
A Video Game-Based Framework for Analyzing Human-
Robot Interaction: Characterizing Interface Design in

Real-Time Interactive Multimedia Applications
 Justin Richer and Jill L. Drury

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730-1420 USA
+1-781-271-2000

{jricher, jldrury}@mitre.org

ABSTRACT
There is growing interest in mining the world of video games to
find inspiration for human-robot interaction (HRI) design. This
paper segments video game interaction into domain-independent
components which together form a framework that can be used to
characterize real-time interactive multimedia applications in
general and HRI in particular. We provide examples of using the
components in both the video game and the Unmanned Aerial
Vehicle (UAV) domains (treating UAVs as airborne robots).
Beyond characterization, the framework can be used to inspire
new HRI designs and compare different designs; we provide an
example comparison of two UAV ground station applications.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – auditory feedback, graphical user interfaces, haptic
I/O, input devices and strategies, interaction styles, screen design,
voice I/O.

General Terms
Documentation, Design, Human Factors.

Keywords
Human-robot interaction, HRI, unmanned aerial vehicles, UAVs,
interaction design, evaluation.

1. INTRODUCTION
Until recently, most robots were used in the laboratory or in real-
world situations by the robots’ developers, so their interfaces
could be complex and require significant training. Robots are
now being used more frequently by non-roboticists, however. As
robots such as the RoombaTM vacuum cleaner become popular
and the military relies more heavily on Unmanned Aerial
Vehicles (for example), many different types of people are using
robots without direct help from their developers. Accordingly,
there is a need to improve human-robot interaction (HRI) so that

the intended end-users can more easily employ robots.
Our goal is to improve users’ interactions with airborne robots,
known as Unmanned Aerial Vehicles (UAVs), to answer a critical
military need. Many more “mishaps” resulting in damage or loss
of aircraft have occurred per flight hour for UAVs than for
inhabited aircraft, and more than half of the mishaps have been
attributed to poor human factors (Tvaryanas et al., 2005).
As part of our approach to understanding possible improvement to
UAV interfaces, we have been analyzing interfaces in the mature
field of video gaming. Similar to UAV operations, many video
games require players to understand where important objects are
in a 3D environment and undertake fast-paced activities that
require efficient interaction. Jørgensen (2004) notes that the
fields of human-computer interaction (which is closely related to
HRI) and video games should inform each other to a greater
extent.
Successful video games are able to provide players with needed
information and control capabilities in an engaging and enjoyable
fashion. Video games are effectively streamlined input-output
systems, and to a player, a video game is little more than its
interface (Pausch et al., 1994). Unlike most computer
applications in which the interface serves as a means of
interacting with some underlying functionality, the sole purpose
of a video game's interface is for the player to interact with it.
This is further illustrated by the fact that video games with
frustrating or cumbersome interfaces seldom succeed in the
marketplace. There is a strong impetus for game interfaces to be
well-designed, and therefore there is strong motivation for
researchers to mine the world of video games for new ideas in
interface design, especially in the highly dynamic, multimedia
world of robotic interfaces.
Video games have been used by researchers for several purposes.
For example, one video game [Doom] was used as inspiration for
process management interaction (Chao, 2001). A few researchers
have used video games as inspiration for human-robot interfaces.
Maxwell et al. (2004) designed their robot’s interface with the
“First-Person Shooter” (FPS; a combat-oriented game presented
from the viewpoint of the main character) genre in mind. Jones
and Snyder (2001) used an architecture based on a real-time
strategy game interface paradigm. Tejada et al. (2003) used a
variant of the [Unreal Tournament] engine to develop an interface
for a team of urban search and rescue (USAR) robots; Lewis et al.
(2003) used the same engine to develop a simulation of National
Institute of Standards and Technology (NIST) Reference Test
Facility for Autonomous Mobile Robots. While these efforts have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Human Robot Interaction’06, March 2-3, 2006, Salt Lake City, Utah
USA.
Copyright 2006 ACM X-XXXXX-XXX-X/XX/XXXX…$X.XX.

SBORG
Text Box
Approved for Public Release; Distribution Unlimited
Case #05-1209

capitalized on video game experience, they have not included a
broad look at how different video game interface approaches
might relate to and inform HRI.
We have developed a framework of interface components that is
based on a survey of video game designs. By breaking down
video game interfaces into their components and generalizing
them into a framework, researchers can use that framework to talk
about interfaces for UAVs and other robots and identify
promising interaction design approaches.
The remainder of this paper is divided into five sections. The next
section provides an overview of the framework. Section 3
describes the framework. Section 4 describes the use of the
framework to compare two different interfaces developed for the
same application: the operator control interface of a small UAV.
Discussion and conclusion sections complete the paper.
2. OVERVIEW

Our approach has been to examine the user interaction afforded
by a wide range of video games and to describe this interaction in
terms of the constituent components of the various interfaces. We
then abstracted the description of the video game interaction into
categories that could potentially apply to HRI. The primary
purpose for developing this framework is to have a structured,
reproducible means of characterizing proposed HRI designs. We
anticipate the framework will be particularly useful for
understand the differences in interaction approaches of different
designs. The secondary purpose of the survey of video game user
interaction that underlies this framework is to expose to the HRI
community the wide range of interaction types being used
successfully in the video game community.

Others have developed taxonomies of video game user interfaces
such as Ye (2004) and Wolf (2001). These taxonomies discuss
video games at the genre level, such as “Shooter” (a combative
game in which a player shoots at enemies) and “Vehicular
Simulator” (a generally non-combative game focused around the
piloting of a virtual vehicle). While genre categories such as
Shooter are useful for classifying different types of user
experiences, they do not necessarily identify unique user interface
approaches. For example, a First Person Shooter game may make
use of an internal object-centered camera (defined and described
below), as does a Vehicular Simulation game. Also, a different
Shooter game in the same genre as this FPS game could use an
external camera (also defined below) instead of an internal object-

centered camera: thus the games’ user interaction designs cannot
be used as discriminators when employing a genre-based
categorization. Our framework differs from a genre-based
approach because it focuses specifically on the user interface and
examines these user interaction components at a fine-grained
level. Further, our framework does not assume a hierarchical
structure nor does it assume that its components are mutually
exclusive (hence it is a framework and not a taxonomy).

We developed the framework by starting with a classic division of
interface components: input versus output. Quite simply: is a part
of the interface chiefly employed by the user to enter information
into the system, or to obtain information from the system?
Another basic division of concepts related to user interfaces
consists of the input or output device versus the input or output
method used to interact with that device. Finally, we developed a
fifth major category to include a further characterization of input
methods by noting the object (or “target”) of the input action and
the complexity of the input method.
A high-level view of the framework can be seen in Table 1
(numbers indicate applicable section numbers in this paper).
While we define the components in the following section in terms
of the video game domain, we provide numerous examples
regarding how the interface components may be manifested in
(usually hypothetical) UAV interfaces. An italicized name in
square brackets indicates a video game title that exemplifies the
concept being discussed.

3. THE VIDEO GAME-BASED
FRAMEWORK (VGBF) FOR HRI
3.1 Output Devices
Video screens (denoted 3.1.1 in Table 1), speakers (3.1.2), and
haptic devices (3.1.3) comprise the means through which games
communicate with players. Due to their reliance on direct contact
with the player for transmitting information, haptic devices are
most often housed within the game controller. “Controller” is
used throughout this paper as a generic term for a physical device
that is composed of one or more input devices. As a first step,
interfaces can be characterized by the numbers and types of
output devices available to the user.

Table 1. Overview of the Video Game-Based Framework for Characterizing HRI

(Numbers are keyed to sections in this paper)
3.1 Output devices 3.2 Output methods 3.3 Input devices 3.4 Input methods 3.5 Input classifications

3.1.1 Video screens
3.1.2 Speakers
3.1.3 Haptic devices

3.2.1 Primary animated graphical
visual output
• 3.2.1.1. Camera perspective
• 3.2.1.2. Camera movement

3.2.2 Additional visual output
• 3.2.2.1 Type
• 3.2.2.2 Location
• 3.2.2.3 Temporality

3.2.3 Non-visual output
• 3.2.3.1 Audio
• 3.2.3.2 Haptic

3.3.1 Buttons
3.3.2 Joysticks
3.3.3 Pointing

devices
3.3.4 Multimodal
3.3.5 Specialized

controller

3.4.1 Command
3.4.2 Natural

language
3.4.3. Cursor
3.4.4 Camera

control

3.5.1 Target
3.5.2 Complexity
• 3.5.2.1 Simple
• 3.5.2.2 Contextual
• 3.5.2.3 Combina-

tional
• 3.5.2.4 Sequential

3.2 Output Methods
3.2.1 Primary Animated Graphical Visual Output
In nearly every video game, the primary animated graphical
output, colloquially known as “video,” is highly important.
To view the game world, there must be a “camera”: a point and
direction from which the view of the world is projected (as
opposed to a physical video-input device). This point is also
known as the “view reference point” (VRP) (Foley et al., 1990).
Video output is classified by the camera and its relation to the
game environment. Further, the position and orientation of this
camera within the game world defines the type of animated
graphical output in a given game. Animated graphical output is
so central to most game experience that several game genres are
named after the nature of the camera, such as FPS and Third-
Person Action/Adventure.
The camera's view into the game world is defined by a set of
vectors which describe the origin point of the view and the
direction in which the view is facing. The VRP is combined with
a “view plane normal” (VPN) and “view-up vector” (VUP), both
of which project out from the VRP orthogonal to each other and
serve to define the orientation of the camera in space (Foley et al.,
1990). Specifically, the VPN is directed toward the point the
camera is looking at, while the VUP is directed vertically upward
in the camera’s field of view. Coupled with information about the
type of projection being done, these camera vectors, illustrated in
Figure 1, define what is needed to build a view into the game
world. The classifications of camera systems within video games
largely relate to the placement (which yields perspective),
movement, and control of these vectors, as described below.

3.2.1.1 Camera Perspective
Camera perspective denotes the viewpoint of the virtual camera
lens through which a user sees the world. There are four main
approaches to camera perspectives, as defined in Table 2.

3.2.1.2 Camera Movement
The ways in which a virtual camera’s position and orientation are
allowed to change, whether in relation to input from a player or a
game event, are also defining characteristics. The four types of
camera movement are described in Table 3.

3.2.2 Additional Visual Output
Status and meta-information about the game and game
environment constitute other types of visual output. More
specifically, these types of additional visual information may
consist of resources that are consumed or degraded (e.g.,
ammunition in a shooter game, battery life for a UAV),
environmental information (e.g., overhead maps), and status (e.g.,
the name of the current level of game play, the name of the next
waypoint for a UAV). The information may be displayed
continuously, when a change takes place, or when requested.
There are five locations where the additional visual information
might be displayed: in a “heads up” display, attached to an object,
in a subinterface, in a secondary display, or integrated into the
environment somehow (called narrative integration).
Heads up displays overlay information on top of the main video
view, such as when a score is displayed in the top right corner of
the video screen [Super Mario World]. In object attachment,
information is located visually close to the object to which it
pertains; for example, the relative strength of two units is
displayed directly above the avatars for these units [Advance
Wars]. Subinterfaces are visual display spaces separate and
distinct from the primary display, such as an inventory screen that
shows a list of all items a player’s character is currently carrying
[Deus Ex]. When it is displayed, a subinterface may occlude
portions of the primary animated graphical visual output display.
Secondary displays are a physically distinct visual display. In
some games, individual player statistics are available
simultaneously on a separate screen, leaving the main screen
available for the primary display [Final Fantasy: Crystal
Chronicles]. Narrative integration of information displays meta-
information by altering the display of objects within the game to
reflect a current state. An example of narrative integration is a
character that is animated as breathing more heavily when it
reaches the limits of its stamina [Eternal Darkness: Sanity’s
Requiem].

3.2.3 Non-Visual Output
Non-visual output consists of audio output (3.2.3.1 in Table 1)
and haptic feedback (3.2.3.2).
Audio output may take the form of sound effect, music, or voice.
We consider a sound effect to be any audio sound that is neither
music nor voice. An example of a sound effect in the video world
is a chime that is played every time a player picks up an object
[Katamari Damacy]; a UAV operator might hear an alarm if the
aircraft altitude has fallen too low for normal operations. We
define music to be generally continuous recognizable patterns of
sound, and different background music is played for each distinct
level in a game in the case of [Super Mario Sunshine] (for
example). A use of voice in a video game might occur when a
player’s character has a conversation with another, allowing the
player to find out something new about the game plot [Half Life
2]. For UAVs, a system alarm might warn of critically low
velocity by using a recorded voice clip. Further information may
be conveyed via the direction the sound seems to be originating
from.
Haptic feedback conveys information to the player through touch
or pressure. Haptic feedback can be subdivided into active
resistance, passive resistance, and vibration. Active resistance
occurs when the game player or UAV operator attempts to input a

Figure 1. Important Vectors for Defining Camera
Views

command using input hardware yet the hardware physically
pushes back against the human’s command. Passive resistance
consists of the physical characteristics of an input controller that
convey to the player the current state of the input devices, such as
when buttons embedded in a UAV controller remain depressed
after activation so they convey state information via touch.
Vibration consists of shaking a physical device in response to a
command, and might be employed in a UAV joystick when the
operator attempts to make a maneuver outside the aircraft’s flight
envelope.

3.3 Input Devices
Input devices detect interactions from the player and input these
interactions into the game world. There are five types of input
devices: buttons, joysticks, pointing devices, multimodal devices,
and specialized controllers.

3.3.1 Buttons
Buttons are devices which the player may push or pull to invoke
some command or state. Surface buttons are mounted on the
surface of a controlling device designed to be activated by

Table 2. Camera Perspectives (Paragraph 3.2.1.1)

Type Definition Video Game Example UAV Example

Internal
attachment to
a primary
object

The virtual camera is
directly attached to a
primary object to the point of
being embedded within it.

The virtual camera is implanted in the head of
the virtual character, looking forward out of
their eyes, and the VUP pointing upward from
the character’s head [Unreal Tournament].

UAV sensors are usually literally
housed within the UAV, so when
operators view sensor information
from the UAV, they often view it
from the perspective of the UAV.

External
attachment to
a primary
object

The virtual camera is tied to
a primary object but is
placed at some distance from
that object.

The virtual camera follows the primary
character so that it is in full view at all times
[Pimkin].

The operator could view a
representation of the UAV from
behind, as if a virtual camera were
mounted in a chase plane.

Not attached
to a primary
object

The virtual camera is tied to
something in the environ-
ment rather than a primary
object, or is not attached to
anything.

A player sees the environment via a virtual
camera that is a corner of a room [Alone in the
Dark].

An interface could show multiple
UAVs from a high point in the sky
over the intended area of operations.

Multiple
perspectives

Perspectives may be
switched between various
types for different situations
or multiple virtual camera
viewpoints may be present
simultaneously.

A game may allow a player to switch between
seeing from the eyes of a character (internal
attachment to a primary object) to looking at
the character and his/her immediate
environment from slightly behind the character
(external attachment to a primary object)
[URU: Ages Beyond Myst].

Most current UAV interfaces allow
the operator to switch between a
top-down view (camera not attached
to any object) and streaming video
view (internal attachment to a
primary object).

Table 3. Camera Movement (Paragraph 3.2.1.2)

Type Definition Video Game Example UAV Example

Fixed A virtual camera that has
been affixed to a point in
the environment or to a
particular object.

A virtual camera that been internally
attached to a primary object is, by
definition, fixed to that object and thus
camera movement depends upon the
movement of the primary object [Halo 2].

The streaming video view in a UAV interface is
normally the result of a physical video camera that
has been internally attached to the UAV (especially
for non-gimballed cameras); thus the video camera
movement is fixed relative to the UAV.

Free A virtual camera that can
be moved throughout the
environment with few
restrictions.

A virtual camera that is from the
viewpoint of an all-seeing being may be
moved in virtually any direction or
orientation [Black & White].

In a hypothetical UAV interface, an operator may
move a virtual camera such that the aircraft is viewed
from any angle or that any point on the ground
(including map-based synthetic terrain) is in view.

Mixed
mode

The situation in which
camera movement
changes do not fall into a
single category.

A free camera may be used to navigate to
part of the environment and then
becomes fixed to a selected object [Sid
Meier's Civilization II].

A hypothetical UAV interface may include a camera
that is fixed to a primary object that streams infor-
mation into a video window but also have free camera
view of the aircraft and its synthetic environment.

Rail A virtual camera that
moves freely along a
fixed course, as if on a
set of rails.

A virtual camera’s orientation (VPN) is
allowed to change freely but its position
is constrained by moving along a virtual
rail [Ico].

In a hypothetical UAV interface, a view of the area
around the aircraft could be constrained such that the
camera moves freely along a circle of fixed
circumference around the aircraft.

pushing with the fingers or thumbs. Keyboards are a large array
of surface buttons, usually arranged closely together in a manner
to facilitate textual input. Triggers are variants of the surface
button that are designed to be pulled by the fingers (as opposed to
pushed by the thumbs or fingers) and are generally located on the
backside or underside of a controller.

3.3.2 Joysticks
Joysticks are direction-relative input devices allowing one or
more dimensions of input. They can be characterized by their
degrees of freedom and whether they are digital or analog.
Degrees of freedom are the number of directions of movement
and orientation (dimensions) that a single joystick device is
capable of detecting. A digital joystick can detect a discrete
number of directions but not the magnitude of any input. An
analog joystick can detect both the magnitude and direction of an
input along a given axis.

3.3.3 Pointing Devices
Pointing devices are means of positioning a cursor within an
interface. They are characterized by whether they indicate
location by either by absolute or relative positions of the device.
An absolute position is when the location of the pointing device is
analogous to the position of the cursor being controlled. A
relative position is when the movement of the input device
corresponds to movement of a cursor.

3.3.4 Multimodal Devices
By “multimodal,” we mean input systems that do not require
direct physical contact from the player: they receive input via
audio or visual means. Audio input systems translate an audio
stream received via microphone to a game control [Nintendogs],
and video input systems use a visual sensor to input a video
stream to the game software. A camera pointed at the player may
detect the player’s movements, and the game responds
accordingly [Eye Toy: Play].

3.3.5 Specialized Controller
A specialized controller is an input device that is unique to a
particular game, such as a pair of drums that the player drums on
in rhythm with a musical score [Donkey Konga].

3.4 Input Methods
Input methods are the means for a game to use the signals
produced by an input device. There are four main types:
commands, natural language, cursor, and camera control.
Commands can be thought of as a direct connection between an
input and an output response; picture a button push causing a
character to jump [Super Mario Sunshine]. Natural language
consists of input that uses spoken or written human language; for
example when a player types “pick up book” and the character
then picks up a book. Many UAV interfaces currently rely on the
operator to type new airspeeds or altitudes. The cursor input
method is a positional pointer located over a piece of the game
world, and is used, for example, in [WarioWare Touched!] to
draw a symbol on a touch screen to access a particular command.
Camera control is the amount of influence that a player has over
the motion of a camera within the game environment.

3.5 Input Classifications
This category describes how the various input methods interact
with objects within the game world, and can be characterized by
the input’s target and complexity level. The target (3.5.1 in Table
1) consists of what an input mechanism affects, and whether the
player can control it directly. An example of direct control of a
primary object is when the player pushes a button to command a
character to jump. That jumping action could activate a switch in
the environment [Super Mario Sunshine], an example of indirect
control of the switch.
Complexity (3.5.2 in Table 1) can be described in four different
ways: simple, contextual, combinational, or sequential. Simple
inputs are when the player performs a basic action, such as a
button press, the game performs the appropriate response. A
contextual command is a command that has different effects in
different situations. For example, a single button command could
be used to both draw a sheathed sword and attack with it once
drawn [The Legend of Zelda: Ocarina of Time]. In the UAV
world, a button for “take off” could change to another function
such as “return home” once the aircraft is airborne. In a
combinational command, several simple commands activated
simultaneously could serve as a new command. Pressing one
button causes the character to punch, while pressing another
button causes a character to block; yet when pressed at the same
time, these two buttons together cause the character to throw
[Dead or Alive 3]. Finally, several simple commands entered in
sequence within a certain time period of each other are considered
a sequential command. An example of a sequential command can
be found in [The Legend of Zelda: The Wind Waker]: a dodge
command immediately followed by an attack command produces
an evasive strike that neither command separately could produce.

4. EXAMPLE OF USE: COMPARING TWO
UAV INTERFACES
As an example of how the VGBF can be used, we characterize
two alternative interfaces that are intended to be used with the
same UAV: a 4’ wingspan, foam, flying wing equipped with a
fixed video camera, GPS, and a Kestrel autopilot, purchased from
Procerus UAV, Inc. With the aircraft, we also purchased
Procerus’ Virtual Cockpit (VC) ground station. The VC can
either display an artificial horizon and a complete set of scrollable
flight parameters (see a screenshot of the left hand side of the
screen in Figure 2) or operator-entered waypoints on top of an
image of a park in Provo, Utah (which cannot be swapped out for
the customer’s operational area without a programming change).

In conjunction with Brigham Young University’s Human-
Centered Machine Intelligence Lab run by Prof. Michael
Goodrich, we developed an interface for the Procerus UAV that is
intended to be used by an operator working with live video
downlink information from an aircraft. Our interface, called the
Augmented Virtuality Interface (AVI), uses imported terrain data
and geo-references the streaming video subwindow so that its live
data matches the location of the imported terrain data. AVI uses a
“chase plane” view of a UAV avatar so the operator can see the
attitude of the aircraft as it banks, dives, or climbs in real time.
AVI can be seen in Figure 3.

Figure 2. Close-up of Virtual Cockpit Screen

Figure 3. Screenshot of Augmented Virtuality Interface
showing the outline of the aircraft in the center of the

display and live video streaming into a subwindow

Table 4 contains a portion of the results of using the VGBF to
characterize and compare the two interfaces. The table entries are
keyed to the numbering system used in Table 1 and the
paragraphs describing the VGBF in section 3. While the
complete analysis cannot be presented here due to space
limitations, the fragment in Table 4 illustrates the level of detail
needed to describe the characteristics of each interface.

Table 4 also provides examples of characteristics that are similar
as well as dissimilar for the two interfaces. The biggest similarity
is that the two interfaces use the same output devices. An
important difference is in their handling of the primary animated
graphical visual output. While the Virtual Cockpit uses an
unattached camera for a top-down view of navigation waypoints,
the AVI uses external attachment to the primary object (the UAV
avatar) to provide a visualization of the aircraft’s streaming video
and nearby terrain. In addition, the characterization brings out the
fact that narrative integration is used much more in the AVI
interface than the Virtual Cockpit.

5. DISCUSSION
As stated in the introduction, we see two uses of the VGBF: to
evaluate existing interface designs (including comparing designs),
and informing new design.

An advantage of using the VGBF for evaluating and/or comparing
interfaces is that its use enforces a systematic look at each
interface’s characteristics. A closely-related disadvantage is that
the results appear to give equal emphasis to all components, even
though some interface elements may be more important than
others when tailoring an interface for a particular user group.

The VGBF can inform HRI design by providing non-application-
specific descriptions of a wide range of interface components
commonly found in video games. We envision HRI designers
using the framework to ask questions such as “would our intended
users benefit most from an internally or externally attached
camera?” (Note that we have developed draft guidance for which
types of interface components may be best suited for certain
situations, but describing this guidance is beyond the scope of this
paper.) Once design choices have been made, designers can talk
about their approaches with more precision. Rather than stating,
“our interface was inspired by video games because it is similar to
a FPS approach,” designers can describe their interface’s
relationship to video games by using the specific language and
detail of the VGBF.

A potential limitation of the VGBF is the fact that it is a reflection
of the current state of the art of video games, and video game
design advances are made rapidly. We have generalized the
framework as much as possible with the goal of it also being
applicable to the next generation(s?) of video game interfaces. As
new interface components are developed, however, we believe the
VGBF should be treated as a living framework and augmented
with these components or amended to accommodate new
developments.

Table 4. Fragment of Comparison of Two Interfaces Using VGBF
Category Procerus Virtual Cockpit Augmented Virtuality Interface (AVI)

3.1 Output Devices
3.1.1 Video screens Video screen of a laptop computer. Used for all displays. Video screen of a laptop computer. Used for all

displays.
3.1.2 Speakers Built in speakers of laptop computer or headphones

plugged into laptop.
Built in speakers of laptop computer or
headphones plugged into laptop.

3.1.3 Haptic devices None. None.
3.2 Output Methods

3.2.1 Primary animated graphical visual output
3.2.1.1 Camera
Perspective

Waypoint map display: Unattached camera focused on
the map, top-down view. Artificial horizon display:
Internal to an implied primary object representing aircraft
cockpit.

External to the primary object (UAV avatar),
above and behind.

3.2.1.2 Camera
Movement

Waypoint map display: Top-down view, view plane fixed
to the plane of the 2D map, view-up fixed to point N on
map. VRP free to move through panning across the map
in 2D and zooming in and out. Artificial horizon:
Completely fixed to the implied primary object. Horizon
indicator moves within this camera's field of view,
showing movement of the UAV within the world.

“Chase plane perspective”, VPN usually fixed to
the primary object. Free camera can be invoked,
but camera still moves in concert with motion of
the primary object.

3.2.2 Additional Visual Output
3.2.2.1.1 Type:
Resources

Battery life, communication level, satellite coverage. Battery life, communication level.

3.2.2.1.2 Type:
Environmental
Information

Location and orientation of aircraft within environment. Location and orientation of aircraft within
environment, orientation of visual sensor in
relation to aircraft.

3.2.2.1.3 Type: Status Current operating mode, current control mode, current
navigation status, many aircraft parameters.

Aircraft parameters such as airspeed and
altitude.

3.2.2.2.1 Location:
Heads-Up Display

On the Artificial Horizon display, in the corners. Used for
many types of information.

No heads-up display.

3.2.2.2.2 Location:
Subinterfaces

Split into many tables, panes, panels. Status info in a table attached outside of main
display window. Streaming video on top of map

3.2.2.2.3 Location:
Narrative Integration

Heading and location of aircraft on map, orientation of
aircraft in Artificial Horizon.

Orientation and location of aircraft in 3D space
against background terrain. Direction and
position of visual sensor in relation to aircraft.

3.2.2.3 Temporality Selectable displays in the same location, only one showing
at a time. HUD on Artificial Horizon always on; displays
info for currently selected aircraft. Summary table for all
aircraft always on. Pop-up textual displays for alerts.

 UAV avatar/terrain display and video
subwindow always on, status of critical aircraft
parameters at bottom of screen always on.

3.2.3 Non-Visual Output
3.2.3.1.1 Audio:
Sound Effect

System beep on errors and warnings. None.

3.2.3.1.2 Audio:
Music

None. Musical theme on UAV launch.

3.2.3.1.3 Audio: Voice None. Low altitude and velocity warnings.
3.2.3.2.1 Haptic:
Active Resistance

None. None.

3.2.3.2.2 Haptic:
Passive resistance

Passive resistance in joysticks and keyboard buttons. RC
controller layout familiar to RC pilots, standard laptop
keyboard and mouse.

Passive resistance in keyboard buttons.
Standard laptop keyboard and mouse, familiar
command button layout for emulated digital
joysticks.

3.2.3.2.3 Haptic:
Vibration

None. None.

6. CONCLUSIONS
Based on a broad survey of video game interfaces, we have
developed a set of domain-independent components to
characterize, evaluate, and inspire HRI design. Although derived
from video game interfaces, the VGBF itself is not specific to
video games. We have illustrated the applicability of the
framework to HRI by including numerous examples of
components that are, or could be, in UAV interfaces.
As an example of the utility of the VGBF, we compared two
UAV ground station implementations and presented a portion of
the results in this paper. Using the VGBF encouraged a thorough
examination of the interfaces and the results highlighted their
similarities and differences. We feel other researchers, designers,
and evaluators of HRI could use the VGBF to inspire new HRI
design approaches and evaluate and compare existing designs.

7. ACKNOWLEDGMENTS
This work was supported by the United States Air Force
Electronic Systems Center and performed under MITRE Mission
Oriented Investigation and Experimentation (MOIE) Project
03057531 of contract 19628-94-C0001. All product names,
trademarks, and registered trademarks are the property of their
respective holders.

REFERENCES
[1] Chao, D. L. Doom as an interface for process management.

In Proceedings of the CHI 2001 Conference on Human
Factors in Computing Systems. ACM: Seattle, April 2001.

[2] Foley, van Dam, Feiner, and Hughes. Computer Graphics:
Principles and Practice. Boston: Addison Wesley, 1990.

[3] Jones, H. L. and Snyder, M. Supervisory Control of
Multiple Robots based on a Real-Time Strategy Game
Interaction Paradigm. In Proceedings of the 2001 IEEE
International Conference on Systems, Man, and Cybernetics.
IEEE: Tuscon, AZ, October 2001.

[4] Jørgensen, A. H. Marrying HCI/Usability and computer
Games: A Preliminary Look. In Proceedings of NordiCHI
’04. ACM: Tampere, Finland, October 2004.

[5] Lewis, M., Sycara, K., and Nourbakhsh, I. Developing a
Testbed for Studying Human-Robot Interaction in Urban
Search and Rescue. In Proceedings of the 10th International
Conference on HCI. Crete, Greece, June 2003.

[6] Maxwell, B. A., Ward, N. and Heckel, F. Game-Based
Design of Human-Robot Interfaces for Urban Search and
Rescue. In Proceedings of the CHI 2004 Conference on
Human Factors in Computing Systems. ACM: The Hague,
April 2004.

[7] Pausch, R., Gold, R., Skell, T., and Thiel, D. What HCI
designers can learn from video game designers. In
Proceedings of the CHI 94 Conference on Human Factors in
Computing Systems. ACM: Boston, April 1994.

[8] Tejada, S., Normand, E., and Sharma, S. Virtual Synergy:
An Interface for Human-Robot-Agent Interaction. In
Proceedings of the AAMAS ’03 Conference. ACM:
Melbourne, Australia, July 2003.

[9] Tvaryanas, A. P., Thompson, B. T., and Constable, S. H.
U.S. Military Mishaps: Assessment of the Role of Human
Factors Using HFACS. In Proceedings of the 2nd Workshop
on Human Factors of UAVs. Cognitive Engineering
Research Institute: Mesa, AZ, May 2005.

[10] Wolf, M. J. P. Genre and the video game. In The Medium of
the Video Game, M. J. P. Wolf, ed. Austin: University of
Texas Press, 2001. Also available at
http://www.robinlionheart.com/gamedev/genres.xhtml

[11] Ye, Z. Genres as a tool for understanding and analyzing user
experience in games. In Proceedings of the CHI 2004
Conference on Human Factors in Computing Systems.
ACM: Vienna, Austria, April 2004.

VIDEO GAME REFERENCES
Advance Wars, Intelligent Systems Co. Ltd., Nintendo of America
Inc., 2001
Alone in the Dark, Infogrames, Atari Europe S.A.S.U., 1992
Black & White, Lionhead Studios Ltd., Electronic Arts Inc., 2001
Deus Ex, Ion Storm Inc., Eidos Interactive Inc., 2000
Donkey Konga, Namco Limited, Nintendo Co. Ltd., 2003
Eternal Darkness: Sanity's Requiem, Silicon Knights Inc.,
Nintendo of Canada Ltd., 2002
Eye Toy: Play, SCEE Studio London, Sony Computer
Entertainment Europe Ltd., 2003
Final Fantasy: Crystal Chronicles, The Game Designers Studio,
Nintendo Co. Ltd., 2003
Half-Life 2, Valve Corporation, Vivendi Universal Games Inc.,
2004
Halo 2, Bungie Studios, Microsoft Game Studios, 2004
Ico, SCEI, SCEA, 2001
Katamari Damacy, Namco Limited, Namco Limited, 2004
Nintendogs, Nintendo Co. Ltd., Nintendo Co. Ltd., 2005
Pikmin, Nintendo EAD, Nintendo Co. Ltd., 2001
Sid Meier's Civilization II, MicroProse Software Inc., MicroProse
Software Inc., 1996
Super Mario Sunshine, Nintendo EAD, Nintendo Co. Ltd., 2002
Super Mario World, Nintendo Co. Ltd., Nintendo Co. Ltd., 1990
The Legend of Zelda: Ocarina of Time, Nintendo EAD, Nintendo
Co. Ltd., 1998
The Legend of Zelda: The Wind Waker, Nintendo EAD, Nintendo
Co. Ltd., 2002
Unreal Tournament, Epic Games Inc., GT Interactive Software
Corp., 1999
URU: Ages Beyond Myst, Cyan Worlds Inc., Ubisoft
Entertainment, 2003
WarioWare Touched!, Intelligent Systems Co. Ltd., Nintendo
R&D1, Nintendo Co. Ltd., 2004

