
Tetris: Experiments with the
LP Approach to Approximate DP

Vivek F. Farias
Electrical Engineering

Stanford University
Stanford, CA 94403

vivekf@stanford.edu

Benjamin Van Roy
Management Science and Engineering

and Electrical Engineering
Stanford University
Stanford, CA 94403

bvr@stanford.edu

Abstract

We study the linear programming (LP) approach to approximate dynamic
programming (DP) through experiments with the game of Tetris. Our
empirical results suggest that the performance of policies generated by
the approach is highly sensitive to how the problem is formulated and the
discount factor. Furthermore, we find that, using a state-sampling scheme
of the kind proposed in [7], the simulation time required to generate an
adequate number of constraints far exceeds the time taken to solve the
resulting LP.
As an extension to the standard approximate LP approach, we examine a
bootstrapped version wherein a sequence of LPs is solved, with the policy
generated by each solution being used to sample constraints for the next
LP. Our empirical results demonstrate that this bootstrapped approach
can amplify performance.

1 Introduction

There has been significant recent interest in the linear programming (LP) approach to ap-
proximate dynamic programming (DP) (e.g., [12, 1, 6, 7, 10, 9]). In this paper we further
the study of this approach through experiments with the game of Tetris. In particular, we
apply the LP approach to fit a linear combination of basis functions to a value function. We
employ the collection of twenty-two basis functions introduced in [3], where a variation
of temporal-difference learning was applied to fit their linear combination to a value func-
tion. This same collection of basis functions was also used in the study of a policy gradient
method in [11]. These prior studies involving the same game of Tetris and the same basis
functions offer a context for assessing the LP approach.

We focus on the LP formulation as described in [6]. In the context of our study, this formu-
lation leads to an LP with twenty-two variables, which is easily manageable. However, the
objective function involves the summation of an astronomical number of terms and there
are an even larger number of constrains. In order to approximate the sum and reduce the
number of constraints, we employ the state sampling scheme proposed in [7]. The approach
requires us to choose a sampling distribution. To this end, we use as samples, states visited
by a heuristic game-playing policy.

Some trial-and-error was required to generate a good policy. In particular, we found that
the performance of policies generated by the LP approach is highly sensitive to how the
problem is formulated and the discount factor. We were not able to produce an effective
policy when formulating the problem as one of maximizing the number of rows eliminated
during the course of the game. However, formulating the problem as one of minimizing
a discounted time-average of Tetris wall height lead to good policies. We also found that
performance is sensitive to the choice of discount factor.

In terms of compute time, we are encouraged by the fact that the LP can be solved by
commercial software in minutes, even on a low-end personal computer. However, the sim-
ulation required by our sampling scheme, which produces data for the LP, calls for hours
of computation.

As an extension to the standard approximate LP approach, we examine a bootstrapped
version wherein a sequence of LPs is solved. The samples for the first LP are drawn from
states visited by a heuristic policy. For each subsequent LP, the samples are generated
based on the policy produced by the previous LP. Our empirical results demonstrate that
this bootstrapped approach can amplify performance.

The remainder of this paper is organized as follows. In Section 2, we review the LP ap-
proach to approximate DP. In Section 3, we describe a dynamic programming formulation
for the problem of playing Tetris and a basic implementation of the LP approach for this
problem. In Section 4 we present our bootstrapped approach. Finally, in Section 5, we
present experimental results, along with a discussion.

2 The LP approach

We consider a discrete-time finite-state stochastic system. The state takes on values in a
finite set

�
, and in each state ��� �

, there is a finite collection ��� of actions from which
we can choose. Given a current state ��� �

, a particular choice of action �	�
��� , and
any state �� �

, the probability that the system transitions to state � at the next time step
is ������������� . We allow ����������� ���!�"��� to be less than one, the residual probability being
associated with the event that the system terminates. We take � � to be a matrix whose �#� th
element is � � ���!�"��� , noting that this is a substochastic matrix.

A policy is a mapping from state to action. Under a policy $, the system follows a Markov
chain with transition probabilities ��%�& �(' ��������� . We denote by � % the transition matrix as-
sociated with this Markov chain, noting that this again is a substochastic matrix.

A cost of)*���!�+��� is incurred each time the system is in state � and action � is taken. Let) % ���,�.-/)*������$����0��� . The expected cost-to-go 1 % ���,� associated with a policy $ is defined
by 1 % - 23 4 5*687

4 � 4%) % �
where 7 �9�;:#�=<�� is a discount factor reflecting temporal preferences. We consider the
problem of finding a policy $!> that minimizes 1 % �;�,� simultaneously for all �?� �

.

Define the dynamic programming operator @BA�CED � DGFHCID � D by��@J1!�=���,�K-ML�NPO� �RQ�S�T)0�;�!�"���VU 7 �W�8��1!�X���0�ZYG[
Then, the optimal cost-to-go function 1�>\�;�,�]-^L�N_O % 1 % ���0� is the unique solution to Bell-
man’s Equation; that is, @J18>]-`1!> . Furthermore, any policy $!> satisfying$ > ���0�a� argmin� �RQ�S T)0�;�!�"���!U 7 �;� � 1!�X���0�ZYG�

is optimal, in the sense that 1 %\b -`1�> .
It can be shown that 18> is the unique optimal solution to the optimization problemL�c\d�N_L�NPe=f gXh;1i�j�k�l fnmpo8o"q @J1sr�1��
given any vector gI�C D � D for which every component is strictly positive. It is well-known
that this optimization problem can be converted to an LP [2]. For large-scale problems, this
LP is intractable since the numbers of variables and constraints grow proportionately with
the number of states t � t . We therefore attempt to approximate 1u> by a linear combination
of basis functions v0wxA � FyC.��zE-M<R�n[_[P��{ . Denoting by | the C D � D~}�� matrix with z th
column v,w , we define an “approximate LP” (ALP):L�c�d�NPL�NPe=f g=h�|��i"j�k�l fnmXo�o+q @I|��Er�|���[
The ALP may has � variables, but the number of terms being summed in the inner productgXh�| and the number of constraints both grow proportionately with the number of states t � t .
We therefore consider a “reduced LP” (RLP):L�c�d�NPL�N_enf � � � � ��|��\�X�;�,�i"j�k�l f(mpo8o"q ��@.|��\�X�;�,�ar/��|��\�=���,�X� �,�?� � [
where

�
a set of states, sampled with replacement from

�
, sampled with relative frequen-

cies equal to the components of g . Analyses of the ALP and RLP can be found in [6] and
[7], respectively.

As discussed in [6], the ALP objective of maximizing gnh�|�� is equivalent to minimizing� 1�>���|�� �n�p� � , where the norm is defined by� 1 �(�Z� � - 3� ��� gR���,�nt�1K�;�,�=t~�
for any 1 . Hence, the vector g represents a weighting of approximation errors across states.
It is also suggested in [6] that it may be desirable to choose weights such that they reflect
relative frequencies of visits to various states under a reasonable policy. In solving the RLP,
a natural approach to generating the set of samples

�
is to collect a list of states visited by

a reasonable heuristic policy.

3 Tetris

Tetris is a video game in which falling “bricks” are positioned on a two dimensional grid
of width <n: and height �R: . A point is received for each row constructed without any holes,
and the corresponding row is cleared. The game ends once the height of the wall crosses a
particular threshold. The objective is to maximize the expected number of points accumu-
lated over the course of the game. Tetris may be viewed as a stochastic control problem. In
the context of the formulation in Section 2, we have:� The state at a given epoch, � 4 , is the current board configuration and shape of the

current falling piece.� The control action � 4 taken at each time � , is the orientation and translation to be
applied to the piece before it is placed on the wall.� The transition probabilities ��� �;�!�"��� are governed by the impact that the piece
placing has on the wall, together with the (randomly generated) shape of the next
falling piece. Each piece is uniformly sampled from seven possible shapes.

� It is natural to consider the reward (i.e., negative cost) at each time step to be the
number of points received, and to consider as the objective maximization of the
expected sum of rewards over the course of a game. However, we found that, with
this formulation of reward and objective, solutions to the RLP do not offer rea-
sonable policies for playing the game. For this reason, we consider an alternative
formulation, in which the cost)0�;� 4 � at each time is taken to be the height of the
Tetris wall. Furthermore, we take as our objective an expected discounted sum of
of these costs: ��� 23 4 5*6�7

4)*��� 4 �����
where 7 �9�;:#�=<�� is a discount factor. We also found performance of policies
produced by the RLP to be sensitive to 7 , and we ended up using a discount factor
of 7 -�:#[� .

Several interesting observations have been made about the game of Tetris. It was shown in
[5] that the game terminates with probability one, under any policy. In terms of complexity,
it is proven in [8] that for an off-line version of Tetris, where the player is offered knowledge
of the shapes of the next � pieces to appear, optimizing various simple objectives is NP-
complete, even to approximate. Though there is no formal connection between such results
and the on-line model we consider, the results suggest that finding an optimal policy for
on-line Tetris might also be difficult.

There are over � ��� 6 possible states in our formulation of Tetris. As such, standard dynamic
programming methods can not be used to find an optimal policy. Instead, we will approx-
imate the cost-to-go function via a linear combination of basis functions. Previous studies
have used the following set of twenty-two basis functions, and we use the same ones to
enable a comparison of results:� Ten basis functions mapping the state to the height �*� of each of the ten columns.� Nine basis functions, each mapping the state to the absolute difference between

heights of successive columns: t � �p � �¡� � t¢�Z£�-¤<R�n[_[P[P�"� .� One basis function that maps state to the maximum column height: L�c\d � � � .� One basis functions that maps state to the number of “holes” in the wall.� One basis functions that is equal to one at every state.

We denote these twenty-two basis functions by v � �n[=[=[=�+v,¥"¥ and let | be the matrix with
twenty-two columns given by these basis functions. We will use the approximate LP ap-
proach to compute a parameter vector ���¦C ¥+¥ so that |�� approximates the cost-to-go
function 1�> .
4 Sampling and Bootstrapping

Recall that, in the ALP, the number of terms being summed in the objective and the number
of constraints both grow proportionately with the number of states t � t . To cope with the
enormity of the state space in Tetris, we formulate an RLP:L�c�d�NPL�N_enf � � � � ��|��\�X�;�,�i"j�k�l f(mpo8o"q ��@.|��\�X�;�,�ar/��|��\�=���,�X� �,�?� � [
where

�
is a sample of states. To do this, we have to generate the samples that make up

�
.

In our most basic set-up, we make use a heuristic policy generated by guessing and adjust-
ing weights for the basis functions until reasonable performance is achieved. The intent is

Table 1: Comparison with other algorithms

Algorithm Performance Computation Time

TD-Learning 3183 days
Policy Gradient 5500 ?
LP w/ Bootstrap 4274 hours

to generate nearly i.i.d. samples of states, distributed according to the relative frequencies
with which states are visited by the heuristic policy. To this end, some number � of games
are played using the heuristic policy, and for some choice of § , states visited at times that
are multiples of § are incorporated in the set

�
. Note that time, here, is measured in terms

of the number of time-steps from the start of the first of the � games, rather than from the
start of a current game. The reason for selecting states that are observed some § time-steps
apart is to obtain samples that are near-independent. When consecutively visited states are
incorporated in

�
, samples exhibit a high degree of statistical dependence. Consequently,

a far greater total number of samples t � t is required for the RLP to generate good policies.
This is problematic, as computer memory limitations become an obstacle in solving linear
programs with large numbers of constraints.

In addition to the basic set-up we have described above, we have also experimented with a
bootstrapped version of the RLP. To understand the motivation for bootstrapping, suppose
that the policy generated as an outcome of the RLP is superior to the initial heuristic used
to sample states. Then, it is natural to consider producing a new sample of states based on
the improved policy and solving the RLP again with this new sample. But why stop there?
This procedure might be iterated to repeatedly amplify performance. This idea leads to our
bootstrapping algorithm:

1. Begin with a simulator that using a policy $ 6 .
2. Generate a sample

� � of states using policy $*� .

3. Solve the RLP based on the sample
� � , to generate a policy $V�p � .

4. Increment £ and go to step 2.

Other variants to this may include a more guarded update of the state-sampling distribution,
wherein the sampling distribution used in a given iteration is the average of the distribution
induced by the latest policy and the sampling distribution used in the previous iteration.
That is, in Step 2 we might randomize between using samples generated by the current
policy $ � , and the samples used in the generation of the previous collection,

� ��¨ � .
In the next section, we discuss results generated by the RLP and bootstrapping.

5 Results and Discussion

Our numerical experiments may be summarized as follows. All RLPs were limited to
two million constraints, this figure being determined by available physical memory. Initial
experiments with the simple implementation helped determine a suitable sampling interval,§ . All subsequent RLPs were generated with a sampling interval of §©-���: .

For a fixed simulator policy, five RLPs were generated, of which the best was picked for the
next bootstrap iteration. Figure 1 summarizes the performance of policies obtained from
our experiments with the bootstrapping methodology. The ”median” figures are illustrative
of the variance in the quality of policies obtained at a given iteration, while the ”best policy”

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Bootstrapping Performance

Iteration #

A
ve

ra
ge

 S
co

re

+ Median Policy
* Best Policy

Figure 1: Bootstrapping Performance

figures correspond to the best performing policy at that iteration. Table 1 compares the
performance of the best policy obtained in this process to that of other approaches used in
the past [3], [11].

We now make some comments on the computation time required for our experiments .
As mentioned previously, every RLP in our experiments had two million constraints. For
general LPs this is a very large problem size. However, the RLP has special structure in
that it has a small number of variables (22 in our case). We take advantage of this structure
by solving the dual of the RLP. The dual has number of constraints equal to the number of
basis functions (22 in our case) and so is effectively solved using a barrier method whose
complexity is dominated by the number of constraints [4]. Using this, we are able to
solve an RLP in minutes. Hence, the computation time is dominated by the time taken in
generating state samples, which in our case translates to several hours for each RLP. These
comments apply, of course, to RLPs for general large scale problems since the number of
basis functions is typically several orders of magnitude smaller than the number of sampled
states. We have found that solving smaller RLPs at leads to larger variance in policy quality,
and lower median policy performance.

Finally, one might expect successive iterations of the bootstrapping methodology to yield
continually improving policies. However, in our experiments, we have observed that be-
yond three to four iterations, median as well as best policy performance degrade severely.
Use of a more guarded update to the state sampling distribution as described in Section 4,
does not seem to alleviate this problem. We are unable to explain this behavior.

Acknowledgements

The second author thanks Richard Lippman and Linda Kukolich for introducing him to
the problem of computing Tetris strategy. This research was supported by NSF CAREER
Grant ECS-9985229 and by the ONR under grant MURI-N00014-00-1-0637.

References

[1] D. Adelman. A price-directed approach to stochastic inventory/routing. Preprint, 2002.

[2] A.S.Manne. Linear Programming and Sequential Decisions. Management Science, 60(3):259–
267, 1960.

[3] D. P. Bertsekas and S. Ioffe. Temporal Differences–Based Policy Iteration and Applications in
Neuro–Dynamic Programming. Technical Report LIDS–P–2349, MIT Laboratory for Informa-
tion and Decision Systems, 1996.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Book Draft, 2002.

[5] H. Burgiel. How to lose at tetris. Mathematical Gazette, page 194, July, 1997.

[6] D.P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. To appear Operations Research, 2001.

[7] D.P. de Farias and B. Van Roy. On constraint sampling in the linear programming approach
to approximate dynamic programming. Conditionally accepted to Mathematics of Operations
Research, 2001.

[8] Susan Hohenberger Erik D. Demaine and David Liben-Nowell. Tetris is Hard, Even to Ap-
proximate. In Proceedings of the 9th International Computing and Combinatorics Conference,
2003.

[9] G. Gordon. Approximate Solutions to Markov Decision Processess. PhD thesis, Carnegie
Mellon University, 1999.

[10] C. Guestrin, D. Koller, and R. Parr. Efficient solution algorithms for factored MDPs. Submitted
to Journal of Artificial Intelligence Research, 2001.

[11] S. Kakade. A Natural Policy Gradient. In Advances in Neural Information Processing Systems
14, Cambridge, MA, 2002. MIT Press.

[12] P. Schweitzer and A. Seidmann. Generalized polynomial approximations in Markovian decision
processes. Journal of Mathematical Analysis and Applications, 110:568–582, 1985.

