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Abstract

This paper presents a new type of scratch removal al-
gorithm based on a causal adaptive multidimensional mul-
titemporal prediction. The predictor use available infor-
mation from the neighbourhood of a missing multispectral
pixels due to spectral, temporal and spatial correlation of
video data but not any information from the failed pixels
themselves.

1. Introduction

A huge amount of documentary or artistic movies is
stored in different film archives throughout the world. Un-
fortunately every movie deteriorates with usage and time
irrespective of any care it gets. Movies (on both optical and
magnetic materials) suffer with blotches, dirt, sparkles and
noise, scratches, missing or heavily corrupted frames, mold,
flickering, jittering, image vibrations and some other prob-
lems [12]. As a result of ever growing demand for archive
movies there is the urgent necessity for movie restoration
from film and entertainment industry. Surprisingly the num-
ber of published algorithms in the area of movie restora-
tion is rather small probably because of computational com-
plexity of most restoration approaches. For each kind of
the defect usually different kind of restoration algorithm
is needed. Our attention in this paper is restricted to the
scratch restoration problem. The scratch notion in this pa-
per means every coherent region with missing data (simul-
taneously in all spectral bands) in a colour movie frame.

The problem how to recover lost or damaged image data
is old - since the dawn of photography to the digital images
or movies obtained directly using CCD cameras, radiotele-
scopes [8], scanners on board of satellites, etc. The sim-
plest methods neglect temporal correlation and reconstruct
single movie frames separately. Such methods used to re-
construct image scratches are mostly very simple and the
reconstruction quality is seldom satisfactory. In this paper
we called these methods “classical” and they are used for

comparison. The simplest methods replace missing pixels
by the local mean values (A), the median (B) or the motion
compensated median [11]. Another method (C) linearly in-
terpolates missing data using neighbours from both sides of
unknown data section. These methods produce visible dis-
tortions on colour images. Even interpolation with higher
order curves, such as quadratic fit, is of no help [2] - method
(D). More sophisticated template-like methods suggested in
[2] cannot be used for reconstruction of multi-spectral pix-
els with all spectral components missing what is the case of
scratch reconstruction. Model-based methods use most of-
ten Markov random field type of models either in the form
of wide sense Markov (regressive models) or strong Markov
models (MRF). The noncausal regressive model used in
[3],[4] has the main problem in time consuming iterative
solution based on the conjugate gradient method. Simi-
larly MRF based restoration methods [5], [9] require time
consuming application of Markov chain Monte Carlo meth-
ods (MCMC). Besides this both approaches have to solve
the problem when to stop these iterative processes. We
have proposed a 2D regression model based reconstruction
method [6], [7] , which clearly outperforms these image re-
construction methods. The method was further improved in
[8] to select a locally optimal predictor from two mutually
competing symmetrical adaptive predictors for each pixel
to be reconstructed. Similar 2.5D AR model was later used
in [10], hower its degradation model requires time consum-
ing Markov chain Monte Carlo iterations and is restricted
to monospectral movies only. Another method based on the
vector median model [1] enables colour scratch reconstruc-
tion but has similar disadvantage in the MCMC solution.

An optimal reconstruction resulting in visual disappear-
ance of the scratch is difficult to achieve, however a much
more precise replacement beyond the scope the current
methods is needed. From this originated an idea to recon-
struct missing data from available information due to large
correlation between single image elements in the 4D spatio-
temporal data space. In this paper we propose a fast mul-
tispectral movie reconstruction method based on a causal
3.5D AR data model. The method reconstructs missing



multispectral (e.g., colour) pixels from available data in
neighbouring frames and pixels from the corrupted frame
as well. The algorithm requires information about objects
motion between different movie frames, which is extensive
research area itself beyond the scope of presented work. For
our experiments we used the diamond search algorithm for
fast block-matching motion estimation [13].

Figure 1. Experimental frames from the cars (left) and
tennis sequences.

2. The 3.5D Image M odél

Suppose Y represents a digitized colour movie defined
on a finite rectangular four dimensional N x M x d x 7
underlying lattice I, where N x M is the frame size,
d is the number of spectral bands (i.e., d = 3 for usual
colour movies) and 7 is the overall number of frames in
the film to be reconstructed. Corresponding pixel multiin-
dex r = {ry,ra,rs3,74} has the row, columns, spectral and
time indices, respectively. All image data are assumed to be
known except a set ( S) of unobservable multispectral pix-
els from some frame belonging to a scratch. The missing
scratch data reconstruction from the topologically nearest
known data in the lattice I using temporal and spatial corre-
lation in the neighbourhood generally requires a 4D model.
Unfortunately parameters of such a AR model cannot be
estimated analytically. However if we neglect mutual tem-
poral correlations, i.e.,

E{erl,m,rs,.eg,sms&o} = diag[afs, R 033]
Vs : sy = 11, S = 1o, 83 = r3 but nevertheless use
different temporal multispectral pixels in a 3D AR model
we obtain the 3.5D AR model which can be solved analyt-
ically under some additional acceptable assumptions. The
notation e has the meaning of all possible values of the
corresponding index. Suppose further that the multispectral
multitemporal movie data can be represented by an adaptive
causal 3.5 dimensional simultaneous autoregressive model:

YT1,T27°77‘4 = '7Xr1,r2,o,r4 + €ry,ra,0,rs vrel , (1)

where Y7, r, .-, is @ multispectral d x 1 vector correspond-
ing to a single multispectral pixel in the r4-th frame,

’y:[Ala"'aA’I]] 9 (2)

isad x dn parameter matrix, I, r,r, C I isa contextual
neighbourhood and n = card{I;, .} . Data ordering
in X, r,,r, COrresponds to the arrangement of parameters
in (2). The noise vectors e, r, or, are assumed to be
mutually uncorrelated zero mean white Gaussian, i.e.,

T _ 0 ifr#s
E{eTl,T2",T4es1,sg,o,34} - {Z Otherwise
where X is the noise covariance d x d matrix which is
assumed to be constant but unknown to us.

The missing scratch data will be reconstructed from the
topologically nearest known data in the lattice I using tem-
poral and spatial correlation in the neighbourhood. Scratch
pixels are computed from the set of one-step-ahead predic-
tions using the conditional mean predictor

f/r =F {K"l,rg,o,m |Y(T71)} = ﬁT*erl,TQ,.,TA ) (3)

where V=1 = {V,_,,Y,_5,..., Y1} is the known pro-
cess history and 4,_; is the estimator of unknown model
parameter matrix v (2). Simplified notation r, r—1,... in
(3) and the process history denotes the multispectral process
positionin I for fixed r4, i.e., 7 = {rq,rz,®,r4}, r—1is
the location immediately preceding r, etc. A direction of
movement on the underlying image sub-lattice correspond-
ing to a corrupted frame is chosen in a way to erode the
frame scratch.

If we assume the normal-Wishart (or alternatively Jeffreys)
parameter prior then it was proven in [6] that the one-step-
ahead predictive posterior density to have the form of d-
dimensional Student’s probability density with 3(r) —dn+
2 degrees of freedom, if 3(r) > dn then the conditional
mean value is (3), where

’?TTfl = Vz‘_z%'rfl)va(r_l) . (4)
The following notation is used in (4):

r—1

va(T—l) = Z VkW]?

k=1

and va(,ﬂ_l) = va(r—l) + va(O) . Vi, Wy are either
Xy or Y, and g(r) =B0)+r—1=8(r—-1)+1,
ﬁ(O) > 1= 2 . and )‘(T) = V’U'H(’“) - qu; T)Vz_:c}r)vmy(r)

(see [7] for details) . The model adaptation Is introduced us-
ing the standard exponential forgetting factor technique in
the parameter learning part of the algorithm [7]. Let us as-
sume a set of AR models (1) My, Ms, ... which can differ

Xy raors = Vil ra—so,era—ss - V151,52,54} € I, .m0 " either in the contextual neighbourhood I, ., , Or/andin
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their exponential forgetting factor p. The optimal decision
rule for minimizing the average probability of decision error
chooses the maximum a posterior probability model, i.e., a
model whose conditional probability given the past data is
the highest one. The presented algorithm can be therefore
completed [8] as:

V=70 X, i p(MGYOTY) > p(Myly )

Vi #i ®)

where X, are data vectors corresponding to If . ..
Following the Bayesian framework, choosing uniform a pri-
ori model in the absence of contrary information, and as-
suming conditional pixel independence, the analytical solu-

tion has the form [8] p(M;|Y("~ 1)) = k exp{D;} , where
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and k is a common constant. All statistics related to
a model M;  Viyr—1), Var(r—1), (10) are computed

from data in X;,. The determinant |V .| as well
as A, can be evaluated recursively see [7]. If A; =
diaglai i, .. ,au,i] Vi then the 3.5D model reconstruction
is identical with separately applied 2.5D model reconstruc-
tion on every monospectral scratch pixel component.

Let’s assume a model movement towards the scratch.
When the model reaches the scratch, the corrupted pixel
prediction is evaluated. This is performed for each line in
the scratch from top and bottom edge of the scratch using
two symmetrical downwards and upwards moving models
and their results are averaged. This helps to counterbal-
ance artificial restriction on the contextual neighbourhood
which has to be causal. Similarly another couple of models
is moving in the opposite direction. Two computed predic-
tions for each missing pixel have to be combined. Simple
averaging is not appropriate, because each of both predic-
tors has different distance from the last known original data
and consequently it has also a different precision. Hence
the exponential interleaving was used to weight the data in-
fluence from each side of the scratch as a function of the
horizontal position of the predicted pixel on a scratch line
to be reconstructed.

3 Resultsand Conclusions

The performance of the methods is compared on artifi-
cially created scratches, so that the original ("ideal”) data

are known. To prevent subjective visual comparison of the
different methods results the mean absolute difference cri-
terion between original and replaced pixel values is used.
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where v = card{S} is the number of missing multispec-
tral scratch pixelsand &; (&; = 255 Vi in our test movies) is
the number of quantization levels in the i-th spectral band.

All evaluations are made on several frames (e.g., Fig.1)

Figure 2. A car frame restoration (original, scratch, C
method, 3D CAR, 3.5D CAR).

from two colour digital movies "cars” and “tennis”. All se-
lected frames are inside corresponding movie shots hence
they have correlated neighbouring frames needed for the
3.5D presented data model. The model can be easily simpli-
fied into a 3D version (the multiindex has only three indices
r = {ri,r2,}, I, r,) and the scratch reconstruction is
based on the reconstructed frame data only. Restoration re-
sults of 3D CAR and 3.5D CAR model are affected by the
contextual neighbourhood I,., by the exponential forgetting
factor p, and by the length of the model history. The con-
textual neighbourhood has to be causal (in the reconstructed
frame lattice I subspace) to get analytical solution for the
predictor and its cardinality influences computational com-
plexity of the overall algorithm - the smaller cardinality I,
has, the faster is the proposed method. Comparison results
of the previously mentioned classical methods tested on the
cars sequence frame are in Tab.1. The best results were ob-
tained by the method C with contextual neighbourhood of
two pixels on each side of a scratch. Both methods A and
B suffer with clearly visible blurring tendency, while the
methods C and D produce discernible columns in the re-
constructed scratch. A significant improvement of the 3D
model performance is obtained if the temporal information
is included, i.e., using the 3.5D CAR model. Such infor-
mation is natural to obtain from previous or / and follow-
ing frame(s) for which we know all necessary data, due to
high between-frame temporal correlation. Unfortunately it
is not possible to simply pick up other frames data from
the location corresponding to a reconstructed pixel in the
3.5D model, because of the motion present in the image
sequence. So a motion estimation is needed between suc-




Table 1. Results (M AD criterion) of basic image restora-
tion method on the cars sequence frame corrupted by
scratch on Fig.2

spectral method

band A B C D 3D 3.5D
Red 0.228 | 0.250 | 0.208 | 0.239 | 0.149 | 0.092
Green 0.202 | 0.218 | 0.168 | 0.210 | 0.138 | 0.087
Blue 0.119 | 0.120 | 0.092 | 0.124 | 0.115 | 0.071
average | 0.183 | 0.196 | 0.156 | 0.191 | 0.134 | 0.083

cessive frames if a speed of the object on the reconstructed
scene is faster than 2-3 pixels between neighbouring frames.

Figure 3. Scratch Fig.3-b) restoration in the 78th “tennis”
(original (a), scratch (b), lin. regression (c), 3D CAR model
(d), 3.5D CAR model (e)).

The motion estimation was performed by the method
[13], however this algorithm demands more computation
and prolongs the total time for restoration approximately
five times in comparison with a 3D model. The motion es-
timation method results were sometimes unsatisfactory so
for fully automatic restoration a better method is clearly re-
quired.

Because the exponential forgetting factor p directly in-
fluences the process memory (and the speed of adaptation).
The best values for tested scratches are p = 0.980 — 0.995.
The Fig. 3 example demonstrates significant reconstruction
improvement over the classical methods (Tab. 1) and sim-
ilar results were obtained also for the other experimental
image frames. The test results of our algorithm are encour-
aging, the presented model was always superior over the
classical methods not only using the M AD criterion but
also visually. For sequences with fast moving objects, the
method requires a fast and accurate motion detection which
is only partially solved problem itself. However even if the
reliable motion estimation is missing the method can be
easily restricted to single frame support data with slightly
compromised restoration quality. Finally if the method is
used for isolated image pixels (or short lines perpendicular
to the model movement) reconstruction then the predictor
is computed from completely known data (without any ap-

proximation) and the regression method performs much bet-
ter than any of the previously published classical methods.
The proposed method is fully adaptive, numerically robust
and still with moderate computation complexity so it can be
used in an on-line image acquisition / restoration system.
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