tests can be performed (e.g., usage of
different user logins). The HTML response to a test request should be evaluated to
make sure that the system returns the requested data. If the system does not return the
requested data but an error message, the test should be marked as failed.

Figure 5: Architecture of load testing tool i*Test

i*Test meets the given demands. It is based on a number of standard technologies:
Apache Ant [8], Jakarta JMeter [9], usage of XML as data and configuration format
and usage of XPath [10] for result testing. i*Test provides a proxy that can be config-
ured in the browser (see Figure 5). The tester uses the i*ProductLine Web Front End
for that specific product instance in the normal way and navigates through the pages
that should be called during the load test. The proxy records each request of the ses-
sion and stores them in an XML file.

Figure 6: Modify and replay the recorded session

- 31 -

The recorded XML file can directly be used as input for i*Test to replay the com-
plete test (see Figure 6). All responses are stored in a repository and finally an evalua-
tion summary is generated, containing textual evaluations of the response times as
well as graphical evaluations. A collection of XML files makes up a test plan which
implements a scenario for a specific product instance.

5. Current Results

The above described tool set was validated in the context of i*ProductLine. In order
to identify performance issues in the production system, code was injected into JAR
files and measurement data was collected. The results so far are:
1. The injected code does not affect system behavior above a crit ical limit. Due to the

small number of classes and methods injected per test run there was no visible per-
formance degradation observed. JRat perfectly integrates the code and keeps over-
head to a minimum.

2. Scenarios encompass usages of a product instance. The degree of variability which
can be expressed in the scenarios does not comply with the one of the components
to be tested, i.e. one ends up with more scenarios than product instances.

3. It is unlikely that test plans get reused. Even in the case product instances are build
similarly and reuse of code is high each product instance may focus on very differ-
ing aspects of the system. Scenarios stress these aspects, and may result in very
different test plans. Currently, for a tester it looks easier to write a new test plan in-
stead of analyzing commonalities and variabilities with respect to an existing one.

4. Code injection is a step which may take place after the build process of a JAR has
finished. This is very important since the regular production process does not
change and developers do not have to take into account that the performance
measurement takes place afterwards. A JAR file could be copied from the produc-
tion environment, instrumented, placed back, and taken effective by restarting the
system. The source code of the original system does not change. In our under-
standing, this is the very meaning of aspect-oriented programming.

5. The JRat approach had to be changed in order to fulfill the requirements of our
project. The JRat development team was responsive and helpful. The change pro-
posals are accepted for inclusion in a later version of JRat.
In summary, we have established an environment for testing response time and load

of a product line with in market maker. Currently, this approach is customized for our
product line, in principal this idea can be customized for other domains as well. The
obvious challenge lies in the instrumentation; for resource-constraint systems the
overhead associated with instrumentation has to be kept as low as possible.

- 32 -

Next steps

With the encouraging results we got by applying the proposed approach in our test
environment, the immediate next steps involve collecting response time under different
load for many instances of i*productline. Using these data, building models of non-
functional behavior for our product lines will be one direction for us to proceed. An-
other interesting aspect to be addressed in future is the influence of architecture deci-
sion with respect to response time and load of instances of a product line. We believe
such an automatic support for testing response time and load is necessary for evolv-
ing the product line architecture towards better performance.

Acknowledgement

This work was performed within the project CBTesten (BMBF 01ISC29), which is
funded by the Federal Ministry of Education and Research, Germany. Special thanks
go to T. Schmitt, formerly ICTeam, to point to the JRat approach. We are overjoyed by
the responses given by the JRat developers whenever there are some issues or feature
requests or bugs in their tool. Last, but not least, we thank the anonymous reviewers
for their feedback.

References

1. J.-F. Girard, M. Verlage, and D. Ganesan: Monitoring the Evolution of an OO System with
Metrics: an Experience from the Stock Market Software Domain. Proc. of the 20th Interna-
tional Conference on Software Maintenance, Chicago, September 11 14th 2004

2. M. Verlage and T. Kiesgen: Five Years of Product Line Engineering in a Small Company,
Proceedings of the 27th International Conference on Software Engineering ICSE05, St. Louis,
USA, May 2005

3. JRat Homepage, http://jrat.sourceforge.net, February 2005
4. BCEL Homepage, http://jakarta.apache.org/bcel/, February 2005
5. CBTesten Homepage, http://www.cbtesten.org, February 2005
6. JUnit Homepage, http://www.junit.org, February 2005
7. market maker Software AG Homepage, http://www.market-maker.de, February 2005
8. Apache ANT Homepage, http://ant.apache.org/, February 2005
9. Jakarta JMeter Homepage, http://jakarta.apache.org/jmeter/, February 2005
10. XPath Homepage, http://www.w3.org/TR/xpath, February 2005
11. H-G, Gross: Testing and the UML – A Perfect Fit, IESE Report 110/03E, October 2003
12. B. Beizer: Software Testing Techniques. Thomson Computer Press, 1990
13. H-G. Groß, C. Peper, and M. Ochs, A. Kalenborn und M. Verlage: Vorgehensweise Planung

& Generierung Testartefakte, CBTesten Konsortium, Kaiserslautern, 2004

- 33 -

14. J.D. McGregor: Parallel Architecture for Component Testing,
http://www.cs.clemson.edu/~johnmc

15. J.D. McGregor: Testing a Software Product Line, Technical Report, CMU/SEI-2001-TR-
022

- 34 -

Product Line Test ing and Product Line
Development — Variat ions on a Common Theme

Peter Knauber
Mannheim University of Applied Sciences

Windeckstraße 110, 68163 Mannheim, Germany
p.knauber@fh-mannheim.de

William Hetrick
Engenio Information Technologies, 3718 N. Rock Road

Wichita, KS 67226 USA
bill.hetrick@engenio.com

Abstract. The production capability of a software product line development organi-
zation can overwhelm traditional test practices. Test organizations have to employ
product line engineering principles to yield the same improved throughput efficiency
and reduced costs benefits as when these principles are applied to software develop-
ment. This position paper sketches an approach for strategic development and reuse of
test assets at different levels together with their management as part of a product line
infrastructure.

1 Introduction

Software validation is widely recognized as a critical function of the software develop-
ment cycle. An organization can transition its development group1 to product line engineer-
ing (cf. Figure 2) to improve the product development capability. However, product line
engineering is capable of dramatically increasing the product development efficiencies, and
thus can outpace if not overwhelm traditional test practices.
Traditional test practices often begin with unit tests owned by the development organiza-
tion. These tests emphasize functional verification, exception verification, and code cover-
age of a subset of the software assembly. When a feature or product is sufficiently devel-
oped and validated with unit-level testing, the software is passed to a dedicated test organi-
zation to validate as a software solution. Mature test organizations will have substantial
investments in an infrastructure of databases and automation tools generally based on one-
at-a-time product validation requirements. Product validation test suites are assemblies of
feature test cases. The test environment infrastructure commonly facilitates re-use at the
feature validation level based on the assumption that future products may or may not in-
clude a feature.

1. For the purpose of this paper we distinct between development and validation: devel-
opment comprises all activities from requirements analysis to implementation. Validation
starts after (at least) rudimentary unit tests have been performed successfully and is car-
ried out by an explicit quality assurance group.

- 35 -

2 Testing Challenges in a
Product Line Engineering Environment

Two correlated challenges of a software testing organization are product validation
throughput and product validation costs.
A critical early step of establishing a product line organization is the creation of test infra-
structure core assets, cf. Section 3. Transitioning a development organization to product
line engineering without transitioning the test organization limits validation throughput and
thus creates a bottleneck in the process flow (see Figure 11). When one organization in the
product development flow limits the production capability of the business, that organiza-
tion experiences tremendous pressure to deliver.

Validation costs (especially testing costs) scale as a function of the number of products pro-
cessed by the quality assurance organization, whereas product development costs scale as
a function of the variant content. In a highly leveraged product line engineering environ-
ment, the variant functional content is often a fraction of the total functional content. De-
velopment organizations can, for example, double the product development rate using core-
asset development and variation management without increasing the development budget
[2]. But without changing testing methodologies, the testing budget would have to double
to accommodate the production capabilities of the development organization.

Example from practice:
Engenio [2] once discovered in an analysis effort that the fixed
QA cost was on the order of three months even if the scale of
change from an existing produc was trivial!

1. Figure 1 seems to imply a waterfall-like development process. In fact, usually a more
incremental approach is taken, implying that steps are usually overlapping.

Figure 1: A Product Line Engineering Process with explicit Test Step

Product Line EngineeringProduct Line Engineering

Domain
Analysis

Domain
Design

Domain
Implementation

Application EngineeringApplication Engineering

Domain
Model

Domain
Architecture

Domain Reusable
Components

Product
Requirements

New
Product

Requirements
Analysis

Product
Design

Product
Implementation

Product
Plan

Domain Reusable
Features

Product
Test

- 36 -

Test costs are comprised of test case and test infrastructure development, test execution,
and test execution equipment. A test organization could attempt to increase its capacity by
increasing staff and adding equipment, but this strategy can be very expensive, insufficient,
and quite likely a physical impossibility. Business needs and schedule pressures can coerce
the organization to reduce test coverage, which can introduce substantial risks in product
maintenance costs and customer satisfaction. One possible way out is to employ product
line engineering principles to yield the same improved throughput efficiency and reduced
costs benefits as when these principles are applied to software development.

3 A Product Line Testing Infrastructure

In order to let testing benefit from the characteristics of product line engineering in the
same manner as development, product line principles should be applied to testing practices
as well as to development practices (see Figure 2):

• During domain engineering, tests for product line assets should be developed simul-
taneously to the product assets themselves, feeding a test infrastructure. This infra-
structure should comprise test assets for component tests1, feature tests, and product
(or system) tests.

• During application engineering, assets from this test infrastructure should be reused
to speed up testing and thus overall product development. Like with development as-
sets, it should be possible to customize test assets at certain variability points [4] us-
ing a decision model as described in [6]. The expectation here is that test assets are
customized by using the same resolutions in the same decision model that are used
for customization of the other product line assets.

1. We prefer to talk about components instead of units because the term reusable compo-
nents is used frequently in product line engineering (see Figure 2).

Figure 2: Test Implementation in Product Line Engineering

Product Line EngineeringProduct Line Engineering

Domain
Analysis

Domain
Design

Domain
Implementation

Application EngineeringApplication Engineering

Domain
Model

Domain
Architecture

Domain Reusable
Components

Product
Requirements

New
Product

Requirements
Analysis

Product
Design

Product
Implementation

Product
Plan

Domain
Test Implementation

Domain Reusable
Component Tests

Domain Reusable
Features

Domain Reusable
Tests

Feature Reusable
Tests

Domain Reusable
Tests

Feature Reusable
Tests

Domain Reusable
Tests

Feature Reusable
Tests

Product Tests

Test Infrastructure

Product
Test

- 37 -

Product line testing then can be done at three levels: at component level, at feature level,
and at system level. These are described in more detail in the following sub sections.

3.1 Product Line Testing at Component Level
At component level, traditional and well-established test development practices can be ap-
plied to develop component tests, nevertheless, test-driven development at component level
offers a specific advantage. In test-driven development, test cases are developed first, that
is, calls of a component’s routines are written before coding of the component has started.
Among other advantages, this gives early feedback about the usability of the component’s
interfaces. While this is already an advantage in single system development, interface us-
ability is even more crucial for product line components because these are reused often in
several systems and by several users.
Whatever test approach is chosen, in a product line context at component level tests should
be automated because these tests are likely to be reused very often and as part of potentially
many products. On the other hand, components that are reused over a long time very likely
need to be revised for (mostly adaptive or preventive) maintenance purposes. Automated
tests cannot guarantee the correctness of a component but provide a very useful basis for
assuring its reliably high quality.
To validate a generic or parameterizable component, structural tests are essential to make
sure that all product-specific paths through the component have been tested. Again, auto-
mated tests for the common (that is, non-variant) parts of the component are very useful in
that they provide basic coverage. On top of these common tests, variant tests have to be de-
veloped. If these are automated then the same variability mechanisms should be used as in
the component implementation (cf. [5]).

3.2 Product Line Testing at Feature Level
As for single system development, product integration with feature-level validation

should start only after the components used have passed their component tests. Using fea-
tures as integration units towards the final product does make sense for product line devel-
opment because the members of a product line often differ in availability or comprehen-
siveness of their features. This implies that tests at this level are customized using the de-
cision model in exactly the same way as the feature implementation itself. Wether the tests
are automated or not, they have to be treated as core product line assets and managed con-
sistently with the respective feature code.
Any defects discovered at this level must be fed back into the component tests because er-
rors have to be corrected at component level. Depending on the kind of error detected at
feature level it should be carefully checked if there is a general problem with test generation
at component level and, if so, the test generation procedure should be improved and the
tests developed so far should be completed.

3.3 Product Line Testing at Product Level
Validation at product level (system tests) requires that the validation of components and

of the partially integrated features was successful. Again, tests at this level have to be treat-
ed as product line assets and their product-specifics have to be managed using the decision
model.

- 38 -

As for errors detected at feature-level, any defects discovered at this level must be fed back
into the previous test levels, i.e., component-level tests and/or feature-level tests. Errors
have to be corrected at component level, test practices at component test-level and feature
test-level may have to be revised in order to make sure that this kinds of errors can be avoid-
ed or at least detected earlier in future product developments.

3.4 About Automated Tests
To some extent we have discussed the topic of automated tests in the previous sections

but would like to elaborate some more on this issue. For single system development, auto-
mated tests are mostly used if (parts of) the system to be tested is frequently revised, adapt-
ed to another environment aso., or in the context of test-driven development [1]. These sit-
uations have in common that the tests are run frequently / very often.
For software product lines the situation is similar: even if the core components are not re-
vised as often as it may be necessary for components of a single system, they are developed
as being generic to allow that they can be parameterized (slightly) different for each product
they are used in. Even if, while developing one product, the tests are not run as often as in
test-driven development they are run again and again for each product derived from the
same infrastructure.
Automated tests for common component parts can be executed very efficiently during val-
idation of each product line member, thus saving lots of effort and time. For testing the vari-
ant parts the situation is similar as for tests at feature or product level: for some tests the
investment in their development will pay while the effort to develop some other tests may
exceed the potential savings from their later application. In any case, automated tests for
variant components, features, and systems need to be connected to a common decision
model for the product line in order to make sure that tests are used consistently with the
code they are testing.

4 Summary

The amount of products produced using product line engineering may exceed the ca-
pacity of traditional testing resources: the amount of variability contained in product line
assets cannot be dealt with using traditional testing methods. Since exhaustive testing is ex-
pensive, a testing strategy is needed to do product line testing effectively and efficiently.
Strategic development and reuse of test assets allows testing to keep pace with product line
development. To achieve this, test assets have to be developed and managed as core assets
of their respective product line. Therefore product line product development and product
line test development follow exactly the same structure: reusable and customizable tests are
created during domain engineering and reused during application engineering. This paper
describes how to test product lines at three levels: at component level, at feature level, and
at system level.

5 Acknowledgements

Many of the ideas presented in this paper were discussed in a break-out group of SPLiT
in 2004. We thank our colleagues Chris Condron and Yuan Zhan for sharing their ideas
with us and for a fruitful discussion.

- 39 -

References

[1] K. Beck: Test-Driven Development By Example, Addison-Wesley, 2002
[2] BigLever Software Case Study: Engenio, Report # 2005-06-14-1, 2005, available at http:/

/www.biglever.com/papers/EngenioCaseStudy.pdf (July 2005)
[3] B. Geppert, Ch. Krueger, J. J. Li (Eds.): Proceedings of SPLiT 2004: International Work-

shop on Software Product Line Testing, Technical Report: ALR-2004-031, Boston, Mas-
sachusetts, USA, 2004

[4] G. van Gurp, J. Bosch, M. Svahnberg: On the Notion of Variability in Software Product
Lines. In Proceedings of Working IEEE/IFIP Conference on Software Architecture (WIC-
SA), 2001

[5] P. Knauber, J. Schneider: Tracing Variability from Implementation to Test Using Aspect-
Oriented Programming, in: [3]

[6] K. Schmid, U. Becker-Kornstaedt, P. Knauber, and F. Bernauer: Introducing a software
modeling concept in a medium-sized company, in: Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), Limerick, Ireland, 2000

- 40 -

3Rennes, September 26, 2005

Product Line EngineeringProduct Line Engineering

Product
InstancesCore Assets

Production

Decision Model

4Rennes, September 26, 2005

Core Assets
Production Product

Instances

Decision ModelTest
Test

Test

Test
Test

Test
Test

Test

Validate

Validate

Product Line Engineering & TestingProduct Line Engineering & Testing

- 42 -

5Rennes, September 26, 2005

Lots and Lots of Open Issues …Lots and Lots of Open Issues …

• How can we keep pace with development productivity gains?
– How to leverage core asset testing to minimize product instance testing?
– How can we leverage the commonality among the product instances to

minimize redundant testing?

• How can we manage the complexity of the test space?
– Additional complexity due to (a) variation points and (b) large number of

products to test
– How to deal with the combinatoric explosion?

• Are there PLE techniques that can provide similar efficiency gains for testing as is
possible for development?

• Can we leverage our established testing tools and procedures?

• Techniques for strategic reduction in test time, test cost, and test flaws

• Definition and measurement of test coverage and test effectiveness in the context of
software product lines

• …

6Rennes, September 26, 2005

Some Results from Last YearSome Results from Last Year

• Managing the complexity of the test space: Constrain
its combinatorics by being reactive and conservative on
the scope of variability in the core assets and decision model.

» BUT ….

• Not one testing technique is sufficient, we need a combination of
them. Optimizing test effort means choosing the appropriate
methodology and technology for unit, integration, system testing
in PLE.

» BUT ….

• Techniques and methods for development and testing should
match. Co-design of software and test infrastructure/cases very
important.

» BUT ….

- 43 -

7Rennes, September 26, 2005

Some Results from Last Year, cont.Some Results from Last Year, cont.

• Design for Testability is an important quality attribute
and should be among the top-priority abilities.

» BUT ….

• Inspection – on design as well as code level - is a powerful tool
for reaching PL quality.

» BUT ….

• PL should not be implemented until we get to a point where we
have test design or plan.

» BUT ….

8Rennes, September 26, 2005

Agenda - MorningAgenda - Morning
• 09:00 - 09:30 Introduction

• 09:30 - 10:50 Paper presentations
• Executing Reusable System Tests for the Applications Derived

from Software Product Lines (E. Olimpiew, H. Gomaa)
• Composing Unit Tests (M. Gälli, O. Greevy, O. Nierstrasz)
• Towards Testing Response Time of Instances of a web-based

Product Line (D. Ganesan, U. Maurer, M. Ochs, B. Snoek, M.
Verlage)

• Product Line Testing and Product Line Development —
Variations on a Common Theme (P. Knauber, W. Hetrick)

• Refreshment break (10:50–11:10)

• 11:10 - 12:30 Discussion round 1
• Topic: "Managing the complexity of your test space:

challenges, ideas, solutions."

• Lunch break (12:30 – 14:30)

- 44 -

9Rennes, September 26, 2005

Agenda - AfternoonAgenda - Afternoon
• Lunch break (12:30 – 02:30)

• 02:30 - 03:15 Invited Talk
• John D. McGregor: Reasoning about the

Testability of Product Line Components

• 03:15 - 04:30 Discussion round 2
• Break-out group(s) – topic(s) determined by audience
• Refreshment Break included ☺

• 04:30 – 06:00 Results/Group discussion and Wrap-up

10Rennes, September 26, 2005

One last thing …One last thing …

• Don’t forget the Sticky Notes: please write
down ideas/topics/open issues you think
are worth discussing in the afternoon!

- 45 -

11Rennes, September 26, 2005

And now …And now …

Let’s start working!

12Rennes, September 26, 2005

Paper PresentationsPaper Presentations
• 09:30 - 09:50

Executing Reusable System Tests for the Applications Derived
from Software Product Lines
(E. Olimpiew, H. Gomaa)

• 09:50 - 10:10
Composing Unit Tests
(M. Gälli, O. Greevy, O. Nierstrasz)

• 10:10 - 10:30
Towards Testing Response Time of Instances of a web-based
Product Line
(D. Ganesan, U. Maurer, M. Ochs, B. Snoek, M. Verlage)

• 10:30 - 10:50
Product Line Testing and Product Line Development —Variations
on a Common Theme
(P. Knauber, W. Hetrick)

- 46 -

Composing Unit Tests

Markus Gälli

Orla Greevy

Oscar Nierstrasz

Software Composition Group Bern

Roadmap

• Example product line: Two different types
of Bank Accounts

• What is the problem with tests and product
lines?

• Our Approach: Analysis with PO and
Refactoring

• Conclusion

- 46 -

A simple Product Family:

Account with or without credit

• Common Assets:

– Create Account, Deposit money…

• Individual Assets:

– Withdraw Money….

• Common Tests

– testCreateAccount, testDepositMoney

• Individual Tests

– testWithdrawMoney

Problems of not being able to

compose tests

To withdraw one needs to deposit.

So deposit is once tested and once used to

create scenario.

--> Difficult scenario setup

Mocks can be complex too.

--> Long testing times.

Automatic test reduction is not safe.

- 47 -

Our Approach (I): Analysis with

PO-Set of covered signatures

Our Approach (II): Refactoring

• Publish Results!

Each test can return the value of the

changed object - move into factories

– in our case the accounts

• Move concrete assertions into abstract pre-/

postconditions

– “withdraw: anAmount” asserts

“canWithdraw: anAmount” as precondition

- 48 -

Our refactored Bank Example:

Only have to run the root-tests

Conclusion

• We can detect composable test cases and

reuse them in depending assets by

refactoring them and thus:

– reduce the code significantly

– reduce testing time

– detect errors more on the spot

• Demo / Questions…

- 49 -

Copyright © Fraunhofer IESE 2005

IESE

THANK YOU

Conclusion and Discussion …

- 57 -

PL Testing and PL Development –

Variations on a Common Theme

William Hetrick

Peter Knauber

SPLiT, with SPLC9
September 26, 2005, Rennes, France

Slide 1 Peter Knauber, William Hetrick

Challenges

• Product line development practices may outpace traditional test
practices

• Consequences: must…
– Increase product validation throughput:

total product throughput := effort available / effort necessary per product
– Limit product validation costs:

total costs := costs per product * number of products

• Example from Engenio Information Technologies
– Implementation effort: change 100 LoC
– QA effort: 3 PM

- 58 -

SPLiT, with SPLC9
September 26, 2005, Rennes, France

Slide 2 Peter Knauber, William Hetrick

PLE Process with explicit Testing Step

Product Line Engineering

Domain
Analysis

Domain
Design

Domain
Implementation

Application Engineering

Domain
Model

Domain
Architecture

Domain Reusable
Components

Product
Requirements

New
Product

Requirements
Analysis

Product
Design

Product
Implementation

Product
Plan

Domain Reusable
Features

Product
Test

SPLiT, with SPLC9
September 26, 2005, Rennes, France

Slide 3 Peter Knauber, William Hetrick

Test Implementation in PLE

Product Line Engineering

Domain
Analysis

Domain
Design

Domain
Implementation

Application Engineering

Domain
Model

Domain
Architecture

Domain Reusable
Components

Product
Requirements

New
Product

Requirements
Analysis

Product
Design

Product
Implementation

Product
Plan

Domain
Test Implementation

Domain Reusable
Component Tests

Domain Reusable
Features

Domain Reusable
Tests

Feature Reusable
Tests Domain

Reusable
Tests

Feature
Reusable

Tests

Product Tests

Test
Infrastructure

Product
Test

- 59 -

SPLiT, with SPLC9
September 26, 2005, Rennes, France

Slide 4 Peter Knauber, William Hetrick

Product Line Testing

• At component level
– Test-driven development increases interface reusability, fostering reuse
– Automated tests increases test productivity (reuse in multiple product line

members)
– Structural tests help covering product-specific paths

• At feature level
– Integration tests at feature-level correspond to product line variants
– Product-specific test assets are derived using the (existing) decision

model

• At product level
– System (-specific) tests are derived using the (existing) decision model

Errors

SPLiT, with SPLC9
September 26, 2005, Rennes, France

Slide 5 Peter Knauber, William Hetrick

Issues for Discussion

• How can (existing) methods of regression testing (e.g., test case
prioritization, test coverage measurement) be re-used here?

• Are / why are the three levels (component level, feature level, and
system/product level) appropriate?

• What portion of a product line development should be / needs to be
dedicated to testing?

• Decisions to take a certain test strategy should be based on
cost/benefits

– Are there any quantitative data or case studies?
– Are there any plans to do a case study?
– Are there any “rules-of-thumb?”
– Are we talking about short-term or long-term investment issues?

• Other issues?

- 60 -

1

TestabilityTestability

John D. McGregorJohn D. McGregor
Clemson UniversityClemson University

Quality PerspectivesQuality Perspectives

Individual user of a product from a Individual user of a product from a
product line sees no difference in number product line sees no difference in number
of problemsof problems
The product line organization sees the The product line organization sees the
aggregate of all problemsaggregate of all problems

- 65 -

2

Testability isTestability is

The ability of software to reveal its faultsThe ability of software to reveal its faults
The more difficult it is to apply test cases or The more difficult it is to apply test cases or
validate results the more likely it is that defects validate results the more likely it is that defects
will escape detectionwill escape detection
VoasVoas defines testability of a program P to be a defines testability of a program P to be a
prediction of the probability of software failure prediction of the probability of software failure
occurring if the software were to contain a fault, occurring if the software were to contain a fault,
given that software execution is with respect to given that software execution is with respect to
a particular input distribution. a particular input distribution.

Testability isTestability is

Related to the size and complexity of the Related to the size and complexity of the
modulemodule

- 66 -

3

Single ContextSingle Context

Multiple ContextsMultiple Contexts

- 67 -

4

Product Line of ContextsProduct Line of Contexts

Product line issuesProduct line issues

Wider range of contextsWider range of contexts
More executionsMore executions

))*(**)((
11 ==

=
ntsnumCompone

j
jik

snumContext

k

xncnpdPExecutednumDefects

- 68 -

5

Product line implicationsProduct line implications

Defects will be revealed sooner in the field Defects will be revealed sooner in the field
because of more executions across wider because of more executions across wider
range of datarange of data
More testing is needed to achieve same More testing is needed to achieve same
level of correctnesslevel of correctness

Increasing testabilityIncreasing testability

Make attributes publicly accessibleMake attributes publicly accessible
Provide a test interfaceProvide a test interface
Include the test cases inside the Include the test cases inside the
component/modulecomponent/module

- 69 -

6

Reasoning frameworkReasoning framework

Testability
Reasoning

Framework

Proposed architecture
With desired attributes

Performance
Reasoning

Framework

Reliability
Reasoning

Framework

Modified architecture

Testability Framework descriptionTestability Framework description

ProblemProblem
Analytic theoryAnalytic theory
Analytic constraintsAnalytic constraints
Model representationModel representation
InterpretationInterpretation
Evaluation procedureEvaluation procedure

- 70 -

7

General scenario 1General scenario 1

Stimulus Stimulus –– A component is checked in for unit testing.A component is checked in for unit testing.
Source of stimulus Source of stimulus –– The component developerThe component developer
Environment Environment –– In the component development phase In the component development phase
with limited amount of component integration occurring.with limited amount of component integration occurring.
ArtifactArtifact –– The component under test, the test harness, The component under test, the test harness,
and the test casesand the test cases
ResponseResponse –– Test cases are selected to the limit allowed Test cases are selected to the limit allowed
by the testability of the componentby the testability of the component
Response measure Response measure –– The extent to which chosen test The extent to which chosen test
criteria can be achievedcriteria can be achieved

General scenario 2General scenario 2

Stimulus Stimulus –– A subsystem is successfully built prior to A subsystem is successfully built prior to
integration testing.integration testing.
Source of stimulus Source of stimulus –– An integration team memberAn integration team member
Environment Environment –– sufficient components have passed unit sufficient components have passed unit
test and have been integratedtest and have been integrated
ArtifactArtifact –– The subsystem under test, the test harness, The subsystem under test, the test harness,
and the test casesand the test cases
ResponseResponse –– test cases are selected to the limit allowed test cases are selected to the limit allowed
by the testability of the componentby the testability of the component
Response measure Response measure -- The extent to which chosen test The extent to which chosen test
criteria can be achievedcriteria can be achieved

- 71 -

8

ProblemProblem

Need to be able to test at a variety of Need to be able to test at a variety of
levelslevels
Need to provide higher testability Need to provide higher testability

Analytic theoryAnalytic theory

VisibilityVisibility
Must be able to read a variable to verify test Must be able to read a variable to verify test
resultsresults

ControllabilityControllability
Must be able to write a variable to setup testsMust be able to write a variable to setup tests

ReachabilityReachability analysisanalysis
Builds a graph of how each state is reachedBuilds a graph of how each state is reached
Trivial use to determine that a variable Trivial use to determine that a variable
definition can be accessed from the interfacedefinition can be accessed from the interface

- 72 -

9

Analytic constraintsAnalytic constraints

State explosion problem can constrain the State explosion problem can constrain the
size of software that can be analyzedsize of software that can be analyzed
ReachabilityReachability is static, some code is notis static, some code is not

Model representationModel representation

ReachabilityReachability builds a directed graphbuilds a directed graph
Tools for this are available but vary Tools for this are available but vary
depending upon the representationdepending upon the representation

- 73 -

10

InterpretationInterpretation

The accessibility of an attribute is binary.The accessibility of an attribute is binary.
Either it is accessible or not.Either it is accessible or not.
As an aggregate, a percentage of the As an aggregate, a percentage of the
attributes are accessibleattributes are accessible
The higher the percentage that is The higher the percentage that is
accessible, the more testableaccessible, the more testable

Evaluation procedureEvaluation procedure

Compare testability percentagesCompare testability percentages
Rank from smallest percentage to largestRank from smallest percentage to largest
Incorporate into overall architecture Incorporate into overall architecture
analysisanalysis

- 74 -

11

Designing for TestabilityDesigning for Testability

Just making all attributes accessible is not Just making all attributes accessible is not
a good design movea good design move
Adding a test interface allows accessibility Adding a test interface allows accessibility
but controls the accessibilitybut controls the accessibility
But this can impact the memory footprint But this can impact the memory footprint
For a realFor a real--time, embedded system that time, embedded system that
can be a problemcan be a problem

SummarySummary

Aggregate quality is a problem, Aggregate quality is a problem,
particularly in certain domains.particularly in certain domains.
It has implications for organizations that It has implications for organizations that
use product line marketinguse product line marketing
Just increasing test coverage may not be Just increasing test coverage may not be
sufficientsufficient
An appropriate level of testability needs to An appropriate level of testability needs to
be provided in the architecture be provided in the architecture

- 75 -

SPLiT Intern. Workshop on Software Product Line Testing
Rennes, France, 2005

Guidelines for Discussion Rounds

Organization

o Each discussion group should have one moderator for leading the discussion and one
person (can be the same as the moderator) for documenting the results and presenting
them later on during the wrap-up session to the rest of the workshop participants.

o Please prepare an electronic version of your results (ppt preferred – including names of
participants).

Deliverables/Results
Please consider the following points when discussing and preparing your results. Of course
feel free to consider additional items☺

o Prepare an elevator statement for your topic: How would you describe the topic in a few
sentences? Why is it important? Why should we spend effort on it? The description
should be clear and compelling.

o Define the technology/practice gap: what are the needs from industry, what is the
current state-of-practice in industry, and what is the current state in research?

o What do you think are the main problems/gaps?
o Which of them are product- line specific?
o Discuss possible solutions.
o Prioritize/weight the problems/gaps - according to relevance, timeline (what

would you like to see addressed next?), size of gap (how close are we to a
solution?), and everything else that you think is relevant.

o Do you know about related work that is relevant for the discussed topic?

- 76 -

- Notes -

- 77 -

- Notes -

- 78 -

- Notes -

- 79 -

- Notes -

- 80 -

