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Abstract

Real world objects have persistent structure. However, as we move about
in the world the spatio-temporal patterns coming from our sensory or-
gans vary continuously. How the brain creates invariant representations
from the always-changing input patterns is a major unanswered ques-
tion. We propose that the neocortex solves the invariance problem by
using a hierarchical structure. Each region in the hierarchy learns and
recalls sequences of inputs. Temporal sequences at each level of the hi-
erarchy become the spatial inputs to the next higher regions. Thus the
entire memory system stores sequences in sequences. The hierarchical
model is highly efficient in that object representations at any level in the
hierarchy can be shared among multiple higher order objects, therefore,
transformations learned for one set of objects will automatically apply to
others.
Assuming a hierarchy of sequences, and assuming that each region in the
hierarchy behaves equivalently, we derive the optimal Bayes inference
rules for any level in the cortical hierarchy and we show how feedfoward
and feedback can be understood within this probabilistic framework. We
discuss how the hierarchical nested structure of sequences can be learned.
We show that static group formation and probability density formation
are special cases of remembering sequences. Thus, although normal vi-
sion is a temporal process we are able to recognize flashed static images
as well. We use the most basic form of one of these special cases to train
an object recognition system that exhibits robust invariant recognition.

1 Introduction

Look at any object in front of you. As you move your head, your eyes, or move towards that
object while still looking at it, the images that fall on your retina vary significantly from one
instant to another. However your percept of the object remains stable despite this variation.
This is known as the invariance property. Your cortex does not want your perception of an
object to vary with every small eye movement or neck tremor. We consider this invariance
property as a technique evolved by the cortex to produce stable percepts of this world. How
does the cortex achieve this invariance property?



Think of the different retinal images formed by an object. Although the retinal images
are different, the underlying cause of all those images are the same - the object itself. An
object is composed of several parts. And those parts are tied to the object in a particular
way. When the object moves, it produces a particular motion pattern of the parts. The parts
themselves causally influence sub-parts. For example a contour which moves to the left
causes a line-segment that is part of it to move in a particular way. A particular sequence of
movement of a line segment can be caused by a contour or a corner. A particular sequence
of movement of a corner could be due to a table or a chair. The same lower level sequences
are reused as part of different high level contexts. Thus the world seems to be naturally
organized into a hierarchy of sequences. We believe that the cortex is capturing this causal
hierarchical structure of the world using its own hierarchical cortical structure to solve the
invariance problem.

Suppose that a region of cortex which can see only a small patch of any image learns
all possible ways a line segment can move when it is part of a corner. Now, whenever
one of those sequences of movement of that line seqment occurs, the region would be
able to say that although the inputs are changing they all belong to the same corner. It
seems plausible that by learning the sequences in the context of their causal influences,
the invariance problem can be tackled. By doing that in a hierarchy, the same lower level
representations can be shared among multiple higher level objects. Therefore, invariances
learned for one set of objects will automatically apply to others.

The known anatomy of the visual cortex seems to be conducive to this idea. Visual cortex
is organized in a hierarchy and the receptive field size of neurons increase as you go up the
hierarchy. Each region in the cortex receives input from below as well as feedback from
above. The feedback pathways can provide the contexts of higher level sequences. There
are also recurrent connections within a region and between regions via thalamus and such
connections could store sequences of different durations.

These ideas are discussed and elaborated in [6] and we consider that as the starting point
for this work. The rest of this paper is organized as follows. Section 2 is a mathematical
description of how Bayesian inference can be done on hierarchical sequences. In this sec-
tion we show that the large scale and small scale anatomical structure of the visual cortex
is consistent with the idea of Bayesian inference on hierarchical sequences. In section 3,
we discuss how such hierarchical structures can be learned. In section 4 we describe an
invariant pattern recogniton system that we built based on a subset of principles described
in sections 2 and 3. We conclude the paper in section 5 with a discussion on related and
future work.

2 Inference and Prediction using Hierarchical Sequences

The goal of this section is to illustrate how Bayesian inference and prediction can occur in
a hierarchical sequences framework and how it relates to the known anatomical structure
of the visual cortex. We assume that images in this world are generated by a hierarchy of
causes. A particular cause at one level influences a sequence of causes to unfold in time at a
lower level. For clarity and for notational convenience, we consider a three-level hierarchy.
Let the random variablesXi, Yi andZi denote the highest level, intermediate level and
lowest level of causes respectively, wherei indexes different regions in space active at the
same time. We restrict our analysis to cases with only one highest level cause active at any
time.

We assume that a particular highest level causexk causes a set of sequencesS
(k)
Y1

of Y1’s

andS
(k)
Y2

of Y2’s more likely to simultaneously occur in the child regionsY1 andY2 of X1.
In other words, the higher level causexk is identified as the co-occurence of a sequence



Figure 1:(A) A particular instantiation of hierarchical sequences. The high level causex1 of region
X causes either sequencey1y2y3 or sequencey1y1y1 in regionY1 along with sequencey1y1y1 in
regionY2. Elements of these sequences, say for exampley2, act as causes for sequences at lower
levels. A particular sequence at any level (y1y3y2 in Y1) can be part of multiple higher level causes
(x2 andx3 in X1). (B). Bayesian inference-prediction architecture of the visual cortex based on the
derivations in section 2.

in the setS(1)
Y1

and a sequence in the setS
(1)
Y2

in adjacent intermediate level regions. The
high level causes vary at a slower rate compared to the lower level causes. For example
the higher level causexk on an average would stay active for a substantial duration of a
sequence inS(k)

Y1
. In a similar fashion the intermediate level causesYi’s influence their cor-

responding lowest levelZ variables and vary at a slower rate compared to theZ sequences.
A particular instantiation of these ideas is illustrated in figure 1(A).

We assume that the cortical hierarchy matches the causal sequences hierarchy of image gen-
eration. This means that there are cortical regions corresponding to the random variables
Xi, Yi andZi. For the rest of the discussion we use these labels also to denote their cor-
responding cortical regions. To simplify the analysis, we assume markovity of sequences
at each level. Thus, learning the structure of sequences of regionY1 would mean learning
the probability transition matrixPY1Y1|X1=x1,k

for all k. The highest level propagates itself
forward according toPX1X1 . In order to obviate complicated time indexing, we assume
that the slower time variation of the high level sequences are captured within their proba-
bility transition matrices. Whenever we condition a sequence of causes in a lower level on
a particular cause at the higher level, we implicity assume that the higher level cause has
not changed for the duration of the lower level sequence.

Lets say that at timet, the regionX1 wants to make a prediction about the probability
distribution ofX1(t + 1) assuming that it knowsX1(t), Y1(t), Y2(t) andZ1(t), ..., Z4(t).
This can be done as

Pred(X1) = PX1(t+1)|X1(t),Y1(t),Y2(t),Z1(t),...,Z4(t) = PX1(t+1)|X1(t) (1)

Thus the regionX1 needs only its learned and locally stored matrixPX1X1 to make pre-
dictions. Similarly, regionYi can make a prediction about the probability distribution of
Yi(t + 1) according to

Pred(Yi) = PYi(t+1)|Yi(t),X1(t),Z1(t),...,Z4(t) (2)

=
∑

j

PYi(t+1)|X1(t+1)=j,Yi(t)PX1(t+1)=j|X1(t) (3)



Figure 2:The laminar structure of cortical regions is conducive to the Bayesian inference-prediction
architecture based on hierarchical sequences.

Note that the second term on the right hand side of the above equation,PX1(t+1)=j|X1(t),
is same as the predictive probability distribution calculated by regionX1 in equation 1.
Thus for regionYi to make a prediction about its next state, it has to combine information
computed by its parent region with its own locally storedPYi(t+1)|X1(t+1)=j,Yi(t). Thus
thePred(X1) information computed by the regionX1 has to be fed down to regionsYi for
those regions to make predictions.

Now lets consider the case when after having observed a sequence ofZ1’s andZ2’s, region
Y1 decides to update its estimate of its current state. The optimal estimate of the current
stateY1(t + 1) is obtained according to the MAP rule.

Ŷ1(t + 1) = arg max
Y1(t+1)

P
Y1(t+1)|Y1(t),Z

t0:t+1
1 ,Z

t0:t+1
2 ,X1(t)

(4)

= arg max
Y1(t+1)

P
Z

t0+1:t+1
1 ,Z

t0+1:t+1
2 |Y1(t+1),Z1(t0),Z2(t0)

PY1(t+1)|Y1(t),X1(t)(5)

= arg max
Y1(t+1)

[
P

Z
t0+1:t+1
1 |Y1(t+1),Z1(t0)

(PY1(t+1)|Y1(t),X1(t))
1/2

]
× (6)[

P
Z

t0+1:t+1
2 |Y1(t+1),Z2(t0)

(PY1(t+1)|Y1(t),X1(t))
1/2

]
(7)

whereZt0:t+1
i is a sequence ofZi’s extending from timet0 to time t + 1. In the above

equation, the terms within square brackets can be computed in the regionsZ1 andZ2 using
local information, given that they have thePred(Y1) information fed down to them. If
these regions send up a set of winning argumentsY1(t + 1) (lets denote itInfer(Y |Zi)),
then the regionY1 can finish the argmax computation exactly and decide the most likelyY1

state based on that information.

The analysis above shows that the idea of hierarchical sequences and the idea of a hierar-
chical cortex with feedforward and feedback connection are consistent with each other in a
Bayesian inference-prediction framework. The feedforward pathways are used to carry the
inferences made based on current as well as locally stored past observations. The feedback
pathways carry expectations/predictions to lower levels (figure 1(B)) . Higher level regions
have converging inputs from multiple lower level regions. Thus feedback information from
a higher level of the cortex can be used as context to interpret/disambiguate an observed
pattern at a lower level. Recognition occurs when the highest level converges on a cause
by disambiguating several parallel and competing hypotheses at all levels. This derivation
also suggests roles for different cells in the known laminar architecture of cortical regions



Figure 3: (A). Examples of most likely and most unlikely sequences of length 4 observed in a
line-drawing movie by a region of size 4x4. The movie was generated by simulated straight-line
motions of images drawn using vertical and horizontal lines. The sequencess1, s2, s3 ands4 (read
left to right) occured much more frequently compared to the sequencess5, s6, s7 and s8. (read
top to bottom). (B)The higher level object/cause shown, moving left and up, is learned by aY
(Level 2) region receiving inputs from 4Z (Level 1) regions. In this case the object corresponds to
simultaneous occurance ofs2, s4, s3 ands2 in the top-left, top-right, bottom-right and bottom-left
regions respectively

as shown in figure 2. First order markovity was assumed so that we do not have to carry too
many terms in the conditional probability calculations. We believe that similar conclusions
as above could be drawn if this assumption is relaxed.

3 Learning Hierarchical Sequences

How can a region of cortex learn sequences within sequences? Consider a regionY1 re-
ceiving the context information of a high level causeX1 = xk. If this region now learns to
associate with this contextxk all sequences ofY1 that occur at its input whilexk is active,
then that region is essentially learning sequences within sequences. After learning, when-
ever a sequence ofY1s occur at the input, this region can produce the correspondingX1 at
its output. For example, if the sequences were markov then learning would correspond to
learning the matricesPY1Y1|X1=xk

for everyk. In this way, a region of cortex can learn to
collapse a sequence at its input to one or more higher level causes based on its learning.

The high level causes themselves have to be learned from the low level inputs. This could
be done as follows. Lower level regions learn the most frequent sequences of their inputs.
After learning, whenever a part of one of those sequences occur, those regions pass up a
pattern corresponding to the sequence. A higher level region with converging inputs from
several lower level regions then looks at sequences occuring simultaneously in the low
level regions. Patterns of sequences which consistently occur in multiple low level regions
become the objects at the next higher level. This process can be repeated between levels of
the hierarchy to obtain causes at the highest level. For example if regionY1 observes that
the sequencesj

Z1
of regionZ1 and the sequencesk

Z2
of regionZ2 occur at the same time

very often, then their combination becomes an object or cause at regionY1. Examples of
learned sequences and higher level causes for line drawing movies are shown in figure 3.

Note that if under the contextX1 = xk, aY region stored only the frequency of occurences
of its inputsY1, then this corresponds to learning the conditional probability distribution
PY1|X1=xk

. This is a special case of sequence learning where sequences are of length 1.
In the markov case this would correspond to learning the steady state distribution of the
markov chainPY1Y1|X1=xk

. Now, if under the contextX1 = xk we just group all the



Figure 4: Examples of images used to train and test the invariant pattern recognition system. The
rows correspond to 3 out of the 91 categories for which the system was trained. Columns A and B
correspond to the two different images of a category that were used for training. Columns C and D are
examples of test patterns for which the system recognized the image category correctly. Note that the
system shows a high degree of shift, scale and distortion invariance. Some of these test images were
drawn by our lab mates using a mouse. Column E gives examples of patterns for which the system
made an error in recogniton and column F gives the category the column E pattern was incorrectly
classified as. The complete set of training and test patterns and the MATLAB code for the system
can be downloaded fromhttp://www.rni.org/nips2004/

inputsY1 then it becomes a special case of learning the probability distribution. In this case
the probability distribution is uniform over allY1s having non-zero probability under the
contexxk.

4 Simulation of a Line Drawing Recognition System

Using a subset of the principles outlined above, we simulated a hierarchical system for line
drawing recognition and measured various aspects of its performance. Instead of storing
sequence information, we considered a sequences as groups (sets), thus dropping timing
information within a sequence. As noted in the previous section, this is can be considered
as a special case of learning sequences. We do not make use of feedback in this imple-
mentation. This can also be considered as a special case where all feedback probability
densities are uniform. Using the full set of principles outlined in sections 2 and 3 can only
improve the performance of the system.

The system consisted of 3 levels - L1, L2 and L3. The lowest level, L1, consisted of re-
gions receiving inputs from a 4x4 patch of images which were of size 32 pixels by 32
pixels. These 4x4 regions regions tiled an input image with 2 pixels overlap between adja-
cent regions. This overlap between regions ensured that spatial continuity constraints are
maintained. Learning started at L1 and proceeded to the higher levels. The L1 regions
learned by obtaining the most likely sequences caused by simulated motion of of black and
white straight-line drawings (figures 3 and 4). For example, vertical lines and all shifts
of vertical lines within an L1 region became thevertical line groupand left-bottom cor-
ners and all shifts of them formed theleft-bottom corner group. With this, an L1 region
presented with a vertical line at its input would produce the outputvertical line groupirre-
spective of the position of the vertical line within that region. (In our implementation, with
13 groups in L1, it set one of out 13 bits to 1). For novel patterns appearing at the input,
the output was set as the group of the closest (euclidean distance) familiar pattern.



Figure 5:Variation of perceptual strength with pattern distortion : For this test we gradually distorted
a test pattern of one category (categoryb ) into a pattern of another category (categoryp). None of
the test patterns were identical to the ones used for training theb andp categories. Plotted along the
Y axis is the score obtained at L3 for categoriesb andp when patterns along the X axis were shown
to the system. In the region marked asb regionthe pattern was identified as belonging to categoryb
and similarly for thep region. In the ambiguous region the system classified the pattern as neitherb
norp but (erroneously) idenitied it as various other categories.

An L2 region received its inputs from 16 L1 regions. In our implementation this pattern is
of length 208. The groups at L2 were formed in a semi-supervised manner, with learning
context coming from L3. We showed the network moving images of objects of a particular
category all the while setting a constant context from L3 to all L2 regions. Thus the L2
regions learned to associate all the inputs from L1 region that occured under a particular
category context with that category. During the recognition phase, an L2 region set at its
output the category memberships of the pattern it received at its input. If the membership
was null, it output an all zero pattern. Thus, during the recognition phase, each L2 region
sent up its multiple hypotheses regarding the possible L3 causes. A single L3 region pooled
all such hypotheses from 16 L2 regions below it. The L3 region would make a decision
regarding the categry of object by counting the votes from all L2 regions.

We observed in our introdcution that the perception of an object should remain stable de-
spite eye movements as long as the object remains within the field of view and is attended
to. If the input is ambiguous, the brain can gather further information from the input by
making small eye movements. Between these eye movements, the correct hypothesis would
remain stable while the competing incorrect hypotheses will vary in a random manner. We
made use of this idea to improve the signal to noise ratio for detecting novel patterns.

The system was trained on simulated motions of 91 objects. Two examples of every object
were shown to the system during training (figure 4 A, B). Accuracy of detection on the
training set was100% without any eye movement. For test cases, we limited the maxi-
mum number of eye movements to 12. The system showed a high degree of invariance to
position, scale and distortion on novel patterns as displayed in figures 4 and 5.

5 Discussion

Invariant pattern recognition has been an area of active research for a long time. Earlier
efforts used only the spatial information in images to achieve invariant representations[5,
12, 11]. However performance of these systems was limited and generalization question-
able. We believe that continuity of time is the cue that brain uses to solve the invariance
problem [4, 13]. Some recent models have used temporal slowness as a criterion to learn
representations [7, 14, 2]. However those systems lacked a Bayesian inference-prediction
framework [8] and did not have any particular role for feedback.



Our model captures multiple temporal and spatial scales at the same time. This goes be-
yond the use of Hierarchical Hidden Markov Models (HHMMs)[3] to capture structure at
multiple scales either in space or in time. Moreover, algorithm stuctures like HHMMs and
Markov Random Fields [9] have remained as abstract computer vision models because they
haven’t made any connections with known cortical structure. Several other models [1, 10]
attempt to solve the invariance problem by explicitly applying different scalings, rotations
and translations in a very efficient manner. However, as our test cases in section 4 indicate,
none of the novel patterns we receive are pure scalings or translations of stored patterns.

We demonstrated invariant pattern recognition using only a subset of the principles out-
lined in sections 2 and 3. We believe that, using the full strength of the outlined theory,
we will be able to demonstrate other well known cortical phenomena [8]. Although we
used supervised learning in our simulation of the pattern recognition system, this is not a
necessary component of the theory. We believe that it is possible to learn high level causes
in an unsupervised fashion by learning sequences of sequences as demonstrated in figure
3. Future work will include application of these ideas to natural videos.
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