
O r d e r P r e s e r v i n g M i n i m a l P e r f e c t H a s h
F u n c t i o n s and I n f o r m a t i o n R e t r i e v a l *

Edward A. Fox Qi Fan Chen Amjad M. Daoud
Lenwood S. Heath

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg VA 24061-0106

April 27, 1990

A b s t r a c t
Rapid access to information is essential for a wide variety of retrieval systems

and applications. Hashing has long been used when the fastest possible direct search
is desired, but is generally not appropriate when sequential or range searches are
also required. This paper describes a hashing method, developed for collections that
are relatively static, that supports both direct and sequential access. Indeed, the
algorithm described gives hash functions that are optimal in terms of time and hash
table space utilization, and that preserve any a priori ordering desired. Furthermore,
the resulting order preserving minimal perfect hash functions (OPMPHFs) can be
found using space and time that is on average linear in the number of keys involved.

1 I n t r o d u c t i o n

1 . 1 M o t i v a t i o n : S o u r c e s o f S t a t i c K e y S e t s

This work was in part motivated by our investigations of optical disc technology. In the last
decade, developments in this area have had a revolutionary impact on computer storage,

"This work was funded in part by grants or other support from the National Science Foundation (Grant
IRI-8703580), Online Computer Library Center, Inc., NCR Corporation, and the VPI&SU Computing
Center.

Permission to copy without fee all part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

(C) 1990 ACM 0-89791-408-2 90 0009 279 $1.50

279

lowering the price per unit of storage by three orders of magnitude, enabling many new
computer and pubhshing applications, and encouraging a number of research investigations
[FOX88b]. In publishing a series of CD-ROMs at VPI&SU, we have found the need for
guaranteeing single-seek access to data, and have indeed included a demonstration of our
earlier work with minimal perfect hash functions (MPHFs) on Virginia Disc One [FOX90].

Another reason for our work is to allow rapid access to objects in large network databases.
Building upon earlier work with "intelligent" information retrieval in connection with the
CODER (COmposite Document Expert]extended/effective Retrieval) system [FOX87], we
observed the value of having the contents of machine readable dictionaries in an easy to
manipulate computer form [FOX88a]. A large lexicon of this type should be useful to aid in-
formation retrieval by allowing automatic and semi-automatic query expansion [NUTT89].
Further, it should support a range of text understanding and other natural language pro-
ceasing activities [FRAN89]. However, these lexicons contain a large number of (relatively
static) objects that must be rapidly located; rapid traversal of associational hnks is also
required. We [CHEN89] elected to specify and build a Large External Network Database
(LEND) and have indeed loaded over 70 megabytes of data into our current implemen-
tation. Further work is planned, showing how network databases of lexical data or other
information often stored in semantic networks, as well as complex hyperbases (for hyper-
text and hypermedia), can be constructed to aid information retrieval [CHEN90]. All of
these efforts make use of our work with MPHFs.

1 .2 M i n i m a l P e r f e c t H a s h F u n c t i o n s , P r e s e r v i n g O r d e r

Our initial work with hash functions took a different tact from currently popular methods
of dynamic hashing [ENBO88]. Those methods are suitable when it is acceptable to use
extra space, and necessary to allow for frequent additions and deletions of records. While
dynamic hashing generally does not preserve the original key ordering, there also exists
order-preserving key transformations, which are appropriate for dynamic key sets as long
as the key distributions are or can be made to be stable [GARG86]. In contrast, we made.the
very useful assumption that our key sets are static, and investigated published algorithms
for finding minimal perfect hash functions (MPHFs), i.e., those where no collisions occur
and where the hash table size is the same as the size of the key set (see review of earlier work
in [DATT88]). Of those examined, one by Sager [SAGE85] had the best time complexity,
O(n4), and seemed amenable to enhancement. With some small extensions we were able
to handle thousands of keys, with an O(n 3) algorithm for n unique keys [FOX89a]. By
reformulating the problem, we developed an O(n log n) algorithm and tested it with a

280

keys

l

C -

I

keys key 3 key 4

I I
keYn. 1 keyn

OPMPHF]
(,PMPHF -- Spec i f icat ion

I I 1 7
Figure 1: Order Preserving Minimal Perfect Hash Function

variety of key sets, including one with n = 1.2 million [FOX89b]. We have recently tested
even better algorithms and will report on them in subsequent papers.

This paper, however, focuses on MPHFs that also have the property of preserving the
order of the input key set. Because they are of special value for information retrieval
applications, we elaborate on this part of our work. To make it clear what is implied,
consider Figure 1. A function must be obtained that maps keys, usually in the form of
character strings or concatenations of several numeric fields, into hash table locations. In
brief, the i th key is mapped into the i th hash table location.

1 . 3 A p p l i c a t i o n s f o r I n f o r m a t i o n R e t r i e v a l

While there axe numerous applications for our methods, it is appropriate to consider two
that are particularly well known and important for information retrievaJ. First, there is the
dictionary. Here the object is to take a set of tokens or token strings (words, phrases, etc.)
and allow rapid lookups to find associated information (number of postings of a term, the
"concept number ~ for that entry, pointers to inverted file lists, etc.). If 0PMPHFs can be
used for this purpose, in one disk access any dictionary item's record can be identified, and
it is possible to rapidly find previous or subsequent entries as well. Thus, the dictionary
can be kept in lexicographic order, and can be read sequentially or accessed directly. This
apphcation is illustrated in Figure 2a, where real data from the Gollin's English Dictionary
[HANK79] is given for illustrative purposes; this CED example is discussed later as well
since some of our experimental studies were with a large set of keys in part derived from
the CED.

A second application is for accessing inverted file data. Figure 2b illustrates selected
data taken from the CISI collection [FOX83]. For a given term ID (identifier), it is usually
necessary to find the number of postings, that is the number of documents in which the
term occurs, and then to find the fist of all those occurrences. All of this information
has been included in a single file accessible by an OPMPHF. Normally, for a given term

281

Aveynn
Bulwe~-lytton
Carl
Chunkking
Clou~
Euclidean
Han Cities
Indonesia.
Lagoomo~ha
Sabbaths
arltBnn~
burrows
debris
deposited
~ntifrice

a) Partial Dictionary
from CED

Tm~rxq Id Doc Id Weight

0 0 I
0 1271 3
I 0 102
1 II 1
1 16 3
1 17 3

9999 0 5
9999 447 1
9999) 939 1
9999 988 1
9999 125o 1
9999 1429 2

10000 0 1
10000 177 1

b) Partial Inveruxl File
from CISI

Figure 2: Using OPMPHFs for Information Retrieval

ID, we obtain the document and frequency (of that term in that document) pairs for all
occurrences. Assuming that document numbers have value at least 1, we use the simple
trick of storing the postings data in the frequency field of an entry that has a given term
ID and document number set to 0. Thus, we can, for a given term ID, build a key formed
by concatenating the value 0 to it, find the postings in one seek, and read the document-
frequency pairs that appear directly after. Various methods using unnormalized forms
of the data are possible to effect space savings; the OPMPHF value can actually be an
arbitrary value so that variable length records can be directly addressed [DAOUD90].

1.4 S u m m a r y of Ear l ie r Work

Our earlier work has been discussed in [FOX89b], along with an overview of related work.
We review the key concepts here. First, there is theoretical evidence that since MPHFs
are rare in the space of all functions, a moderate amount of space is required to specify
a given MPHF [MEHL82]. In a later paper we will describe MPHF methods that require
space appr6aching the theoretical lower bound. In this paper (see section 3.1), a proof
of the lower bound for OPMPHFs is given, and that bound is approached by the current
algorithm. Thus, while readers might be concerned that using space to specify a function

282

is contrary to the spirit of hashing, it is required based on theoretical analysis.
Second, the approach we take is to use a three step process of Mapping, Ordering, and

Searching - - following the suggestion by Sager [SAGE85]. We map the problem of finding
a MPHF into one involving working with a random bipartite graph, where each given key is
represented by an edge, and where randomness allows us to make use of important results
from the theory of random graphs (see, for example, [BOLL85] and [PALM85]). Since in
the original problem space we must avoid collisions among keys, in our graph we must
identify dependencies between edges, which result when multiple edges share a common
vertex. These dependencies are captured during the Ordering phase, which makes use of
properties of the dependency graph, and which leads to an ordering of levels or groups
of interdependent edges. If the Ordering phase is done well, then during the subsequent
Searching phase, when the actual hash values are assigned so as to avoid collisions, a viable
MPHF can be quickly specified.

To facilitate subsequent discussion, we adapt notation used in [FOX89b], relating to
our work with MPHFs, and list it for reference in Figure 3.

Note that when n = m the hash function is minimal, as desired, so in the following
discussion n will be used instead of m. In the bipartite dependency graph G there are two
parts having r vertices (numbered from 0 to r - 1 and from r to 2r - 1, respectively), each
part connected by n edges. One end of each edge associated with key k is at the vertex
numbered by hi(k), and the other end is at the vertex numbered by h:(k). Thus, each
edge is uniquely defined by the associated key. The function h(k) is the one actually used
with key k, and is easily computable from k, given a specification of g for all values in its
domain.

Central to our algorithms is an analysis of ~he properties of the graph G, which is
random since it is formed through use of the random functions h i0 and h:(). When the
ratio (i.e., 2r/n) is 1 or more, the graph has few vertices with high degree. When the
ratio falls below 0.5, fewer vertices have low degree and the graph has larger connected
components and more cycles. More detailed results are given in [FOX89b] for graphs with
ratios as small as 0.4, but for OPMPHFs found using the current scheme, ratios are around
1.2. Other graph properties also are considered in the discussion below.

1.5 O u t l i n e o f Paper

This paper is organized as follows. In section 2 we explain our approach, including three
methods to find OPMPHFs, and then provide both details and an example for the third
method. Section 3 gives analytical and experimental results, including lower bounds and

283

N =
k =

S =
n- - -

T =
m ~

h =
lh l =

G =
r - -

r a t i o =

h0, ha, h~ =

g - -

h(k) =-

=

V S =
t =

universe of keys
cardinality of U
key for data record
subset of U, i.e., the set of keys in use
cardinality of S
hash table, with slots numbered 0 , . . . , (m - 1)
number of slots in T
function to map key k into hash table T
space to store hash function
dependency graph
parameter specifying the number of vertices in one part of G
2 r / m , which specifies the relative size of G
three separate random functions easily computable over the keys
h0: U ~ [0 , . . . , n - 1]
h,: U - , [o , . . . , , - - 11
h~: U -4 [r , . . . , 2 r - 1]
function mapping 0 , . . . , (2r - 1) into 0 , (m - 1)
{ho(k) + g (hi (k)) + 9 (h2(k))} rood n
form of hashing function
vertex in G
for a given v in the vertex ordering, the set of keys in that ordering level
vertex sequence produced during the Ordering phase
length of V S

Figure 3: Terminology from Earlier Work on MPHFs

284

other descriptive information about our methods, as well as confirming evidence from
several runs with test collections. Section 4 gives timing results for our test collections,
where a dictionary and an inverted file were implemented using an OPMPHF. Finally, we
summarize our results in section 5.

2 A p p r o a c h

This section describes our preferred method to obtain an OPMPHF. In section 2.1 we
outline three methods to find OPMPHFs, and then focus on the third method, which
requires less space than the other two. This method is fully described in section 2.2, and
is illustrated with an example in section 2.2.4.

2.1 Three Methods to Find OPMPHFs

Based on our experience working on various versions of MPHF algorithms, we note that
there are at least three ways to obtain an OPMPHF. The first two are straightforward
extensions of our earlier research, but require a large amount of space to describe the
OPMPHF. The third method, obtained after extensive study of graphs used with MPHFs,
requires much less space but is rather complex.

2.1.1 M e t h o d 1: Acyclic Graphs

Method 1, the acyclic technique, involves constructing a bipartite graph G sufficiently large
so that no cycles are present. This extends our earher work described in [FOX89b], and
is based on the use of a large ratio (2r/n) which makes the probability of having a cycle
approach 0 (see proof in section 3.2.1). If there are no cycles, we have sufficient freedom
during the Searching phase to select 9 values that will preserve any a priori key order.

Our algorithm is basically the same as that described in [FOX89b] throughout the Map-
ping and Ordering phases. But because G is acyclic, we obtain an ordering of non-zero
degree vertices v to yield levels K(v) following certain constraints (see section 2.2.2), which
only contain one edge (one key). This is achieved through an edge traversal (e.g., depth-first
or breadth-first) of all components in G. Thus, in Figure 4, which shows an acyclic bipartite
graph, an ordering obtained by depth-first traversal of first the left connected component
and then the right might give the vertex sequence (VS) : Iv1, vs, v0, v2, v6, v3, v~]. The corre-
sponding levels of edges are given in the edge sequence: [{ }, { el }, { eo }, { e3 }, { e~ }, { }, { e4 }].

285

h l " 0 ! 2 3

Vo v3

v 5 v6 v 7

h 2 • 4 5 6 7

Figure 4: A Cycle Free Bipartite Graph

Notice that in this example, each level has at most one edge, which is only possible if G is
acyclic.

During the Searching phase, a single pass through the ordering can determine g values
for all keys in a manner that preserves the original key ordering. This is possible since
with only one edge being handled at each level, there are no interdependencies that would
restrict the g value assignments.

Although this approach is simple, it is only practical if a small acyclic graph can be
found. Using our ratio, 2r/n, we therefore give a lower bound on the number of vertices for
a given set of n keys. Section 3.2.1 gives a detailed probabilistic account of the expected
number of cycles in G, as eL function of the ratiO. If the average number of cycles, E(Y),
approaches 0, then by Chebyshev's inequality

P(Y _> t) < S(Y)/t,

so the probability of a particular graph having cycles approaches 0. Thus, for sufficiently
large ratio (e.g., O(logn)), it will be very unlikely that G will have cycles. However, this
ratio is very much larger than values required in the other two methods described below.

2 .1 .2 M e t h o d 2: T w o Level Hash ing

The second idea is to use two level hashing. Here the MPHF computed through the method
in [FOX89b] is in the first level and an array of pointers is in the second. A hash value from
the MPHF addresses the second level where the real locations of records are kept. The
records are arranged in the desired order. This method uses at the first level 2r, and at
the second, n computer words for the OPMPHF. For large key sets, 2r ~ 0.4n is possible
and feasible. Thus this method typically will use 1.4n computer words. Fig. 5 illustrates
the two level hashing scheme. Note, however, that small OPMPHFs are much faster and
more feas]ble to find using Method 3, which is discussed next.

286

kl k2 k3 k4 k5 k6 keys

MPHF mapping

level I: pointers

pointer mapping

level 2: records

Figure 5: A Two Level OPMPHF Scheme

2.1.3 M e t h o d 3: Using I n d i r e c t i o n

The third method is based on the idea of using G to store the additional information
required to specify a MPHF that also preserves order. For n keys, if our graph has somewhat
more than n vertices (i.e., if ratio > 1), then there should be enough room to specify
the OPMPHF. In a random graph of this size, a significant number of vertices will have
zero degree; we have found a way to use those vertices. The obvious solution is to use
indirection. This means that some keys will be mapped using indirection, in this case using
the composition:

h(k) = g({ho(k) + 9(ht(k)) + g(h2(k))} mod2r).

while on the other hand, the desired location of a key that is, as before, found directly is
determined b y :

h(k) = {h0(k) + g(hl(k)) + g(h2(k))} modn.

Note that we use the g function in two ways, one way for regular keys and the other way
for keys that are handled through indirection.

Let us consider more closely the distribution of d, the number of degrees of vertices in
G. The actual distribution is binomial and can be approximated by the Poisson:

E(X = d) = {2re-" / r (n / r)d}/d!

E(X = O) = 2re -"I~

287

vO ~ ' ~ ' ~ % ~ w 2 v3

Figure 6: Zero Degree Vertices are Useful

When 2r = n, about 13.5% of the vertices have zero-degree. If these zero-degree vertices
can be used to record order information for a significant number of keys, then it is not
necessary for G to be acyclic to generate an OPMPHF. Figure 6 is a brief demonstration
of the idea. Note that keys associated with edges eo and el can be indirectly hashed into
zero-degree vertices t~ and vs. In general, an edge (key) is indirectly hashed when that
situation is described by information associated with its two vertices, given by hi(k) and
h~(k). Usually, indirection can be indicated using one bit that is decided at MPHF building
time and that is subsequently kept for use during function application time.

Various schemes of indirection have been proposed and tested. In section 2.2, we de-
scribe our one bit algorithm capable of finding ordered hashing functions with high prob-
ability for large key sets with ratio ~ 1.22.

2.2 M e t h o d 3: Algori thm and Data Structures

This section outlines an algorithm using one indirection bit, which is an extension of the
one in [FOX89b] used to find MPHFs. Our hashing scheme uses the OPMPHF class:

h(k) = g({ho(k) + g(h,(k)) + g(h2(k))} mod2r),

when the indirection bit assoicated with the two vertices for this key have the same value,
and otherwise uses

h(k) = {ho(k) + g(h,(k)) + g(h,(k))} mod, .

288

The algorithm for selecting proper g values and setting mark bits for vertices in G consists
of the three steps: Mapping, Ordering and Searching. By reducing the problem of finding
an OPMPHF to these three subproblems, we can more easily and rapidly identify a usable
hash function. Each step, along with implementation details, will be described in a separate
subsection below.

2.2.1 The Mapping Step

This step is essentially identical to that discussed in [FOX89b]. The only addition is that
the indirection bit must be included in the vertex data structure. Readers may elect t6 skip
to the next subsection, or to follow the discussion below which is included for completeness.

The basic concept is to generate unique triples of form (ho(k) , ha(k) , h~(k)) for all keys
k. h00, h~(), h2()are simple random functions. Since the final hash function should be
perfect, all triples must be distinct. Following [FOX89b], we use random functions ho, hi,
h~ to build the triples so as to obtain a probabilistic guarantee on the distinctness of the
triples. The probability that all triples will be unique is:

P = nr2(nr 2 - 1) . . . (nr ~ - n + 1) / (nr~)" = (n r ~) , / (n r 2) n

e-"2/2"'2(by an asymptotic estimate from [PALM85])
-- e--/2r~.

Since r is on the order of n, P goes to one as n approaches infinity.
The h0, hi and h2 values for all keys are entered into an array edge defined as

edge: array of [0.. . n - 1] of record
h0, hi, h~: integer;
nextedge~: integer;
nextedge~: integer;
final: integer

Here the combination h0, ha, h2 field contains the triple. The nextedgei field (i = 1,2)
indicates the next entry in the edge array with similar hi value to the current entry. It
is utilized to link together all edges joined to a vertex. The final field is the desired hash
location of a key.

289

Key h0 hl h2 Edges
x = r a y s 0 0 I 0 e0
Euclidean 6 4 1 5 • I
ethyl ether 9 2 14 e2
Clouet 0 7 12 e3
Bulwer-Lytton 4 2 I 0 e4
dentifrice 0 4 13 e5
Lagomorpha 8 7 9 e6
Chungking 7 6 14 . e7
quibbles 4 6 14 e8
Han Cities 2 I 15 e9

vO vl v2 v3 v4 v5 v6 v7

~D e u ~

v8 v9 vl0 vl l v12 v13 v14 vl5

(a) The Key Set (b) The Bipartite Graph

Figure 7: A Key Set and its Dependency Bipartite Graph G

The g function is recorded in another array v e r t e x defined as

vertex: array of [0. . . 2r - 1] of record
g: integer;
mark: bit;
firstedge: integer;
degree: integer

The g field in entry vertex[i] records the final g value for h i (k) = i if i is in [0,r - 1] or the
final g value for h2(k) = i if i is in [r, 2r - 1]. The mark field contains a bit of indirection
information, as given above for either h~(k) or h2(k) . The firstedge field in entry vertex[i]
is the header for a singly-linked list of the keys having ha(k) = i if i is in [0, r - 1] or the
keys having h2(k) = i if i is in [r, 2r - 1]. The firstedge field actually points at an entry in
the edge array indicating the start of the list and nextedg~ for (i = 1, 2) there connects to
the rest of the list. The degree field is the length of the list or equivalently the degree of
the vertex.

Thus, the edge and v e r t e x arrays give a representation of a bipartite graph G, as
illustrated in Figure 7(b) for the key set shownin Figure 7(a).

Appendix A shows a few detailed sub-steps of the Mapping phase. Step (1) builds the
random tables that specify the h0, hi and h2 functions. Step (2) initializes the two key
(edge) related fields of the v e r t e x array. Step (3) constructs the graph representation for
each key k~. Step (4) validates the distinctness of triples. Step (5) enforces the repetition

290

of the steps from (1) to (4) under the rare circumstance that triples duplicate. It is trivial
to show that steps (1), (2) and (3) all take O(n) time. Step (4) is hnear on average also,
because each vertex usually has quite small degree. Thus, the total Mapping step is O(n).

2.2.2 The Ordering Step

In the Ordering step it is necessary to obtain a proper vertex sequence VS for use later
in the Searching step. Specifically, VS specifies a sequence of the vertices so that, during
searching, each related set of edges can be processed independently. For a given vertex
in the ordering, vi, these associated edges contained in K(v~) (i.e., at that level) are the
backward edges, going to vertices that appear earlier in the ordering. Taking the bipartite
graph in Figure 7 (b) as an example, we find one of the several possible vertex sequences
to be

VS = [v6, v14, v~, vl0, to, v13, v4, v15, vl, vT, v9, vl~]

with corresponding levels or edge sets

K(v6) = { } , K (v ,) = {eT, es} ,K(v2)= {e~},K(vg)= {e4},K(~0)= {eo},

K(v,3) = { } , K (v .) = {es),K(v~5)= {e~},K(v~)= {eg),
=

The graph constructed from vertices in VS plus edges in G is essentially a redrawing
of G that excludes zero-degree vertices, as can be seen in Figure 8.

Finding a proper VS requires that we process vertices with many backward edges (i.e.,
with large K(vi)), first. Thus we employ a variety of heuristics to quickly find such vertices
early. The other key issue in finding a proper VS is to handle the fact that some edges
must be involved in indirection while others will be involved in direct hashing. Since the
assignment of a g value for vertex vi fully determines the hash addresses of all keys in
K(vi), given that the g values of each previously visited vertex has been set, it is in genera]
true that at most one key in K(vi) can be order-preservingly hashed for a fixed g value
at v~. Thus, we must determine exactly which keys are indirectly hashed, if the Searching
step is to proceed properly, in the scheme proposed, we attach one bit (namely the mark
bit) in the Ordering step as well, to each vertex for the purpose. Then, when our hashing
function is used, for key k we need ony consider the two indirection bits (stored in primary
memory) attached to the two vertices hi(k) and h:(k).

Given the need to quickly find the proper V.5' and to decide the proper indirection bits
for vertices in VS, it is essential that we obtain hints from the properties of the K(vi),

291

e7 v6 v14 v2 vl0 vO

v13 v4 v13 vl

e3 el e9

v9 v7 v12

e6 e3

Figure 8: Redrawing of G based on a VS that excludes zero-degree vertices

such as their size. For a key in a level where IK(v~)l = 1, the key can be directly hashed
by setting the g value at vl to

g (v l) = [hae,i,.,,~(k) - ho(k) - g (v ,)] rnod n.

Here hde,i,ea(k) refers to the desired hash address for key k, so that we can have an order
preserving function.

For keys in IK(v~)l > 1 levels, since at most one key can be direct, hashing of the
other keys requires indirection. Since in our scheme indirect hashing is indicated by the
indirection bits, all such keys have those bits set accordingly and thus are indirectly hashed.
After considering the two cases, we conclude that a proper VS will be one that tends to
maximize the number of v : with IK(v~)l = 1 and to minimize the number of vls with
IK(vdl > 1.

A practical way to obtain such a VS is to take into account the characteristics of
G. Following standard graph terminology, we can refer to the set of edges (Ec) and the
set of vertices (V~), as given in Figure 9. Special attention must be given, though, to
each connected component (C). Clearly, edges in a tree component (denoted by AC, which
stands for "acychc component") of G can be directly hashed if their vertices are included in
VS by a simple depth or breadth first traversed. For example, in the bot tom components in
Figure 8, all five edges are direct. Since any vertex in an AC can be the root for a traversed
and more importantly, since we have room left in such an AC to accommodate additional
indirect keys, the ordering of vertices for AC is not performed until the Searching step. At
that time, only one vertex in AC could accept an indirect key so that all other edges in
the AC can be direct.

2 9 2

Ec = edges of graph G
Vc = vertices of graph G
C = connected component in G

AC = (7 that is acyclic. An isolated vertex is also an AC
C C Y = C that is cyclic

CP = maximal subgraph of CCY containing only cut edges, each cutting
CCY into at least one acyclic subcomponent

CC = C C Y - CP

Figure 9: Graph Terminology

For a cyclic component (denoted by CCY) such as the larger component at the top of
Figure 8, three' types of edges are distinguishable. First there are "bush ~ edges such as
e0, e2, e4 forming the bush part of CCY. In graph theory terms, any edges of this kind
are cut edges of their component and removing one such bush edge will leave at least one
subcomponent acyclic. We use cycle periphery (CP) to denote the maximal subgraph of
CCY whose edges are bushes. Finally, we use CC to describe the portion of CCY left
after CP. Note that in Figure 7(b), Vcp = {Vo, V2, rio, V14} and Ecp = {eo, e2, e4).

All edges in CP can be directly hashed if a vertex visiting strategy similar to that for
tree component AC is used, and the roots for visiting are vertices shared by bush edges
and non-bush edges. Since the existence of g values at the root is the only precondition for
assignment of g values to other vertices in CP, edges in CP should be hashed well after
the non-bush edges are handled.

The two other types of edges are non-bush edges of CCY, that can be direct or indirect,
based on a specific ordering of vertices that these edges are connected to. In Figure 7(b),
we only have indirect non-bush edges with Vcc = {v6, v~4} and Ecp = {eT, e8}. Intuitively,
we see that keys where IK(vi)l = 1 should be direct and those where IK(v~)l > 1 should be
indirect. However, due to the way in which the indirection bits are set, some keys where
IK(v~)l = 1 can also become indirect.

In summary, our strategy to obtain a good VS involves first identifying ACs, CPs
and CCs. Second, we order vertices in CCs, then in CPs and finally in ACs. The
implementation of the algorithm combines the ordering and searching for CPs and ACs
in the Searching step to save one traversal of edges in CPs and ACs. In arranging vertices
in CCs, a vertex whose K(v~) set is (currently) larger is chosen next in the ordering over
a vertex whose K(v~) set is (currently) smaller. The arrangement of vertices in CPs and
ACs is done purely through tree traversals.

293

The number of vertices of G for a fixed key set is an important factor affecting the
quality of VS. First, [VG[is theoretically bounded below by the number of keys n, as is
shown in section 3.1. Any G with smaller than n vertices cannot be guaranteed to produce
an OPMPHF. For G with [VG[> n, we have a tradeoff between the size of the OPMPHF
and the ease of finding such an OPMPHF. Let S be the set of indirect keys. Then if G is
large, [,8[becomes small implying both an easier indirect fit for .5' and a bigger OPMPHF.
On the other hand, a small 'G will result in a big S, increasing the difficulty of finding an
OPMPHF, though if one is found, it will be rather small. Of course, we have the final
constraint that IS[be less than the total number of ACs.

Having obtained VScc, we need to mark indirection bits for all vertices in the sequence.
Though not necessarily yielding an optimal marking in terms of generating a minimal num-
ber of indirect edges, the method, described in detail in Appendix B, achieves satisfactory
results. Step (3) in Appendix B works as follows. Suppose we are marking all edges in
K(v~). Without loss of generality, assume vi is in the first side of G and kj is one of the
keys in K(vi).

We determine the final mark bit hi [kj].mark using the strategy of finding as many direct
keys as possible in one scan of VS. Thus:

a) v~.mark = 1 if [K(vl)[= 0; or
b) vi.mark = 1 if h2[kj].mark = 0 and IK(v~)l = 1; or
c) vl.mark = 0 if h2[ki].mark = 1 and IK(v31 = 1; or
d) vi.mark = 0 if IK(v~)l > 1 and all kj.mark = 0

and IK(v~)l = vl.degree; or
e) v,.mark = 1 if IK(v,)l > 1 and set all h~[kj].mark = 1 if previously 0.

If vi is on the second side, we just switch hi and h~ for steps a) to e). A simple induction
proof on the length i of VScc shows that (1) a direct edge only appears in a IK(v~)l = 1
level if that edge is not forced to be indirect by (e); (2) all edges in levels with IK(v~)l > 1
are indirect.

Our Ordering phase performs its job in three sub-steps (cf. Appendix B). First, all
components in G are identified by assigning component IDs (Clds) as shown in Step (1) of
Appendix B. VSTACK is a stack data structure that keeps all unidentified vertices adjacent
to at least one identified vertex. Each time a vertex is popped from VSTACK, it gets a CId
and its adjacent unidentified vertices are pushed into VSTACK. After the identification
process, all zero-degree vertices will get a 0 CId and all other vertices get Clds greater than
0. Step (1) can be finished in O(n) time because eazh non-zero vertex is in VSTACK only
once, and pushing and popping operations take constant time.

294

Steps (2) and (3) recognize Ecp in each component by manipulating the degree field.
Initially, Step (2) collects all vertices of degree one into VSTACK and sets their degree
field to zero. Afterwards, Step (3) takes the VSTACK and tries to find more vertices whose
degree could be reduced to one. Each time a vertex is popped, the degree of all its adjacent
vertices is decreased. If some of them turn into degree one vertices, then they are pushed
into VSTACK. The process will continue until no more vertices can have their degree values
decreased. It can be seen that each time a vertex is popped, an edge in Ecp is found that
connects the vertex to some earlier popped vertex. The final non-zero vertices left are just
those in Vcc. The time complexity is easily determined. Since at most n vertices will get
into VSTACK and each stack operation takes constant time, steps (2) and (3) together use
O(n) time.

Next, the vertices in Vcc are subjected to an ordering in Step (4) to generate a vertex
sequence VScc for each CCY. In generating VSvc, Step (4) uses a heap VHEAP to
record vertices out of which a vertex with maximal degree is always chosen as the next
vertex to be put into the sequence. The usage of VHEAP is analogous to Prim's algorithm
for building a minimum spanning tree. Step (4) takes O(n) time, on average, to finish the
ordering.

Based on VSoc, Step (5) marks all vertices in the sequence to maximize the number
o f direct keys in [K(v)[= 1 levels, and forces all keys in IK(v)l > 1 levels to be indirect.
Step (5) is linear because the number of visits to vertices in VScc is bounded by the total
of the degree values of those vertices.

2.2.3 The Searching Phase

The Searching step determines the g value for each vertex so as to produce an OPMPHF.
The job is done in two sub-steps. First, g values for all vertices in the VScc generated by
the Ordering step are decided. These g values will in turn hash all keys in Ecc to vertices
in ACs. Then all the edges in Ecp and EAc are processed to finish the searching.

A detailed description of the Searching phase is shown in Appendix C. Step (1) straight-
forwardly assigns g values for VScc. The random probe sequence So, sa s , -a , the
random permutation of the set [0. . . n - 1], gives an ordered list of testing g values for
each vertex. Step (1) classifies three kinds of v~ in the assignment: [K(v~)[= 0, [K(v~)[= 1
and k in K(vi) is direct, or [g(vi)[> 0 otherwise. Each case is treated separately. Step
(1) will use O(n) time for a successful assignment. For the rare case that all possible g
values cannot satisfy every single vertex, we start another run of the Mapping, Ordering
and Searching steps.

295

Step (2) fits edges in CPs, by a depth-first traversal. The root vertices can be recognized
by comparing the degree field of a vertex with the actual number of vertices adjacent to
it. If they differ, then this vertex is a root vertex. The last two steps (3) and (4) are for
edges in ACs with traversal root vertices either fixed during Step (1) or in ACs that have
accepted no indirect edges. Step (3) can be done in hnear time. Since only one edge is
directly hashed during each visit of a vertex, steps (2) and (3) cannot fail.

2.2.4 An Example

We show in this section an example of finding an OPMPHF for the 10 key set listed in
Figure 7(a) and the corresponding bipartite graph in Figure 7(b). It can be seen from Figure
7(b) that G has one CCY consisting of vertices VccY = {Vo, v2, vs, vl0, v14 } and of edges
EccY = {so, e2, e4, e~, es}. G also has two trees AC1 and AC: consisting of vertices VACl =
{vl, v4, v13, V~s} and edges EAcl = {e,, es, es} in ACt, and vertices VAC2 = {VT, Vs, v~2} and
edges EAc:= {ez, ~} in AC2.

When the Ordering phase is carried out for G, it identifies CCY, AC1 and AC2 during
Step (1) in Appendix B, and truncates bush edges in CCY in steps (2) and (3), leaving
a sub-graph CC which has two edges {e:, es}. In Step (4), vertices adjacent to these two
edges are subject to ordering, producing a vertex sequence VScc = {vs, v14}. VScc is
immediately involved in a marking process in Step (5), starting at v~4. Since K(v14) = 0,
we have v14.mark = 1. vs obtains the same mark (bit 1) because K(vs) is of size 2 and v14
has been assigned bit 1.

During the Searching phase (Appendix C), g values will be assigned first to vertices in
VScc in Step (1). v14 gets a random number 8. Vs gets 3 so that keys e7 and es can be
indirectly hashed to vertices v7 and v4. The remaining 8 edges are all direct. Vertices v2,
Vlo and v0 will obtain their g values in Step (2); they are all 5. Since neither AC1 nor AC~
has accepted any indirect edges, they are processed in Step (4). Vertices in AC1 will get
their g values in the sequence of {v~, Vxs, v4, va3} and those in AC~ {VT, vs, v~2}. The final 9
assignment for all vertices is illustrated in Table 1. To validate the OPMPHF based on the
ranking of occurrence of keys in Figure 7(a), we list the h for each key in the fifth column
of Table 2.

3 Analysis and Experimental Validation

To provide further insight into our algorithm, we provide analytical and experimental re-
sults in this section. In particular, section 3.1 discusses lower bound results for OPMPHFs.

296

vertex 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
gva lue 5 0 5 0 8 0 8 7 0 1 5 0 6 7 8 7
mark bit 0 1 : 0 1 1 1 1 1 1 0 1 1 0 0 1 0

Table h g Values Assignment to Vertices in Figure 7(b)

key ho hi ~2 h(k)
x-rays 0 0 10 0+5+5 (rood 10) = 0
Euclidean 6 4 15 6+8+7 (rood 10) = 1
ethyl ether 9 2 14 9+5+8 (rood 10).= 2
Clouet 0 7 12 0+7+6 (rood 10) = 3
Bulwer-Lytton 4 2 10 4+5+5 (rood 10) = 4
dentifrice 0 4 13 0+8+7 (rood 10) = 5
Lagomorpha 8 7 9 8+7+1 (rood 10) = 6
Chungking 7 6 14 7+8+8 (rood 16) = 7, g(7) = 7
quibbles 4 6 14 4+8+8 (rood 16) = 4, g(4) = 8
Han Cities 2 1 15 2+0+7 (rood 10) = 9

Table 2: The Keys from Figure 7 and Their Final Hash Addresses

297

Section 3.2 deals with characteristics of graphs, giving formulas used to compute expected
values of two random variables. Their actually observed values are also listed for compari-

son.

3 . 1 A L o w e r B o u n d o n t h e S i z e o f O P P H F s

Following the definition of a (N, m, n) perfect class of hash functions in [MEHL82], we
define a (N, m, n) order-preserving perfect class H of OPPHFs as a set of functions h

h : [0 . . . g - 1] ~ [0 . . . m - 1]

such that for any permutation of any subset S in N of size 1,5'1 = n, there is an h in H such
that h is an OPPPHF for the permutation.

We show that' the size of H (or the number of h in H) has a lower bound

1HI >_ ()
n

The proof is based on a similar argument to that found in [MEHL82], in proving the lower
bound for the (N, rn, n) perfect class of PHFs.

Proof: Clearly, there are distinct subsets in N, each of size n. For each such
n

subset S, there are n! permutations (i.e., n! different orderings). We need to show that at

most (~) " (:) permutations out of the total (:) n ! can be order preserving and hashed by
a single fixed h in H in order to prove claim (1) is correct.

It is trivial that if h is an OPPHF for a permutation P with elements in S, then any
other permutation of S cannot be order preserving and hashed by h. It follows that the
permutations for h to be OPPHF must come from different subsets. By applying the same
argument in [MEItL82], we conclude the maximum number of permutations h can be is

(:). QED.

In the case of OPMPHF, we have n = m and N = mr s. Thus

(=')
Izl >_ (_g_),,(:)

298

(,2) Using asymptotic estimate "~" ,,"T

n r 2) n

or log s IHI = n log s n. Therefore, O(n logs n) bits of spaze are required for [h I or, equiva-
lently, the number of g values should be larger than n.

3 . 2 C h a r a c t e r i s t i c s of G

This section gives probabilistic analysis on various random variables dealing with the char-
acteristics of G. The actual values of these measures for a particular set of random graphs
will also be given after each analysis.

3.2.1 Average Number of Cycles

In the following, we determine the number of cycles in our G - - a bipartite graph having 2r
vertices on each side and having m random edges. Let Pr(2i) be the probability of having
a cycle of length 2i formed in a particular vertex set of 2i vertices, with i vertices being on
each side. There are i !(i - 1)!/2 ways to form distinct cycles out of these 2i vertices and
(~) (2i)! ways to select 2i edges to form such a cycle. The remaining n - 2i edges can go

into G in (r2) '~-2i different ways. Thus in total there are i !(i - 1)!/2. (2~') " (2i)!. (r2) "-2'
ways to form the 2i edge cycle in the vertex set. We have, given that there are a total of
(rS)" possibilities,

,:f,-1), (n)
2 " 2i . (2 0 ! . (r S) "-s '

Pr(2i) = (~ s) .

i ! (i - 1)!. 2i . (20!

2r 4i

Let Zij be an indicator random variable. Zij = 1 if there is a 2i edge cycle in the j~h

vertex set of 2i veI:tices, Zij = 0 otherwise. Clearly, there are (;)2 such sets in G. Each
vertex set has the same probability of having 2i edge cycles.

299

Let X~ be a random variable counting the number of 2i edge cycles in G. We have

Xi= ~ Zlj= (:) . Pr(2i).

Define Y~ = ~ ; 1 Xi as another random variable counting the number of cycles in G of

length from 2 to 2r.

E(Y~) = ~ E (X ,)
i=l

= ~ • Pr(2i)
i = l

i=l 2 • r 4i 2 i

- 2. r 4i \ (2 0 ! " e-{~'~'

~ . • • I g - " , 7 - n -

i = l

i = l

i----1

2 1

Then,

1
EO) _<

1

When r = n log n, E(Y~) ~ 0 as n ~ oo.
Tab le 3 shows the existence of cycles in random graphs in a 1024 edge G. The number

of vertices varies from 1638 to 3276 with the ratio ranging from 1.6 to 3.2.

300

Vertices Existence of cycle Ratio

1.6
1.8
2.0
2.2
.2.4
2.6
2.8
3.0
3.2

1638 yes
1844 yes
2048 yes
2252 yes
2458 yes
2662
2868
3072

y e s

yes
n o

32761 no

Table 3: The existence of cycles in G containing 1024 edges

3.2.2 Ave r a ge N u m b e r of Trees

This subsection includes a derivation of a formula counting the number of tree components
in G, excluding zero-degee vertex components. Following [AUST60], we have the number
of different trees in a bipartite graph G':

j~- i . ij-1

Here the total i + j distinct vertices are spht into two groups: i vertices in one and the
remaining j vertices in the other. These vertices are connected by i + j - 1 indistinguishable
edges to form a tree. The formula counts the number of different such trees.

The expected number of trees of distinct edges of size from 1 to min(n,2r - 1) in a
bipartite graph G with r vertices in each side is

E(Trees) : E E
i : 1 j : l

(:) (~). j ' - ' - i j - ' . (,+;_,)- (i + j - 1) ! . (r ' + i - j - r . (i + j)) ' " - i - J+ ')
r2~

where the first summation is on i, ranging from 1 to min(n, r), and the second on j from

1 to rnin(n,2r - 1) - i + 1. It is easy to see that the term (~) - (~) is the number of
ways to have all the combinations of i and j vertices on both sides. The following term
j i -1 . i~-1 is the number of different trees constructible from these i + j vertices. The next
term (i+~'-1) allows us to select (i + j - 1) distinct edges (keys) to participate in the tree.

301

[No. Edges E(AC) [Actual number

16 1.22 1
32 2.26 2
64 5.28 5

128 10.39 12
256 19.75 13
512 39.39 42

Table 4: Expected vs. Actual Number of Trees (ratio is set at 1.3)

Since these keys are distinct, there are (i + j - 1)! ways to have the actual tree distinct.
The next term {7"~ + i . j - r - (i + j)}{,- i- j+l) is the number of ways to have the remaining
n - i - j + 1 edges freely go to G without being adjacent to any tree vertices. The last
term, the denominator r 2n is the total number of ways to put n edges into G.

Table 4 shows the actual number of trees in G with various numbers of vertices and
edges, and the expected values computed by the E(Trees) formula.

3.2.3 O b s e r v e d N u m b e r of I n d i r e c t Edges

An adequate number of indirect edges is vital to a successful OPMPHF. Table 5 summarizes
the observed components, observed trees, observed number of indirect edges generated
by our one bit marking scheme, observed total number of zero degree vertices, and the
observed total number of trees in G generated from a CISI vector collection of 74264 keys.
The different ratios for G that were tested are 1.22, 1.3, 1.4 and 1.5.

It can be seen that most G will have only one or a few big cycle components and a
couple of smaller tree components. Notice also that the number of indirect edges varies
inversely with the size of G. This means more edges need to be indirect as G becomes
smaller. On the other hand, a small G will have few vertices of zero degree or in tree
components. Consequently, for our scheme to be successful we have to select a G that
is not too small. A rough bound on the number of allowed indirect edges (keys) for our
algorithm to be successful is E(AC), i.e., the total number of zero vertices plus the total
number of trees. The maximum number of indirect edges in a particular G is the total
number of edges in non-tree components. Through the usage of mark bits, we can further
lower that amount, given that the size of G is reasonably chosen.

302

Ratio Components Trees Zero degree vertices

1.20 4258 4257 16725
1.25 4922 4921 18773
1.30 5831 5830 20724
1.40 7409 7407 24914
1.50 9361 9360 29349

Indirect edges

16536
13914
11789

7365
4510

Table 5: Number of Indirect Edges in a 74264 Edge G

4 Test Col lec t ions and T i mi n g Stat i s t ics

Section 1.3 explains two applications of OPMPHFs for information retrieval. The first
involved dictionary structures, and has led to our experimentation with dictionary key sets
derived in part from the CED. Timing and other descriptive statistics from these runs with
our OPMPHF algorithm are given in Table 6. On the other hand, Table 7 shows results
for a set of 74,264 tuples based on the inverted files data for the CISI test collection. All of
these runs were made on a Sequent Symmetry in the Department of Computer Science at
VPI&SU, with 10 processors each rated at 4 MIPS and 32 megabytes of main memory. Since
the algorithm used here is sequential, we used only one processor. Times were measured
in seconds using the UNIX "times()" routine, and so are precise up to 1/60th of a second.

In Table 6, we show timings for runs on graphs with different numbers of edges (varying
from 32 to 16384). Since the ratio is fixed at 1.25, the number of vertices in G is equal
to 1.25*edges. We notice from Table 6 that the timing is approximately linear in the size
of the key set, as is expected from our analysis. In Table 7, we list timings for runs on
the 74,264 edge graph (CISI vector collection) with ratio varying from 1.22 to 1.5. Table 7
shows that as the ratio gets smaller (from 1.5 to 1.22), the Searching step takes more time
to finish. This is because more indirect edges have to be packed into a smaller number of
zero-degree or tree vertices.

5 C o n c l u s i o n

In this paper, a practical algorithm for finding order-preserving minimal perfect hash func-
tions is described. The method is able to find OPMPHFs for various sizes of key sets in
almost linear time, with the function size remaining within reasonable bounds. The appli-
cation of the method to dictionary and inverted file construction is also illustrated. Several

303

Edges Prepare Order Search

32 0.27 0.02 0.00
64 0.37 0.02 0.03

128 0.38 0.02 0.03
256 0.43 0.07 0.08
512 0.52 0.10 0.12

1024 0.75 0.20 0.32
2048 1.19 0.37 0.65
4096 2.03 0.73 1.35
8192 3.48 1.52 2.53

16384 6.67 3.05 5.45

Table 6: Timing Results for Dictionary Collection

[Edges I Prepare Order [Search]
1.20 26.08 13.80 72.10
1.25 26.18 13.85 23.33
1.30 26.23 13.78 14.78
1.40 26.40 13.60 10.35
1.50 26.38 13.38 9.45

Table 7: Timing Results for Inverted File Data

304

probabilistic analysis results on the characteristics of the random graph G are given. They
are useful in guiding the proper selection of various parameters and providing insights on
the design of the three main steps of the algorithm.

More experiments with the algorithm are planned. One direction is to find ways to make
more edges direct so that an OPMPHF can be specified using a smaller ratio setting. Other
possible interests are concerned with applications. Currently, we are using the scheme to
index graph structured data. More benefits can be obtained when the scheme is applied to
other fields.

Other experimentation is proceeding with a wide range of key sets. We are experiment-
ing with a key set provided by OCLC that has more than 4 million unique keys, and so
will be able to validate our approach with what are clearly very large databases.

Additional work with MPHF and OPMPHF algorithms is underway, using several some-
what different approaches. We have preliminary results regarding a MPHFmethod that
uses much smaller function specifications and is quite fast. Subsequent papers will discuss
this and other findings.

References

[AUST60]

[BOLL85]

[CHEN90]

[CHEN89]

[DATT88]

Austin T. L. The Enumeration of Point Labeled Chromatic Graphs and Trees.
Canadian Journal of Mathematics 12, 1960: 535-545.

Bollobs, B. Random Graphs. Academic Press, London, 1985.

Chen, Qi Fan. The Object-Oriented Network Database Model: Theory and
Design for Information Retrieval Applications. Dissertation proposal, Depart-
ment of Computer Science, Virginia Polytechnic Institute & State University,
January, 1990.

Chen, Qi Fan. Proposed Specification for an Associative Network Database.
Draft report, Department of Computer Science, Virginia Polytechnic Insti-
tute & State University, 1989.

Datta, S. Implementation of a Perfect Hash Function Schemes. Master's
report, Department of Computer Science, Virginia Polytechnic Institute &
State University, 1988.

305

[DAOUD90]

[ENBO88]

[FOX90]

[FOXS9a]

[FOXS9b]

[FOXSSa]

[FOX88b]

[FOX87]

[FOX83]

[FRAN89]

Danud, Amjad M. Efficient Data Structures for Information Retrieval Sys-
tems. Dissertation proposal, Department of Computer Science, Virginia Poly-
technic Institute& State University, March, 1990.

Enbody, R. J. and Du H.C. Dynamic hashing schemes. A CM Computing
Surveys 20, 1988: 85-113.

Fox, E.A., editor and project manager. Virginia Disc One. Produced by Nim-
bus Records, 1990, to appear. Blacksburg, VA: VPI~SU Press.

Fox, E.A., Chen, Q. F., Heath, L. and Datta, S. A More Cost Effective
Algorithm for Finding Perfect Hash Functions. Proceedings of the Seventeenth
Annual ACM Computer Science Conference, 1989, 114-122.

Fox, E.A., Heath, L.S. and Chen, Q. F. An O(n log n) Algorithm for Finding
Minimal Perfect Hash Functions. TR 89-10, Department of Computer Sci-
ence, Virginia Polytechnic Institute ~z State University. Submitted for publi-
cation, 1989.

Fox, E.A., J. Nutter, T. Ahlswede, M. Evens, and J. Markowitz. Building a
Large Thesaurus for Information Retrieval. Proceedings Second Conference on
Applied Natural Language Processing, Austin, TX, Feb. 9-12, 1988: 101-108.

Fox, E.A. Optical Disks and CD-ROM: Publishing and Access. In Annual
Review of Information Science and Technology, Martha E. Williams (ed.),
ASIS [Elsevier Science Publishers B.V., Amsterdam, 23, 1988: 85-124.

Fox, E.A. Development of the CODER System: a Testbed for Artificial Intel-
ligence Methods in Information Retrieval. Information Processing and Man-
agement 23, 1987: 341-366.

Fox, E.A. Characterization of Two New Experimental Collections in Com-
puter and Information Science Containing Textual and Bibliographic Con-
cepts. TR 83-561, Department of Computer Science, Cornell University,
Ithaca, NY, Sept. 1983.

France, R.K., E. Fox, J.T. Nutter, and Q.F. Chen. Building A Relational Lex-
icon for Text Understanding and Retrieval. Proceedings First International
Language Acquisition Workshop, Aug. 21, 1989, Detroit, MI. 6 pages.

306

[GARG86] Garg, Anil K. and C. C. Gotlieb Order-Preserving Key Transformations.
A CM Transactions on Database Systems, 11(2):213-234, June 1986.

[HANK79] Hanks, P., editor. Collins English Dictionary. William Collins Sons & Co.,
London, 1979.

[MEHL82] Mehlhorn, K. G: On the Program Size of Perfect and Universal Hash Func-
tions. Proceedings of the 23rd Annual IEEE Symposium on Foundations of
Computer Science, 1982: 170-175.

[NUTT89] Nutter, J.T., Fox, E.A., and Evens, M. Building a Lexicon from Machine-
Readable Dictionaries for Improved Information Retrieval. The Dynamic
Tezt: 16th ALLC and 9th ICCH International Conferences, Toronto, On-
tario, June 6-9, 1989, revised version to appear in Literary and Linguistic
Computing.

[PALM85] Palmer, E. M. Graphical Evolution: An Introduction to the Theory of Ran-
dom Graphs. John Wiley & Sons, New York, 1985.

[SAGES5] Sager, T. J. A Polynomial Time Generator for Minimal Perfect Hash Func-
tions, Communications of the ACM, 28, 1985, 523-532.

6 Appendices

A The Mapping Phase

Step Description of Algorithm Step

.

2.
3.

build random table for ho, hi and h2.
for each v in [0... 2r - 1] do vertex[v].firstedge = 0; vertex[v].degree = 0
for each i in [1... n] do

edge[i].h0 = ho(k,); edge[i].h, = h,(k,); edge[il.h2 = h~(ki)
edge[i].nextedgel -- 0
add edge[i] to linked fist with header vertex[ha(k~)].firstedge;

increment vertex[hi (ki)].degree
add edge[i] to linked llst with header vertex[h~(k,)].firstedge;

increment vertex[h2 (kl)].degree

307

B

Step

1.

4. for each v in [0 . . . r - 1] do
check tha t all edges in linked list vertex[v].firstedge

have distinct (h0, hi, h2) triples.
5. if triples are not distinct then repeat from s tep(l) .

.

.

.

The Ordering Phase

Description of Al$ori thm Step

CId = 0 / * assign all vertices an ID 0. */
fo._r, v in [0 . . . 2r -- 1] d_pq assign Cld to v
CId = 1
fo._2, v in [0 . . . 2r - 1] d_pq/*assign unique nonzero IDs to CCYs and ACs. */

i! v has nonzero degree and its component ID equals 0 then
in i t i a l i ze (VSTACK)/* process one component. * /
push(v, V S T A C K) / * save the first vertex of the component. * /
d._q

v = p o p (V S T A C K) / * get an unassigned vertex from VSTACK. */
assign CId to v / * assign the ID. */
fo._.2, each w adjacent to v d._.o

/* if there are vertices unassigned, put them into VSTACK. */
i! component ID of w is zero and not in VSTACK then

push(w, VSTACK)
while VSTACK is not empty

CId = CId + 1 / * increase ID for next component. */
in i t i a l i ze (VSTACK)/* get all one-degree vertices into VSTACK. * / .
fo_!. each nonzero degree v in [0 . . . 2r - 1] d_pq

~[vertex[v].degree = 1 then
push(v, VSTACK)
decrement vertex[v].degree

while VSTACK is not empty d.._o/* visit and truncate all edges in Ecp. */ .
v = pop(VSTACK)
fo_.2, each w adjacent to v d._o

if degree of w > 0 then decrease vertex[w].degree
i..f vertex[w].degree = 1 then push(w, VSTACK)

make all vertices not S E L E C T E D / * o b t a i n a VScc for all Vcc ver t i ces . * / .

308

.

C

Step

1.

i = l ;
all nonzero degree and no t S E L E C T E D v in [0 . . . 2 r - 1] d.__o

select vi = a ve r t ex of m a x i m u m degree > 0
i n i t i a l i z e (V H E A P) ; inse r t (vi, V H E A P)

d..~
vi = d e l e t e m a x (V H E A P)
m a r k vi S E L E C T E D and p u t vi in to V S
fo.._.r, each w a d j a c e n t to vi d_.9.

if w is not S E L E C T E D and w is no t in V H E A P then

in se r t (w , V H E A P)
i = i + 1

while V H E A P is no t e m p t y
fo._.r, i = 1 to t d_p./* assign indirection bit to all vertices in Vcc */ .
Let s = IK(vi) l and wj be any M A R K E D ver tex a d j a c e n t to v~.

Let t be the n u m b e r of not M A R K E D vert ices ad j acen t to vi

if s = 0 then ver tex[vl] .b i t = 1

J.! s = 1 .then
g ve r t ex [wl] .b i t = 0 then ver tex[v l] .b i t = 1

els_..S, ve r t ex [v i i .b i t = 0
i_f s > 1 then

g i = 0 and ver tex[wj] .b i t = 0 for all w./ then ver tex[v i i .b i t = 0

els._..~
fo._A all wj d._.9.

if ver tex[wj] = 0 then vertex[wj].bit = 1
vertex[viJ .bi t = 1

The Searching Phase

Descr ip t ion of A l g o r i t h m S tep

R = {) , S = {} /* S is the set of component IDs of those occupied trees. * /

/* R records the root vertices of trees in S. * /
/*Both sets are empty at first. * /

fo_2 i = 1 to t d_.q/* assign g values to Vcc.s to have edges in E c c indirectly hashed. * /
m a r k vi A S S I G N E D / * select the next vertex in V S c c for g value assignment. */

e s t ab l i sh a r a n d o m p r o b e sequence so, s l , . . . , s , - 1 for [0 . . . n - 1]

3 0 9

j = O
/* prepare the order in which difl'erent g values will be tried. ~/

Let W be the set of ASSIGNED vertices adjacent to v~
collision = false

[K(v,)[= 0 then /* v~ is the first vertex of an un-assigned component. ,k/
vertex[vl].g = si;]* assign vi's g entry the value sj. */

else
if IK(v,)l = 1 A N D vertex[vi].mark -~ vertex[w].mark then

/* if only one edge in the level and it is a direct edge, then assign the .q value */
/* to vertex vi such that hii,a t of the edge can be computed directly. */

,let w be in W and k in K(vi)
vertex[vi].g = [edge[k].final - edge[k].h0 - vertex[w].g] rood n

/* assign g value when k is direct * /
if edge[k].final > a then vertex[vi].g = edge[k].final - a
else vertex[vl].g = n - a + edge[k].final

e]se /* all the edges in the level have to be indirect. Need to find */
/* unoccupied zero-degree vertices or trees. * /

if vl in [0 . . . r -- 1] then /* distinguish which side vi is on * /
for each k in K(v~) d_pq/* v~ is on h~ side. */

h(k) = edge[k].h0 + vertex[edge[k].h2] + (sj mod 2r)
/* obtain the location of indirect-to vertex. */

if vertex[h(k)] is occupied O R vertex[h(k)] .CId in S then
collision = t r u e / * the indirect-to vertex is occupied. */

else /* the vi is on h2 side. */
fo.._y, each k in K(vi) d.._q

h(k) = edge[k].h0 + vertex[edge[k].h~] + (sj mod 2r)
if vertex[h(k)] is occupied O R vertex[h(k)] .CId in S then

collision = true
if not collision then

/* if all indirect-to locations are not occupied, * /
/* set all of them occupied. * /

for each k in K(v~) d_po
i! vertex[h(k)] is a zero-degree vertex then

set vertex[h(k)] occupied
else

310

S = S U N I O N {vertex[h(k)].CId}
R = R U N I O N {vertex[h(k)]}

vertex[h(k)].g = edge[k] . f inal /* set the g value of for indirect key */
i = i + 1

else /* if this sj causes any collisions, try next one. * /
j = j + l
i~'j > n - 1 then

fail
while collision

2. ini t ial ize(VSTACK) / * process EAc. */.
fo_.[, i = 0 to n - 1 d.__q

if v~ is both cycle and tree vertex then
/* identify starting vertices. */

all w not ASSIGNED in step 1 and adjacent to v~ d_9.
push(w, VSTACK)

while VSTACK is not empty d...9, v = pop(VSTACK)
/* directly hash all tree edges. * /

mark v ASSIGNED
fo._.~ w ASSIGNED and adjacent to v d....o

let k join v and w
vertex[v,].g = [edge[k].final - edge[k].h0 - vertex[w].g] rood n

all w not ASSIGNED and adjacent to v and not in VSTACK d...9_
push(w, VSTACK)

3. repeat (2) for all vertices in R. Each vertex in R will act as vi in (2).
4. repeat (2) for arbi t rary root vertices in ACs tha t have not accepted any

indirect edges. Each such vertex will act as vl in (2)

311

